
HAL Id: hal-01238833
https://hal.science/hal-01238833

Submitted on 7 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of a Fast Fourier Transform Algorithm
onto a Manycore Processor

Julien Hascoet, Jean-Francois Nezan, Andrew Ensor, Benoit Dupont de
Dinechin

To cite this version:
Julien Hascoet, Jean-Francois Nezan, Andrew Ensor, Benoit Dupont de Dinechin. Implementation of a
Fast Fourier Transform Algorithm onto a Manycore Processor. Conference on Design and Architectures
for Signal and Image Processing (DASIP), Sep 2015, Cracow, Poland. �10.1109/dasip.2015.7367270�.
�hal-01238833�

https://hal.science/hal-01238833
https://hal.archives-ouvertes.fr


Implementation of a Fast Fourier Transform
Algorithm onto a Manycore Processor

Julien HASCOET, Jean-Francois NEZAN, Andrew ENSOR, Benoı̂t DUPONT de DINECHIN
Kalray, INSA, AUT, Kalray

Université Européenne de Bretagne, France
Auckland University of Technology, New Zealand

Email: julien.hascoet@kalray.eu, jnezan@insa-rennes.fr, aensor@aut.ac.nz, benoit.dinechin@kalray.eu

Abstract—The Fourier transform is the main processing step
applied to data collected from the Square Kilometre Array (SKA)
receivers. The requirement is to compute a Fourier transform of
219 real byte samples in real-time, while minimizing the power
consumption. We address this challenge by optimizing a FFT
implementation for execution on the Kalray MPPA manycore
processor. Although this processor delivers high floating-point
performances, we use fixed-point number representations in order
to reduce the memory consumption and the I/O bandwidth. The
result is an execution time of 1,07ms per FFT, including data
transfers. This enables to use only two first-generation MPPA
chips per flow of data coming from the receivers, for a total
power consumption of 17.4W.

Keywords—Square Kilometer Array (SKA), Fast Fourier Trans-
form (FFT), Parallel Programming, Many-Core Processor, Fixed-
Point Arithmetic, Network-On-Chip

I. INTRODUCTION

This work takes place in the context of the SKA (Square
Kilometre Array) project1, whose objective is to deploy
world’s largest radio-telescope for the next decades. Thousands
of receivers will be deployed in three unique configurations
in Africa and Australia. It will have an unprecedented scope
in observations, exceeding the image resolution quality of the
Hubble Space Telescope by a factor of 50, whilst also having
the ability to image huge areas of the sky in parallel. The
SKA project results will answer many questions regarding
astrophysics, fundamental physics, cosmology and particle
astrophysics, and will also extend the range of the observable
universe. It will operate over a large range of frequencies from
50 MHz to 14 GHz as the dishes and dipole antennas will be
equipped with high performance single pixel feeds.

This project not only requires very high performance in
terms of computing but also long-haul links in order to
transmit huge amounts of data. The SKA will have a total
collecting area of approximately one square kilometer. The
receivers will be located in deserts and the dimension of the
power generation will be decided depending on the chosen
computing equipment. Power savings are thus as important as
the computing requirements.

The data bandwidth will exceed the current global Internet
traffic. As the SKA project deals with a huge amount of
data and low power computing, the SKA project constraints
are related to both high performance computing and green

1http://www.ska.ac.za

computing. These requirements can only be met by using the
last generation of embedded systems.

In radio astronomy, the increase of the computing capa-
bilities is the main challenge to store and interpret collected
data [1]. Embedded solutions for signal processing have relied
for a long time on FPGA implementations, as their energy
efficiency and compute performance are suitable for this type
of processing. Nowadays, many-core architecture solutions
designed to reach higher performances are available. Being
software programmable, they will enable the development of
innovative digital applications in the fields of image and signal
processing, telecommunications, intensive computing, indus-
trial automation, data management, storage and networking.
The objective of this work is to demonstrate the effectiveness
of many-core platforms in the SKA project, specifically the
Kalray MPPA (Multi-Purpose Processing Array) processor
which integrates 256 applications cores.

The current SKA [2] CSP (Central Signal Processor)
Survey Correlator requires FFT processing of data sets with
219 real byte samples. The incoming data throughput of a
single receiver is 1 Giga bytes per second; therefore, the FFT
processing needs to be done in 524µs. The first challenge is to
implement a FFT algorithm that fully exploits the execution
parallelism and the on-chip memories of the platform. The
second challenge is to feed all the MPPA compute clusters
with data to compute and return back the results to the host
CPU in real-time. Our implementation computes at an optimal
precision and also optimizes data transfers between cluster of
cores by leveraging the Network-On-Chip capabilities. As a
result, only two MPPA processors are needed per flow of data,
for a power consumption of 8,7W per processor.

This paper is organized as follows. The Kalray MPPA-256
Andey processor is introduced in Section II. Background on
FFT and previous work are presented in Section III. Section IV
describes the proposed algorithm and its implementation on the
MPPA architecture. The results of the application are presented
in Section V. Finally, Section VI concludes and proposes
directions for future work.

II. THE KALRAY MPPA ANDEY PROCESSOR

The Kalray MPPA (Multi-Purpose Processing Array)
many-core architecture is designed to achieve high energy effi-
ciency and deterministic response times for compute-intensive
embedded applications. The first MPPA-256 many-core pro-
cessor, code-named Andey, integrates 256 VLIW application



cores and 32 VLIW management cores operating at 400MHz
on a single chip and delivers more than 500 Giga operations
per second for a typical power consumption of 12W.

The 256 VLIW application cores of the MPPA-256 Andey
processor are grouped in 16 compute clusters connected with
each other by a dual Network-On-Chip (NoC). Each cluster
has 2 MB of locally shared memory called SMEM, of which
1.7 MB are available for application code and data, as 0.3
MB are taken by system software. In addition to the 16
compute clusters, the MPPA-256 Andey processor includes 4
Input/Output Subsystems that communicate with the external
world through high-speed interfaces such as the PCIe Gen3 and
Ethernet 10 Gbits/s. Those I/O subsystems also integrate quad-
cores with the same VLIW architecture and are connected to
up to 4GB of external DDR3 memory. An overview of the
Kalray’s MPPA architecture appears in Figure 1.

Each MPPA core implements a 32-bit VLIW architecture
which issues up to 5 instructions per cycle, corresponding to
the following execution units: branch & control unit (BCU),
ALU0, ALU1, load-store unit (LSU), multiply-accumulate unit
(MAU) combined with a floating-point unit (FPU). Each ALU
is capable of 32-bit scalar or 16-bit SIMD operations, and the
two can be coupled for 64-bit operations. The MAU performs
32-bit multiplications with a 64-bit accumulator and supports
16-bit SIMD operations as well. Finally, the FPU supports
one single-precision fused multiply-add (FMA) operation per
cycle, or one double-precision operation per cycle.

Fig. 1: MPPA-256 Processor Architecture

We use the MPPA POSIX-Level programming model [3],
where code and data distribution across the compute clusters
are explicitly managed. With this model, each compute cluster
executes an independent process, started from its own binary
executable. Inside each compute cluster, up to 15 additional
POSIX threads can be created as a first thread already runs
the main program. This programming model offers control
over the memory footprint and supports thread-level parallel
execution within each cluster with one thread per core. The
POSIX-Level programming model also manages data trans-
fers by using the POSIX synchronous and asynchronous file
operations. These operations activate the dual NoC for internal
communications and the high speed interfaces (Ethernet, PCIe
Gen3, NoCX) for communications with the external world.

III. STATE-OF-THE-ART OF FFTS

Fourier analysis converts time (or space) to frequency
(or wavenumber) and vice versa. Fourier analysis has many
scientific applications in physics, signal processing, imaging,
probability theory, statistics, cryptography, numerical analysis,
acoustics, geometry and other areas.

The Fast Fourier transform (FFT) [4] algorithms compute
the Discrete Fourier Transform (DFT) while reducing a com-
plexity of N2 to NLog2(N). Consider a complex array of N
values, the raw DFT is given by the following formula:

X(f) =

N−1∑
k=0

xke
−2iπkf/N =

N−1∑
k=0

xkW
kf
N (1)

WN = e−2iπ/N (2)

The FFT algorithms [5] refactor this formula, so they
compute the same values as the DFT except for possible
rounding errors. They can be used independently or combined
providing several trade-offs in terms of computational com-
plexity, memory requirement and parallelism. The challenge
here is to find the optimal combination of FFT algorithms
for an execution on the MPPA. Below, we discuss the FFT
algorithms which have been used or tested in this work.

a) Radix-2: The Radix-2 algorithm is applied on inputs
where the number of inputs is a power of 2 and its complexity
is given by 10

2 NLog2(N). The Radix-2 Decimation-In-Time
equation is listed below [6]:

X(f) =

N
2 −1∑
k=0

x2kW
2kf
N +

N
2 −1∑
k=0

x2k+1W
(2k+1)f
N

(3)

b) Radix-4: The Radix-4 algorithm is applied on inputs
where the number of inputs is a power of 4 and its complexity
is given by 34

8 NLog4(N). Note that by default a complex
multiplication requires four multiplications and two additions.
For this reason the Radix-4 algorithm might be more suitable
in terms of performance as it requires less multiplications than
the Radix-2 algorithm. The Radix-4 Decimation-In-Frequency
equation is given by the following formula [6]:

X(f) =

N
4 −1∑
k=0

[
x(k) + x(k+N

4 )(−j)f+

x(k+ 2N
4 )(−1)f + x(k+ 3N

4 )(j)
f
]
W kf
N

(4)

c) Six-Steps: The Six-Steps method [7] is another way
of computing FFTs. Whereas the Radix-2 and Radix-4 algo-
rithms are sequential, this method provides an efficient way to
parallelize the FFT computations by splitting them into smaller
ones. The Six-Steps method is as follows:

1) Transpose, Transposition of the matrix interpretation
of the complex input.

2) Fast Fourier Transform, Independent FFT compu-
tations provide the maximum degree of parallelism.

3) Transpose, Transposition of the matrix interpretation.
4) Twiddle Correction, Complex multiplication by each

corresponding Twiddle factor on the entire complex
matrix with the coefficient e−2iπ∗

row∗line
matrixSize .

5) Fast Fourier Transform, Independent FFT compu-
tations provide the maximum degree of parallelism.

6) Transpose, Transposition of the matrix interpretation.



This algorithm provides embracing parallelisms during the
FFT steps 2) and 5), which means that it is very suitable for
parallel implementations. This method also allows to use both
the Radix-2 and the Radix-4 algorithms for the FFT steps.

d) Real to Complex FFT: Mathematical optimization
can be done by folding a real N -point FFT computation into
a complex N

2 -point FFT. The idea is to store at the input of the
FFT computation the even part in the real indexes and the odd
part in the imaginary indexes. Then the FFT is performed and
the output samples are combined together in order to extract
the N -point FFT final result with the following formulas:

X(f) =
1

2

[
(x(f) + x(N

2 −f)
)− i(x(f) − x(N

2 −f)
)e−2iπ

f
N

]
f∈[0,N2 [

(5)

X(f) =
1

2

[
(x(0) + x(0))− i(x(0) − x(0))

]
f=N

2

(6)

This process is very efficient, as it reduces the number of
operations for an FFT of a real signal almost by half.

IV. ALGORITHM AND OPTIMIZATION

A. Challenge

Algorithm: The main challenge is to parallelize efficiently
the execution of the 219 FFT of real points over the 256 cores
of the MPPA platform. Moreover, tests were made in order to
find the best FFT algorithm. The selected algorithm is based
on the Six-Step method performed in fixed-point arithmetic
because it fits the SKA precision requirements and is more
efficient on the MPPA processor.

Memory: The next challenge is fit this large FFT compu-
tation inside one cluster; this enables to run 16 219 FFTs of
real points in parallel, one per cluster. Each complex number
is stored on an integer which means 16-bit for the real part and
16-bit for the imaginary part. Thus, the computation requires
one Mega bytes to store the entire FFT data set thanks to
formula (6) because the second half of the FFT is the complex
conjugate of the first half computed with the 218 complex
point FFT. This implementation is able to fit inside one cluster
which contains 1.7 Mega bytes of available local memory
shared by the 16 application cores only if it is computed
in-place (i.e the input is overwritten by the output as the
algorithm executes). Such a compute configuration is required
as the MPPA architecture is a Non-Uniform-Memory-Access,
where the compute locality must be managed as effectively as
possible. It means that bulk data transfers need to be limited
to the streaming from/to the compute clusters of the MPPA.
Memory copies and internal variables have to be reduced as
much as possible.

B. In-Place Matrix Transposition in the Six-Steps Stage

This matrix transposition is difficult to design to perform
in parallel, given that it must be done in-place, without using
auxiliary memory. The design is to swap half of the SMEM

content inside one cluster, balancing the work between each
core and in such a way that cache misses are limited.

The matrix size that needs to be transposed is 512 ∗ 512 =
218 and the size of each complex number is 32-bit. In figure
2, each core PE that is actually in charge of transposing its
memory area can be seen. Moreover, the following equation
helps to understand how does the work is spread among the
16 cores inside one cluster:

218 = 1Core ∗ (32 ∗ 32)DiagonalBlock ∗ 16NbBlock+
15Cores ∗ [(32 ∗ 16) ∗ 2]UpperLowerBlock ∗ 16NbBlock

(7)

Each core operates on the same amount of data and has
exactly the same workload. Diagonal blocks are size of 32 ∗
32 = 1024 complex numbers and upper and lower diagonal
blocks are size of 16 ∗ 32 but work in pairs; therefore, it is
2∗16∗32 = 1024 complex numbers. This in-place transposition
also enables a setup of the radix-point of the FFT values to be
processed.

Fig. 2: In-Place Transposition Work Distribution

Load balancing of an in-place matrix transposition is
difficult as it requires to take into account the data cache size
and the data layout of the memory area to be transposed. Our
approach rearranges the data so that during the FFT stages,
cache misses will be reduced significantly. This approach
applies to any similar in-place matrix transposition problem.
It is especially useful for embedded systems, as the on-chip
memory is the most critical resource.

C. Fast Fourier Transform Six-Steps Stages

The main purpose of the Six-Steps method [8] is to break
the FFT into smaller independent FFTs. However, several work
configurations were investigated before selecting the one that
best fits with the 16 cores of the MPPA compute cluster.

For this purpose, the input is interpreted as a matrix of
512∗512 and FFT computations are performed on 512 points.



The 512-point FFT implementation used is a Radix-4 [9]
combined with a Radix-2 in another Six-Steps method. In order
to compute it, only four stages of Radix-4 and one stage of
Radix-2 are needed (as 44∗21 = 512). All twiddle coefficients
required by the FFT computation formula are pre-computed
and stored into the SMEM. Moreover the bit-reversal needed
at the end of the FFT computation is performed with a look-
up table in order to be done efficiently. There are no thread
parallelization at this level but SIMD parallelism.

The embracing parallelism is found in the level of 512-
point FFTs. 512-point FFTs are computed independently one
from the other by the 16 cores and data are continuous in
memory; therefore, there are almost no cache misses thanks to
the matrix transposition and the data cache pre-fetching (Fig.
2). Each core has 32 512-point FFTs to compute and the work
is embarrassingly parallel in one cluster.

D. Twiddle Correction Six-Steps Stage

The twiddle coefficients are pre-computed and stored in-
side clusters because their computation would degrade the
performance. In addition, we reduce the memory consumption
inside one cluster by 15% by using 8-bit twiddle coefficients.
The twiddle correction is performed in the same time as
the second transposition operation. Overall, this reduces the
memory accesses significantly and divides the computing time
by 4.

Those twiddle factors represent a symmetric matrix with
the size of 512 ∗ 512. This means that only roughly half of
the coefficients need to be stored. The challenge consisted in
storing 512∗513

2 twiddle coefficients in a smart way. This means
that the reading of the pre-computed twiddle coefficients has
to be as continuous as possible for each core when the core
is doing the transposition operation on its blocks. It provides
cores with homogeneous memory accesses when the twiddle
coefficients are read. Moreover, it eases the use of the data
cache pre-fetching.

E. Combine the N
2 FFT Result

This process extracts the FFT result of the 219 input
samples by combining real and imaginary output samples of
the 218 FFT with equations 5 and 6. In this process, twiddle
factors are also needed and they need to be very accurate.

Thanks to those formulas, they can be easily computed
using the complex number rotation multiplication in order to
compute the next twiddle factor and so on. As 16 cores are
available, only 16 twiddle factors need to be stored for each
core. Then, the next twiddle factors are computed on the fly
very accurately with the FPU. Moreover, this operation needs
to be performed in-place and each core must have a balanced
workload. Figure 3 shows how the memory accesses are made
if we consider the following square block to be the result of
our 218-complex-point FFT.

V. RESULTS

As the main challenge of this work is to fit a large 218

complex-point FFT into the SMEM of each MPPA compute
cluster, memory results are listed with the associated needs.
This sections also compares the final sequential algorithm to

Fig. 3: Real and Imaginary Combination Load Balancing

the parallelized algorithm, using the exact same test conditions
in order to be fair. At the scope of one compute cluster, two
levels of optimization are described: the 512-point fixed-point
function, which can be implemented using different techniques,
and the high level Six-Steps method parallelization using the
MPPA POSIX-Level programming model.

A. Memory Design

In this section, we detail the memory usage within one clus-
ter with regards to the Six-Steps implementation. The solution
for storing the twiddle factors in the SMEM is shown in figure
4 (see twiddle colors for each working core). This solution
can be applied to other architectures, as most of them behave
better when linear memory accesses are made. For instance,
data cache pre-fetching is enabled and memory addresses are
better disambiguated by the compiler, thus optimizing the CPU
use of the memory system capabilities.

Six-Steps Method Level Used Memory (Bytes)
218 FFT Storing (16-bit) 2 ∗ 2 ∗ 218 = 1048576

Twiddle Coefficients (8-bit) 512∗513
2 ∗ 2 = 262656

Combined Coefficients (float) 4 ∗ 2 ∗ 17 = 136
TABLE I: Total Memory Usage for the 218-Point FFT

Fig. 4: Twiddles Memory Sorting

The implementation of the adapted Radix-4 with Radix-
2 algorithm in a 512-point Six-Steps FFT also requires pre-
computed values that are stored in the SMEM.

The final required static space is 1.4 MB when considering
program instructions. Thank to these memory optimization, the
application is able to fit inside one MPPA compute cluster.



512-point Fixed-Point FFT Used Memory (Bytes)
Bit reverse LUT (8-bit) 2 ∗ 256 = 512

FFT Twiddle Coeff. (16-bit) 2 ∗ 510 = 1020
Twiddle Corr. Coeff. (16-bit) 2 ∗ 2 ∗ 512 = 2048

TABLE II: Memory Usage for the Adapted 512-point FFT
Function

B. 512-Point Fixed-Point FFT

This 512-point FFT is performed sequentially. There is no
parallelization but use of SIMD operations. It is then executed
by the 16 cores of the cluster in parallel. Each core is in charge
of computing 32 512-point FFT as 512 = 16core∗32. To ensure
the functional safety, the fixed-point has been designed using
the worst case of the 219 real input samples when the data
range increase during FFT stages. Current mathematical stud-
ies provided this FFT fixed-point design with the theoretical
most unlikely output of SKA receiver dishes.

Algorithm Timing (µs)
512-Point Radix-2 FFT 122

512-Point Radix-4/2 Six-Steps FFT 84
TABLE III: Radix-2 Vs an Optimized Radix-4/2 Mixed Using
the Six-Steps Method

The 512-Point Radix-4/2 Six-Steps FFT is performed by
interpreting the 512-point FFT as a matrix of 256 ∗ 2 and two
256-point FFT can be performed using a Radix-4 algorithm
[9] for the first Six-Steps FFT stage. The second Six-Steps
FFT stage is then performed using the 256 Radix-2 butterflies
[4] with the Six-Steps twiddle correction stage in it.

C. Steps Timing of the 218-Complex-Point Six-Steps FFT

For each step of the Six-Steps method, a function and a
flow of data are given to each core. Work is balanced in order
to have cores running for the longest amount of time in parallel.

Six-Steps FFT (ms) Sequential Parallel Speed-Up
Transpose 9.19 0.77 11.93

512 512-point FFT 40.07 2.70 14.84
Trans. & Twid. Corr. 12.52 1.00 12.52
512 512-point FFT 40.07 2.70 14.84

Transpose 9.12 0.97 11.54
TABLE IV: Comparison Results Between the Parallel and
Sequential Implementation for each Step

The speed-up between the sequential and parallel imple-
mentation is efficient considering that the core 0 of clusters
have to create and join the 15 POSIX threads [3]. For each
step, 15 threads are created and the work of core 0 starts after
the threads creation. Then, thread joins are performed and the
steps of the Six-Steps method that follow are handled until the
end. It enables a 218 complex FFT to be done in 7.94ms with
a global speed-up of 13.9 for the 16 cores running in parallel.

D. Total 219-Real-Point FFT Timing

Timing tests have been made using DMA transfers in an
asynchronous way to move one 219 real input sample set
from the Input/Output Subsystem to one of the 16 clusters.
The fastest DMA transfers are achieved by making bulk data
transfers. Data rearrange steps are needed at the beginning and

the end of the FFT computation, because input and output data
of a compute cluster are on 8-bit, while the computation is
done on 16-bit fixed-point data to have the required accuracy.

FFT Algorithm (ms) Sequential Parallel Speed-Up
Input Arrange − 0.67 −
FFT Six-Steps 110.38 7.94 13.90

Combined Real & Im. 14.05 0.97 14.48
Output Arrange − 2.06 −

TABLE V: Comparison Results in One Compute Cluster

Considering input and output data of clusters to be trans-
ferred with DMAs, the total fixed-point FFT implementation of
the computation of 219 real samples takes 11.69ms to be done
in one cluster without taking into account DMA data transfers.
The parallelization efficiency inside one cluster achieves up to
90% load and can be seen on the right part of figure 6.

E. Application Feeding

Each cluster can perform a 219 real fixed-point FFT in-
dependently. Clusters need to be fed with data through the
data NoC. Each cluster has its own binary executable and so
does the IO Subsystem; therefore, 17 processes are running
concurrently. The fastest way of sending 219 real byte samples
is by asynchronous DMA transfers over the NoC, which are
managed by dedicated µcores (top-left part of Fig. 5).

Fig. 5: Clusters Feeding With The IO Subsystem

In this application (Fig. 5), for an IO Subsystem point of
view, clusters are peripherals: whenever one cluster finishes
to compute and delivers its FFT results, it triggers a signal
and the IO Subsystem sends a new FFT set of samples to the
cluster using very fast DMAs through the NoC.

In figure 6, the 16 clusters are fed from the IO Subsystem
by asynchronous DMA transfers. The IO Subsystem embeds 4
DMA engines, each able to run up to 8 data transfer threads.

F. Profiling & Power Consumption

The following table shows the results when different MPPA
configurations are set:

Therefore, with 16 compute clusters, the computation time
for one fixed-point FFT of 219 real byte samples can be



Fig. 6: Parallelization on all Compute Clusters

Nb Clus. Transf. IO-Clus. (ms) FFT (ms) P. (W)
1 1.37 13.06 4.9
4 2.31 3.5 6.0
8 3.29 1.87 7.5
16 5.4 1.07 8.7

TABLE VI: MPPA Timing and Power Consumption Results

decreased down to 1.07ms with a power consumption of 8.7W
(measured on the MPPA-256 board). The transfer (IO-Clus.)
time is the sum of getting and sending back the FFT flow of
data to compute.

A single-precision floating-point implementation running
on a single core of an x86 CPU (Intel Core i7 3820 at
3.60 GHz with 10240 KB of cache memory) results in 228
ms and the fixed-point computation results in 78 ms in the
same configuration. This x86 architecture has a typical power
consumption of 80W, thus its number of FFTs is 0.16FFT/J .
Regarding the MPPA, it is 107.42FFT/J , which corresponds
to an energy efficiency improvement of 671x compared to the
x86 reference implementation.

An implementation on the Exynos 5410 platform has
been performed to compare our results with processors de-
signed for embedded systems. Exynos is a series of ARM-
based System-on-Chips (SoCs) developed and manufactured
by Samsung Electronics. The octa-core Exynos 5410 platform
is a big.LITTLE configuration with four ARM Cortex A7
cores running at 600 MHz and four ARM Cortex A15 cores
running at 1.6GHz. This SoC is widely used for its low
power capabilities to implement signal and image processing
applications [10]. The CPU has a maximum clock frequency
of 1600 MHz and can be scaled down to 250 MHz. The
power dissipation of the ARM platform was measured by
reading internal power registers in the SoC while running
the application under evaluation. The registers contain values
representing the dissipated power for the Cortex-A15, the

Cortex-A7 and for the external memory in Watts. All values
can be read from user space when issuing calls to specific
control registers which handle the measurement sensors. In
this experiment, the code is implemented using a single ARM
cortex core.

Archi. FFT (ms) P. (W) Efficiency. (FFT/J)
MPPA 1.07 8.7 107.42

x86 228 80 0.16
Cortex A7 1044 0.383 2.5

Cortex A15 473 1, 86 1.13
TABLE VII: Comparison of Timing and Power Consumption
Results with other Architectures

VI. CONCLUSION & PERSPECTIVE

This work demonstrates that a parallel approach for com-
puting large-scale FFTs on many-core platforms such as the
Kalray MPPA-256 Andey processor with a POSIX-like process
& threads programming model is effective. Applications need
suitable algorithms that expose embracing parallelism in order
to take advantage of such platforms. The Six-Steps method
implementation we describe is able to exploit a high degree of
parallelism across the FFT computations within each compute
cluster of the MPPA processor. Parallel execution across the
256 cores decrease the processing time down the 1.07ms with
a mean power consumption of 8.7W. The computation of the
FFT is done in real-time following the requirements of the
SKA project. Moreover the power efficiency of the proposed
implementation is 671 times better than x86 solutions, 42.3
times better than Cortex A7 solutions and 95 times better than
Cortex A15 solutions.

The FFT implementation we present targets the current
SKA CSP (Central Signal Processor) project requirements. On-
going discussions internal to this project consider increasing
the FFT size in order to reduce the spectral leakage. Such
evolution of the performance requirements could be met by



adapting our implementation to the second generation MPPA
processor, code-named Bostan. This processor also integrates
256 VLIW application cores, but operates over 600MHz and
has twice the energy efficiency of the MPPA Andey processor.
Both processors are manufactured using the same TSMC
CMOS 28HP (28nm) process, however the MPPA-256 Bostan
VLIW cores perform twice as much fixed-point or floating-
point operations per clock cycle. While our implementation
fits well the MPPA architecture which features 16 cores per
compute cluster, it appears flexible enough to be applied other
multi-core architectures as well.

REFERENCES

[1] R. Ansari, “Cosmology: from fundamental questions to computing
challenges,” in Paris-Saclay Center for Data Science Kick-off
Meeting, Orsay, France, Jun. 2014. [Online]. Available: http:
//hal.in2p3.fr/in2p3-01020026

[2] B. Carlson, “Ska csp internal requirements definition for chiplevel and
chip memory level design and development start,” November 2013.

[3] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Léger, B. Orgogozo,
J. Reybert, and T. Strudel, A Distributed Run-Time Environment for the
Kalray MPPA-256 Integrated Manycore Processor, June 2013.

[4] M. T. Heideman, D. H. Johnson, and C. S. Burrus, “Gauss and the
history of the fast fourier transform,” The ASSP Magazine, vol. 1, no. 4,
pp. 14–21, October 1984.

[5] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Math. Comput., vol. 19, no. 90, pp. 297–301,
April 1965.

[6] Y.-T. Cheng, “Autoscaling radix-4 fft for tms320c6000,” March 2000.
[7] B. Spinean and G. Gaydadjiev, “Implementation study of FFT on

multi-lane vector processors,” in 15th Euromicro Conference on Digital
System Design, DSD 2012, Cesme, Izmir, Turkey, 2012, pp. 815–822.

[8] D. H. Bailey, “Ffts in external or hierarchical memory,” J. Supercomput.,
vol. 4, no. 1, pp. 23–35, Mar. 1990.

[9] C. Wu, “Implementing the radix-4 decimation in frequency (dif) fast
fourier transform fft) algorithm using a tms320c80 dsp,” January 1998.

[10] E. Nogues, R. Berrada, M. Pelcat, D. Menard, and E. Raffin, “A dvfs
based hevc decoder for energy-efficient software implementation on
embedded processors,” in Multimedia and Expo (ICME), 2015 IEEE
International Conference on. IEEE, 2015, pp. 1–6.

http://hal.in2p3.fr/in2p3-01020026
http://hal.in2p3.fr/in2p3-01020026

	Introduction
	The Kalray MPPA Andey Processor
	State-of-the-art of FFTs
	Algorithm and Optimization
	Challenge
	In-Place Matrix Transposition in the Six-Steps Stage
	Fast Fourier Transform Six-Steps Stages
	Twiddle Correction Six-Steps Stage
	Combine the N2 FFT Result

	Results
	Memory Design
	512-Point Fixed-Point FFT
	Steps Timing of the 218-Complex-Point Six-Steps FFT
	Total 219-Real-Point FFT Timing
	Application Feeding
	Profiling & Power Consumption

	Conclusion & Perspective
	References

