
HAL Id: hal-01238994
https://hal.science/hal-01238994

Submitted on 7 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novel Genetic Algorithm Developed on a Reduced
Search Space for Optimal Redundancy Allocation in

Multi-State Series-Parallel Systems
Mu-Xia Sun, Yan-Fu Li, Enrico Zio

To cite this version:
Mu-Xia Sun, Yan-Fu Li, Enrico Zio. A Novel Genetic Algorithm Developed on a Reduced Search
Space for Optimal Redundancy Allocation in Multi-State Series-Parallel Systems. ESREl 2015, Sep
2015, Zurich, Switzerland. �hal-01238994�

https://hal.science/hal-01238994
https://hal.archives-ouvertes.fr

1 INTRODUCTION
The redundancy allocation problem (RAP) is a well-

known optimization problem of relevance for the de-

sign of industrial systems, for which high reliability

required (Levitin, G. et al. 1998, Lisnianski, A. et al.

1996, etc). The objective is to allocate redundancies,

for an optimal trade-offs between the reliability and

the cost of the system, while all component and sys-

tem constraints are satisfied (When repairs are con-

sidered, availability is used instead of reliability.). In

principle, most RAPs are solvable by exact method

such as branch-and-bound (Kuo, W. & Prasad 2000,

Kuo & Rui 2007). However, the NP-hard nature of

RAP makes it a challenge for practical applications

and algorithms must be designed that are able to

produce approximate optimal solutions with low

computational time. Meta-heuristic methods, partic-

ularly evolutionary algorithms (EAs) such as genetic

algorithms (GAs), have been successfully applied

for this.

In reliability engineering, systems are modeled as

binary-state systems (BSSs) or multi-state systems

(MSSs). The former have only two possible states,

perfect functioning and complete failure, whereas

the latter, which allows system and components to

have finite number of states from perfect functioning

to failure.

With regards to system topology, series-parallel

system (SPS) is one of the most common designs

analyzed for redundancy allocation (Kuo & Rui

2007, Wang & Li 2012). In this paper, the availabil-

ity maximization model and cost minimization mod-

el for MSSPS RAP are denoted as “max MSSPS

RAP” and “min MSSPS RAP”, respectively.

MSSPS RAP is more difficult than BSSPS RAP.

According to Yalaoui et al. (2005), we regard

BSSPS RAP is equivalent to a two-stage one-

dimension knapsack problem, after a simple log-

transformation, and thus it is NP-complete. The

MSSPS is more difficult, even the availability eval-

uation is exponential in time. For efficiency, meta-

heuristics appear more suitable for solving MSSPS

RAP than exact approaches, since they can provide

approximate optimal solutions in with much less

time, even though they can still be rather time con-

suming for large systems. The min MSSPS RAP has

been solved by meta-heuristics such as GA (Kuo &

Rui 2007), Tabu search (TS) (Ouzineb et al. 2011),

particle swarm optimization (PSO) (Wang & Li

2012), etc. On the contrary, max MSSPS RAP is not

so frequently studied, e.g. in (Gupta & Agarwal

2006), where a GA with dynamic penalty function is

presented.

We study max MSSPS RAP in this work. We

start from analyzing the monotonicity of MSSPSs

and, then, show that an EA only need to search with-

in a subset of the feasible region. Then, we modify

GA according to this particular property: a repair al-

gorithm and a novel mutation operator are designed

A Novel Genetic Algorithm Developed on a Reduced Search Space for
Optimal Redundancy Allocation in Multi-State Series-Parallel Systems

M. X. Sun & Y. F. Li
Chair on Systems Science and the Energetic Challenge, Fondation EDF, CentraleSupélec, France

E. Zio
Chair on Systems Science and the Energetic Challenge, Fondation EDF, CentraleSupélec, France

Energy Department, Politecnico di Milano, Milano, Italy

ABSTRACT: We consider the redundancy allocation problem (RAP) for multi-state series-parallel systems

(MSSPSs), with the objective of maximizing system availability under cost constraint. We show that, to ob-

tain the global optimum, an evolutionary algorithm (EA) only needs to search within a subset of the feasible

region. To exploit this, a repair algorithm is designed in a genetic algorithm (GA), to ensure it generates indi-

viduals only within the boundary subset, without increasing its computational complexity. We also add a nov-

el mutation operator to improve local search efficiency, via generalizing the local search operators that appear

in previous MSSPS RAP literature. In benchmark test, our modified GA outperforms the comparative algo-

rithms and finds a solution better than the published one.

to ensure that GA will only generate individuals

within the subset.

The rest of this paper is organized as follows: in

section II the formulation of max MSSPS RAP is

presented; in section III the monotonicity property of

MSSPS RAP and the research space reduction are

presented; in section IV the repair algorithm, the

novel mutation operator and the overall modified

GA are presented; in section V our modified GA is

tested on 3 benchmarks, comparing with the original

GA and the published MSSPS RAP results; section

VI concludes the study.

2 STATEMENT OF THE PROBLEM

2.1 The MSSPS

The structure of a MSSPS is shown in Fig.1. The

MSSPS is composed of 𝑁 subsystems connected in

series. Each subsystem 𝑖 ∈ {1, 2, . . . , 𝑁} is com-

posed of functionally equivalent components in par-

allel and there are 𝑛𝑖 versions of components avail-

able on the market. For each component version

𝑗 ∈ {1, 2, . . . , 𝑛𝑖} in subsystem 𝑖 (“version 𝑗 in

subsystem 𝑖” will be denoted as “version 𝑖𝑗” in the

rest of this paper), there are at most 𝑋𝑖𝑗 components

available.

The states of the components in the system are

assumed to be mutually s-independent. Each com-

ponent version 𝑖𝑗 is characterized by its cost 𝐶𝑖𝑗

and state distribution 𝑆𝑖𝑗, which is determined by

the following sets:

𝐺𝑖𝑗 = {𝑔𝑘𝑖𝑗
|𝑔𝑘𝑖𝑗

∈ ℝ≥0, 𝑘𝑖𝑗 ∈ ℕ, 𝑘𝑖𝑗 ≤ 𝐾𝑖𝑗} (1)

𝑃𝑖𝑗 = {𝑝𝑘𝑖𝑗
|𝑝𝑘𝑖𝑗

∈ ℝ≥0, 𝑘𝑖𝑗 ∈ ℕ, 𝑘𝑖𝑗 ≤ 𝐾𝑖𝑗} (2)

where 𝐺𝑖𝑗 is the set of states and 𝑃𝑖𝑗 is the set of

the corresponding probabilities of each component

version 𝑖𝑗. The states in 𝐺𝑖𝑗 are sorted in ascending

order, with 𝑔0 = 0 as “complete failure” and

𝑔𝐾𝑖𝑗
= max{𝐺𝑖𝑗ℎ} as “perfect functioning”.

Figure 1. The MSSPS

The state of each component ℎ of version 𝑖𝑗 is

given by a random variable (RV) 𝐺𝑖𝑗ℎ~𝑆𝑖𝑗 , i.e.,

𝐺𝑖𝑗ℎs are i.i.d. to 𝑆𝑖𝑗 for each 𝑖𝑗. Then the state of

each subsystem 𝑖 is defined as:

𝐺𝑖 = ∑ ∑ 𝐺𝑖𝑗ℎ

𝑥𝑖𝑗

ℎ=1

𝑁𝑖

𝑗=1

, 𝑖 ∈ {1,2, … , 𝑁} (3)

where 𝑥𝑖𝑗 is the number of components of version

𝑖𝑗. Then, the state of the whole system is defined as

𝐺𝑠 = min𝑖=1,2…,𝑁 𝐺𝑖 (4)

and, then, the availability of the system is defined as

𝐴 = Pr (𝐺𝑠 ≥ 𝑊) (5)
where 𝑊 is a RV denoting system demand, follow-

ing an arbitrary discrete distribution defined by

𝐺𝐷 = {𝑑|𝑑𝑘 ∈ ℝ≥0, 𝑘 ∈ ℕ, 𝑘 ≤ 𝐾} (6)

𝑃𝐷 = {𝑝|𝑝𝑘 ∈ ℝ≥0, 𝑘 ∈ ℕ, 𝑘 ≤ 𝐾} (7)

where 𝐺𝐷 is the set of demand states and 𝑃𝐷 gives

the probabilities for the respective states. After alge-

braic manipulations, the availability of the system

can be written as the following formula

𝐴 = ∑ ∏ Pr (𝐺𝑖 ≥ 𝑊𝑘)𝑝𝑘
𝑁
𝑖=1

𝐾
𝑘=1 (8)

Note that 𝐴 can be directly calculated given each

Pr (𝐺𝑖 ≥ 𝑊𝑘), which can be evaluated by enumera-

tion approaches such as universal generating func-

tion (UGF), as shown in (Wang & Li 2012).

2.2 The MSSPS RAP

Let us define the decision vector

𝑥⃑ = (𝑥11, 𝑥12, … 𝑥𝑖𝑗 , … , 𝑥𝑁𝑛𝑁
) (9)

and the cost constraint

𝐶(𝑥⃑) = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛𝑖
𝑗=1

𝑁
𝑖=1 ≤ 𝐶0 (10)

Then, max MSSPS RAP is defined as:

Problem 2.1

max 𝐴(𝑥⃑) (11)

s. t.
𝐶(𝑥⃑) ≤ 𝐶0 (12)

𝑥𝑖𝑗 ≤ 𝑋0 (13)

𝑥𝑖𝑗 ∈ ℕ (14)

where 𝐶0 is the maximum system cost and 𝑋0 is

the maximum number for all versions of compo-

nents.

3 MONOTONICITY AND SEARCH SPACE
REDUCTION

3.1 Monotonicity

Property 3.1

𝐴(𝑥⃑) is monotonically increasing on the feasible

solution set 𝐹.

The monotonicity of MSSPS availability can be

presented in partial order approach. Let us define the

partial relation ≽ on 𝐹 as

𝑥⃑′ ≽ 𝑥⃑′′ iff ∀𝑖𝑗: 𝑥𝑖𝑗
′ ≥ 𝑥𝑖𝑗

′′

then, we have

∀𝑥⃑′ ∀𝑥⃑′′: 𝑥⃑′ ≽ 𝑥⃑′′ ⇒ 𝐴(𝑥⃑′) ≥ 𝐴(𝑥⃑′′)
i.e. 𝐴(𝑥⃑) is monotone increasing on 𝐹.

3.2 Search space reduction

Let us define

𝐵𝑐 = {𝑥⃑ ∈ 𝐹: min({𝑐𝑖𝑗: 𝑥𝑖𝑗 < 𝑋0}) > 𝑑},

where

𝑑 ≝ 𝐶0 − 𝐶(𝑥⃑)
Assume 𝑥⃑′ ∈ 𝐵𝑐 and 𝑥⃑′′ ≻ 𝑥⃑′ , then 𝐶(𝑥⃑′′) > 𝐶0

since 𝐶(𝑥⃑) is strictly monotone increasing on 𝐹
(In partial order, " ≻” refers to “≽ 𝑎𝑛𝑑 ≠”). Hence,

𝐵𝑐 is a subset of the boundary of the feasible region

constrained by the cost.

Theorem 3.2

There is at least one global optimal solution for

Problem 2.1 in the set 𝐵𝑐 if 𝐵𝑐 ≠ ∅.

Proof

𝐹\𝐵𝑐 = {𝑥⃑ ∈ 𝐹: min({𝑐𝑖𝑗: 𝑥𝑖𝑗 < 𝑋0}) ≤ 𝑑}

Let us use the following algorithm to modify the

number of components for one arbitrary feasible so-

lution 𝑥⃑′′ ∈ 𝐹\𝐵𝑐.

Step 1. find one component version 𝑖𝑗 s.t.

𝑐𝑖𝑗 ≤ 𝑑, 𝑥𝑖𝑗 < 𝑋0

Step 2. 𝑥𝑖𝑗 = 𝑥𝑖𝑗 + 1

Step 3. update 𝑥⃑′′ and 𝑑 according to step 2.

Step 4. terminate if

{𝑖𝑗: 𝑐𝑖𝑗 ≤ 𝑑, 𝑥𝑖𝑗 < 𝑋0} = ∅

otherwise go back to step 1.

The algorithm will terminate in finite steps since

𝐶(𝑥⃑) is monotonically increasing on 𝐹. Then, we

shall have either

{𝑖𝑗: 𝑥𝑖𝑗 < 𝑋0} = ∅
or

min({𝑐𝑖𝑗: 𝑥𝑖𝑗 < 𝑋𝑖𝑗}) > 𝑑

The previous case is in contradiction with the condi-

tion 𝐵𝑐 ≠ ∅. In the latter case, we have 𝑥⃑′′ ∈ 𝐵𝑐.

Since there is always some 𝑥𝑖𝑗 increased in the pre-

vious algorithm, we conclude that

∀𝑥⃑′ ∃𝑥⃑′′: 𝑥⃑′ ∈ 𝐹\𝐵𝑐, 𝑥⃑′′ ∈ 𝐵𝑐 ⇒ 𝑥⃑′′ ≻ 𝑥⃑′

Thus

∀𝑥⃑′ ∃𝑥⃑′′: 𝑥⃑′ ∈ 𝐹\𝐵𝑐 𝑥⃑′′ ∈ 𝐵𝑐 ⇒ 𝐴(𝑥⃑′′) ≥ 𝐴(𝑥⃑′)
according to Property 3.1. Then we immediately ob-

tain

max{𝐴(𝑥⃑): 𝑥⃑ ∈ 𝐵𝑐} ≥ max{𝐴(𝑥⃑): 𝑥⃑ ∈ 𝐹\𝐵𝑐}
according to the monotonicity and thus

max{𝐴(𝑥⃑): 𝑥⃑ ∈ 𝐵𝑐} = max{𝐴(𝑥⃑): 𝑥⃑ ∈ 𝐹}

4 ALGORITHM DESIGN

4.1 The repair algorithm

Here we present a randomized repair algorithm to

fix any solutions 𝑥⃑ ∉ 𝐵𝑐 into 𝐵𝑐 . The algorithm

randomly selects a component from the current sys-

tem design and removes it. The process repeats until

𝑥⃑ becomes feasible. Then, the algorithm randomly

selects a component version from the following in-

dex set

{𝑖𝑗: 𝑥𝑖𝑗 < 𝑋𝑖𝑗, 𝑐𝑖𝑗 < 𝑑}

and add 𝑥𝑖𝑗 by one. The process repeats until 𝑥⃑

enters 𝐵𝑐. The pseudo code is given in Algorithm 1.

Algorithm 1. Repair algorithm

𝑑 = 𝐶0 − ∑ 𝑥𝑖𝑗𝑐𝑖𝑗𝑖𝑗 ; 𝑛 = ∑ 𝑥𝑖𝑗𝑖𝑗 ;

while 𝑑 < 0
*𝑖𝑗 = randi(1, 𝑛, {𝑖𝑗: 𝑥𝑖𝑗 > 0});

 𝑥𝑖𝑗 = 𝑥𝑖𝑗 − 1;

 𝑛 = 𝑛 − 1;
 𝑑 = 𝑑 + 𝑐𝑖𝑗;
end while;

while 𝑑 ≥ min ({𝑐𝑖𝑗: 𝑥𝑖𝑗 < 𝑋𝑖𝑗})

** 𝑖𝑗 = rand(𝑖𝑗, {𝑖𝑗: 𝑥𝑖𝑗 < 𝑋𝑖𝑗, 𝑐𝑖𝑗 ≤ 𝑑});

𝑥𝑖𝑗 = 𝑥𝑖𝑗 + 1;

 𝑑 = 𝑑 − 𝑐𝑖𝑗;

end while;

* randi(1, 𝑛, {𝑖𝑗: 𝑥𝑖𝑗 > 0}) uniformly samples one

component from all the 𝑛 components installed on

the current system and stores the component version

of the sampled component.

** 𝑖𝑗 = rand(𝑖𝑗, {𝑖𝑗: 𝑥𝑖𝑗 < 𝑋𝑖𝑗, 𝑐𝑖𝑗 ≤ 𝑑}) uniformly

samples the component version from the version set

{𝑖𝑗: 𝑥𝑖𝑗 < 𝑋𝑖𝑗, 𝑐𝑖𝑗 ≤ 𝑑} and stores it.

The time complexity of Algorithm 1 is O(𝑛2).

In GA, new individuals are generated during repro-

duction. In this paper, the repair algorithm is only

used after crossover, to ensure the entire population

is within 𝐵𝑐 before mutation is performed.

4.2 The local-search mutation operator

In literature, the operators designed for local search

in MSSPS RAP include (−1, +1), (−1, +𝛽) and

(−𝑎𝑙𝑙, +𝛽) (Ouzineb et al. 2008, Wang & Li 2012).

In short, the (−1, +1) operator deletes one existing

component from the current solution and then adds

one component of a different version onto the

changed solution. It has also been used to replace the

standard mutation operator in GA by Levitin et al.

(1998). The (−1, +𝛽) and (−all, +𝛽) operators,

they are restricted within a selected subsystem, in

which “−all” refers to removing all components of a

selected version and 𝛽 is calculated to approxi-

mately compensate the availability difference caused

by the “−1” or “−all” operation.

In this section, we provide a novel mutation oper-

ator for max MSSPS RAP, integrating the advantage

of the above mentioned local search schemes. It as-

signs a uniform mutation probability 𝑝𝑚 to each

subsystem. When a subsystem 𝑖 mutates, it applies

a (−𝛼, +𝛽) operator onto itself. The (−𝛼, +𝛽)
operator removes 𝛼 components from a randomly

selected component version 𝑖𝑗 and, then, adds 𝛽
components to a randomly selected component ver-

sion 𝑖𝑗′. Detailed steps of the mutation operator are

given in Algorithm 2.

Algorithm 2. Mutation operator

Step 1. determine the subsystems that will mutate

according to 𝑝𝑚 and store the indexes of these sub-

systems in an index set 𝑀𝑖;

Step 2. build a 1 − 1 mapping

𝑓: 𝑀𝑖 → 𝑓𝑀 = {1,2, … |𝑀𝑖|}
by using a randomized disorder algorithm 𝑓 on
(𝑀𝑖 × 𝑓𝑀);

Step 3. select element 𝑘 from 𝑓𝑀 by ascending or-

der, then decide the index 𝑖 of the selected subsys-

tem by

𝑖 = 𝑓−1(𝑘);
Step 4. select 𝑗 and 𝑗′ from the candidate compo-

nent version set { 𝑖𝑗}, respectively, according to uni-

form distribution;

Step 5. calculate 𝑑 = 𝐶0 − 𝐶(𝑥⃑) for the current

system;

Step 6. determine 𝛼 by one realization of the RV

𝑋𝛼 ∼ 𝑈(1, 𝑥𝑖𝑗)

where 𝑈(1, 𝑥𝑖𝑗) is a uniform integer distribution on

the range (1,2,…, 𝑥𝑖𝑗);

Step 7. determine 𝛽 by the following equation:

𝛽 = ⌊
𝑑 + 𝛼 ∙ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑐𝑖𝑗′
⌋ + {

𝑋, when 𝑘 ≠ |𝑀𝑖|

0, when 𝑘 = |𝑀𝑖|

where 𝑋~𝐵𝑒𝑟𝑛(0.5) is a Bernoulli trial;

Step 8. if 𝑘 ≠ |𝑀𝑖|, go to Step 3; otherwise termi-

nate the algorithm.

Note that in Step 7., 𝛽 is used to compensate the re-

duction of system cost caused by the “−𝛼” opera-

tion; the Bernoulli trial 𝑋 is used to allow the sys-

tem having a 50% chance to slightly violate the cost

constraint and another 50% chance to stay in 𝐵𝑐 for

𝑘 < |𝑀𝑖| . When 𝑘 = |𝑀𝑖| , 𝑋 = 0 to ensure the

system remains in 𝐵𝑐 after mutation, since it is the

last subsystem to be mutated. To ensure the index of

the last subsystem to be repaired 𝑓−1(|𝑀𝑖|) is ran-

domly selected, we use a randomized disorder algo-

rithm in Step 2.

4.3 The integer-coded elitism GA with repair
algorithm and modified mutation operator

In this paper, the repair algorithm and the mutation

operator are integrated into an integer-coded elitism

GA (IEGA). In IEGA, each bit in a chromosome rep-

resents the number of components of a certain ver-

sion; for elitism, the parents will compete with the

children in a tournament selection for survival, in

which only the best half of the combined population

will survive. For fitness evaluation, the value of the

objective function of Problem 2.1 is calculated. The

individuals with larger objective function values are

considered to have better fitness rankings. To avoid

selecting infeasible solutions for the next generation,

a penalty term with large constant coefficient is add-

ed.

In our modified version of IEGA, named as r-nm-

IEGA, the repair algorithm is inserted after the

crossover and the original mutation operator is re-

placed by the novel mutation operator. The complete

algorithm is given in the following Algorithm 3.

Algorithm 3. r-nm-IEGA

Step 1. Initialization: initialize the population size

𝑃𝑠, the maximum generation 𝑅𝑚, the length of each

chromosome 𝐿𝑐 = ∑ 𝑛𝑖
𝑁
𝑖=1 , the crossover probabil-

ity 𝑝𝑐, and the mutation probability 𝑝𝑚; initialize

the first population by assigning an integer number

to each bit in the chromosome within the range

(0,1, … 𝑋0), and evaluate the fitness value of the ini-

tial population;

Step 2. Parents selection: select parents from the cur-

rent population by binary tournament selection;

Step 3. Crossover: select pairs of parents for crosso-

ver according to 𝑝𝑐 and, then, perform 2-point

crossover between each pair of parents;

Step 4. Repair: each chromosome is repaired back to

𝐵𝑐 by Algorithm 1 if it is in the initial population or

has undergone crossover;

Step 5. Mutation: select chromosomes in current

population for mutation according to 𝑝𝑚 and, then,

run the mutation operator defined in Algorithm 2;

Step 6. Fitness evaluation: compute the fitness val-

ues of the children population;

Step 7. Selection: combine the parents and children

populations; build the new population of size 𝑃𝑠 by

running a binary tournament selection on the com-

bined population;

Step 8. Termination: The algorithm terminates if the

maximum generation 𝑅𝑚 is reached.

5 BENCHMARK TESTS

The benchmark systems tested in this paper are P1

(Levitin et al. 1998), P2 (Ouzineb et al. 2008 &

2011) and P3 (Levitin et al. 1997). In literature, P1

and P2 have been tested only for min MSSPS RAP;

P3 is the only benchmark that has been tested for the

max MSSPS RAP (Gupta & Agarwal 2006). The

problem type, constraint setting and best optima

found on P1~ P3 are listed in Table 1.

Table 1. The best results on the benchmark problems

Constraint Found optimal Problem Type

P1 A ≥ 0.99
C = 8.18

A = 0.991
Min

P2 A ≥ 0.99
C = 12.794
A = 0.992

Min

P3 C ≤ 16
C =15.982

A = 0.994
Max

For P1 and P2, we can build the respective maximi-

zation problem in the following way:

1. set the cost of the current best solution as maximal

system cost;

2. set the current best solution as the reference for

the maximization problem.

The new formulations for P1 and P2 are given in

Table 2.

Table 2. Maximization formulations for P1 and P2

Constraint Reference Availability

P1 C ≤ 8.18 A = 0.991
P2 C ≤ 12.794 A = 0.992

In this paper, r-nm-IEGA and IEGA are compared

on P1~P3. On P3, the results published by Gupta &

Agarwal (2006) are used for comparison. The sizes

of the population and the maximum generation of r-

nm-IEGA, IEGA and the penalty-guided GA (Gupta

& Agarwal 2006) are given in Table 3. To find the

best settings of 𝑝𝑐 and 𝑝𝑚 for IEGA and r-nm-

IEGA in each benchmark, each algorithm is tested

on a range of parameter values: for r-nm-IEGA they

are 𝑝𝑐 = 0.1,0.2, … ,1 and 𝑝𝑚 = 0.1,0.2, … ,1 and

for IEGA they are 𝑝𝑐 = 0.1,0.2, … ,1 and

𝑝𝑚 = 0.02,0.04, … ,0.3.

The mutation probabilities of r-nm-IEGA are much

larger than those of the original GA, since our muta-

tion operator works on subsystems instead of bits.

Considering the local search scheme used in our mu-

tation operator, it is straightforward to see that the

mutation probability on each bit is still relatively

small. The optimal parameters for each algorithm on

each problem are listed in Table 4.

Table 3. Population settings

r-nm-IEGA IEGA
Penalty-

guided GA

𝑃𝑠 20 20 50

𝑅𝑚 500 500 2000

Table 4. Optimal parameter settings

(𝑝𝑐, 𝑝𝑚) r-nm-IEGA IEGA

P1 (0.6,0.5) (0.8,0.14)

P2 (0.7,0.3) (0.7,0.1)

P3 (0.5,0.4) (0.5,0.2)

The results for P1 and P2 are given in Table 5, and

show that r-nm-IEGA reaches the reference availa-

bilities given in Table 2 within 500 generations

while IEGA does not. Figure 1 shows the conver-

gence curves of the best runs and the averages of the

10 runs of r-nm-IEGA and IEGA with the optimal

𝑝𝑐 and 𝑝𝑚 settings. From Figure 1, we can ob-

serve that:

1. the best run of r-nm-IEGA reaches the reference

availability within about 60 runs while IEGA does

not for 500 runs;

2. the average convergence curve of r-nm-IEGA is

better than the convergence curve of the best run of

IEGA.

Thus, we can conclude that r-nm-IEGA outperforms

IEGA both in efficiency and robustness.

Figure 1. The convergence curves of P1

Table 5. Best optima obtained by the GAs

Best optima r-nm-IEGA IEGA Penalty-

guided GA

P1 0.991 0.986 /

P2 0.992 0.982 /

P3 0.997 0.986 0.994

Table 5 also shows that r-nm-IEGA obtains an

optimal solution for P3 that is better than the one

published in (Gupta & Agarwal 2006). The details

about the solutions are presented in Table 6.

Table 6. Best optimal solutions obtained by r-nm-

IEGA and penalty guided GA (Gupta & Agarwal

2006) for P3

Sub r-nm-IEGA Penalty-guided GA

1 2(2) 5(1) 6(1) 7(2)

2 5(6) 3(2)

3 2(2) 3(1) 2(2) 3(1)

4 7(3) 5(2) 7(1)

5 4(3) 3(2) 4(1)

6 CONCLUSION

The mathematical properties of the max MSSPS

RAP allow the optimal solution and approximate op-

timal solutions to be found within a subset of the

boundary of the feasible region, which ensures the

effectiveness of using a repair algorithm for the

search space reduction. Considering the series-

parallel structure of MSSPSs and the existing local

search schemes in literature for min MSSPS RAP, a

new mutation operator is designed for max MSSPS,

which inherits the form of (−𝑥, +𝑦) and retain the

population inside the reduced search space after mu-

tation. In benchmark tests our modified r-nm-IEGA

is compared with the original GA, i.e. the IEGA and

the published method. The results indicate the supe-

riority of the proposed r-nm-IEGA.

REFERENCES

Gupta, R. & Agarwal, M. 2006. Penalty guided genetic search
for redundancy optimization in multi-state series-parallel
power system. Journal of Combinatorial Optimization
12(3): 257-277.

Kuo, W. & Rui, W. 2007. Recent advances in optimal reliabil-
ity allocation. Computational Intelligence in Reliability En-
gineering: 1-36. Springer: Berlin.

Kuo, W. & Prasad, V. R. 2000. An annotated overview of sys-
tem-reliability optimization. Reliability, IEEE Transactions
on 49(2): 176-187.

Levitin, G., Lisnianski, A., & Elmakis, D. 1997. Structure op-
timization of power system with different redundant ele-
ments, Electric Power Systems Research 43(1): 19-27.

Levitin, G. et al. 1998. Redundancy optimization for series-
parallel multi-state systems. Reliability, IEEE Transactions
on, 47(2): 165-172.

Lisnianski, A. et al. 1996. Power system structure optimization
subject to reliability constraints. Electric Power Systems
Research 39(2): 145-152.

Ouzineb, M., Nourelfath, M., & Gendreau, M. 2008. Tabu
search for the redundancy allocation problem of homoge-
nous series–parallel multi-state systems. Reliability Engi-
neering & System Safety 93(8): 1257-1272.

Ouzineb, M., Nourelfath, M., & Gendreau, M. 2011. A heuris-
tic method for non-homogeneous redundancy optimization
of series-parallel multi-state systems. Journal of Heuristics,
17(1): 1-22.

Wang, Y. & Li, L. 2012. Heterogeneous redundancy allocation
for series-parallel multi-state systems using hybrid particle
swarm optimization and local search. Systems, Man and

Cybernetics, Part A: Systems and Humans, IEEE Transac-
tions on, 42(2): 464-474.

Yalaoui, A., Châtelet, E., & Chu, C. 2005. A new dynamic
programming method for reliability & redundancy alloca-
tion in a parallel-series system. Reliability, IEEE Transac-
tions on 54(2): 254-261.

