N

N

Transforming Javascript Event-Loop Into a Pipeline
Etienne Brodu, Stéphane Frénot, Frédéric Oblé

» To cite this version:

Etienne Brodu, Stéphane Frénot, Frédéric Oblé. Transforming Javascript Event-Loop Into a Pipeline.
SAC, Apr 2016, Pisa, Italy. 10.1145/2851613.2851745 . hal-01238895v3

HAL Id: hal-01238895
https://hal.science/hal-01238895v3
Submitted on 12 Feb 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-01238895v3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Transforming Javascript Event-Loop Into a Pipeline

Etienne Brodu, Stéphane Frénot
{etienne.brodu, stephane.frenot}@insa-lyon.fr
Univ Lyon, INSA Lyon, Inria, CITI, F-69621 Villeurbanne,
France

ABSTRACT

The development of a real-time web application often starts
with a feature-driven approach allowing to quickly react to
users feedbacks. However, this approach poorly scales in
performance. Yet, the user-base can increase by an order
of magnitude in a matter of hours. This first approach is
unable to deal with the highest connections spikes. It leads
the development team to shift to a scalable approach of-
ten linked to new development paradigm such as dataflow
programming. This shift of technology is disruptive and
continuity-threatening. To avoid it, we propose to abstract
the feature-driven development into a more scalable high-
level language. Indeed, reasoning on this high-level language
allows to dynamically cope with user-base size evolutions.
We propose a compilation approach that transforms a
Javascript, single-threaded real-time web application into a
network of small independent parts communicating by mes-
sage streams. We named these parts fluzions, by contraction
between a flow! and a function. The independence of these
parts allows their execution to be parallel, and to organize
an application on several processors to cope with its load,
in a similar way network routers do with IP traffic. We test
this approach by applying the compiler to a real web ap-
plication. We transform this application to parallelize the
execution of an independent part and present the result.

CCS Concepts

eSoftware and its engineering — Source code gener-
ation; Runtime environments;

Keywords

Flow programming; Web; Javascript

'lux in french

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

SAC 2016, April 04 - 08, 2016, Pisa, Italy

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-3739-7/16/04. .. $15.00

DOL http://dx.doi.org/10.1145/2851613.2851745

Frédéric Oblé

frederic.oble@worldline.com
Worldline, Bit. Le Mirage, 53 avenue Paul Kriiger
CS 60195, 69624 Villeurbanne Cedex

1. INTRODUCTION

“Release early, release often”, “Fail fast”. The growth of
a real-time web service is partially due to Internet’s capac-
ity to allow very quick releases of a minimal viable product
(MVP). It is crucial for the prosperity of such project to
quickly validate that it meets the needs of its users. Indeed,
misidentifying the market needs is the first reason for startup
failure®. Hence the development team quickly concretizes an
MVP using a feature-driven approach and iterates on it.

The service needs to be scalable to be able to respond to
the growth of its user-base. However, feature-driven devel-
opment best practices are hardly compatible with the re-
quired parallelism. The features are organized in modules
which disturb the organization of a parallel execution [6, 12,
16]. Eventually the growth requires to discard the initial ap-
proach to adopt a more efficient processing model. Many of
the most efficient models decompose applications into execu-
tion units [10, 20, 7]. However, these tools are in disruption
from the initial approach. This shift causes the development
team to spend development resources in background to start
over the initial code base, without adding visible value for
the users. It is a risk for the evolution of the project. Run-
ning out of cash and missing the right competences are the
second and third reasons for startup failures?.

The risk described above comes from a disruption between
the two levels of application expression, the feature level and
the execution level. To avoid this risk and allow a continuous
development process, we propose a tool to automatically
map one level onto the other, and make the transition.

We focus on web applications driven by users requests
and developed in Javascript using the Node.js® execution
environment. Javascript is widely adopted?® to develop web
applications, and its event-loop model is very similar to a
pipeline architecture. So we propose a compiler to transform
an application into a pipeline of parallel stages communicat-
ing by message streams. We named these stages flurions, by
contraction between a flux and a function.

We present a proof of concept for this compilation ap-
proach. Section 2 describes the execution environment tar-
geted by this compiler. Then, section 3 presents the com-
piler, and section 4 its evaluation. Section 5 compare our
work with related works. And finally, we conclude this pa-
per.

Zhttps://www.cbinsights.com/blog/
startup-failure-post-mortem/
3https://nodejs.org/
“http://githut.info/

Shttp:/ /stackoverflow.com/tags



2. FLUXIONAL EXECUTION MODEL

This section presents an execution model to provide scal-
ability to web applications with a granularity of parallelism
at the function level. Functions are encapsulated in au-
tonomous execution containers with their state, so as to be
mobile and parallel, similarly to the actors model. The com-
munications are similar to the dataflow programming model,
which allows to reason on the throughput of these streams,
and to react to load increases [4].

The fluxional execution model executes programs written
in our high-level fluxionnal language, whose grammar is pre-
sented in figure 1. An application (program) is partitioned
into parts encapsulated in autonomous execution containers
named fluzions (flx). The following paragraphs present the
flurions and the messaging system to carry the communi-
cations between fluzions, and then an example application
using this execution model.

2.1 Fluxions and Messaging System

A fluzion (flx) is named by a unique identifier (id) to re-
ceive messages, and might be part of one or more groups
indicated by tags (tags). A fluzion is composed of a pro-
cessing function (fn), and a local memory called a context
(ctx).

At a message reception, the flurion modifies its context,
and sends messages to downstream flurions on its output
streams (streams). The context stores the state on which a
fluzion relies between two message receptions. The messag-
ing system queues the output messages for the event loop to
process them later by calling the downstream fluzions.

In addition to message passing, the execution model al-
lows fluxions to communicate by sharing state between their
contexts. The fluxions that need this synchronization are
grouped with the same tag, and loose their independence.

There are two types of streams, start and post, which cor-
respond to the nature of the rupture point producing the
stream. A variable created within a chain of post streams
requires more synchronization than a variable created up-
stream a start stream. The two types and implications of
rupture points are further detailed in section 3. Start rup-
ture points are indicated with a double arrow (— or >>) and
post rupture points with a simple arrow (— or ->).

(program) [ (flx) | (flx) eol (program)
(lx) E flx (id) (tags) (ctx) eol (streams) eol (fn)
(tags) = & (list) | empty string
(streams) | null | (stream) | (stream) eol (streams)
(stream) = (type) (dest) [(msg)]
(dest) = (list)
() b= ({list))
(msg) = [(list)]
(list) = (id) | (id), (list)
(type) £ >> | >
(id) [ Identifier
(fn) = Source language with (stream) placeholders

Figure 1: Syntax of a high-level language to repre-
sent a program in the fluxionnal form

2.2 Example

var app require
fs require
count
app . get function handler(req, res

fs.readFile(__filename, function reply(err, data
count

res.send(err template (count, data

app.listen

Listing 1: Example web application

The fluxional execution model is illustrated with an ex-
ample application presented in listing 1. This application
reads a file, and sends it back along with a request counter.
The handler function, line 5 to 10, receives the input stream
of requests. The count variable at line 3 counts the requests,
and needs to be saved between two messages receptions. The
template function formats the output stream to be sent back
to the client. The app.get and res.send functions, lines 5
and 8, interface the application with the clients. Between
these two interface functions is a chain of three functions to
process the client requests : app.get —» handler — reply.
This chain of functions is transformed into a pipeline, ex-
pressed in the high-level fluxionnal language in listing 2. The
transformation process between the source and the fluxional
code is explained in section 3.

grp_res

@ start E
messaging = messaging
system 4 (& post s system @ |®
I@dequeue t@enqueue S ORIG)
— f ™
I @ register

‘ program ‘

Figure 2: The fluxionnal execution model in details

The execution is illustrated in figure 2. The dashed arrows
between fluxions represent the message streams as seen in
the fluxionnal application. The plain arrows represent the
operations of the messaging system during the execution.
These steps are indicated by numeroted circles. The pro-
gram registers its fluxions in the messageing system, (1). The
fluxion reply has a context containing the variable count and
template. When the application receives a request, the first
fluxion in the stream, main, queues a start message con-
taining the request, (2). This first message is to be received
by the next fluxion handler, (3), and triggers its execution,
(4). The fluxion handler sends back a message, (5), to be
enqueued, (6). The system loops through steps (3) through
(6) until the queue is empty. This cycle starts again for each
new incoming request causing another start message.



flx main grp_res
>> handler [res
var app require
fs require
count
app.get >> handler
app.listen

flx handler
-> reply [res
function handler(req, res
fs.readFile(__filename, -> reply

flx reply grp_res {count, template
-> null
function reply(error, data
count

res.send(err template(count, data

Listing 2: Example application expressed in the
high-level fluxional language

The chain of functions from listing 1 is expressed in the
fluxional language in listing 2. The fluxion handler doesn’t
have any dependencies, so it can be executed in a parallel
event-loop. The fluxions main and reply belong to the group
grp_res, indicating their dependency over the variable res.
The group name is arbitrarily chosen by the compiler. All
the fluxions inside a group are executed sequentially on the
same event-loop, to protect against concurrent accesses.

The variable res is created and consumed within a chain
of post stream. Therefore, it is exclusive to one request and
cannot be propagated to another request. It doesn’t prevent
the whole group from being replicated. However, the fluxion
reply depends on the variable count created upstream the
start stream, which prevents this replication. If it did not
rely on this state, the group grp_res would be stateless, and
could be replicated to cope with the incoming traffic.

This execution model allows to parallelize the execution
of an application as a pipeline, as with the fluxion handler.

And some parts are replicated, as could be the group grp_res.

This parallelization improves the scalability of the applica-
tion. Indeed, as a fluxion contains its state and expresses
its dependencies, it can be migrated. It allows to adapt the
number of fluxions per core to adjust the resource usage in
function of the desired throughput.

Our goal, as described in the introduction, is not to pro-
pose a new high-level language but to automate the archi-
tectural shift. We present the compiler to automate this
architectural shift in the next section.

3. FLUXIONNAL COMPILER

The source languages we focus on should offer higher-order
functions and be implemented as an event-loop with a global
memory. Javascript is such a language and is often imple-
mented on top of an event-loop, like in Node.js. We devel-
oped a compiler that transforms a Node.js application into a
fluxional application compliant with the execution model de-
scribed in section 2. Our compiler uses the estools® suite to
parse, manipulate and generate source code from Abstract
Syntax Tree (AST). And it is tailored for — but not limited
to — web applications using Ezpress”, the most used Node.js
web framework.

Shttps://github.com /estools
"http:/ /expressjs.com/

pipeline
representation

Analyzer
N
escope

Figure 3: Compilation chain

N
source esprima

7

N
Pipeliner flx source

representation

The chain of compilation is described in figure 3. The
compiler extracts an AST from the source with esprima.
From this AST, the Analyzer step identifies the limits of
the different application parts and how they relate to form
a pipeline. This first step outputs a pipeline representation
of the application. Section 3.1 explains this first compilation
step. In the pipeline representation, the stages are not yet
independent and encapsulated into fluxions. From the AST,
escope produces a representation of the memory scopes. The
Pipeliner step analyzes the pipeline representation and the
scopes representation to distribute the shared memory into
independent groups of fluxions. Section 3.2 explains this
second compilation step.

3.1 Analyzer step

The limit between two application parts is defined by a
rupture point. The analyzer identifies these rupture points,
and outputs a representation of the application in a pipeline
form. Application parts are the stages, and rupture points
are the message streams of this pipeline.

3.1.1 Rupture points

A rupture point is a call of a loosely coupled function. It
is an asynchronous call without subsequent synchronization
with the caller. In Node.js, I/O operations are asynchronous
functions and indicate rupture points between two applica-
tion parts. Figure 4 shows a code example of a rupture point
with the illustration of the execution of the two application
parts isolated into fluxions. The two application parts are
the caller of the asynchronous function call on one hand, and
the callback provided to the asynchronous function call on
the other hand.

upstream fluxion downstream fluxion

Main thread 1/0 thread Main thread
arguments evaluation L>
asyncCall execution J
»
Following statements @
. result

asynchronous operation
callback execution @ ‘ 1

asyncCall (arguments, function callback(result

Figure 4: Rupture point interface

A callback is a function passed as a parameter to a func-
tion call. It is invoked by the callee to continue the execution
with data not available in the caller context. There are three
kinds of callbacks, but only two are asynchronous: listeners
and continuations. The two corresponding types of rupture
points are start and post.

Start rupture points (listeners) are on the border be-
tween the application and the outside, continuously receiv-
ing incoming user requests. An example of a start rupture



point is in listing 1, between the call to app.get(), and its
listener handler. These rupture points indicate the input of
a data stream in the program, and the beginning of a chain
of fluxions to process this stream.

Post rupture points (continuations) represent a conti-
nuity in the execution flow after an asynchronous operation
yielding a unique result, such as reading a file, or a database.
An example of a post rupture points is in listing 1, between
the call to fs.readFile(), and its continuation reply.

3.1.2 Detection

The compiler uses a list of common asynchronous callees,
like the express and file system methods. This list can be
augmented to match asynchronous callees individually for
any application. To identify the callee, the analyzer walks
the AST to find a call expression matching this list.

After the identification of the callee, the callback needs to
be identified as well, to be encapsulated in the downstream
fluxion. For each asynchronous call detected, the compiler
tests if one of the arguments is of type function. Some
callback functions are declared in situ, and are trivially de-
tected. For variable identifiers, and other expressions, the
analyzer tries to detect their type. The analyzer walks back
the AST to track their assignations and modifications, so as
to determine their last value.

3.2 Pipeliner step

A rupture point eventually breaks the chain of scopes be-
tween the upstream and downstream fluxion. The closure
in the downstream fluxion cannot access the scope in the
upstream fluxion as expected. The pipeliner step replaces
the need for this closure, allowing application parts to rely
only on independent memory stores and message passing. It
determines the distribution using the scope representation,
which represents the variables’ dependencies between appli-
cation parts. Depending on this representation, the compiler
can replace the broken closures in three different ways. We
present these three alternatives in figure 5.

flx main
var a = o; var a = 0;
var ¢ = 0; var ¢ = 0;
get(>> onReq); B
function Mreq
f1lx onReq <’
var b = req.count; var b = req.count; <:>
function read(-> add); “Sv.b
at=b+ctv; flx add <« grp_c
function
a+t=b+c+v
¢ = updt; update(a, -> end); X4 updt
flx end <«
c = updt; @

Figure 5: Variable management from Javascript to
the high-level fluxionnal language

Scope.

If a variable is modified inside only one application part
in the current post chain, then the pipeliner adds it to the
context of its fluxion.

In figure 5, the variable a is updated in the function add.
The pipeliner step stores this variable in the context of the
fluxion add.

Stream.

If a modified variable is read by downstream application
parts, then the pipeliner makes the upstream fluxion add
this variable to the message stream to be sent to the down-
stream fluxions. It is impossible to send variables to up-
stream fluxions, without causing inconsistencies. If the flux-
ion retro propagates the variable for an upstream fluxion to
read, the upstream fluxion might use the old version while
the new version is on its way.

In figure 5, the variable b is set in the function onReq,
and read in the function add. The pipeliner step makes the
fluxion onReq send the updated variable b, in addition to the
variable v, in the message sent to the fluxion add.

Exceptionally, if a variable is defined inside a post chain,
like b, then this variable can be streamed inside this post
chain without restriction on the order of modification and
read. Indeed, the execution of the upstream fluxion for the
current post chain is assured to end before the execution of
the downstream fluxion. Therefore, no reading of the vari-
able by the upstream fluxion happens after the modification
by the downstream fluxion.

Share.

If a variable is needed for modification by several applica-
tion parts, or is read by an upstream application part, then
it needs to be synchronized between the fluxions. To respect
the semantics of the source application, we cannot tolerate
inconsistencies. Therefore, the pipeliner groups all the flux-
ions sharing this variable with the same tag. And it adds
this variable to the contexts of each fluxions.

In figure 5, the variable c is set in the function end, and
read in the function add. As the fluxion add is upstream
of end, the pipeliner step groups the fluxion add and end
with the tag grp_c to allow the two fluxions to share this
variable.

4. REAL TEST CASE

This section presents a test of the compiler on a real appli-
cation, gifsockets-server®. This test proves the possibility for
an application to be compiled into a network of independent
parts. It shows the current limitations of this isolation and
the modifications needed on the application to circumvent
them. This section then presents future works.

var express require
app express
routes require
getRawBody require

function bodyParser(limit
return function saveBody(req, res, next
getRawBody (req
expected: req.headers
limit: limit
function (err, buffer
req.body buffer

next
app . post bodyParser
routes.writeTextToImages
app.listen

Listing 3: Simplified version of gifsockets-server

8https://github.com/twolfson /gifsockets-server



This application, simplified in listing 3, is a real-time chat
using gif-based communication channels. It was selected in
a previous work [5] from the npm registry because it depends
on express, it is tested, working, and simple enough to il-
lustrate this evaluation. The server transforms the received
text into a gif frame, and pushes it back to a never-ending
gif to be displayed on the client.

On line 18, the application registers two functions to pro-
cess the requests received on the url /image/text. The clo-
sure saveBody, line 7, returned by bodyParser, line 6, and the
method routes.writeTextToImages from the external mod-
ule gifsockets-middleware, line 3. The closure saveBody
calls the asynchronous function getRawBody to get the re-
quest body. Its callback handles the errors, and calls next
to continue processing the request with the next function,
routes.writeTextToImages.

4.1 Compilation

‘We compile this application with the compiler detailed in
section 3. Listing 4 presents the compilation result. The
function call app.post, line 18, is a rupture point. However,
its callbacks, bodyParser and routes.writeTextToImages are
evaluated as functions only at runtime. For this reason, the
compiler ignores this rupture point, to avoid interfering with
the evaluation.

flx main express {req
>> anonymous_1000 [req, next
var express require
app express
routes require
getRawBody require

function bodyParser(limit
return function saveBody(req, res, next
getRawBody (req
expected: req.headers
limit: limit
>> anonymous_1000

app.post bodyParser
routes.writeTextToImages
app.listen

flx anonymous_1000
-> null
function (err, buffer
req.body buffer
next

Listing 4: Compilation result of gifsockets-server

The compiler detects a rupture point : the function get-
RawBody and its anonymous callback, line 11. It encapsu-
lates this callback in a fluxion named anonymous_1000. The
callback is replaced with a stream placeholder to send the
message stream to this downstream fluxion. The variables
req and next are appended to this message stream, to propa-
gate their value from the main fluxion to the anonymous_1000
fluxion.

When anonymous_1000 is not isolated from the main flux-
ion, as if they belong to the same group, the compilation
result works as expected. The variables used in the flux-
ion, req and next, are still shared between the two fluxions.
Our goal is to isolate the two fluxions, to be able to safely
parallelize their executions.

4.2 Isolation

In listing 4, the fluxion anonymous_1000 modifies the ob-
ject req, line 23, to store the text of the received request,
and it calls next to continue the execution, line 24. These
operations produce side-effects that should propagate in the
whole application, but the isolation prevents this propaga-
tion. Isolating the fluxion anonymous_1000 produces runtime
exceptions. We detail in the next paragraph, how we handle
this situation to allow the application to be parallelized.

4.2.1 Variable req

The variable req is read in fluxion main, lines 10 and 11.
Then its property body is associated to buffer in fluxion
anonymous_1009, line 23. The compiler is unable to identify
further usages of this variable. However, the side effect re-
sulting from this association impacts a variable in the scope
of the next callback, routes.writeTextToImages. We mod-
ified the application to explicitly propagate this side-effect
to the next callback through the function next. We explain
further modification of this function in the next paragraph.

4.2.2 Closure next

The function next is a closure provided by the express
Router to continue the execution with the next function to
handle the client request. Because it indirectly relies on the
variable req, it is impossible to isolate its execution with the
anonymous_1000 fluxion. Instead, we modify express, so as
to be compatible with the fluxionnal execution model. We
explain the modifications below.

flx anonymous_1000
-> express_dispatcher
function (err, buffer
req.body buffer
next_placeholder(req, -> express_dispatcher

flx express_dispatcher
-> null
function (modified_req
merge (req, modified_req
next

express {req

Listing 5: Simplified modification on the compiled
result

In listing 3, the function next is a continuation allowing
the anonymous callback, line 11, to call the next function to
handle the request. To isolate the anonymous callback into
anonymous_1000, next is replaced by a rupture point. This
replacement is illustrated in listing 5. The express Router
registers a fluxion named express_dispatcher, line 8, to con-
tinue the execution after the fluxion anonymous_1000. This
fluxion is in the same group express as the main fluxion,
hence it has access to the original variable req, and to the
original function next. The call to the original next func-
tion is replaced by a placeholder to push the stream to the
fluxion express_dispatcher, line 5. The fluxion express_-
dispatcher receives the stream from the upstream fluxion
anonymous_1000, merges back the modification in the vari-
able req to propagate the side effects, and finally calls the
original function next to continue the execution, line 12.

After the modifications detailed above, the server works
as expected. The isolated fluxion correctly receives, and re-
turns its serialized messages. The client successfully receives
a gif frame containing the text.



4.3 Future works

We intend to implement the compilation process presented
into the runtime. A just-in-time compiler would allow to
identify callbacks dynamically evaluated, and to analyze the
memory to identify side-effects propagations instead of rely-
ing only on the source code. Moreover, this memory analysis
would allow the closure serialization required to compile ap-
plication using higher-order functions.

S. RELATED WORKS

Splitting a task into independent parts goes back to the
Actor’s model, functional programming [12] and the fol-
lowing works on DataFlow leading to Flow-based Program-
ming (FBP) and Functional Reactive programming (FRP)
[8]. Both FBP and FRP, recently got some attention in the
Javascript community with NoFlo®, Bacon.js'® and react!.

The execution model we presented in section 2, is inspired
by works on scalability for very large systems, like the Staged
Event-Driven Architecture (SEDA) by Matt Welsh [20] and
by the MapReduce architecture [7]. It also drew its inspira-
tion from more recent work following SEDA like Spark [21],
MillWheel [1], Naiad [15] and Storm [19]. The first part of
our work stands upon these thorough studies. However, we
believe that it is difficult for most developers to distribute
the state of an application. This belief motivated us to pro-
pose a compiler from an imperative programming model to
these more scalable, distributed execution engines.

The transformation of an imperative programming model
to be executed onto a parallel execution engine was recently
addressed by Fernandez et. al. [9]. However, as in similar
works [17], it requires annotations from developers, therefore
partially conserves the disruption with the feature-based de-
velopment. Our approach discards the need for annotations,
thus targets a broader range of developers than only ones
experienced with parallel development.

A great body of work focuses on parallelizing sequential
programs [3, 13, 14, 18]. Because of the synchronous execu-
tion of a sequential program, the speedup of parallelization is
inherently limited [2, 11]. On the other hand, our approach
is based on an asynchronous programming model. Hence the
attainable speedup is not limited by the main synchronous
thread of execution.

6. CONCLUSION

In this paper, we presented our work on a high-level lan-
guage allowing to represent a web application as a network
of independent parts communicating by message streams.
We presented a compiler to transform a Node.js web appli-
cation into this high-level representation. To identify two
independent parts, the compiler spots rupture points in the
application, possibly leading to memory isolation and thus,
parallelism. We presented an example of a compiled appli-
cation to show the limits of this approach. The parallelism
of this approach allows code-mobility which may lead to a
better scalability. We believe it can enable the scalability
required by highly concurrent web applications without dis-
carding the familiar, feature-driven programming models.

http://noflojs.org/
Ohttps: //baconjs.github.io/
"https: //facebook.github.io/react,/

References

1]

2]

[7]
8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

T Akidau and A Balikov. “MillWheel: Fault-Tolerant
Stream Processing at Internet Scale”. In: VLDB (2013).

G Amdahl. “Validity of the Single Processor Approach
to Achieving Large Scale Computing Capabilities”. In:
(1967).

U Banerjee. Loop parallelization. 2013.

T Bartenstein and Y Liu. “Rate Types for Stream Pro-
grams”. In: OOPSLA (2014).

E Brodu, S Frénot, and F Oblé. “Toward automatic
update from callbacks to Promises”. In: AWeS (2015).

A Clements, M Kaashoek, N Zeldovich, R Morris, and
E Kohler. “The scalable commutativity rule”. In: SOSP
(2013).

J Dean and S Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters”. In: OSDI (2004).

C Elliott and P Hudak. “Functional reactive anima-
tion”. In: SIGPLAN (1997).

R Fernandez, M Migliavacca, E Kalyvianaki, and P
Pietzuch. “Making state explicit for imperative big data
processing”. In: USENIX ATC (2014).

A Fox, S Gribble, Y Chawathe, E Brewer, and P Gau-
thier. “Cluster-based scalable network services”. In: SOSP
(1997).

N Gunther. “A general theory of computational scala-
bility based on rational functions”. In: ArXiv e-prints
(2008).

J Hughes. “Why functional programming matters”. In:
The computer journal (1989).

F Li, A Pop, and A Cohen. “Automatic Extraction of
Coarse-Grained Data-Flow Threads from Imperative
Programs”. In: IEEE Micro (2012).

N Matsakis. “Parallel Closures A new twist on an old
idea”. In: HotPar (2012).

F McSherry, R Isaacs, M Isard, and D Murray. “Com-
posable Incremental and Iterative Data-Parallel Com-
putation with Naiad”. In: Microsoft Research (2012).

D Parnas. “On the criteria to be used in decompos-
ing systems into modules”. In: Communications of the
ACM (1972).

R Power and J Li. “Piccolo: Building Fast, Distributed
Programs with Partitioned Tables.” In: OSDI (2010).

C Radoi, S Fink, R Rabbah, and M Sridharan. “Trans-
lating imperative code to MapReduce”. In: OOPSLA
(2014).

A Toshniwal, J Donham, N Bhagat, S Mittal, D Ryaboy,
S Taneja, A Shukla, K Ramasamy, J Patel, S Kulka-
rni, J Jackson, K Gade, and M Fu. “Storm@ twitter”.
In: SIGMOD (2014).

M Welsh, S Gribble, E Brewer, and D Culler. “A design
framework for highly concurrent systems”. In: Univer-
sity of California, Berkeley (2000).

M Zaharia, T Das, H Li, S Shenker, and I Stoica. “Dis-
cretized streams: an efficient and fault-tolerant model
for stream processing on large clusters”. In: Proceed-
ings of the 4th USENIX conference on Hot Topics in
Cloud Ccomputing (2012).



