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Introduction

This note focuses on some issues for the analysis of a system of degenerate cross-diffusion partial differential equations (PDEs). This family of models are encountered in a wide variety of contexts, such as population dynamics [START_REF] Jüngel | Boundedness of weak solutions to crossdiffusion systems from population dynamics[END_REF], biology [START_REF] Hillen | A user's guide to PDE models for chemotaxis[END_REF][START_REF] Painter | Continuous models for cell migration is tissues and applications to cell sorting via differential chemotaxis[END_REF], chemistry or materials science. The application we have in mind here is the modeling of the evolution of the concentration of chemical species composing a crystalline solid. The functions, that are the solutions of the system of PDEs of interest, represent the local densities of the different components of the material, and thus should be nonnegative, bounded and satisfy some volumic constraints which will be made precise later in the note. These systems are useful for instance for the prediction of the chemical composition of thin solid films grown by Chemical Vapor Deposition (CVD) [START_REF] Schropp | Hot wire CVD of heterogeneous and polycrystalline silicon semiconducting thin films for application in thin film transistors and solar cells[END_REF]. In this process, a solid wafer is exposed to gaseous precursors, corresponding to the different species entering the composition of the film, which react or decompose on the substrate surface to produce the desired deposit. This process generally occurs at high temperature and takes several hours, so that the diffusion of the different atomic species within the bulk of the solid has to be taken into account in addition to the evolution of the surface of the film.

More precisely, let d ∈ N * (the space dimension), T > 0 (the duration of the process), and for all t ∈ [0, T ], let Ω t ⊂ R d denote a bounded open domain occupied by the solid at time t. Let us assume that there are n + 1 different atomic species (with n ∈ N * ) composing the material, whose local concentrations are respectively denoted by u 0 (t, x), u 1 (t, x), • • • , u n (t, x) for t ∈ (0, T ) and x ∈ Ω t .

The system of equations we consider here reads:

∂ t u i -div x   0≤j =i≤n K ij (u j ∇ x u i -u i ∇ x u j )   = 0 in Ω t , t ∈ (0, T ), ∀ 0 ≤ i ≤ n, (1) 
where for all 0 ≤ i = j ≤ n, the non-negative real number K ij = K ji ≥ 0 denotes the cross-diffusion coefficient of atoms of type i with atoms of type j. This system of equations can be formally derived as the continuous limit of some discrete stochastic 1 lattice hopping model. We do not explain the derivation of these equations here for the sake of brievity and refer the reader to [START_REF] Bakhta | Global existence of bounded weak solutions to degenerate cross-diffusion equations in a moving domain[END_REF][START_REF] Burger | Nonlinear Cross-Diffusion with Size Exclusion[END_REF][START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF] for more details. The initial condition (u 0 0 , u 0

1 , • • • , u 0 n ) ∈ L 1 (Ω 0 ; R n+1
) of this system is assumed from now on to satisfy the constraints

∀ 0 ≤ i ≤ n, for almost all x ∈ Ω 0 , u 0 i (x) ≥ 0, n i=0 u 0 i (x) = 1 and u i (0, x) = u 0 i (x).
(2) The last constraint n i=0 u 0 i (x) = 1 is a natural volumic constraint which encodes the fact that each site of the crystalline lattice of the solid has to be occupied (vacancies being treated as a particular type of atomic species).

From a physical point of view, it is naturally expected that the solutions (u 0 , • • • , u n ) of such a system satisfy similar constraints as the initial condition, i.e. for all t ∈ (0, T ),

∀ 0 ≤ i ≤ n, ∀t ∈ [0, T ], for almost all x ∈ Ω t , u i (t, x) ≥ 0 and n i=0 u i (t, x) = 1. (3)
Indeed, the last equality can be infered at least formally from (1) since by summing all these equations for 0 ≤ i ≤ n, we obtain that ∂ t ( n i=0 u i ) = 0. Despite their importance in chemistry or biology, it appears that the mathematical analysis of these systems, taking into account constraints (3), is quite recent [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF][START_REF] Griepentrog | Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces[END_REF][START_REF] Liero | Gradient structures and geodesic convexity for reactiondiffusion systems[END_REF][START_REF] Burger | Nonlinear Cross-Diffusion with Size Exclusion[END_REF]. Let us first consider the case of a fixed domain, i.e. when Ω t = Ω 0 for all t ∈ [0, T ], and of no flux boundary conditions

0≤j =i≤n K ij (u j ∇u i -u i ∇u j ) • n = 0 on (0, T ) × ∂Ω 0 , ∀ 0 ≤ i ≤ n, (4) 
where n denotes the outward normal unit vector to ∂Ω 0 . When all the coefficients K ij are identically equal to some constant K > 0, it can be easily seen that ( 1) boils down to a set of decoupled heat equations

∀ 0 ≤ i ≤ n, ∂ t u i -div x [K∇ x u i ] = 0 in (0, T ) × Ω 0 ,
with Neumann boundary conditions K∇ x u i • n = 0 on (0, T ) × ∂Ω 0 whose analysis becomes trivial. However, at least to our knowledge, the first proof of existence of global weak solutions of (1) satisfying constraints (3) with non-identical cross-diffusion coefficients is given in [START_REF] Burger | Nonlinear Cross-Diffusion with Size Exclusion[END_REF] for n = 2 with coefficients K ij such that K i0 > 0 for i = 1, 2 and K 12 = K 21 = 0. These results were later extended in [START_REF] Jüngel | Analysis of degenerate cross-diffusion population models with volume filling[END_REF] to a general number of species n ∈ N * with cross-diffusion coefficients satisfying K i0 > 0 and K ij = 0 for all 1 ≤ i = j ≤ n; the authors proved in addition the uniqueness of such weak solutions.

In [START_REF] Jüngel | Boundedness of weak solutions to crossdiffusion systems from population dynamics[END_REF], the case n = 2 with arbitrary positive coefficients K ij > 0 is covered, though no uniqueness result is provided. The main difficulty of the mathematical analysis of such equations relies in the bounds (3), which are not obvious since no maximum principle can be proved for these systems in general. In all the articles mentioned above, the analysis framework used by the authors is the so-called boundedness by entropy method, which was first used in [START_REF] Burger | Nonlinear Cross-Diffusion with Size Exclusion[END_REF] in the particular case mentioned above and then further developped by Jüngel in [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF] to a more general theoretical setting. The main idea is to write the above system of equations as a formal gradient flow and derive estimates on the solutions (u 0 , • • • , u n ) using the decay of some well-chosen entropy functional. The diffusivity matrix [START_REF] Zinsl | Transport distances and geodesic convexity for systems of degenerate diffusion equations[END_REF] obtained for these systems is not a concave function of the densities though, so that standard gradient flow theory arguments (such as the minimizing movement method) cannot be applied in this context. In the first part of this note, we prove that for any n ∈ N * , in the case when K ij = K ji > 0 for all 0 ≤ i = j ≤ n, the above system can be analyzed using the general theoretical framework introduced in [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF]. The proof heavily relies on ideas of [START_REF] Jüngel | Boundedness of weak solutions to crossdiffusion systems from population dynamics[END_REF]. Uniqueness of the solutions remains an open issue.

Interestingly, it seems that very few works deal with the mathematical analysis of such cross-diffusion systems in the case of moving boundary domains, despite their importance for instance in the modelisation of the CVD processes mentioned above. In the second part of this note, we present preliminary existence results for one-dimensional systems with moving boundaries, extending existence results obtained in the general theoretical framework introduced by Jüngel [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF].

Existence on a fixed domain: formal gradient flow structure

For the sake of completeness, let us recall here Theorem 2 of [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF]. (H2) For all 1 ≤ i ≤ n, there exist α * i > 0 and m i > 0 such that for all z = (z

1 , • • • , z n ) T ∈ R n and u = (u 1 , • • • , u n ) T ∈ D, z T D 2 h(u)A(u)z ≥ n i=1 α i (u i ) 2 z 2 i ,
where either

α i (u i ) = α * i (u i -a) m i -1 or α i (u i ) = α * i (b -u i ) m i -1 ; (H3) There exists a * > 0 such that for all u ∈ D and 1 ≤ i, j ≤ n such that m j > 1, it holds that |A ij (u)| ≤ a * |α j (u j )|.
Let u 0 ∈ L 1 (Ω 0 ; D). Then there exists a weak solution u with initial condition u 0 to

∂ t u = div x (A(u)∇ x u) in (0, T ) × Ω 0 , and A(u)∇u • n = 0 on (0, T ) × ∂Ω 0 , (5) 
such that for

(t, x) ∈ (0, T ) × Ω 0 , u(t, x) ∈ D with u ∈ L 2 ((0, T ); H 1 (Ω 0 , R n )) and ∂ t u ∈ L 2 ((0, T ); H -1 (Ω 0 ; R n )).
film during a CVD process. In this case, the evolution of the boundary of the film has to be taken into account as well as the diffusion phenomena occuring in the bulk. We introduce and analyze a simplified one-dimensional model, considered as a preliminary step before tackling more complicated systems. In this section, d = 1 and at time t = 0, the domain occupied by the solid is an interval Ω 0 = (0, e 0 ) for some initial thickness e 0 > 0. The external fluxes of volatile precursors during the deposition process are denoted by (φ 0 , • • • , φ n ) ∈ L ∞ ((0, T ); R n+1 ) and are assumed to satisfy φ i (t) ≥ 0 for all t ∈ (0, T ) and 0 ≤ i ≤ n. At time t ∈ (0, T ), the domain occupied by the solid is equal to Ω t = (0, e(t)) where the depth e(t) of the film is assumed to obey an evolution law characterized only by the values of the external fluxes:

e(t) = e 0 + t 0 n i=0 φ i (s) ds.
The concentrations (u 0 , • • • , u n ) satisfy the evolution law given in (1) with the following boundary conditions: for all 0 ≤ i ≤ n and t ∈ (0, T ),

  0≤j =i≤n K ij (u j ∂ x u i -u i ∂ x u j )   (t, 0) = 0 and   0≤j =i≤n K ij (u j ∂ x u i -u i ∂ x u j )   (t, e(t))+e ′ (t)u i (t, e(t)) =
These boundary conditions ensure that the total mass of each chemical species is conserved in the sense that for all t ∈ (0, T ), ∂ t e(t) 0

u i (t, x) dx = φ i (t).
Actually, we can prove the following existence result in a slightly more general framework, directly inspired from the setting of [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF]. Let e 0 > 0, u 0 ∈ L 1 ((0, e 0 ); D) and (φ 0 , • • • , φ n ) ∈ L ∞ ((0, T ); R n+1 + ). We denote by φ := (φ 1 , • • • , φ n ) T . Then there exists a weak solution u with initial condition

u 0 to        e(t) = e 0 + t 0 n i=0 φ i (s) ds, ∂ t u -∂ x (A(u)∂ x u) = 0 for t ∈ (0, T ) and x ∈ (0, e(t)), (A(u)∂ x u)(t, e(t)) + e ′ (t)u(t, e(t)) = φ(t) for t ∈ (0, T ), (A(u)∂ x u)(t, 0) = 0 for t ∈ (0, T ). (10) such that for (t, x) ∈ (0, T ) × (0, e(t)), u(t, x) ∈ D with u ∈ L 2 ((0, T ); H 1 ((0, e(t)); R n )) and ∂ t u ∈ L 2 ((0, T ); H -1 ((0, e(t)); R n )).
Note that the main difference between the assumptions of Proposition 3.1 and Theorem 2.1 is the fact that the entropy function h is asked in addition to belong to L ∞ (D; R). Indeed, a crucial point in our proof is that this functional h has to be bounded from above and from below on D, which is indeed the case for the function h defined in [START_REF] Schropp | Hot wire CVD of heterogeneous and polycrystalline silicon semiconducting thin films for application in thin film transistors and solar cells[END_REF]. We refer the reader to [START_REF] Bakhta | Global existence of bounded weak solutions to degenerate cross-diffusion equations in a moving domain[END_REF] for a proof of this result. The idea of the proof is to define the problem onto a reference fixed domain and derive entropy estimates which enable to carry on the same analysis as in [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF].

Conclusion

In this note, we have presented preliminary existence results for a cross-diffusion model with a moving boundary domain, modeling the evolution of the concentrations of different chemical species in a thin film solid layer grown by CVD.

In the first section, we have slightly extended results of [START_REF] Jüngel | Boundedness of weak solutions to crossdiffusion systems from population dynamics[END_REF] in the sense that we have proved that the system of PDEs [START_REF] Jüngel | Analysis of degenerate cross-diffusion population models with volume filling[END_REF] with boundary conditions (4) defined on a fixed domain, with coefficients K ij = K ji > 0 for all 0 ≤ i = j ≤ n, fell into the analysis framework developped by Jüngel in [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF]. In the second section, we have proposed and analyzed a simplified one-dimensional model in order to describe the growth of a thin film layer during a CVD process, as well as the diffusion of the different chemical species inside the bulk of the solid. The uniqueness of the solution of such a system of equations remains an open issue in both cases.

These results should be seen as preliminary steps before tackling more challenging systems of PDEs. In particular, the analysis of more realistic two-dimensional and threedimensional models for CVD deposition taking into account surface diffusion phenomena is currently work in progress.

Theorem 2 . 1 (

 21 Theorem 2 of [4]). Let D be an open domain of R n such that D ⊂ (a, b) n for some a, b ∈ R. Let A : u ∈ D → A(u) := (A ij (u)) 1≤i,j≤n ∈ R n×n be a matrix-valued functional defined on D satisfying A ∈ C 0 (D; R n×n ) and the following assumptions: (H1) There exists a bounded from below convex function h ∈ C 2 (D, R) such that its derivative Dh : D → R n is invertible on R n ;

Proposition 3 . 1 .

 31 Let D := {(u 1 , • • • , u n ) T ∈ (R * + ) n , n i=1 u i < 1} ⊂ (0, 1) n and A : u ∈ D → A(u) := (A ij (u)) 1≤i,j≤n ∈ R n×n be a matrix-valued functional defined on D satisfying A ∈ C 0 (D; R n×n ) and assumptions (H1)-(H2)-(H3) of Theorem 2.1 with an entropy functional h satisfying in addition (H4) h ∈ L ∞ (D).
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In this first section, we prove that the system of cross-diffusion equations introduced above, on a fixed domain Ω 0 ,

and with no flux boundary conditions [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF], can be analyzed using the general theoretical framework introduced in [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF]. Actually, the following existence result is a direct consequence of Theorem 2 of [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF]: 2), the above system can then be reformulated equivalently, writing

we denote by ρ := n i=1 u i . The system (7) introduced above can be rewritten under the form (5) using the notation u :

Let us prove that A satisfies the assumptions of Theorem 2.1 with the following entropy functional, which is the same as in [START_REF] Liero | Gradient structures and geodesic convexity for reactiondiffusion systems[END_REF][START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF][START_REF] Jüngel | Analysis of degenerate cross-diffusion population models with volume filling[END_REF]:

4

The function h ∈ C 0 (D; R) ∩ C 2 (D; R) (thus is bounded on D), is strictly convex on D, and its derivative Dh : D → R n is invertible. For all u ∈ D, Dh(u) = (ln u iln(1ρ)) 1≤i≤n and for all w ∈ R n , Dh -1 (w) = e w i 1+ n j=1 e w j 1≤i≤n

. As a consequence, h satisfies assumption (H1) of Theorem 2.1.

Let us now prove that assumption (H2) of Theorem 2.1 is satisfied with m i = 1 2 for all 1 ≤ i ≤ n. Thus, there will be no need to check assumption (H3) for the existence result to hold and Corollary 2.2 will be a direct consequence of Theorem 2.1. To this aim, we follow the same strategy of proof as the one used in [START_REF] Jüngel | Boundedness of weak solutions to crossdiffusion systems from population dynamics[END_REF]. We are going to prove that if the coefficients K ij are assumed to be strictly positive then, there exists α > 0 such that for all u ∈ D,

(9) This inequality implies (H2) with

Introducing P (u) := (P ij (u)) 1≤i,j≤n the matrix such that for all 1 ≤ i, j ≤ n,

it holds that H(u)P (u) = Λ(u). Thus, we can write H(u)A(u) -αΛ(u) = H(u)(A(u) -αP (u)). We can easily check that A(u) -αP (u) = A(u) + αD(u), where A(u) has the same structure as A(u) but with diffusion coefficients K ijα instead of K ij , and D(u) := (D ij (u)) 1≤i,j≤n where D ij (u) = u i for all 1 ≤ i ≤ n.

On the one hand, H(u)D(u) = 1 1-ρ Z where Z := (Z ij ) 1≤i,j≤n with Z ij = 1 for all 1 ≤ i, j ≤ n. Since the matrix Z is a positive matrix, so is H(u)D(u).

On the other hand, since h is strictly convex on D, H(u) A(u) is positive if and only if M (u) := A(u)H(u) -1 is positive. Indeed, for all z ∈ R n , we have z T H(u) A(u)z = (H(u)z) T A(u)H(u) -1 (H(u)z). Besides, it can be easily checked that M (u) = (M ij (u)) 1≤i,j≤n , where for all

and that this matrix is indeed a positive matrix. Hence we have proved inequality [START_REF] Zinsl | Transport distances and geodesic convexity for systems of degenerate diffusion equations[END_REF], assumption (H2) and Corollary 2.2.

A simple one-dimensional model with moving boundary

As announced in the introduction, the second part of this note deals with a model describing the evolution of the concentration of different chemical species in a solid thin