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For a two by two reaction-diffusion system on a bounded domain we give a simultaneous stability result for one coefficient and for the initial conditions. The key ingredient is a global Carleman-type estimate with a single observation acting on a subdomain.

Introduction

This paper is devoted to the simultaneous identification of one coefficient and the initial conditions in a reaction-diffusion system using the least number of observations as possible.

Let Ω ⊂ R n be a bounded domain of R n with n ≤ 3. We denote by n the outward unit normal to Ω on Γ = ∂Ω assumed to be of class C 1 . Let T > 0 and t 0 ∈ (0, T ). We shall use the following notations Q 0 = Ω × (0, T ), Q = Ω × (t 0 , T ), Σ = Γ × (t 0 , T ) and Σ 0 = Γ × (0, T ). We consider the following reaction-diffusion system which arises for instance in mathematical biology:

         ∂ t u = ∆u + a(x)u + b(x)v in Q 0 , ∂ t v = ∆v + c(x)u + d(x)v
in Q 0 , u(t, x) = g(t, x), v(t, x) = h(t, x) on Σ 0 , u(0, x) = u 0 and v(0, x) = v 0 in Ω,

Throughout this paper, let us consider the following set

Λ(R) = {Φ ∈ L ∞ (Ω); Φ L ∞ (Ω) R},
where R is a given positive constant.

If we assume that (u 0 , v 0 ) belongs to (H 2 (Ω)) 2 and g, h are sufficiently regular (e.g. ∃ ǫ > 0 such that g, h ∈ H 1 (t 0 , T, H 2+ε (∂Ω)) ∩ H 2 (t 0 , T, H ε (∂Ω))), then (1) admits a solution in H 1 (t 0 , T, H 2 (Ω)) (see [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF]). We will later use this regularity result. We also assume that

        
a, b, c, d ∈ Λ(R), There exist r > 0, c 0 > 0 such that u 0 ≥ 0, v 0 ≥ r, c ≥ c 0 , b > 0, c + dr ≥ 0, g ≥ 0 and h ≥ r.

Let ω be a subdomain of Ω. Let (u, v) (resp. ( u, v)) be solution of (1) associated to (a, b, c, d, u 0 , v 0 ) (resp. (a, b, c, d, u 0 , v 0 )) satisfying some regularity and "positivity" properties. We assume that we can measure ∂ t v on ω in the time interval (t 0 , T ) for some t 0 ∈ (0, T ) and ∆u, u and v in Ω at time T ′ ∈ (t 0 , T ). Our main results are

• A stability result for the coefficient b(x) (or a(x)): For u 0 , v 0 in H 2 (Ω) there exists a constant

C = C(Ω, ω, c 0 , t 0 , T, r, R) > 0 such that |b -b| 2 L 2 (Ω) ≤ C|∂ t v -∂ t v| 2 L 2 ((t 0 ,T )×ω) + C|∆u(T ′ , •) -∆ u(T ′ , •)| 2 L 2 (Ω) +C|u(T ′ , •) -u(T ′ , •)| 2 L 2 (Ω) + C|v(T ′ , •) -v(T ′ , •)| 2 L 2 (Ω) .
• A stability estimate for the initial conditions u 0 , v 0 : For u 0 , v 0 , u 0 , v 0 in H 4 (Ω) there exists a constant

C = C(Ω, ω, c 0 , t 0 , T, r, R) > 0 such that |u 0 -u 0 | 2 L 2 (Ω) + |v 0 -v 0 | 2 L 2 (Ω) ≤ C | log E| , where E = |∂ t v -∂ t v| 2 L 2 ((t 0 ,T )×ω) + |u(T ′ , •) -u(T ′ , •)| 2 H 2 (Ω) + |v(T ′ , •) -v(T ′ , •)| 2 H 2 (Ω) .
The key ingredient to these stability results is a global Carleman estimate for a two by two system with one observation. Controllability for such parabolic systems has been studied in [START_REF] Khodja | Null controllability of some systems of parabolic type by one control force[END_REF]. The Carleman estimate obtained in [START_REF] Khodja | Null controllability of some systems of parabolic type by one control force[END_REF] cannot be used to solve the inverse problem of identification of one coefficient and initial conditions because of the weight functions which are different in the left and right hand side of their estimate. We establish a new Carleman estimate with one observation involving the same weight function in the left and right hand side. Concerning the stability of the initial conditions we use an extension of the logarithmic convexity method (see [START_REF] Isakov | Inverse problems for partial differential equations[END_REF]). The simultaneous reconstruction of one coefficient and initial conditions from the measurement of one solution v over (t 0 , T ) × ω and some measurement at fixed time T ′ is an essential aspect of our result. In the perspective of numerical reconstruction, such problems are ill-posed. Stability results are thus of importance. Inverse problems for parabolic equations are well studied (see [START_REF] Cannon | Structural identification of an unknown source term in a heat equation[END_REF], [START_REF] Yu | Lipschitz stability in inverse problems by Carleman estimates[END_REF], [START_REF] Yamamoto | Simultaneous reconstruction of the initial temperature and heat radiative coefficient[END_REF]). A recent book of Klibanov and Timonov [START_REF] Klibanov | Carleman estimates for coefficient inverse problems and numerical applications[END_REF] is devoted to the Carleman estimates applied to inverse coefficient problems. In our knowledge, there is no work about inverse problems for coupled parabolic systems. The used method allows us to give a stability result for the coefficient a(x) adapting assumption 3.1. On the other hand, since we only measure ∂ t v on ω, we cannot obtain such stability results for the coefficients c(x) or d(x) of the second equation of [START_REF] Khodja | Null controllability of some systems of parabolic type by one control force[END_REF]. For the reconstruction of two coefficients the problem is more complicated. We obtain partial results with restrictive assumptions on the coefficients a(x), b(x), c(x) and d(x). In order to avoid such assumptions, we think it is necessary to use other methods such as those used in [START_REF] Yu | An Inverse Problem for the Dynamical Lamé system with two set of boundary data[END_REF]. Our paper is organized as follows. In Section 2, we derive a global Carleman estimate for system (1) with one observation, i.e. the measurement of one solution v over (t 0 , T ) × ω. In Section 3, we prove a stability result for the coefficient b(x) when one of the solutions v is in a particular class of solutions with some regularity and "positivity" properties. In Section 4, we prove a stability result for the initial conditions.

Carleman estimate

We prove here a Carleman-type estimate with a single observation acting on a subdomain ω of Ω in the right-hand side of the estimate. Let us introduce the following notations: let ω ′ ⋐ ω and let β be a C 2 (Ω) function such that

β > 0, in Ω, β = 0 on ∂Ω, min{|∇ β(x)|, x ∈ Ω \ ω ′ } > 0 and ∂ n β < 0 on ∂Ω.
Then, we define β = β + K with K = m β ∞ and m > 1. For λ > 0 and t ∈ (t 0 , T ), we define the following weight functions

ϕ(x, t) = e λβ(x) (t -t 0 )(T -t) , η(x, t) = e 2λK -e λβ(x) (t -t 0 )(T -t) .
If we set ψ = e -sη q, we also introduce the following operators

M 1 ψ = -∆ψ -s 2 λ 2 |∇β| 2 ϕ 2 ψ + s(∂ t η)ψ, M 2 ψ = ∂ t ψ + 2sλϕ∇β.∇ψ + 2sλ 2 ϕ|∇β| 2 ψ.
Then the following result holds (see [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems and applications to controllability[END_REF]).

Theorem 2.1 There exist λ 0 = λ 0 (Ω, ω) ≥ 1, s 0 = s 0 (λ 0 , T ) > 1 and a positive constant C 0 = C 0 (Ω, ω, T ) such that, for any λ ≥ λ 0 and any s ≥ s 0 , the next inequality holds:

M 1 (e -sη q) 2 L 2 (Q) + M 2 (e -sη q) 2 L 2 (Q) (2) 
+sλ 2 Q e -2sη ϕ|∇q| 2 dx dt + s 3 λ 4 Q e -2sη ϕ 3 |q| 2 dx dt ≤ C 0 s 3 λ 4 T t 0 ω e -2sη ϕ 3 |q| 2 dx dt + Q e -2sη |∂ t q -∆q| 2 dx dt ,
for all q ∈ H 1 (t 0 , T, H 2 (Ω)) with q = 0 on Σ.

From the above theorem we have also the following result (see [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems and applications to controllability[END_REF] and [START_REF] Fursikov | Optimal control of distribued systems[END_REF]).

Proposition 2.2 There exist λ 0 = λ 0 (Ω, ω) ≥ 1, s 0 = s 0 (λ 0 , T ) > 1 and a positive constant C 0 = C 0 (Ω, ω, T ) such that, for any λ ≥ λ 0 and any s ≥ s 0 , the next inequality holds:

s -1 Q e -2sη ϕ -1 (|∂ t q| 2 + |∆q| 2 ) dx dt (3) +sλ 2 Q e -2sη ϕ|∇q| 2 dx dt + s 3 λ 4 Q e -2sη ϕ 3 |q| 2 dx dt ≤ C 0 s 3 λ 4 T t 0 ω e -2sη ϕ 3 |q| 2 dx dt + Q e -2sη |∂ t q -∆q| 2 dx dt ,
for all q ∈ H 1 (t 0 , T, H 2 (Ω)) with q = 0 on Σ.

We consider the solutions (u, v) and ( u, v) to the following systems

         ∂ t u = ∆u + au + bv in Q 0 , ∂ t v = ∆v + cu + dv in Q 0 , u(t, x) = g(t, x), v(t, x) = h(t, x) on Σ 0 , u(0, x) = u 0 and v(0, x) = v 0 in Ω, (4) 
and

         ∂ t u = ∆ u + a u + b v in Q 0 , ∂ t v = ∆ v + c u + d v in Q 0 , u(t, x) = g(t, x), v(t, x) = h(t, x) on Σ 0 , u(0, x) = u 0 and v(0, x) = v 0 in Ω. (5) 
We set

U = u -u, V = v -v, y = ∂ t (u -u), z = ∂ t (v -v) and γ = b -b. Then (y, z) is solution to the following problem              ∂ t y = ∆y + ay + bz + γ∂ t v in Q 0 , ∂ t z = ∆z + cy + dz in Q 0 , y(t, x) = z(t, x) = 0 on Σ 0 , y(0, x) = ∆U(0, x) + aU(0, x) + bV (0, x) + γ v(0, x), in Ω, z(0, x) = ∆V (0, x) + cU(0, x) + dV (0, x) in Ω. (6) 
Note that the previous initial conditions are available for all T ′ ∈ (0, T ). We consider the functional

I(q) = s -1 Q e -2sη ϕ -1 (|∂ t q| 2 + |∆q| 2 ) dx dt +sλ 2 Q e -2sη ϕ|∇q| 2 dx dt + s 3 λ 4 Q e -2sη ϕ 3 |q| 2 dx dt.
Then using the Carleman estimate (3), the solution (y, z) of ( 6) satisfies

I(y) + I(z) ≤ C 1 [s 3 λ 4 T t 0 ω e -2sη ϕ 3 |z| 2 dx dt (7) +s 3 λ 4 T t 0 ω e -2sη ϕ 3 |y| 2 dx dt + Q e -2sη (|ay| 2 + |bz| 2 + |γ∂ t v| 2 ) dx dt + Q e -2sη (|cy| 2 + |dz| 2 ) dx dt]
Let ξ be a smooth cut-off function satisfying

     ξ(x) = 1 ∀x ∈ ω ′ , 0 < ξ(x) ≤ 1 ∀x ∈ ω ′′ , ξ(x) = 0 ∀x ∈ R n \ ω ′′ ,
where

ω ′ ⋐ ω ′′ ⋐ ω ⋐ Ω.
We shall to estimate the following three terms

I := s 3 λ 4 T t 0 ω e -2sη ϕ 3 |y| 2 dx dt, J := Q e -2sη |bz| 2 dx dt or Q e -2sη |dz| 2 dx dt, K := Q e -2sη |ay| 2 dx dt or Q e -2sη |cy| 2 dx dt.
For the first term I, we multiply the second equation of ( 6) by s 3 λ 4 e -2sη ξϕ 3 y and we integrate over (t 0 , T ) × ω. We obtain

I ′ := s 3 λ 4 T t 0 ω c e -2sη ξϕ 3 |y| 2 dx dt = s 3 λ 4 T t 0 ω e -2sη ξϕ 3 (∂ t z -∆z -dz)y dx dt = s 3 λ 4 T t 0 ω e -2sη ξϕ 3 (∂ t z)y dx dt -s 3 λ 4 T t 0 ω e -2sη ξϕ 3 (∆z)y dx dt -s 3 λ 4 T t 0 ω de -2sη ξϕ 3 zy dx dt = I 1 + I 2 + I 3 .
By integration by parts with respect to the time variable, the first integral, I 1 , can be written as

I 1 = -s 3 λ 4 T t 0 ω e -2sη ξϕ 3 z(∂ t y) dx dt + 2s 4 λ 4 T t 0 ω e -2sη ξϕ 3 (∂ t η) zy dx dt -3s 3 λ 4 T t 0 ω e -2sη ξϕ 2 (∂ t ϕ) zy dx dt.
We write

I 1 = I 1 1 + I 2 1 with I 1 1 = -s 3 λ 4 T t 0 ω e -2sη ξϕ 3 z(∂ t y) dx dt, I 2 1 = 2s 4 λ 4 T t 0 ω e -2sη ξϕ 3 (∂ t η) zy dx dt -3s 3 λ 4 T t 0 ω
e -2sη ξϕ 2 (∂ t ϕ) zy dx dt.

Using Young inequality, we estimate the two integrals I 1 1 and I 2 1 . We have

|I 1 1 | ≤ s 3 λ 4 C ε s 4 λ 4 T t 0 ω e -2sη ξ 2 ϕ 7 |z| 2 dx dt + εs -4 λ -4 T t 0 ω e -2sη ϕ -1 |∂ t y| 2 dx dt ≤ C ε s 7 λ 8 T t 0 ω e -2sη ϕ 7 |z| 2 dx dt + εs -1 Q e -2sη ϕ -1 |∂ t y| 2 dx dt.
The last term of the previous inequality can be "absorbed" by the terms in I(y) for ε sufficiently small.

|I 2 1 | ≤ Cs 4 λ 4 sλ T t 0 ω e -2sη ξ 2 ϕ(ϕ 2 |∂ t η| 2 + |∂ t ϕ| 2 )|z| 2 dx dt +s -1 λ -1 T t 0 ω e -2sη ϕ 3 |y| 2 dx dt ≤ C s 5 λ 5 T t 0 ω e -2sη ϕ 7 |z| 2 dx dt + s 3 λ 3 Q e -2sη ϕ 3 |y| 2 dx dt .
The last inequality holds through the following estimates

|∂ t ϕ| ≤ C(Ω, ω)T ϕ 2 , |∂ t η| ≤ C(Ω, ω)T ϕ 2 , ϕ ≤ C(Ω, ω)T 4 ϕ 3 .
The last term of the previous inequality can be "absorbed" by the terms in I(y) for s and λ sufficiently large. Finally, we obtain

|I 1 | ≤ Cs 7 λ 8 T t 0 ω e -2sη ϕ 7 |z| 2 dx dt + "absorbed terms" ,
where C is a generic constant which depends on Ω, ω and T .

Integrating by parts the second integral I 2 with respect to the space variable, we obtain

I 2 = -s 3 λ 4 T t 0 ω
∆(e -2sη ξϕ 3 y)z dx dt.

If we denote by P = e -2sη ξϕ 3 , then we have

I 2 = -s 3 λ 4 T t 0 ω (P ∆y + 2∇P ∇y + y∆P )z dx dt.
We compute ∇P and ∆P and we obtain the following estimation for I 2

|I 2 | ≤ s 3 λ 4 εs -4 λ -4 T t 0 ω e -2sη ϕ -1 |∆y| 2 dx dt + C ε s 4 λ 4 T t 0 ω e -2sη ϕ 7 |z| 2 dx dt +εs -2 λ -2 T t 0 ω e -2sη ϕ|∇y| 2 dx dt + C ε s 2 λ 2 T t 0 ω e -2sη ϕ 5 |z| 2 dx dt +ε T t 0 ω e -2sη ϕ 3 |y| 2 dx dt + C ε T t 0 ω e -2sη ϕ 3 |z| 2 dx dt .
Therefore we obtain

|I 2 | ≤ ε s -1 Q e -2sη ϕ -1 |∆y| 2 dx dt + sλ 2 Q e -2sη ϕ|∇y| 2 dx dt +s 3 λ 4 Q e -2sη ϕ 3 |y| 2 dx dt + C ε s 7 λ 8 T t 0 ω e -2sη ϕ 7 |z| 2 dx dt +s 5 λ 6 T t 0 ω e -2sη ϕ 5 |z| 2 dx dt + s 3 λ 4 T t 0 ω e -2sη ϕ 3 |z| 2 dx dt .
The first three integrals of the r.h.s. of the previous inequality can be "absorbed" by the terms in I(y) for ε sufficiently small. Finally, we have

|I 2 | ≤ Cs 7 λ 8 T t 0 ω
e -2sη ϕ 7 |z| 2 dx dt + "absorbed terms" .

For the last integral I 3 , we have

|I 3 | ≤ Cs 3 λ 4 C ε T t 0 ω e -2sη ϕ 3 |z| 2 dx dt + ε Q e -2sη ϕ 3 |y| 2 dx dt
Finally, if we assume that there exists c 0 > 0 such that c ≥ c 0 in ω, we have thus obtained for λ and s sufficiently large and ε sufficiently small the following estimate:

|I| ≤ 1 c 0 |I ′ | ≤ C c 0 s 7 λ 8 T t 0 ω e -2sη ϕ 7 |z| 2 dx dt.
For the integrals J and K, since a, b, c, d ∈ Λ(R) and using the estimate

1 ≤ C(Ω, ω)T 6 ϕ 3 /4, we have |J| ≤ C Q e -2sη ϕ 3 |z| 2 dx dt, |K| ≤ C Q e -2sη ϕ 3 |y| 2 dx dt,
and these terms can be "absorbed" by the terms I(y) and I(z) for λ and s sufficiently large. If we now come back to inequality (7), using the estimates for I, J and K, and choosing λ and s sufficiently large and ε sufficiently small, we can thus write

I(y) + I(z) ≤ C 1 [s 3 λ 4 T t 0 ω e -2sη ϕ 3 |z| 2 dx dt + s 7 λ 8 T t 0 ω e -2sη ϕ 7 |z| 2 dx dt + Q e -2sη |γ∂ t v| 2 dx dt].
Observing that

ϕ 3 ≤ C(Ω, ω)T 8 ϕ 7 ,
We have thus obtained the fundamental result Theorem 2.3 We assume a, b, c, d ∈ Λ(R) and that exists c 0 > 0 such that c ≥ c 0 in ω. Then there exist

λ 1 = λ 1 (Ω, ω) ≥ 1, s 1 = s 1 (λ 1 , T ) > 1 and a positive constant C 1 = C 1 (Ω, ω, c 0 , R, T
) such that, for any λ ≥ λ 1 and any s ≥ s 1 , the following inequality holds:

I(y)+I(z) ≤ C 1 s 7 λ 8 T t 0 ω e -2sη ϕ 7 |z| 2 dx dt + Q e -2sη |γ∂ t v| 2 dx dt ,( 8 
)
for any solution (y, z) of (6).

Uniqueness and stability estimate with one observation

In this section, we establish, a stability inequality and deduce a uniqueness result for the coefficient b. This inequality [START_REF] Yamamoto | Simultaneous reconstruction of the initial temperature and heat radiative coefficient[END_REF] estimates the difference between the coefficients b and b with an upper bound given by some Sobolev norms of the difference between the solutions v, and v of ( 4) and [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems and applications to controllability[END_REF]. Recall that

U = u -u, V = v -v, y = ∂ t (u -u), z = ∂ t (v -v), γ = b -b and              ∂ t y = ∆y + ay + bz + γ∂ t v in Q 0 , ∂ t z = ∆z + cy + dz in Q 0 , y(t, x) = z(t, x) = 0
on Σ 0 , y(0, x) = ∆U(0, x) + aU(0, x) + bV (0, x) + γ v(0, x), in Ω, z(0, x) = ∆V (0, x) + cU(0, x) + dV (0, x)

in Ω.

The Carleman estimate (8) proved in the previous section will be the key ingredient in the proof of such a stability estimate.

Let T ′ = 1 2 (T + t 0 ) the point for which Φ(t) = 1 (t-t 0 )(T -t) has its minimum value. For ( u, v) solutions of (5), we make the following assumption: Assumption 3.1 There exist r > 0, c 0 > 0 such that b ≥ 0, c ≥ c 0 , c + dr ≥ 0, u 0 ≥ 0, v 0 ≥ r, g ≥ 0 and h ≥ r.

Such assumption allows us to state that the solution v is such that | v(x, T ′ )| ≥ r > 0 in Ω (see [START_REF] Smoller | Shock waves and reaction-diffusion equations[END_REF], theorem 14.7 p.200). Furthermore if we assume that u 0 , v 0 in H 2 (Ω),the solutions of ( 5) belong to H 1 (t 0 , T, H 2 (Ω)). Then using classical Sobolev imbedding (see [START_REF] Brezis | Analyse fonctionnelle[END_REF]), we can write for n ≤ 3, that ∂ t v belongs to L 2 (t 0 , T, L ∞ (Ω)) and we assume that

|∂ t v| L 2 (t 0 ,T ) ∈ Λ(R).
We set ψ = e -sη y. With the operator

M 2 ψ = ∂ t ψ + 2sλϕ∇β.∇ψ + 2sλ 2 ϕ|∇β| 2 ψ, (9) 
we introduce, following [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF],

I = ℜ T ′ t 0 Ω M 2 ψ ψ dxdt
We have the following estimates. 

Proof:

Observe that

|I| ≤ s -3/2 λ -2 T ′ t 0 Ω |M 2 ψ| 2 dx dt 1/2 s 3 λ 4 T ′ t 0 Ω e -2sη |y| 2 dx dt 1/2
, thus using Young inequality and the estimate 1 ≤ C ′ T 6 ϕ 3 , we obtain

|I| ≤ Cs -3/2 λ -2 |M 2 ψ| 2 L 2 (Q) + s 3 λ 4 T t 0 Ω e -2sη ϕ 3 |y| 2 dxdt ,
which yields the result from Carleman estimate [START_REF] Yu | Lipschitz stability in inverse problems by Carleman estimates[END_REF].

Lemma 3.3 Let λ ≥ λ 1 , s ≥ s 1 and let a, b, c, d ∈ Λ(R)
. Furthermore, we assume that u 0 , v 0 in H 2 (Ω) and the assumption 3.1 is satisfied. Then there exists a constant

C = C(Ω, ω, T ) such that Ω e -2sη(T ′ ,x) |γ v(T ′ , x)| 2 dx (10) ≤ Cs -3/2 λ -2 s 7 λ 8 T t 0 ω e -2sη ϕ 7 |z| 2 dx dt + T t 0 Ω e -2sη |γ| 2 |∂ t v| 2 dx dt +C Ω e -2sη(T ′ ,x) |∆ U(T ′ , x) + aU(T ′ , x) + bV (T ′ , x)| 2 dx.

Proof:

We evaluate integral I using ( 9)

I = 1 2 T ′ t 0 Ω ∂ t |ψ| 2 dxdt + sλ T ′ t 0 Ω ϕ∇β • ∇|ψ| 2 dxdt + 2sλ 2 T ′ t 0 Ω ϕ|∇β| 2 |ψ| 2 dxdt = 1 2 T ′ t 0 Ω ∂ t |ψ| 2 dxdt -sλ T ′ t 0 Ω ∇ • (ϕ∇β)|ψ| 2 dxdt + 2sλ 2 T ′ t 0 Ω ϕ|∇β| 2 |ψ| 2 dxdt,
by integration by parts. With an integration by parts w.r.t. t in the first integral, we then obtain

1 2 Ω |ψ(T ′ , .)| 2 dx = I -sλ 2 T ′ t 0 Ω ϕ|∇β| 2 |ψ| 2 dxdt + sλ T ′ t 0 Ω ϕ(∆β)|ψ| 2 dxdt
since ψ(t 0 ) = 0 and ∇ϕ = λϕ∇β. Then, we have

Ω (e -2sη)(T ′ ,x) |y(T ′ , x)| 2 dx ≤ 2|I|+Csλ(λ+1) T ′ t 0 Ω e -2sη(t,x) ϕ|y| 2 dxdt.( 11 
)
Using ϕ ≤ T 4 4 ϕ 3 the last term in ( 11) is overestimated by the left hand side of ( 8) and this last one is absorbed by the l.h.s. of the inequality obtained in lemma 3.2. If we now observe that

y(T ′ , x) = ∆U(T ′ , x) + aU(T ′ , x) + bV (T ′ , x) + γ v(T ′ , x),
we have

|y(T ′ , x)| 2 ≥ 1 2 |γ v(T ′ , x)| 2 -|∆U(T ′ , x) + aU(T ′ , x) + bV (T ′ , x)| 2 .
The regularity of the solutions of (5) allows us to write that for n ≤ 3,

∂ t v is an element of L 2 (t 0 , T, L ∞ (Ω)). So, from | v(x, T ′ )| ≥ r > 0, we have ∃ k ∈ L 2 (t 0 , T ), |∂ t v(x, t)| ≤ k(t)| v(x, T ′ )|, ∀x ∈ Ω, t ∈ (t 0 , T ).
Hence [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF] can be written

Ω (e -2sη )(T ′ , x)|γ| 2 | v(x, T ′ )| 2 dx ≤ Cs -3/2 λ -2 T t 0 Ω e -2sη |γ| 2 |k(t)| 2 | v(x, T ′ )| 2 dx dt +Cs 11/2 λ 6 T t 0 ω e -2sη ϕ 7 |z| 2 dx dt +C Ω (e -2sη)(T ′ ,x) (|∆U(T ′ , x)| 2 + |U(T ′ , x)| 2 + |V (T ′ , x)| 2 ) dx. Since k ∈ L 2 (t 0 , T ) implies that T t 0 |k(t)| 2 dt ≤ k 0 < +∞.
For λ large enough, the term (1 -Cs -3/2 λ -2 k 0 ) can be made positive:

1 -Cs -3/2 λ -2 k 0 ≥ C 2 > 0.
Using the fact that e -2sη(t,x) ≤ e -2sη(T ′ ,x) ∀x ∈ Ω, ∀t ∈ (t 0 , T ), we deduce that

r 2 (1 -Cs -3/2 λ -2 k 0 ) Ω (e -2sη )(T ′ , x)|γ| 2 dx ≤ Cs 11/2 λ 6 T t 0 ω e -2sη ϕ 7 |z| 2 dx dt +C Ω (e -2sη)(T ′ ,x) (|∆U(T ′ , x)| 2 + |U(T ′ , x)| 2 + |V (T ′ , x)| 2 ) dx,
where we have also used that | v(x, T ′ )| ≥ r > 0 in Ω. Then, by virtue of the properties satisfied by ϕ and η, we finally obtain

|γ| 2 L 2 (Ω) ≤ C r 2 C 2 s 11/2 λ 6 T t 0 ω |z| 2 dx dt (12) 
+ C r 2 C 2 Ω (|∆U(T ′ , x)| 2 + |U(T ′ , x)| 2 + |V (T ′ , x)| 2 ) dx.
With [START_REF] Smoller | Shock waves and reaction-diffusion equations[END_REF], recalling that Furthermore, we assume that u 0 , v 0 in H 2 (Ω) and the assumption 3.1 is satisfied. Let (u, v), ( u, v) be solutions to ( 4)- [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems and applications to controllability[END_REF]. Then there exists a constant C

U = u -u, V = v -v, y = ∂ t (u -u) and z = ∂ t (v -v),
C = C(Ω, ω, c 0 , t 0 , T, r, R) > 0 such that |b -b| 2 L 2 (Ω) ≤ C|∂ t v -∂ t v| 2 L 2 ((t 0 ,T )×ω) + C|∆u(T ′ , •) -∆ u(T ′ , •)| 2 L 2 (Ω) (13) +C|u(T ′ , •) -u(T ′ , •)| 2 L 2 (Ω) + C|v(T ′ , •) -v(T ′ , •)| 2 L 2 (Ω) .
Remark 3.5 If we assume that u(T ′ , •) = u(T ′ , •) and v(T ′ , •) = v(T ′ , •) (such an additional assumption is sometimes made, e.g. in [START_REF] Yu | Lipschitz stability in inverse problems by Carleman estimates[END_REF]), then the stability estimate becomes

|b -b| 2 L 2 (Ω) ≤ C|∂ t v -∂ t v| 2 L 2 ((t 0 ,T )×ω) .
With Theorem 3.4 we have the following uniqueness result Corollary 3.6 Under the same assumptions as in theorem 3.4 and if

(∂ t v -∂ t v)(t, x) = 0 in (t 0 , T ) × ω, ∆u(T ′ , x) -∆ u(T ′ , x) = 0 in Ω, v(T ′ , x) -v(T ′ , x) = 0 in Ω, Then b = b.

A uniqueness and stability estimate for the initial conditions

In this section, we use the same method as in [START_REF] Yamamoto | Simultaneous reconstruction of the initial temperature and heat radiative coefficient[END_REF] to state a stability estimate for the initial conditions u 0 , v 0 . The idea is to prove logarithmic-convexity inequality. The following method has been used to obtain continuous dependence inequalities in initial value problems. If (y, z) is solution of (6), we introduce (y 1 , z 1 ) and (y 2 , z 2 ) that satisfy

             ∂ t y 1 = ∆y 1 + ay 1 + bz 1 + γ∂ t v in Q 0 , ∂ t z 1 = ∆z 1 + cy 1 + dz 1 in Q 0 , y 1 (t, x) = z 1 (t, x) = 0 on Σ 0 , y 1 (0, x) = 0, in Ω, z 1 (0, x) = 0 in Ω, (14) 
and

             ∂ t y 2 = ∆y 2 + ay 2 + bz 2 in Q 0 , ∂ t z 2 = ∆z 2 + cy 2 + dz 2 in Q 0 , y 2 (t, x) = z 2 (t, x) = 0 on Σ 0 , y 2 (0, x) = ∆U(0, x) + aU(0, x) + bV (0, x) + γ v(0, x) in Ω, z 2 (0, x) = ∆V (0, x) + cU(0, x) + dV (0, x)
in Ω.

(15)

Then, we have

y = y 1 + y 2 and z = z 1 + z 2 . (16) 
In a first step, we give an L 2 estimate for (y 1 , z 1 ) Lemma 4.1 Let a, b, c, d, |∂ t v| L 2 (t 0 ,T ) ∈ Λ(R). Then there exists a constant

C = C(t 0 , T ′ , R) > 0, such that |y 1 (t)| 2 L 2 (Ω) + |z 1 (t)| 2 L 2 (Ω) ≤ C|γ| 2 L 2 (Ω) , t 0 ≤ t ≤ T ′ . (17) 
Proof:

We multiply the first (resp. the second) equation of ( 14) by y 1 (resp. by z 1 ). Then, after integrations by parts with respect to the space variable, we obtain

1 2 ∂ t Ω (|y 1 | 2 + |z 1 | 2 ) dx = - Ω (|∇y 1 | 2 + |∇z 1 | 2 ) dx + Ω ay 2 1 dx + Ω dz 2 1 dx + Ω (b + c)y 1 z 1 dx + Ω γ(∂ t v)y 1 dx.
We use Cauchy-Schwarz and Young inequalities and we integrate over (t 0 , t) for t 0 ≤ t ≤ T ′ , and we obtain

|y 1 (t)| 2 L 2 (Ω) + |z 1 (t)| 2 L 2 (Ω) ≤ C 2 |γ| 2 L 2 (Ω) + C 1 t t 0 (|y 1 (s)| 2 L 2 (Ω) + |z 1 (s)| 2 L 2 (Ω) ) ds.
The result follows by a Gronwall inequality.

In a second step, we use a logarithmic-convexity inequality for (y 2 , z 2 ) Lemma 4.2 Let a, b, c, d ∈ Λ(R) and u 0 , v 0 , u 0 , v 0 in H 4 (Ω). Then there exist constants M > 0, C = C(R) > 0 and

C 1 = C 1 (t 0 , T ′ , R) > 0 such that |y 2 (t)| 2 L 2 (Ω) + |z 2 (t)| 2 L 2 (Ω) ≤ C 1 M 1-µ(t) (|y 2 (T ′ )| 2 L 2 (Ω) + |z 2 (T ′ )| 2 L 2 (Ω) ) µ(t) ,( 18 
)
for t 0 ≤ t ≤ T ′ , where µ(t) = (e -Ct 0 -e -Ct ) (e -Ct 0 -e -CT ′ ) .

Proof:

The proof of this lemma is just an application of Theorem 3.1.3 in [START_REF] Isakov | Inverse problems for partial differential equations[END_REF]. In fact, system (15) can be written in the following form

∂ t W + AW = BW, in Q 0 , W (t, x) = 0 on Σ 0 , W (0, x) = W 0 (x) in Ω, where W = y 2 z 2 , A = -∆ 0 0 -∆ , B = a b c d .
The operator A is symetric and the solution W satisfies

||∂ t W + AW || L 2 (Ω) ≤ α||W || L 2 (Ω) ,
where α = ||B|| L ∞ (Ω) < +∞ since a, b, c and d are in Λ(R). If we assume that u 0 , v 0 , u 0 , v 0 are in H 4 (Ω), the hypothesis of Theorem 3.1.3 in [START_REF] Isakov | Inverse problems for partial differential equations[END_REF] are satisfied, thus we have

||W (t)|| L 2 (Ω) ≤ C 1 ||W (t 0 )|| 1-µ(t) L 2 (Ω) ||W (T ′ )|| µ(t) L 2 (Ω) ,
with µ(t) = (e -Ct 0 -e -Ct ) (e -Ct 0 -e -CT ′ ) .

Since W ∈ C(t 0 , T, L 2 (Ω)), we have ||W (t 0 )|| L 2 (Ω) ≤ M Furthermore, we assume that u 0 , v 0 , u 0 , v 0 in H 4 (Ω) and Assumption 3.1 is satisfied. Let (u, v), ( u, v) be solutions to (4)- [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems and applications to controllability[END_REF]. We set

E = |∂ t v -∂ t v| 2 L 2 ((t 0 ,T )×ω) + |u(T ′ , •) -u(T ′ , •)| 2 H 2 (Ω) + |v(T ′ , •) -v(T ′ , •)| 2 H 2 (Ω) .
Then there exists a constant C = C(Ω, ω, c 0 , t 0 , T, r, R) > 0 such that ). If we use [START_REF] Yamamoto | Simultaneous reconstruction of the initial temperature and heat radiative coefficient[END_REF], the last estimate yields

|u 0 -u 0 | 2 L 2 (Ω) + |v 0 -v 0 | 2 L 2 (Ω) ≤ C |
|u 0 -u 0 | 2 L 2 (Ω) + |v 0 -v 0 | 2 L 2 (Ω) = |U(t 0 , •)| 2 L 2 (Ω) + |V (t 0 , •)| 2 L 2 (Ω) = | - T ′ t 0 y(s, •) ds + U(T ′ , •)| 2 L 2 (Ω) + | - T ′ t 0 z(s, •) ds + V (T ′ , •)| 2 L 2 (Ω) ≤ M 3 T ′ t 0 E µ(s) ds + C 2 E ≤ C 3 E -1 log E + C 4 E ≤ C | log E| .
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 3287 Let λ ≥ λ 1 and s ≥ s 1 and let a, b, c, d ∈ Λ(R). We assume that assumption 3.1 is satisfied then there exists a constant C = C(Ω, ω, T ) such that|I| ≤ Cs -3/2 λ -2 |z| 2 dx dt + T t 0 Ω e -2sη |γ| 2 |∂ t v| 2 dx dt .

  we have thus obtained the following stability result. Theorem 3.4 Let ω be a subdomain of an open set Ω of R n , let a, b, c, d ∈ Λ(R).
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 243 and the result follows. The two previous lemmas allow us to prove the following Theorem Let ω be a subdomain of an open set Ω of R n , let a, b, c, d ∈ Λ(R).

  Proof:Since v ∈ H 1 (t 0 , T, H 2 (Ω)), we have v ∈ L ∞ (Ω). In view of (16), inequalities (17), (18) imply|y(t, •)| 2 L 2 (Ω) ≤ 2(|y 1 (t, •)| 2 L 2 (Ω) + |y 2 (t, •)| 2 L 2 (Ω) ) ≤ C 1 |γ| 2 L 2 (Ω) + M 1-µ(t) (|y 2 (T ′ , •)| 2 L 2 (Ω) + |z 2 (T ′ , •)| 2 L 2 (Ω) ) µ(t). Now, with (16), we write y 2 = y -y 1 and z 2 = z -z 1 . Inequality (17) gives us an estimation of |y1 (T ′ , •)| 2 L 2 (Ω) and |z 1 (T ′ , •)| 2 L 2 (Ω) in terms of |γ| 2 L 2 (Ω). Then the definition of y and z in[START_REF] Fursikov | Optimal control of distribued systems[END_REF] gives us an estimation of|y(T ′ , •)| 2 L 2 (Ω) and |z(T ′ , •)| 2 L 2 (Ω) in terms of |U(T ′ , •)| 2 H 2 (Ω) and |V (T ′ , •)| 2 H 2 (Ω). Finally, we obtain|y(t, •)| 2 L 2 (Ω) ≤ C 1 |γ| 2 L 2 (Ω) + M 2 (|γ| 2 L 2 (Ω) + |U(T ′ , •)| 2 H 2 (Ω) + |V (T ′ , •)| 2 H 2 (Ω) ) µ(t) ,(a similar estimate is obtained for |z(t, •)| 2

log E| , for 0 < E < 1
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