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Abstract—Computing the maximal pose error given an
upper bound on perturbations is challenging for parallel
robots, mainly because the direct kinematic problem has
several solutions, which become unstable near or at paral-
lel singularities. In this paper, we propose a local unique-
ness hypothesis that will allow safely computing pose error
upper bounds using nonlinear optimization. This hypoth-
esis, together with a corresponding maximal allowed per-
turbation domain and a certified pose error upper bound
valid over the complete workspace, will be proved numer-
ically using a parametric version of Kantorovich theorem
and certified nonlinear global optimization. We will then
show how to synthesize tolerances reaching a prescribed
maximal pose error over a workspace using approximate
linearizations. This approximate tolerance synthesis will fi-
nally be checked using the certified pose error upper bound
we propose. Preliminary experiments on a RPRPR and a
3RPR with fixed orientation parallel manipulators are pre-
sented.

Keywords: Certified tolerance synthesis, parallel manipulators,
Kantorovich Theorem

I. Introduction

For two decades, parallel manipulators have attracted
the attention of more and more researchers who consider
them as valuable alternative design for robotic mechanisms.
As stated by some authors, conventional serial kinematic
machines have already reached their dynamic performance
limits, which are bounded by high stiffness of the machine
components required to support sequential joints, links and
actuators. Thus, while having good operating characteris-
tics (large workspace, high flexibility and maneuverabil-
ity), serial manipulators have disadvantages of low stiff-
ness and low power. Conversely, Parallel Kinematics Ma-
chines (PKM) offer essential advantages over their serial
counterparts (lower moving masses, higher stiffness and
payload-to-weight ratio, higher natural frequencies, better
accuracy, simpler modular mechanical construction, possi-
bility to locate actuators on the fixed base).

However, PKM are not necessarily more accurate than
their serial counterparts. Indeed, even if the dimensional
variations can be compensated with PKM, they can also be
amplified contrary to with their serial counterparts. Wang
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et al. [19] studied the effect of manufacturing tolerances on
the accuracy of a Stewart platform. Kim et al. [12] used a
forward error bound analysis to find the error bound of the
end-effector of a Stewart platform when the error bounds
of the joints are given, and an inverse error bound analysis
to determine those of the joints for the given error bound
of the end-effector. Kim and Tsai [13] studied the effect of
misalignment of linear actuators of a 3-DOF translational
parallel manipulator on the motion of its moving platform.
Han et al. [11] used a kinematic sensitivity analysis method
to explain the gross motions of a 3-UPU parallel mecha-
nism, and showed that it is highly sensitive to certain minute
clearances. Fan et al. [9] analyzed the sensitivity of the 3-
PRS parallel kinematic spindle platform of a serial-parallel
machine tool. Verner et al. [18] presented a new method for
optimal calibration of PKM based on the exploitation of the
least error sensitive regions in their workspace and geomet-
ric parameters space. As a matter of fact, they used a Monte
Carlo simulation to determine and map the sensitivities to
geometric parameters. Moreover, Caro et al. [4] developed
a tolerance synthesis method for mechanisms based on a
robust design approach.

During the early design process of engineering systems,
the analysis of the performance sensitivity to uncertainties
is an important task. High sensitivity to parameters that
are inherently noisy can lead to poor, or unexpected perfor-
mance. For that reason, it is important to analyze the sensi-
tivity of their performance to variations in their geometric
parameters and to determine the optimal dimensional toler-
ances.

To this end, some indices such as the dexterity and
the manipulability have been used to evaluate the sensi-
tivity of robots performance to variations in their actuated
joints [20], [2], [14]. However, they are not suitable for the
evaluation of this sensitivity to other types of uncertainty
such as variations in geometric parameters. Two indices
were proposed in [6] to evaluate the sensitivity of the end-
effector pose (position + orientation) of the Orthoglide 3-
axis, a three Degree-of-Freedom (DOF) translational PKM,
to variations in its design parameters. In the same vein,
four 3-RPR planar parallel manipulators (PPMs) were com-
pared in [5] based on the sensitivity of their performance to
variations in their geometric parameters. In [16], an inter-
val linearization method is used for the sensitivity analysis
of some parallel manipulators. However, the foregoing re-
search works do not deal with the tolerance synthesis of



parallel manipulators, which is a critical issue.
In the present paper, we overcome two lacks in the lit-

erature: First, a fully rigorous methodology is proposed
to compute a certified upper bound for the pose error due
to perturbations of the parameters of a PKM over a full
workspace. Second, a methodology is proposed for toler-
ance synthesis of PKM, aiming synthesizing the largest tol-
erances keeping the pose error below a given limit.

The paper is organized as follows: In Section III, we first
introduce a uniqueness hypothesis that allows computing a
certified pose error upper bound over a given workspace by
solving a nonlinear optimization problem. Second, we pro-
pose a parametric version of Kantorovich theorem, which
provides both a maximal perturbation domain for which this
uniqueness hypothesis holds, and a crude certified pose er-
ror upper bound valid inside this perturbation domain and
the whole workspace. As a result, for perturbations within
this maximal perturbation domain, some sharp pose error
upper bounds can be computed using the nonlinear opti-
mization problem previously introduced. In Section IV, we
propose an approximate linearization of the maximal error
in the workspace, which allows performing some approxi-
mate tolerance synthesis. These approximate tolerances can
finally be corrected using the results of Section III. Prelim-
inary experiments on a RPRPR and a 3RPR with fixed ori-
entation parallel manipulators are presented in Section V,
which show the potential and the limits of the approach.

Notations

We use the∞-norm throughout the paper. LetB(x, ε) be
the open ball {y ∈ Rk : ‖y−x‖< ε},B(x, ε) be the closed
ball {y ∈ Rk : ‖y − x‖≤ ε}, and for short Bε := B(0, ε).

II. Basic notations and definitions

We consider a kinematic model f(x,q,p) of a non-
redundant parallel manipulator, where f : Rn × Rn ×
Rm → Rn, x being the pose, q the actuated joint coor-
dinates and p a perturbation vector, so that the nominal
model is f(x,q,0). We also denote this nominal model by
f(x,q) := f(x,q,0). We suppose that f is differentiable
and has locally Lipschitz continuous first derivatives with
respect to pose and perturbation, e.g., f is twice differen-
tiable with respect to these variables. The Jacobian matrix
of f with respect to variables x and p are denoted respec-
tively as Fx, called the kinematic parallel Jacobian matrix,
and Fp, called the sensitivity Jacobian matrix.

The nominal generalized workspace is defined by

G := {(x,q) ∈ R2n : f(x,q) = 0,g(x,q) ≤ 0}, (1)

where g is a set of inequalities that defines the generalized
workspace of interest. We assume that G is bounded. We
also require that G does not contain any parallel singularity,
but this will be checked by the proposed method.

In some situations, the kinematic model can be solved for
the pose coordinates inside G, giving rise to a direct model

d : Rn → Rn that provides an explicit description of the
nominal generalized workspace:

x = d(q) ∧ g(x,q) ≤ 0 ⇐⇒ (x,q) ∈ G. (2)

When perturbations are to be taken into account, we ex-
pect to have a direct model that depends of perturbations:
x = d(q,p). Such a direct model cannot be correct for
arbitrarily large perturbations, and therefore has to be asso-
ciated to a perturbation domain P for which it is valid (for
simplicity, the perturbation domain P is supposed to con-
tain 0 and to be convex). Although such a direct model with
explicit dependence on perturbations naturally arises in the
context of serial robots, it is usually quite difficult to obtain
for parallel robots.

III. Upper bounds for maximal pose errors

In this section, we compute an upper bound on the dis-
tance between a nominal pose and its perturbed pose. In
the first subsection, we introduce an uniqueness condition
that allows associating the nominal and perturbed posed un-
ambiguously, which is obviously required to compute the
distance between them. In the second subsection, we show
how Kantorovich theorem can be used in a parametric way
within the whole generalized workspace and perturbation
space in order to provide both a perturbation domain for
which the above uniqueness condition holds, and a pose er-
ror upper bound valid within the whole workspace and for
all considered perturbations.

A. General framework

When an explicit direct model x = d(q,p) is available,
finding the maximal pose error over the workspace can be
modeled by the following constrained optimization prob-
lem:

max
(x,q)∈G,p∈P

x′=d(q,p)

e(x,x′), (3)

see e.g. [3]. The variables are the joint coordinates q ∈ Rn,
the nominal pose x ∈ Rn, the perturbed pose x′ ∈ Rn
and the perturbation p ∈ Rm. The constraint (x,q) ∈
G states that (x,q) is a nominal configuration, while the
constraint x′ = d(q,p) states that x′ is the perturbed pose
corresponding to the same joint coordinates q. The cost
function e(x,x′) is an error measurement (we consider here
either the norm of the positioning error or the norm of the
orientation error, so e(x,x′) = ‖Π(x− x′)‖ where Π is a
projection on a subset of the coordinates of the pose).

The aim of this section is to generalize this approach to
the case where the direct model with explicit dependence
on perturbations is not available. The naive generalization

max
(x,q)∈G, p∈P
f(x′,q,p)=0

e(x,x′) (4)



is not correct because the direct kinematic problem may
have several solutions or no solution at all for a given per-
turbation. This means that the maximum of e(x,x′), if de-
fined, is likely to be reached for a x′ that does not corre-
sponds to a perturbation of x, i.e., the optimization prob-
lem (4) makes no sense. Hence, the perturbation domain
has to be small enough so that perturbing the nominal pose
leads to a solution and a unique one.

We formalize this restriction as follows: For given ε > 0,
G ⊆ Rn × Rn and P ⊆ Rm, we say that G is ε-safe with
respect to P if

∀(x,q) ∈ G,∀p ∈ P,
∃! x′ ∈ B(x, ε), f(x′,q,p) = 0. (5)

The existence of a unique perturbed pose within B(x, ε)
is crucial in this definition since it enforces a functional
dependence between x′ and p ∈ P , which we denote by
x′ = dx,q(p). It is easy to check that this function is con-
tinuous, and that dx,q(0) = x, which makes x′ = dx,q(p)
the perturbed pose associated to the nominal pose x with no
ambiguity. Therefore, under the hypothesis that G is ε-safe
with respect to P , we can safely use the kinematic model
f(x′,q,p) = 0 in order to characterize the perturbed pose:

(x,q) ∈ G,p ∈ P
x′ ∈ B(x, ε)

f(x′,q,p) = 0
⇐⇒ (x,q) ∈ G,p ∈ P

x′ = dx,q(p)
. (6)

As a consequence, even though no explicit expression of
dx,q is available, the maximal error inside the nominal
workspace is given by

max
(x,q)∈G, p∈P

x′∈B(x,ε)
f(x′,q,p)=0

e(x,x′). (7)

As a conclusion, the constrained optimization prob-
lem (7) allows computing a sharp pose error upper bound,
provided that the nominal generalized workspace G is
proved to be ε-safe with respect to P . The next subsection
deals with the determination of P and ε using Kantorovich
theorem.

Remark 1: The error function in (7) can be chosen to be
either the norm of the position error or the norm of the ori-
entation error, which is interseting since aggregating these
errors is often difficult or irrelevant. However, they have to
be aggregated in the norm condition x′ ∈ B(x, ε) of (5), (6)
and (7). The impact of this aggregation is on the size of the
perturbation domain P (as it will be shown in the next sec-
tion).

B. Parametric Kantorovich Theorem for ε-safety

B.1 Informal presentation

Kantorovich theorem [15], [10], [14], [8] is now applied
in order to both provide a perturbation domain P and an

error upper bound ε for which G is ε-safe with respect to P .
The basic idea is, for an arbitrary configuration (x,q) ∈
G and an arbitrary perturbation p ∈ P , to apply Kan-
torovich theorem for solving the perturbed direct kinematic
problem f( · ,q,p) = 0, with the nominal pose x as an
initial condition. The perturbation domain P is going to
be defined so that the hypotheses of Kantorovich Theorem
are satisfied for every perturbation it contains. As a con-
sequence, the existence and uniqueness regions provided
by Kantorovich theorem are going to enforce G to be ε-
safe with respect to P , for a given ε also provided by Kan-
torovich theorem.

The key feature of Kantorovich Theorem that allows ap-
plying it over the whole generalized workspace and pertur-
bation space is that when the constants involved in Kan-
torovich Theorem are sharper, the size of the existence ball
decreases and the size of the uniqueness ball increases.
Therefore, worst case constants over G and P will provide
a greatest existence domain and a smallest uniqueness do-
main valid over both G and P .

B.2 The main theorem

Choose an apriori maximal tolerance ∆ > 0 so that
only perturbations satisfying ‖p‖∈ B∆ will be consid-
ered1. Then define the constants κ, χ and γ(i) such that:

κ ≥ max
(x,q)∈G
p∈B∆

‖f(x,q,p)‖ (8)

χ ≥ max
(x,q)∈G
p∈B∆

‖Fx(x,q,p)−1‖ (9)

γ(i) ≥ max
(x,q)∈G
p∈B∆

‖Fx(x,q,p)−1Fp(i)(x,q,0)‖ (10)

where p(i) form a partition of the perturbation vector p.
Define

r := 2κχ, (11)

and suppose the two following Lipschitz conditions hold
for constants λ and µ

∀(x0,q) ∈ G,∀p ∈ B∆,∀x
′,x′′ ∈ B(x0, r),

‖Fx(x′,q,p)− Fx(x′′,q,p)‖≤ λ‖x′ − x′′‖, (12)

∀(x,q) ∈ G,∀p,p′ ∈ B∆,

‖Fp(x,q,p)− Fp(x,q,p′)‖≤ µ‖p− p′‖. (13)

Theorem 1: Let ∆ > 0, and κ, χ, γ ≥ 0 be such that (8),
(9) and (10) are satisfied. Consider λ, µ ≥ 0 such that (12)
and (13) are satisfied. Define r := 2κχ as in (11),

η(p) := 2
∑
i

γ(i)‖p(i)‖+µχ‖p‖2, (14)

1Fixing the value of ∆ can be done with successive adjustments when
necessary: Too large or too small values of ∆ will result in small pertur-
bation domain.



and the perturbation domain

P = {p ∈ B∆ : λχη(p) ≤ 1}. (15)

Then G is ε-safe with respect to P for

ε = min{r, 1

χλ
}. (16)

Furthermore, the distance between the nominal and the per-
turbed poses is at most

ε(p) :=
η(p)

1 +
√

1− χλη(p)
. (17)

Proof: Consider an arbitrary nominal pose (x0,q) ∈
G. We just need to prove that for an arbitrary fixed p ∈ P
there exists a unique solution x∗ to h(x) = 0, with h(x) :=
f(x,q,p), inside B(x0, ε), and that this solution satisfies
‖x0 − x∗‖≤ ε(p).

To this end, we apply Kantorovich theorem to the res-
olution of the system h(x) = 0, starting from the ini-
tial condition x0. Let D0 := B(x0, r). Then by (12),
Hx(x) = Fx(x,q,p) is Lipschitz with constant λ inside
D0. By (9), Γ0 := Hx(x0)−1 is defined and ‖Γ0‖≤ χ. We
prove now that

‖Γ0h(x0)‖≤ 1

2
min{r, η(p)} =: δ. (18)

First, ‖Γ0h(x0)‖≤ ‖Γ0‖‖h(x0)‖≤ κχ = r
2 , the second

inequality resulting of (8) and (9). Second, defining M :=
Fp(x0,q,0), M(i) := Fp(i)(x0,q,0) and z := h(x0) −
Mp,

‖Γ0h(x0)‖ = ‖Γ0(Mp + z)‖ (19)

= ‖Γ0

(∑
i

M(i)p(i) + z
)
‖ (20)

≤
∑
i

‖Γ0M
(i)‖‖p(i)‖+‖Γ0‖‖z‖ (21)

≤
∑
i

γ(i)‖p(i)‖+χ‖z‖, (22)

where the last inequality follows from (9) and (10). Finally,
following the classical argument given in [15], [8], and us-
ing (13), we have ‖z‖≤ 1

2µ‖p‖
2, which proves (18).

Now, it remains to prove that h := 2χλδ ≤ 1 and that
B(x0, t

∗) ⊆ D0, where t∗ := 2δ(1−
√

1−h)
h . First,

h = 2χλδ ≤
(18)

λχη(p) ≤
(15)

1, (23)

Second, we have

t∗ ≤
(57)

2δ ≤
(18)

r. (24)

Therefore, B(x0, t
∗) ⊆ B(x0, r) = D0.

Therefore we can apply Kantorovich theorem [10] which
proves that h(x) has a solution x∗ inside B(x0, t

∗) with
Hx(x∗) nonsingular, and that this solution is unique in-
side B(x0, ε) ⊇ B(x0, t

∗): On the one hand, if h ∈ [0, 1)
then Kantorovich theorem proves that it is unique inside
B(x0, t

′) ∩D0, while

B(x0, t
′)∩D0 ⊇

(56)
B(x0,

1

χλ
)∩D0 =

(16)
B(x0, ε). (25)

On the other hand, if h = 1 then Kantorovich theorem
proves that it is unique inside B(x0, t

′) , while

B(x0, t
′) =

(55)
B(x0,

1

χλ
) ⊇

(16)
B(x0, ε). (26)

Finally, using 2δ ≤ η(p), which holds by (18), we have
h = 2χλδ ≤ χλη(p), and eventually

t∗ =
2δ

1 +
√

1− h
≤ ε(p), (27)

therefore ‖x0 − x∗‖≤ ε(p).
Remark 2: The perturbation domain P provided by The-

orem 1 is convex. Indeed, it has the form aTp+ b‖p‖2≤ 1,
with b > 0, so aTp + b‖p‖2 is the sum of two convex
functions.

Remark 3: Kantorovich Theorem also proves

∀(x,q) ∈ G,∀p ∈ P,∀x′ ∈ B(x, ε),

det Fx(x′,q,p) 6= 0, (28)

which is of great practical interest, since for the perturba-
tion domain considered, it proves that no perturbed pose
leads to any parallel singularity.

B.3 Asymptotic analysis

It can be seen from the definition (14) that η(p) ≈
2
∑
i γ

(i)‖p(i)‖ provided that

‖p‖2� 2

µχ

∑
i

γ(i)‖p(i)‖, (29)

which is satisfied as soon as ‖p‖ is small enough. If further-
more χλη(p) ≈ 2χλ

∑
i γ

(i)‖p(i)‖ is small with respect
to 1 then ε(p) ≈ η(p)

2 =
∑
i γ

(i)‖p(i)‖. Figure 1 shows
the typical behavior of η(p), ε(p), ε and γ0‖p‖ in the case
where p is not split (i.e.,

∑
i γ

(i)‖p(i)‖= γ‖p‖).
Another interesting observation is that, under the valid-

ity of the approximation η(p) ≈ 2
∑
i γ

(i)‖p(i)‖, the size
of the perturbation domain {p ∈ B∆ : λχη(p) ≤ 1} is
proportional to the inverse of χ, λ and γ(i).



Fig. 1. Typical upper bounds provided by Theorem 1, obtained with the
dummy constants κ = χ = γ = λ = µ = 1 and γ0 = 0.9.

IV. Tolerance synthesis

Let P be the perturbation domain provided by Theo-
rem 1. Our aim is to determine a vector of tolerances
∆ = (∆i) such that

S∆ := {p ∈ Rm : ‖p(i)‖≤ ∆i} (30)

is contained inside P , and that the error e(x,x′) is less than
a given threshold e for all perturbations in S∆.

In Subsection IV-A, we propose a non-rigorous linear
approximation of the maximal error in the workspace. In
Subsection IV-B, we formulate the Tolerance synthesis as a
multi-objective optimization problem, aiming maximizing
the different tolerances ∆i. Finally, a certified upper bound
for the pose error corresponding to the tolerances synthe-
sized by this process is computed by solving the optimiza-
tion problem described Section III.

A. Approximate linearization of the pose error

Theorem 1 involves several overestimations, which leads
to an overestimated error upper bound for the considered
perturbation domain. This allows making the assumption
that a linear approximation is going to be accurate within
the perturbation domain provided by Theorem 1. There-
fore, we make the assumption that the following linear ap-
proximation holds:

x′ − x ≈ Fx(x,q,0)−1Fp(x,q,0)p. (31)

We obtain an approximate workspace worst case error
e(x,x′) = ‖Π(x− x′)‖ in the following way: Using (31),
we obtain that (7) is approximately

max
(x,q)∈G
p∈S∆

‖ΠFx(x,q,0)−1Fp(x,q,0)p‖, (32)

which we approximate by

max
(x,q)∈G
p∈S∆

‖ΠFx(x,q,0)−1Fp(x,q,0)‖‖p‖. (33)

We finally approximate (33) by

max
p∈S∆

∑
i

γ
(i)
0 ‖p(i)‖ =

∑
i

γ
(i)
0 ∆i, (34)

where

γ
(i)
0 = max

(x,q)∈G
‖ΠFx(x,q,0)−1Fp(i)(x,q,0)‖. (35)

Although it is difficult to assess the accuracy of this linear
approximation in general, it turns out to be very accurate in
the preliminary experiments presented in Section V.

B. Approximate tolerance synthesis and its validation

In order to be able to compute a rigorous pose error upper
bound using Theorem (1), we need to choose ∆i using (34)
under the additional constraint that S∆ is a subset of P .
Therefore, admissible tolerances ∆ satisfy∑

i

γ
(i)
0 ∆i ≤ e (36)

2
∑
i

γ(i)∆i + µχ‖∆‖2 ≤ 1

λχ
(37)

‖∆‖ ≤ ∆, (38)

where (37) and (38) encode S∆ ⊆ P (the constraint (37)
comes from (14) and (15), while (38) is the a priori maximal
perturbation norm). As mentioned earlier, the domain (37)
is convex, and so is the set of admissible tolerances defined
by (36), (37) and (38). Finally, we want to select tolerances
satisfying (36), (37) and (38) that maximizes each ∆i in a
multi-objective sense, i.e., that are Pareto optimal for these
objectives. Since objectives and constraints are convex and
almost linear, this multi-objective optimization problem is
actually trivial to solve.

Then, solving the optimization problem (7) provides a
rigorous upper bound for the pose error over the workspace
for the synthesized tolerances. Two cases arise: Either the
rigorous upper bound (7) is close enough to the approx-
imate one (34) so that the synthesized tolerances can be
used, or the process can be repeated for neighbor toler-
ances in order to achieve better tolerances. In the experi-
ments presented in the next section, the approximate upper
bound (34) is very accurate, but this will have to be investi-
gated on more models.

V. Preliminary experiments

In this section, we provide some first simulations to as-
sess the usefulness of the proposed method. The upper
bounds κ, χ, γ(i) and γ(i)

0 have been rigorously computed
solving the optimization problems (8), (9), (10) and (35) us-
ing the global solver IBEX2 [7], [17], [1]. It allows comput-

2Optimization problems to be solved are non-convex, non-smooth and
equality and inequality constrained, and we require rigorous upper bounds.
Up to our knowledge, IBEX is the only software available that is able
to solve such problems. It can be downloaded from http://www.
ibex-lib.org/.

http://www.ibex-lib.org/
http://www.ibex-lib.org/


Fig. 2. Sensitivity index and the three workspaces considered for
the RPRPR robot (white curves are drawing artefacts due to the non-
differentiability of the sensitivity index).

ing an arbitrarily sharp certified upper bound of these opti-
mization problems, and we stopped the computations when
the relative precision of the maximum is 1% (all presented
upper bounds are therefore certified and accurate). All com-
putations have been performed on an Intel i7 2.80GHz, the
code has not been parallelized, and all timing are given in
seconds (a 1 hour timeout has been enforced).

Two different robots are investigated: A RPRPR in Sub-
section V-A and a 3RPR, with constant orientation, in Sub-
section V-B. We consider no joint limits, i.e. qi ∈ [0,+∞).
The generalized workspace of interest is defined by a rect-
angular domain in the cartesian space: x ∈ [x,x] =: W .
Therefore,

G = {(x,q) ∈ R2n : f(x,q) = 0,x ≤ x ≤ x}. (39)

Several workspaces Wi are going to be investigated for
each robot.

Remark 4: We formally inverse the matrix Fx(x,q,p)
in order to solve (9) and (10). Tackling higher dimensional
problems will require investigating some rigorous numeri-
cal inverse enclosure methods.

A. The RPRPR robot

In this subsection, we study the simple parallel robot
RPRPR with 6 perturbations, 4 of them acting on the an-
chor points, and 2 of them on the commands. Its kinematic
model F(x,q,p) is therefore

(1 + p1 + x1)2 + (p2 + x2)2 − (p3 − q1)2 (40)
(−1 + p4 + x1)2 + (p5 + x2)2 − (p6 − q2)2. (41)

Since there is not orientation error, we use e(x,x′) =
‖x − x′‖, i.e. Π is the identity matrix. Perturbations

Fig. 3. In gray, the perturbation domain given by Theorem 1 for W1

(note that it is truncated by ‖∆‖≤ ∆). Dashed lines represent the error
isocontours obtained with the linearization approximation (34).

are partitioned in two classes: The geometric perturba-
tions p(1) = (p1, p2, p4, p5) and command perturbations
p(2) = (p3, p6). The three different workspaces to be in-
vestigated are displayed on Figure 2. This figure also shows
the level-sets of the sensitivity index

‖Fx(x,q(x),0)−1Fp(x,q(x),0)‖, (42)

where q(x) is the inverse kinematic model. We expect from
Figure 2 thatW1 is the best in term of sensitivity and toler-
ance synthesis.

The kinematic model involves only quadratic constraints,
for which we can easily obtain tight Lipschitz constants for
the derivatives: λ = 2 and µ = 2.

A.1 WorkspaceW1

The first workspace we consider is defined by −1 ≤
x1 ≤ 0 and 1 ≤ x2 ≤ 2. The constants upper bounds
computed for this workspace using ∆ = 0.1 are given in
the following table, as well as the time needed to compute
them:

κ χ γ(1) (γ(1)0 ) γ(2) (γ(2)0 )
u.b. 1.39 0.64 3.5 (3.01) 2.97 (2.43)
t. 2.6 5.1 0.5 (0.1) 0.2 (0.1)

The corresponding error upper bound given by Theo-
rem 1 is ε = 0.79. The perturbation domain given by The-
orem 1 is shown on Figure 3, as well as the isocontours of
the linearized error

e(∆1,∆2) ≈ 3.01∆1 + 2.43∆2. (43)

The three points represent three different compromises
of tolerance design, which maximize the tolerances inside



Fig. 4. In gray, the perturbation domain given by Theorem 1 for W2.
Dashed lines represent the error isocontours obtained with the linearization
approximation (34).

the perturbation domain provided by Theorem 1. The fol-
lowing table shows for each of them the linearized error, the
error upper bound obtained solving (7) using IBEX, as well
as the solving time.

∆ linearized certified time
(0.101,0.012) 0.33 0.33 1.11
(0.025,0.101) 0.32 0.31 1.23
(0.063,0.056) 0.33 0.32 0.79

We see that the linearized error is accurate inside the per-
turbation domain provided by Theorem 1. The tolerance
synthesis can therefore be performed inside this perturba-
tion domain using the linearized errors by solving the bi-
objective problem consisting of maximizing ∆1 and ∆2

subject to (36), (37) and (38), and eventually checking the
chosen tolerances a posteriori solving (7).

A.2 WorkspaceW2

The first workspace we consider is defined by 1 ≤ x1 ≤
2 and 3 ≤ x2 ≤ 4. The constants upper bounds computed
for this workspace using ∆ = 0.1 are given in the following
table, as well as the time needed to compute them:

κ χ γ(1) (γ(1)0 ) γ(2) (γ(2)0 )
u.b. 2.44 0.61 7.05 (6.01) 5.48 (4.57)
t. 0.8 0.1 0.1 (0.1) 0.1 (0.1)

The corresponding error upper bound given by Theo-
rem 1 is ε = 0.83. The perturbation domain given by The-
orem 1 is shown on Figure 4, as well as the isocontours of
the linearized error

e(∆1,∆2) ≈ 6.01∆1 + 4.57∆2. (44)

Fig. 5. In gray, the perturbation domain given by Theorem 1 for W3.
Dashed lines represent the error isocontours obtained with the linearization
approximation (34).

The three points represent three different compromises
of tolerance design, which maximize the tolerances inside
the perturbation domain provided by Theorem 1. The fol-
lowing table shows for each of them the linearized error, the
error upper bound obtained solving (7) using IBEX, as well
as the solving time.

∆ linearized certified time
(0.055,0.005) 0.35 0.35 1.13
(0.005,0.069) 0.34 0.34 1.71
(0.03,0.037) 0.35 0.34 1.34

We see that the linearized error is accurate inside the per-
turbation domain provided by Theorem 1. The tolerance
synthesis can therefore be performed inside this perturba-
tion domain using the linearized errors by solving the bi-
objective problem consisting of maximizing ∆1 and ∆2

subject to (36), (37) and (38), and eventually checking the
chosen tolerances a posteriori solving (7).

When compared with W1, we see that the linearized
error is approximately twice bigger, while the perturba-
tion domain provided by Theorem 1 is twice smaller. The
workspaceW1 is therefore better with respect to sensitivity
and tolerance synthesis.

A.3 WorkspaceW3

The first workspace we consider is defined by −0.5 ≤
x1 ≤ 0.5 and 0.1 ≤ x2 ≤ 1.1. The constants upper bounds
computed for this workspace using ∆ = 0.0053 are given in
the following table, as well as the time needed to compute
them:

3This workspace is closer to parallel singularities, and sensibly larger ∆
leads to perturbed poses with parallel singularities.



κ χ γ(1) (γ(1)0 ) γ(2) (γ(2)0 )
u.b. 0.05 5.28 11.66 (11.09) 10.72 (10.07)
t. 115.8 0.1 0.1 (0.1) 0.1 (0.1)

The corresponding error upper bound given by Theo-
rem 1 is ε = 0.1. The perturbation domain given by Theo-
rem 1 is shown on Figure 5, as well as the linearized error
e(∆1,∆2) ≈ 11.09∆1 + 10.07∆2 isocontours.

The three points represent three different compromises
of tolerance design, which maximize the tolerances inside
the perturbation domain provided by Theorem 1. The fol-
lowing table shows for each of them the linearized error, the
error upper bound obtained solving (7) using IBEX, as well
as the solving time.

∆ linearized certified time
(0.004,0.001) 0.05 0.04 6.55
(0.001,0.005) 0.05 0.04 4.37
(0.003,0.003) 0.05 0.04 6.81

We see that the linearized error is accurate inside the per-
turbation domain provided by Theorem 1. The tolerance
synthesis can therefore be performed inside this perturba-
tion domain using the linearized errors by solving the bi-
objective problem consisting of maximizing ∆1 and ∆2

subject to (36), (37) and (38), and eventually checking the
chosen tolerances a posteriori solving (7).

When compared withW1, we see that the linearized error
is now approximately 4 times bigger, while the perturbation
domain provided by Theorem 1 is now 20 times smaller.
The workspace W3 is therefore the worst with respect to
sensitivity and tolerance synthesis.

B. The 3RPR robot

We now study the parallel robot 3RPR with 9 perturba-
tions, 6 of them acting on the anchor points, and 3 of them
on the commands. Its kinematic model F(x,q,p) is

(d1 − x1)2 + (d2 − x2)2 − (d3 + q1)2 (45)(
L+d4−x1−l sin(

π

6
+x3)

)2

+
(
d5−x2+l cos(

π

6
+x3)

)2

− (d6 + q2)2 (46)

(L
2

+d7−x1−l cos(x3)
)2

+
(L√3

2
+d8−x2−l sin(x3)

)2

− (d9 + q3)2, (47)

with L = 1 and l = 0.5. We study both the position error
eP(x,x′) = ‖ΠP(x−x′)‖= max{|x1−x′1|, |x2−x′2|} and
the orientation error eO(x,x′) = ‖ΠO(x−x′)‖= |x3−x′3|.
Perturbations are partitioned in two classes: The geomet-
ric perturbations p(1) = (p1, p2, p4, p5, p7, p8) and com-
mand perturbations p(2) = (p3, p6, p9). The two different

Fig. 6. Sensitivity indices and the two workspaces considered for the
3RPR robot (the green circle represents parallel singularities; the white
curves are drawing artefacts due to the non-differentiability of the sen-
sitivity index). The upper graphic and the lower graphics correspond to
position and orientation sensitivities respectively.

workspaces to be investigated are displayed on Figure 2,
where only x1 and x2 are represented because the orienta-
tion is fixed to x3 = 0 for each considered workspace. This
figure also shows the level-sets of the sensitivity index

‖ΠFx(x,q(x),0)−1Fp(x,q(x),0)‖, (48)

where q(x) is the inverse kinematic model, Π = ΠP for
the upper graphic, and Π = ΠO for the lower graphic.
We expect from Figure 2 that W1 is the best in term of
sensitivity and tolerance synthesis.

The kinematic model is not quadratic anymore with re-
spect to x, therefore we solve the following optimization
problem, whose upper bound provides a second derivatives
based Lipschitz constant satisfying (12):

λ ≥ max
(x,q)∈G
p∈B∆

max
i

∑
jk

∣∣∣ ∂fi
∂xjxk

(x,q,p)
∣∣∣. (49)



Fig. 7. In gray, the perturbation domain given by Theorem 1 for W1.
Dashed lines represent the error isocontours obtained with the linearization
approximation (34).

The kinematic model is quadratic with respect to p, and we
can obtain the sharp Lipschitz constant µ = 2.

IBEX resolution timings are quite higher than for the
RPRPR robot, because more variables are involved and ex-
pressions are more complex. On the other hand, the stan-
dard version of IBEX has been used, and specific tuning
may turn out to significantly reduce the resolution timings.

B.1 WorkspaceW1

The first workspace we consider is defined by −0.55 ≤
x1 ≤ 0.05, 1.2 ≤ x2 ≤ 1.8 and x3 = 0. The constants
upper bounds computed for this workspace using ∆ = 0.01
are given in the following table, as well as the time needed
to compute them:

κ χ λ γ(1) (γ(1)0 ) γ(2) (γ(2)0 )

u.b.
(pos.)
(ori.) 0.1 4.49 9.08 5.95

(5.69)
(5.68) 5.2

(4.31)
(4.72)

t.
(pos.)
(ori.) 9.7 1.1 0.1 49.4

(0.7)
(1.7) 4.8

(0.5)
(1.7)

The corresponding error upper bound given by Theo-
rem 1 is ε = 0.03. The perturbation domain given by The-
orem 1 is shown on Figure 7, as well as the isocontours of
the linearized position (blue dashed lines) and orientation
(green dashed lines) errors

eP(∆1,∆2) ≈ 5.69∆1 + 4.31∆2 (50)
eO(∆1,∆2) ≈ 5.68∆1 + 4.72∆2. (51)

The three points represent three different compromises
of tolerance design, which maximize the tolerances inside
the perturbation domain provided by Theorem 1. The fol-
lowing table shows for each of them the linearized error, the

Fig. 8. In gray, the perturbation domain given by Theorem 1 for W2.
Dashed lines represent the error isocontours obtained with the linearization
approximation (34).

error upper bound obtained solving (7) using IBEX, as well
as the solving time.

100∆ linearized certified time

(2,1)
0.012
0.012

0.013
0.012

606.7
657.4

(1,3)
0.011
0.012

0.011
0.012

579.9
92.7

(2,2)
0.011
0.012

0.012
0.012

621.7
47.1

We see that the linearized error is accurate inside the per-
turbation domain provided by Theorem 1. The tolerance
synthesis can therefore be performed inside this perturba-
tion domain using the linearized errors by solving the bi-
objective problem consisting of maximizing ∆1 and ∆2

subject to (36), (37) and (38), and eventually checking the
chosen tolerances a posteriori solving (7).

B.2 WorkspaceW2

The first workspace we consider is defined by 0.45 ≤
x1 ≤ 1.05, 1.2 ≤ x2 ≤ 1.8 and x3 = 0. The constants
upper bounds computed for this workspace using ∆ = 0.01
are given in the following table, as well as the time needed
to compute them:

κ χ λ γ(1) (γ(1)0 ) γ(2) (γ(2)0 )

u.b.
(pos.)
(ori.) 0.11 5.73 8.58 12.7

(4.7)
(12.1) 9.8

(3.8)
(9.1)

t.
(pos.)
(ori.) 6.6 0.9 0.2 3.1

(0.7)
(0.6) 6.7

(0.8)
(0.9)

The corresponding error upper bound given by Theo-



rem 1 is ε = 0.03. The perturbation domain given by The-
orem 1 is shown on Figure 8, as well as the isocontours of
the linearized position (blue dashed lines) and orientation
(green dashed lines) errors

eP(∆1,∆2) ≈ 4.7∆1 + 3.85∆2 (52)
eO(∆1,∆2) ≈ 12.16∆1 + 9.13∆2. (53)

The three points represent three different compromises
of tolerance design, which maximize the tolerances inside
the perturbation domain provided by Theorem 1. The fol-
lowing table shows for each of them the linearized error, the
error upper bound obtained solving (7) using IBEX, as well
as the solving time.

1000∆ linearized certified time

(0.76,0.07)
0.0038
0.0097

0.0038
0.0098

2333
91

(0.07,0.97)
0.004

0.0096
0.005

0.0097
2112
85

(0.41,0.52)
0.004

0.0097
N.A.

0.0097
T.O.
79

We see that the linearized error is accurate inside the per-
turbation domain provided by Theorem 1. The tolerance
synthesis can therefore be performed inside this perturba-
tion domain using the linearized errors by solving the bi-
objective problem consisting of maximizing ∆1 and ∆2

subject to (36), (37) and (38), and eventually checking the
chosen tolerances a posteriori solving (7).

As predicted by Figure 6, we see that the position lin-
earized error is approximately the same as W1 (actually
slightly better forW2) but the orientation error is now twice
worse. The perturbation domain provided by Theorem 1 is
twice smaller as well. The workspaceW1 is therefore better
with respect to sensitivity and tolerance synthesis.
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Appendix

I. Technical results

Lemma 1: With the notations of Kantorovich Theo-
rem [10],

t∗ =
2δ(1−

√
1− h)

h
and t′ =

2δ(1 +
√

1− h)

h
(54)

we have

h = 1 =⇒ t∗ = 2δ =
1

χλ
= t′ (55)

h ∈ [0, 1) =⇒ t∗ < 2δ <
1

χλ
< t′ (56)

h ∈ [0, 1] =⇒ t∗ ≤ 2δ ≤ 1

χλ
≤ t′ (57)

Proof: Equation (55) is trivial, and (57) follows from
the previous ones. Equation (56) remains to be proved.
First note that

t∗ =
2δ

1 +
√

1− h
, (58)

which is strictly increasing with respect to h. Therefore,
h ∈ [0, 1) implies t∗ < 2δ. Second note that

t′ =
2(1 +

√
1− h)

χλ
, (59)

which is strictly decreasing with respect to h. Therefore,
h ∈ [0, 1) implies 1

χλ < t′.
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