
HAL Id: hal-01238790
https://hal.science/hal-01238790v1

Submitted on 9 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Implementation and Parallelization of the
Scale-Space Meshing Algorithm

Julie J. Digne

To cite this version:
Julie J. Digne. An Implementation and Parallelization of the Scale-Space Meshing Algorithm. Image
Processing On Line, 2015, 5, pp.282-295. �10.5201/ipol.2015.102�. �hal-01238790�

https://hal.science/hal-01238790v1
https://hal.archives-ouvertes.fr

Published in Image Processing On Line on 2015–11–23.
Submitted on 2013–08–19, accepted on 2014–11–24.
ISSN 2105–1232 c© 2015 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol.2015.102

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

An Implementation and Parallelization of the Scale-Space

Meshing Algorithm

Julie Digne

LIRIS, CNRS UMR 5205,Université Lyon 1 (julie.digne@liris.cnrs.fr)

Abstract

Creating an interpolating mesh from an unorganized set of oriented points is a difficult problem
which is often overlooked. Most methods focus indeed on building a watertight smoothed mesh
by defining some function whose zero level set is the surface of the object. However in some cases
it is crucial to build a mesh that interpolates the points and does not fill the acquisition holes:
either because the data are sparse and trying to fill the holes would create spurious artifacts
or because the goal is to explore visually the data exactly as they were acquired without any
smoothing process. In this paper we detail a parallel implementation of the Scale-Space Meshing
algorithm, which builds on the scale-space framework for reconstructing a high precision mesh
from an input oriented point set. This algorithm first smoothes the point set, producing a
singularity free shape. It then uses a standard mesh reconstruction technique, the Ball Pivoting
Algorithm, to build a mesh from the smoothed point set. The final step consists in back-
projecting the mesh built on the smoothed positions onto the original point set. The result of
this process is an interpolating, hole-preserving surface mesh reconstruction.

Source Code

The ANSI C++ source code permitting to reproduce results from the on-line demo is available
at the IPOL web page of this article1. The scale-space meshing algorithm uses the Ball Pivoting
Algorithm which is linked to patent US6968299B1. It is made available for the exclusive aim of
serving as a scientific tool to verify the soundness and completeness of the algorithm description.

Keywords: surface reconstruction; scale-space

1 Introduction

Surface mesh reconstruction methods can be divided into two categories: methods that build a closed
surface out of the input point set (implicit surface methods) and methods that aim at finding a mesh
whose vertices are the input point set. While the first approach is widely spread because it generates
smooth, closed and economical meshes, usually by extracting the zero level set of some potential field
([8], [9], [10]), the second kind of approach is crucial in some cases, when the surface is intrinsically

1http://dx.doi.org/10.5201/ipol.2015.102

Julie Digne, An Implementation and Parallelization of the Scale-Space Meshing Algorithm, Image Processing On Line, 5 (2015), pp. 282–295.
http://dx.doi.org/10.5201/ipol.2015.102

http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dx.doi.org/10.5201/ipol.2015.102
http://dx.doi.org/10.5201/ipol.2015.102
http://dx.doi.org/10.5201/ipol.2015.102

An Implementation and Parallelization of the Scale-Space Meshing Algorithm

open, or when one wants to visualize exactly the outcome of the laser scanner. For example, a
LIDAR device acquiring a town yields point sets that are impossible to reconstruct with implicit
surface reconstruction methods. And even in the case of a laser-scanner acquired object surface,
an implicit surface reconstruction method will lose the input surface accuracy: it will reconstruct
a smooth surface. In this paper we are interested in the second kind of approach, which aims at
building a mesh interpolating the initial point set.

Most mesh interpolating methods are based on building a Delaunay diagram of the input point set
and filtering facets. Though efficient, these processes involve building a global structure that is not
always desirable. To overcome this limitation, the Ball Pivoting Algorithm is a powerful heuristic for
building a Delaunay-like triangulation of scattered 3D points without resorting to a global structure.
It was introduced by [1] and provided a way to build an interpolating mesh in contrast with other
research directions aiming at building an approximating mesh (e.g. [2], [8], [9], [10]). Although this
method works well for noiseless data, or data with details at a scale coherent with the chosen radius of
the ball, it fails dramatically when data contains small details or noise, as will be shown in Section 7.
Yet if the data have to be smoothed before building the mesh, then the interpolating property of
the method is lost. To overcome this limitation [6] proposed a method that, through the use of a
scale-space, allows for a better interpolation of the original raw points even in the presence of noise
and small details.

A scale-space is a representation of a shape at different geometric scales, i.e. at different degrees
of smoothness. The principle behind the scale-space meshing method is that once the shape is
smoothed, one can use a standard surface mesh reconstruction algorithm to interpolate the point
set. The mesh for the original scale can then be deduced from the smoothed scale mesh. In short,
the scale-space meshing is one of the applications of the scale-space framework, which can be used
to infer a wide variety of information on an original point set by estimating it on a smoother version
of it.

This paper describes a parallel implementation of the scale-space meshing algorithm. The mesh
reconstruction part of the algorithm is based on the Ball Pivoting Algorithm for which we provide
a parallel implementation slightly adapted from [3], where the reader will find all necessary details
on the data structures. The next paragraph is a brief reminder of the data structures used in this
implementation.

Data structures. The scale-space meshing algorithm needs two important data structures: a
search structure that allows for fast queries of neighborhoods and a mesh structure that will be built
incrementally. The search structure is an octree that will store the points and provide methods for
fixed range neighborhood queries. The mesh structure we build is a manifold with holes structure: a
set of triangular facets between vertices were each triangle edge can only be adjacent to two facets,
and edges with only one adjacent triangle are authorized. We refer the reader to [3] for all the details
on these two structures.

The remainder of this paper is organized as follows: Section 2 explains the scale-space and
its particular implementation. Section 3 explains how the scale-space framework is used in the
reconstruction setting. Section 4 describes the parallelization of the method. Section 5 deals with
the choice of parameters for the method. Section 6 explains the dependencies of the code. Finally
Section 7 shows several experiments using the Scale-Space Meshing algorithm and offers comparisons
with other existing methods.

283

Julie Digne

2 A Scale-Space for Point Sets

2.1 Definitions

Let M be a smooth surface in R3 assumed to be at least C2. At each point x of the surface one can
define a normal direction n(x), a vector perpendicular to the tangent plane. There are two possible
orientations for this vector (pointing either inwards or outwards). In the continuous surface setting,
the normal n(x) is always oriented towards the concavity of the shape. At each point x, one can pick
a normal plane containing the normal and a chosen tangent direction (i.e. a vector in the tangent
plane). The intersection of this plane and the surface is a planar curve whose curvature at x is the
surface directional curvature corresponding to the chosen tangent direction. The principal curvatures
k1(x) and k2(x) of the surface at x are defined as the minimum and maximum directional curvatures
of the surface and the mean curvature of M at x is H(x) = 1

2
(k1(x) + k2(x)).

The scale-space for point sets is described in [5] and [6]. It consists in applying the mean curvature
motion (MCM) to a set of points. The mean curvature is written:

∂x

∂t
= H(x)n(x).

In other words, all points move toward the concavity of the shape at a rate equal to the surface mean
curvature.

2.2 Mean Curvature Motion Implementation

As shown in [6], the mean curvature motion can be approximated by the iterative process of projecting
each point of the data set onto its local regression plane. The iterative projection process allows for the
computation of robust geometric information (after several scale-space iterations) and this geometric
information can be backtracked to the initial scale, for example by associating the curvature of an
evolved point computed at a scale t with the initial position of the point at scale 0. The method for
computing one step of the mean curvature motion is explained in Algorithm 1.

Numerically, the orientation of the normal is different from the continuous case: the normals
are not oriented toward the concavity but consistently over the surface (i.e. all normals point either
inwards or outwards). The projection algorithm making no use of the normal, the choice of the
orientation is irrelevant for the mean curvature motion, but having this information is useful for the
ball pivoting algorithm.

Algorithm 1: MCM(p,P , r): One step of the Mean Curvature Motion (MCM)

Input: A point set P , a query point p, a radius r
Output: A point p′, result of one discrete step of the MCM applied to p

1 Get the set of neighbors Nr(p) out of O;
2 if #Nr(p) < 5 then
3 Remove point p

4 p̄←
∑

q∈Nr(p)
w(q)q∑

q∈Nr(p)
w(q)

and C ←
∑

q∈Nr(p) w(q)(q − p̄) · (q − p̄)T ;

5 v0 ← eigenvector corresponding to the least eigenvalue of C;
6 p′ ← p− 〈p− p̄, v0〉v0;

7 p′.n← p−p′
‖p−p′‖ · sign(〈p− p′, p.n〉);

Three steps require some explanations:

284

An Implementation and Parallelization of the Scale-Space Meshing Algorithm

• Line 3: If the point does not have enough neighbors, it is considered as an outlier and discarded.

• Line 4: w(q) ensures stability of the approximation by giving more weight to neighboring points
than to remote points:

w(q) = exp−‖p− q‖
2

2r2
.

• Line 6: The regular mean curvature motion would stop after line 6, yet we use a slightly
modified motion where the normals are smoothed jointly with the positions, to reflect the
normal direction of the current shape (line 7). Smoothing normals is important in case of noisy
normals input but also to improve the performances of the Ball Pivoting.

The barycenter and covariance computation (Line 4 - function performLocalPCA in the code) is
performed using a numerically stable online Algorithm [14]. The covariance matrix being a 3 × 3
real symmetric matrix, a simple ad hoc eigendecomposition algorithm is used [13]. Algorithm 1 is
exactly one step of the projection on the Moving Least Squares Surface of order 1 (MLS1) induced by
the point set. Moving Least Squares Surfaces are surfaces defined locally by performing an explicit
surface regression (e.g. a polynomial surface defined over the local tangent plane) around a position.

2.3 Scale-Space Implementation

As previously stated, the discrete scale-space consists in applying Algorithm 1 to the whole point
set. In practice, the iterations require building a new point set after each iteration. But there is
no need to keep at each step all the results of all the iterations. In fact, we only need to store the
original point set (for back-projection, which will be explained later), the result of the last iteration
and a buffer for the point set being constructed at the current iteration.

Compared to [3], points are still stored in an octree, but the nodes of the octree do not contain
a single set of points but three sets of points. The first set contains the points of the original cloud
and the other two serve for storing intermediary scale-space iterations. More precisely, Set 0 will be
preserved, it contains the original point positions. Sets 1 and 2 are alternatively the result of the
previous and current scale-space iterations. The octree always stores the index of the current set and
updates it after each iteration. Spatial queries are only slightly modified by this, the same octree
is traversed using the same method with the only difference that the lists with the current index
are considered at each iteration, while the others are ignored. In practice, when applying the mean
curvature motion to either the initial point set or to the result of an even number of iterations, the
result of the projection will be stored in Set 1. The result of an odd number of projection iterations
will be stored in Set 2. This way the initial and final sets will always be available. In addition,
each point keeps track of the point of P0 it originated from (Algorithm 2, lines 3 and 10). For
completeness, we summarize the method in Algorithm 2.

In practice, the implementation uses a little trick to be faster. Instead of getting the neighbors
of each point from scratch, it uses the fact that when looking for neighbors, one needs to get the
cell containing the point at a given depth [3]. Yet for all points of a given cell this parent cell is
the same. The process is then to traverse the octree in a depth-first manner: when a cell A at the
right depth is reached, the cell is stored and the traversal continues, until a leaf descending from A
is reached. Thus the points in this leaf will be processed faster, since there is no need to look for
the right ancestor node for each point. This is why there are overloaded applyScaleSpace functions
in the code. We refer the reader to [3] for a precise explanation of the neighbor search functions.

In the end one has the original point set, the result of the scale-space iteration and a corre-
spondence between the points of both point sets which allows for the back-projection of the mesh
obtained at a coarse scale to obtain the final fine scale mesh. Contrary to other existing scale-space

285

Julie Digne

Algorithm 2: scale space(P , N, r): applying the scale-space iterations to a point set P
Input: A point set P a number of iterations N and a radius r
Output: A modified point set PN

1 Sort and store P in P0 endowed with an octree structure;
2 for p ∈ P0 do
3 Set p.origin← p;

4 idx← 0;
5 for i = 0, · · · , N − 1 do
6 new idx← mod(idx, 2) + 1;
7 for p ∈ Pidx do
8 p′ ←MCM(p,Pidx, r);
9 Store p′ in Pnew idx;

10 p′.origin← p.origin;

11 if idx > 0 then
12 Erase Pidx
13 idx← new idx;

structures (e.g. [11]), this scale-space does not iteratively subsample the shape: the same amount of
points is preserved throughout the scale-space iterations. It is a geometric multi-resolution scheme,
where the initial shape becomes increasingly smooth but the data size instead does not change. In
practice however, some points might be lost if their neighborhoods do not contain enough points
for estimating a regression plane, but this loss is minimal (less than 0.1% of the points in general).
The result of the scale-space iterations is a denoised point set representing a smooth surface. This
is precisely the kind of data that is very easily meshed by an interpolating method, such as the Ball
Pivoting Algorithm [1]. The next section explains how to use this scale-space for meshing an input
point set.

3 Using the Scale-Space for Surface Reconstruction

The scale-space meshing algorithm is summarized in Figure 1. It consists of three steps:

• Scale-space iterations. The scale-space is iterated on the point set as described in Section 2.

• Meshing step. A triangular mesh is built out of the smoothed point set resulting from the
scale-space iterations.

• Back-projection. The resulting mesh is back-projected onto the original point set, creating an
interpolating mesh.

The scale-space iteration step consists in applying Algorithm 2 to the set of points and does not
require any further explanation. Notice that if the number of scale-space iterations is 0, then the
scale-space meshing reduces to the traditional Ball Pivoting Algorithm. The next subsections detail
the meshing and back projecting steps.

3.1 Input Data

The input data of the algorithm is a set of oriented points, an unorganized set of points consistently
oriented. In other words, all normals should point either inwards or outwards. These normals are

286

An Implementation and Parallelization of the Scale-Space Meshing Algorithm

(a) (b) (c) (d)

Figure 1: Graphical summary of the scale-space meshing algorithm. Initial points (black dots) (a),
initial points with their corresponding filtered positions after scale-space iterations (transparent blue
diamonds) (b), mesh of the filtered positions (c) and back-projection of the mesh onto the initial
positions (d).

required by the Ball Pivoting Algorithm to ensure that the resulting surface mesh is orientable. It
is important to notice that the scale-space iterations themselves do not require this knowledge: the
MCM can be applied to points without normals since computing the regression plane does not use
this information.

3.2 Meshing Step

The only constraint on the meshing method is that it should interpolate the points and not create
any additional vertex. We chose to use the Ball Pivoting Algorithm [1], whose implementation is
described thoroughly in [3]. We use this implementation to reconstruct an interpolating surface from
the smoothed positions.

In a nutshell, the Ball Pivoting Algorithm builds incrementally a manifold mesh from an input
point set by adding a triangle to the mesh if there is an empty-interior ball of fixed radius r passing
through three data points. It then creates a triangle and the ball is pivoted around each of the
edges until another point is met. The process being incremental, it allows for a fast parallelization.
The resulting triangulated surface is a manifold mesh possibly with holes and multiple connected
components. The mesh is efficiently constructed on the smoothed point set and is therefore not
interpolating the original point set, which is why a back-projection is performed next. At the end of
the Ball Pivoting Algorithm, similarly to [3], we apply an additional step to fill triangular holes that
may remain. We refer the reader to [3] for details about this step.

3.3 Back-projection

Back-projecting the resulting mesh on the original point set is simple since every point of the last
point set keeps a track of the point it originated from (see lines 3 and 10 of Algorithm 2). Therefore
we simply have to transfer the connectivity from a point to its origin. The back-projection is summed
up in Algorithm 3. In the proposed implementation it is done directly when saving the mesh.

Algorithm 3: back project(MN) back projecting the final mesh

Input: A surface mesh MN of the last smoothed point set PN
Output: A surface mesh M0 of the initial point set P0

1 for each triangle t ∈MN do
2 Let v0, v1, v2 be the vertices of t;
3 Create a triangle t′ with vertices v0.origin, v1.origin, v2.origin;
4 Add t′ to M0;

287

Julie Digne

The result of this back-projection is an interpolating mesh of the original point set. Yet, the back-
projection process does not guarantee that the final mesh will be self-intersection free. By construc-
tion, the coarse scale mesh cannot self-intersect. Yet, moving each point to its original position
might cause self-intersections of the mesh. For a reasonable radius and number of iterations, this
phenomenon was not observed or at least not in a way that would hinder the visualization.

The output of the algorithm is a set of vertices linked by triangular facets stored in the Stanford
PLY format. In this format each facet is given by the three indices of its vertices. The indices
are given in a clockwise order relatively to the oriented normal of the facet. This is done in this
implementation in the saveOrientedFacet function (class FileIO).

4 Parallelization

The scale-space meshing algorithm consisting in very local computations the process parallelizes
nicely provided some precautions are taken. The octree data structure is used to sort cells into
sets, each set containing cells that can be processed independently as shown in Figure 2. This
parallelization is done for both the scale-space iterations and the meshing step.

For the scale-space iterations, each thread processes a different cell (see Algorithm 4). Processing
a cell consists in applying the scale-space to all the points in the cell and storing them in the
corresponding set. The only precaution to take is to check that the projected points obtained in two
different threads will not be stored in the same set of the same cell, since that would cause conflicts
between the threads. Since the projection of a point p lies inside a ball with radius r centered at p,
it is enough to ensure that for two cells processed simultaneously, their dilatations of radius r do not
contain a common leaf cell. The processing depth is therefore set as the minimum depth such that
the size of the cell is above d = 2.1r, and at least 1 (Algorithm 4, lines 1- 2). This is easily done by
computing

level = max(octree.depth− blog2
octree.size

d
c, 1), (1)

where octree.size is the length of the largest size of the bounding box. The only remaining possible
conflict happens when two threads simultaneously try to add a point in a branch not yet created.
Though this case is rare, it is handled by preventing the simultaneous creation of branches (critical
section in method addPoint of class Octree).

The Ball Pivoting Algorithm is parallelized similarly and we refer the reader to [3] for more details.
Computation times for the whole Scale-Space meshing algorithm with and without parallelization
are given in Table 1 for a computation on a 4 cores laptop (4× 2.9GHz).

Figure 2: Parallelization principle in 2D. Cells that can be processed simultaneously are depicted in
the same color.

288

An Implementation and Parallelization of the Scale-Space Meshing Algorithm

Point set Number of Points Radius
Computation Time

Single-threaded Multi-threaded (4 cores)
Bunny 360K 0.0005 21s 10s
Dragon 1.5M 0.0005 328s 167s
Pyramid 1M 0.4 515s 205s

Table 1: Computation time with and without parallelization for a 4 core laptop (4× 2.9GHz). The
number of iterations was set to 4 for all these point sets.

Algorithm 4: Parallelization of Scale-Space iterations.

Input: An oriented input point cloud P sorted into an octree O with given depth, a radius r.
Output: A denoised point set stored in the octree O.

1 d← 2.1 · r ;
2 l← max(1, smallest level at which cells have size larger than d) (cf Equation 1);
3 for i = 0 · · · 8 do
4 cells← cells of the octree at level l and with child index i;
5 for C ∈ cells do in parallel
6 for p ∈ C do
7 p′ ←MCM(p, r,P);
8 C ′ ← octree cell containing p′;
9 Store p′ in the point list of C ′ corresponding to the next index;

5 Parameters Choice

There are three parameters for the scale-space and one parameter for the Ball Pivoting Algorithm.
Yet those parameters can be set by choosing two values: a radius r and a number of iterations N .
Below, we explain how all the parameters of the scale-space and ball pivoting can be deduced from
these two values.

• Scale-space parameters. Three parameters are required by Algorithm 2: the radius of the
projection filter, the standard deviation σ for the Gaussian weight, and the number of iterations.
The scale-space radius is set to 2r, the standard deviation is set to σ = 2r and the number of
iterations is equal to N .

• Ball Pivoting algorithm parameters. The Ball Pivoting Algorithm needs a single param-
eter, the radius of the pivoting ball, which is taken equal to r.

One could choose unrelated radii for the projection filter and the ball radius but this setting is
particularly well suited for the experiments. It is nevertheless very important that the radius of the
projection filter is larger than the radius of the ball pivoting in order for the regression plane to be
stable. The number of iterations is by default set to 4. If the shape is very noisy, one may set a higher
number of iterations, but the details and sharp features are always contained in the first iterations, so
that few iterations are necessary. A coarse heuristic for setting r consists in considering the number
of points Npoints, the size of the bounding box l and deduce the radius: r =

√
20/Npoints · l. Indeed,

if the shape was a perfect sphere (enclosed in the same bounding box), its surface area would be
4π(l

2
)2 = πl2, thus the number of points per unit surface would be N

πl2
. The area of the surface in

289

Julie Digne

a neighborhood of radius r is approximated to πr2 (given r << l), therefore to obtain around 20
neighbors, one should set r such that r2N

l2
= 20, hence the formula.

The next section reviews some technical details of the provided code including dependencies.

6 Code

The dependencies and properties of this implementation are the same as for the Ball Pivoting Al-
gorithm [3], and we copy the same paragraphs below for completeness. As a matter of fact, if the
number of iterations is set to 0, the algorithm is exactly equivalent to the Ball Pivoting Algorithm
with a single radius.

6.1 Dependencies

The code provided is a stand-alone C++ code, available at http://dx.doi.org/10.5201/ipol.

2015.102. It uses the C++ standard template library extensively. The user can choose between the
single-threaded implementation and its parallel version. The single-threaded version does not rely
on any external libraries. The parallelization is done through OpenMP2, a standard API for shared
memory multiprocessing programming. The code was tested successfully on Ubuntu 14.04 with g++
4.8, and on MacOS 10.8 using g++4.8.0. The compilation is done through the CMake build system
to be cross-platform. The code compiles with g++ and with clang, but there is no support yet for
OpenMP with the clang compiler, so that the parallelism is deactivated in that case.

6.2 Integration in a Larger Project

The code is templated and the structures are kept as simple as possible in order for a better integration
into different C++ projects. In particular, it should be easy to interface it with the CGAL library [7]
and thus benefit from CGAL geometry kernels. Nevertheless, the goal here is to have a stand-alone
code, avoiding the need to link against such a heavy library as CGAL.

6.3 Numerical Robustness

The current implementation relies heavily on geometric tests (e.g. to know whether a point lies within
a sphere given by a point and a radius, to know if a point lies on the right side of a potential trian-
gle. . .). These problems are known to generate numerical robustness problems potentially dramatic
for global structures such as Delaunay. A solution to that problem is to use exact arithmetic, which
is very time-consuming. An alternative is to use robust arithmetic through robust predicates (i.e.
predicates that will give consistent results) as described in [12]. Yet in our case the consequences of
not using any robust predicates are not so dramatic since the construction of the mesh is incremental
and local. A numerical instability will only affect the choice of a particular triangle instead of another
but will not create global artifacts.

7 Experiments

The first example (Figure 3) is precisely the one that was presented as a failure case for the Ball
Pivoting Algorithm (BPA)[3]. The goal is indeed to interpolate a noisy point cloud and in that case

2The OpenMP API specification for parallel programming. http://openmp.org

290

http://dx.doi.org/10.5201/ipol.2015.102
http://dx.doi.org/10.5201/ipol.2015.102
http://openmp.org

An Implementation and Parallelization of the Scale-Space Meshing Algorithm

neither the single-radius BPA nor the multiple radius version succeed in recovering a closed interpo-
lating mesh. In comparison the Scale-Space Meshing Algorithm recovers a closed mesh interpolating
exactly the input noisy point set, allowing for a visual quality assessment of the shape reconstruction.
Figure 4 shows the result of the Scale-Space Meshing Algorithm on some well-known shapes from
the Stanford repository, showing that the method works in standard cases.

(a) BPA with a single radius 0.05 (b) BPA with multiple radii
0.03, 0.04, 0.05

(c) SSM with N = 4 scale-space
iterations and r = 0.05

Figure 3: A noisy sphere reconstructed by the Ball Pivoting Algorithm (BPA) and Scale-Space
Meshing Algorithm (SSM). Only the Scale-Space Meshing (right) allows for the reconstruction of a
closed interpolating mesh (30000 vertices, 60000 facets).

Figure 4: Results of the Scale-Space Meshing algorithm on some standard shapes: the Stanford
Bunny (left, r = 0.0005, N = 4) and the Stanford Dragon (right, r = 0.0005, N = 4).

One can also judge the interpolating quality of the mesh by comparing the number of vertices
to the number of input points. For the pyramid point set (Figure 6) for example, the Scale-Space
Meshing Algorithm builds a mesh with 99.24% of the input point set as vertices compared to only
79.36% for the Ball Pivoting Algorithm.
Figures 3 and 5 provide comparisons of the Scale-Space Meshing and the Ball Pivoting Algorithms
with the exact same meshing radius. In particular, Figure 5 shows that the details are much better
preserved with the Scale-Space meshing Algorithm. Figure 6 shows the shape evolution of a pyramid
point set [4] with respect to the scale. The shape loses its details and becomes smoother: as a

291

Julie Digne

Figure 5: Comparison of the Scale-Space Meshing (left) with the standard Ball Pivoting Algorithm
(middle) and Poisson Reconstruction (right)

consequence, computations done at the low scale will be more robust than those done at the highest
scales. The result of the processing thus strongly depends on the choice of the scale.

Finally, we show the performance of the Scale-Space Meshing using various input shapes from the
Farman dataset [4]. Figure 7 shows the coarse and fine scale meshes built from cropped point clouds
from the Farman dataset [4].

8 Conclusion

This paper presented the parallel implementation of the scale-space meshing algorithm, a method to
build an interpolating mesh for point sets containing possibly details and sharp features as well as
noise. The code for this implementation is available for download and online tests (http://dx.doi.
org/10.5201/ipol.2015.102).

Acknowledgments

This work was partially funded by Direction Générale de l’Armement, Office of Naval Research (Grant
N00014-97-1-0839) and the European Research Council (ERC Advanced Grant “Twelve Labours”).

Data Credits

The Stanford Bunny and Stanford Dragon (Figure 4) are from the Stanford 3D Scanning Repository3.
The other shapes (Figures 5, 6 and 7) are from the Farman Institute 3D Point Sets4.

3http://graphics.stanford.edu/data/3Dscanrep/
4http://www.ipol.im/pub/art/2011/dalmm_ps/

292

http://dx.doi.org/10.5201/ipol.2015.102
http://dx.doi.org/10.5201/ipol.2015.102
http://graphics.stanford.edu/data/3Dscanrep/
http://www.ipol.im/pub/art/2011/dalmm_ps/
http://graphics.stanford.edu/data/3Dscanrep/
http://www.ipol.im/pub/art/2011/dalmm_ps/

An Implementation and Parallelization of the Scale-Space Meshing Algorithm

(a) Scale 0 (b) Scale 1 (c) Scale 2 (d) Scale 3

(e) Scale 4 (f) Scale 5 (g) Scale 6 (h) Scale 7

Figure 6: Evolution of a shape with the scale-space

References

[1] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, The ball-
pivoting algorithm for surface reconstruction, Visualization and Computer Graphics, IEEE
Transactions on, 5 (1999), pp. 349–359. http://dx.doi.org/10.1109/2945.817351.

[2] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. Mc-
Callum, and T. R. Evans, Reconstruction and representation of 3D objects with radial basis
functions, in Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH, 2001, pp. 67–76. http://doi.acm.org/10.1145/383259.383266.

[3] J. Digne, An Analysis and Implementation of a Parallel Ball Pivoting Algorithm, Image Pro-
cessing On Line, 4 (2014), pp. 149–168. http://dx.doi.org/10.5201/ipol.2014.81.

[4] J. Digne, N. Audfray, C. Lartigue, C. Mehdi-Souzani, and J-M. Morel, Farman
Institute 3D Point Sets - High Precision 3D Data Sets, Image Processing On Line, 1 (2011).
http://dx.doi.org/10.5201/ipol.2011.dalmm_ps.

[5] J. Digne and J-M. Morel, Numerical analysis of differential operators on raw point
clouds, Numerische Mathematik, 127 (2014), pp. 255–289. http://dx.doi.org/10.1007/

s00211-013-0584-y.

[6] J. Digne, J-M. Morel, C-M. Souzani, and C. Lartigue, Scale space meshing of raw
data point sets, Computer Graphics Forum, 30 (2011), pp. 1630–1642. http://dx.doi.org/

10.1111/j.1467-8659.2011.01848.x.

293

http://dx.doi.org/10.1109/2945.817351
http://doi.acm.org/10.1145/383259.383266
http://dx.doi.org/10.5201/ipol.2014.81
http://dx.doi.org/10.5201/ipol.2011.dalmm_ps
http://dx.doi.org/10.1007/s00211-013-0584-y
http://dx.doi.org/10.1007/s00211-013-0584-y
http://dx.doi.org/10.1111/j.1467-8659.2011.01848.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01848.x

Julie Digne

(a) Girl with Crotales (coarse) (b) Girl with Crotales (fine) (c) Brassempouy (coarse) (d) Brassempouy (fine)

(e) Logo (coarse) (f) Logo (fine) (g) Anubis (coarse) (h) Anubis (fine)

Figure 7: The coarse and fine scale meshes produced by the Scale-Space Meshing algorithm applied
to datasets of the Farman data set, the parameters used are: r = 0.2 (Girl with Crotales), r = 0.16
(Brassempouy), r = 0.2 (logo), r = 0.1 (Anubis). In all the experiments, N = 4. NB: these pointsets
are not subsampled or normalized as the ones proposed in the demo.

294

An Implementation and Parallelization of the Scale-Space Meshing Algorithm

[7] A. Fabri and S. Pion, CGAL: The computational geometry algorithms library, in Proceedings
of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, 2009, pp. 538–539. http://doi.acm.org/10.1145/1653771.1653865.

[8] G. Guennebaud and M. Gross, Algebraic point set surfaces, in ACM SIGGRAPH Papers,
2007. http://doi.acm.org/10.1145/1275808.1276406.

[9] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, Surface re-
construction from unorganized points, SIGGRAPH Computer Graphics, 26 (1992), pp. 71–78.
http://doi.acm.org/10.1145/142920.134011.

[10] Bolitho M. Kazhdan, M. and H. Hoppe, Poisson surface reconstruction, in Eurographics
SGP, 2006, pp. 61–70. ISBN:3-905673-36-3.

[11] M. Pauly, R. Keiser, and M. Gross, Multi-scale feature extraction on point-sampled sur-
faces, Computer Graphics Forum, 22 (2003), pp. 281–289. http://dx.doi.org/10.1111/

1467-8659.00675.

[12] J. R. Shewchuk, Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric
Predicates, Discrete & Computational Geometry, 18 (1997), pp. 305–363.

[13] O.K. Smith, Eigenvalues of a symmetric 3x3 matrix, Communications of the ACM, 4 (1961),
pp. 168–. http://doi.acm.org/10.1145/355578.366316.

[14] D.H.D. West, Updating mean and variance estimates: An improved method, Communications
of the ACM, 22 (1979), pp. 532–535. http://doi.acm.org/10.1145/359146.359153.

295

http://doi.acm.org/10.1145/1653771.1653865
http://doi.acm.org/10.1145/1275808.1276406
http://doi.acm.org/10.1145/142920.134011
http://dx.doi.org/10.1111/1467-8659.00675
http://dx.doi.org/10.1111/1467-8659.00675
http://doi.acm.org/10.1145/355578.366316
http://doi.acm.org/10.1145/359146.359153

	Introduction
	A Scale-Space for Point Sets
	Definitions
	Mean Curvature Motion Implementation
	Scale-Space Implementation

	Using the Scale-Space for Surface Reconstruction
	Input Data
	Meshing Step
	Back-projection

	Parallelization
	Parameters Choice
	Code
	Dependencies
	Integration in a Larger Project
	Numerical Robustness

	Experiments
	Conclusion

