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A dispersive estimate for the linearized Water-Waves equations

in finite depth

Mésognon-Gireau Benoît∗

Abstract

We prove a dispersive estimate for the solutions of the linearized Water-Waves equations in
dimension 1 in presence of a flat bottom. Adapting the proof from [5] in the case of infinite depth,
we prove a decay with respect to time t of order |t|´1{3 for solutions with initial data ϕ such that
|ϕ|H1 , |xBxϕ|H1 are bounded. We also give variants to this result with different decays for a more
convenient use of the dispersive estimate. We then give an existence result for the full Water-Waves
equations in weighted spaces for practical uses of the proven dispersive estimates.

1 Introduction

We recall here classical formulations of the Water-Waves problem. We then shortly introduce the mean-
ingful dimensionless parameters of this problem, and then present the main results of this paper.

1.1 Formulations of the Water-Waves problem

The Water-Waves problem puts the motion of a fluid with a free surface into equations. We recall here
two equivalent formulations of the Water Waves equations for an incompressible and irrotationnal fluid.

1.1.1 Free surface d-dimensional Euler equations

The motion, for an incompressible, inviscid and irrotationnal fluid occupying a domain Ωt delimited
below by a fixed bottom and above by a free surface is described by the following quantities:

– the velocity of the fluid U “ pV,wq, where V and w are respectively the horizontal and vertical
components;

– the free top surface profile ζ;

– the pressure P.

All these functions depend on the time and space variables t and pX, zq P Ωt. There exists a function
b : Rd Ñ R such that the domain of the fluid at the time t is given by

Ωt “ tpX, zq P R
d`1,´H0 ` bpXq ă z ă ζpt,Xqu,

where H0 is the typical depth of the water. The unknowns pU, ζ, P q are governed by the Euler equations:

$
’&
’%

BtU ` U ¨ ∇X,zU “ ´ 1
ρ
∇P ´ gez in Ωt

divpUq “ 0 in Ωt

curlpUq “ 0 in Ωt.

(1.1)

We denote here ´gez the acceleration of gravity, where ez is the unit vector in the vertical direction,
and ρ the density of the fluid. Here, ∇X,z denotes the d ` 1 dimensional gradient with respect to both
variables X and z.
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These equations are completed by boundary conditions:

$
’&
’%

Btζ ` V ¨ ∇ζ ´ w “ 0

U ¨ n “ 0 on tz “ ´H0 ` bpXqu
P “ Patm on tz “ ζpt,Xqu,

(1.2)

In these equations, V and w are the horizontal and vertical components of the velocity evaluated at
the surface. The vector n in the second equation stands for the normal upward vector at the bottom
pX, z “ ´H0`bpXqq. We denote Patm the constant pressure of the atmosphere at the surface of the fluid.
The first equation of (1.2) states the assumption that the fluid particles do not cross the surface, while
the second equation of (1.2) states the assumption that they do not cross the bottom. The equations
(1.1) with boundary conditions (1.2) are commonly referred to as the free surface Euler equations.

1.1.2 Craig-Sulem-Zakharov formulation

Since the fluid is by hypothesis irrotational, it derives from a scalar potential:

U “ ∇X,zΦ.

Zakharov remarked in [18] that the free surface profile ζ and the potential at the surface ψ “ Φ|z“ζ
fully determine the motion of the fluid, and gave an Hamiltonian formulation of the problem. Later,
Craig-Sulem, and Sulem ([6] and [7]) gave a formulation of the Water Waves equation involving the
Dirichlet-Neumann operator. The following Hamiltonian system is equivalent (see [11] and [1] for more
details) to the free surface Euler equations (1.1) and (1.2):

$
&
%

Btζ ´ Gψ “ 0

Btψ ` gζ ` 1

2
|∇ψ|2 ´ pGψ ` ∇ζ ¨ ∇ψq2

2p1` | ∇ζ |2q “ 0,
(1.3)

where the unknowns are ζ (free top profile) and ψ (velocity potential at the surface) with t as time variable
and X P R

d as space variable. The fixed bottom profile is b, and G stands for the Dirichlet-Neumann
operator, that is

Gψ “ Grζ, bsψ “
a
1 ` |∇ζ|2BnΦ|z“ζ ,

where Φ stands for the potential, and solves a Laplace equation with Neumann (at the bottom) and
Dirichlet (at the surface) boundary conditions

#
∆X,zΦ “ 0 in tpX, zq P R

d ˆ R,´H0 ` bpXq ă z ă ζpXqu
φ|z“ζ “ ψ, BnΦ|z“´H0`b “ 0

with the notation, for the normal derivative

BnΦ|z“´H0`bpXq “ ∇X,zΦpX,´H0 ` bpXqq ¨ n

where n stands for the normal upward vector at the bottom pX,´H0 ` bpXqq. See also [11] for more
details.

1.1.3 Dimensionless equations

Since the properties of the solutions depend strongly on the characteristics of the fluid, it is more
convenient to non-dimensionalize the equations by introducing some characteristic lengths of the wave
motion:

(1) The characteristic water depth H0;

(2) The characteristic horizontal scale Lx in the longitudinal direction;

(3) The characteristic horizontal scale Ly in the transverse direction (when d “ 2);
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(4) The size of the free surface amplitude asurf ;

(5) The size of bottom topography abott.

Let us then introduce the dimensionless variables:

x1 “ x

Lx
, y1 “ y

Ly
, ζ 1 “ ζ

asurf
, z1 “ z

H0

, b1 “ b

abott
,

and the dimensionless variables:

t1 “ t

t0
, Φ1 “ Φ

Φ0

,

where

t0 “ Lx?
gH0

, Φ0 “ asurf

H0

Lx
a
gH0.

After re scaling, several dimensionless parameters appear in the equation. They are

asurf

H0

“ ε,
H2

0

L2
x

“ µ,
abott

H0

“ β,
Lx

Ly
“ γ,

where ε, µ, β, γ are commonly referred to respectively as "nonlinearity", "shallowness", "topography"
and "transversality" parameters.

For instance, the Zakharov-Craig-Sulem system (1.3) becomes (see [11] for more details) in dimen-
sionless variables (we omit the "primes" for the sake of clarity):

$
’&
’%

Btζ ´ 1

µ
Gµ,γrεζ, βbsψ “ 0

Btψ ` ζ ` ε

2
|∇γψ|2 ´ ε

µ

pGµ,γrεζ, βbsψ ` εµ∇γζ ¨ ∇γψq2
2p1 ` ε2µ | ∇γζ |2q “ 0,

(1.4)

where Gµ,γrεζ, βbsψ stands for the dimensionless Dirichlet-Neumann operator,

Gµ,γ rεζ, βbsψ “
a
1 ` ε2|∇γζ|2BnΦ|z“εζ “ pBzΦ ´ µ∇γpεζq ¨ ∇γΦq|z“εζ ,

where Φ solves the Laplace equation with Neumann (at the bottom) and Dirichlet (at the surface)
boundary conditions

∆µ,γΦ “ 0 in tpX, zq P R
d ˆ R ´ 1 ` βbpXq ă z ă εζpXqu
φ|z“εζ “ ψ, BnΦ|z“´1`βb “ 0.

(1.5)

We used the following notations:

∇γ “ tpBx, γByq if d “ 2 and ∇γ “ Bx if d “ 1

∆µ,γ “ µB2
x ` γ2µB2

y ` B2
z if d “ 2 and ∆µ,γ “ µB2

x ` B2
z if d “ 1

and

BnΦ|z“´1`βb “ 1a
1 ` β2|∇γb|2

pBzΦ ´ µ∇γpβbq ¨ ∇γΦq|z“´1`βb.

1.2 Main result

The linearized Water-Waves equations (1.4) in one dimension around a rest state of a flat surface and a
zero velocity, in presence of a flat bottom can be read as

$
’’’&
’’’%

Btζ ´ 1

µ
G0ψ “ 0

Btψ ` ζ “ 0

pζ, ψqp0q “ pζ0, ψ0q

(1.6)
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where pt, xq P R ˆ R. We denote
1

µ
G0 “ 1

µ
Gr0, 0s

the Dirichlet-Neumann operator in ζ “ 0 with a flat bottom, which explicit formulation is given by its
Fourier transform

1

µ
yG0fpξq “ |ξ| tanhp?

µ|ξ|q
?
µ

pfpξq, (1.7)

for all f P S 1pRq where µ is the shallowness parameter (see for instance [11] for more details). The
equation (1.6) leads to the following equation for ζ:

B2
t ζ ` 1

µ
G0ζ “ 0

which is similar to the wave equation for low frequencies, and to the Water-Wave equation in infinite
depth

B2
t ζ ` p´∆q1{2ζ “ 0

where ∆ “ B2
x, for high frequencies. In order to study the solutions of the linearized system (1.6), we are

therefore led to study the decay in time of the operator eitωpDq where

ω :

$
’&
’%

R ÝÑ R

ξ ÞÝÑ
d

|ξ| tanhp?
µ|ξ|q

?
µ

.

The dispersive nature of the Water-Waves equations in infinite depth plays a key role in the proof of
long time or global time results: see for instance [16] for almost global well-posedness in 2d, [17] for 3d

global well-posedness, Ionescu-Pusateri [10], Alazard-Delort [2] and [3] for Global well-posedness in 2d,
[9] for the global well-posedness in 3d. However, there are to our knowledge only few results on decay
estimates for the Water-Waves equations in finite depth (see for instance [13]). Recently, Aynur Bulut
proved in [5] an L2 based norm-L8 decay estimate for the linear Water-Waves equation in infinite depth:

|eitp´∆q1{4
ϕ|8 ď Cp1 ` |t|q´1{2p|ϕ|H1 ` |xBxϕ|L2q. (1.8)

As for all oscillatory integrals estimates, the proof of this result relies only on the behaviour of the operator
p´∆q1{2, which is the same as the behaviour of 1

µ
G0 (recall the definition (1.7)) for high frequencies. We

therefore adapt this proof to get a similar result in the case of a finite depth, with a very special attention
given to the dependence in the shallowness parameter µ. As one shall see later, this result gives Bulut’s
estimate in the limit µ goes to `8. We prove in Section 2 of this paper the following result:

Theorem 1.1 Let

ω :

$
’&
’%

R ÝÑ R

ξ ÞÝÑ
d

|ξ| tanhp?
µ|ξ|q

?
µ

.

Then, there exists C ą 0 independent on µ such that, for all µ ą 0:

@t ą 0, @ϕ P SpRq |eitωpDqϕ|8 ď Cp 1

µ1{4
1

p1 ` t{?
µq1{8 ` 1

p1 ` t{?
µq1{2 qp|ϕ|H1 ` |xBxϕ|2q.

Though 1
µ

?
G0 and the square root of the wave operator p´∆q1{2 have the same behaviour for low

frequencies, it is not the case for the second order derivatives of these operators. For this reason, one
should not be surprised to have a dispersion result for the Water-Waves equations, while the wave
equation in dimension 1 is not dispersive.

The decay in 1
t1{8 given by Theorem 1.1 is however very bad. As one might be interested to have a

better decay result, we also prove the following result, with different spaces:
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Theorem 1.2 With the notations of Theorem 1.1, the following estimates hold:

1. There exists C ą 0 independent on µ such that, for all µ ą 0:

@t ą 0, @ϕ P SpRq |eitωpDqϕ|8 ď Cp 1

µ3{4
1

p1 ` t{?
µq1{3 |ϕ|L1

` 1

p1 ` t{?
µq1{2 p|ϕ|H1 ` |xBxϕ|2qq.

2. There exists C ą 0 independent on µ such that, for all µ ą 0:

@t ą 0, @ϕ P SpRq |eitωpDqϕ|8 ď Cp 1

µ3{4
1

p1 ` t{?
µq1{3 |xϕ|L2

` 1

p1 ` t{?
µq1{2 p|ϕ|H1 ` |xBxϕ|2qq.

As one should remark, the decay given by Theorem 1.2 is better than one of Theorem 1.1. However, for
a practical use of such decay, one should prove that the solutions are bounded in L1 or in |x ¨ |2 norm,
which is more difficult than proving a local existence result in |xBx ¨ |2-norm. In view of practical use of
Theorem 1.1, we therefore prove in Section 3 and in dimensions d “ 1, 2 a local existence result for the
full Water-Waves equations (1.4) in weighted Sobolev spaces. The proof consists in an adaptation of the
local existence result by [4], and a technical proof of the commutator rG, xs.

Remark 1.3 – All the dispersive effects proved in this paper are in dimension d “ 1. A similar
result in dimension 2 may however not be difficult to obtain, as the phase of the oscillatory integral
studied has a radial symmetry.

– As mentioned before, in all this paper, a very special attention is given to the dependence of the
estimates with respect to µ. It allows in the use of the dispersive estimates to identify different
regimes, considering the size of the ratio ε

µ3{2 , in which the non-linear effects may overcome or not

the linear (and thus dispersive) effects. Such study has been done for example in [14].

The plan of the article is the following:

– In Section 2, we prove a dispersive estimate for the linearized Water-Waves equation around a flat
bottom and a flat surface in dimension d “ 1.

– In Section 3, we give a local existence result for the full Water-Waves equation (1.4) with non flat
bottom, in weighted Sobolev spaces and in dimensions d “ 1, 2.

1.3 Notations

We introduce here all the notations used in this paper.

1.3.1 Operators and quantities

Because of the use of dimensionless variables (see before the "dimensionless equations" paragraph), we
use the following twisted partial operators:

∇γ “ tpBx, γByq if d “ 2 and ∇γ “ Bx if d “ 1

∆µ,γ “ µB2
x ` γ2µB2

y ` B2
z if d “ 2 and ∆µ,γ “ µB2

x ` B2
z if d “ 1

∇
µ,γ “ tp?

µBx, γ
?
µBy, Bzq if d “ 2 and tp?

µBx, Bzq if d “ 1.

Remark 1.4 All the results proved in this paper do not need the assumption that the typical wave lengths
are the same in both directions, i.e. γ “ 1. However, if one is not interested in the dependence of
γ, it is possible to take γ “ 1 in all the following proofs. A typical situation where γ ‰ 1 is for
weakly transverse waves for which γ “ ?

µ; this leads to weakly transverse Boussinesq systems and the
Kadomtsev–Petviashvili equation (see [12]).
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For all α “ pα1, .., αdq P N
d, we write

Bα “ Bα1

x1
...Bαd

xd

and
|α| “ α1 ` ...` αd.

We denote for all a, b P R:
a _ b “ maxpa, bq.

We denote, for all ϕ P S 1pRdq, the Fourier transform of ϕ by Fpϕq of more simply pϕ.

We use the classical Fourier multiplier

Λs “ p1 ´ ∆qs{2 on R
d

defined by its Fourier transform as

FpΛsuqpξq “ p1 ` |ξ|2qs{2pFuqpξq

for all u P S 1pRdq. The operator P is defined as

P “ |Dγ |
p1 ` ?

µ|Dγ |q1{2 (1.9)

where
FpfpDquqpξq “ fpξqFpuqpξq

is defined for any smooth function of polynomial growth f and u P S 1pRdq. The pseudo-differential
operator P acts as the square root of the Dirichlet Neumann operator, since P „ 1

µ

?
G0 (recall the

definition of G0 given by (1.7)) where the implicit constant does not depend on µ.
We denote as before by Gµ,γ the Dirichlet-Neumann operator, which is defined as followed in the scaled
variables:

Gµ,γψ “ Gµ,γrεζ, βbsψ “
a
1 ` ε2|∇γζ|2BnΦ|z“εζ “ pBzΦ ´ µ∇γpεζq ¨ ∇γΦq|z“εζ ,

where Φ solves the Laplace equation

#
∆γ,µΦ “ 0

Φ|z“εζ “ ψ, BnΦ|z“´1`βb “ 0.

For the sake of simplicity, we use the notation Grεζ, βbsψ or even Gψ when no ambiguity is possible.

1.3.2 The Dirichlet-Neumann problem

In order to study the Dirichlet-Neumann problem (1.5), we need to map the domain occupied by the
water Ωt into a fixed domain (and not on a moving subset). For this purpose, we define:

ζδp., zq “ χpδz|Dγ |qζ, bδp., zq “ χpδpz ` 1q|Dγ |qb

where χ : R ÝÑ R is a compactly supported smooth function equals to one in the neighbourhood of the
origin, and δ ą 0. We now introduce the following fixed strip:

S “ R
d ˆ p´1; 0q

and the diffeomorphism

Σ :
S Ñ Ωt

pX, zq ÞÑ pX, p1 ` εζδpXq ´ βδbpXqqz ` εζδpXqq
. (1.10)
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It is quite easy to check that Φ is the variational solution of (1.5) if and only if φ “ Φ ˝ Σ is the
variational solution of the following problem:

#
∇µ,γ ¨ P pΣq∇µ,γφ “ 0

φz“0 “ ψ, Bnφz“´1 “ 0,
(1.11)

and where
P pΣq “ | detJΣ|J´1

Σ
tpJ´1

Σ q,
where JΣ is the Jacobian matrix of the diffeomorphism Σ.

Remark 1.5 By smoothing the functions ζ and b in the choice of the diffeomorphism Σ as in [4], we
ensure a better estimate for the solutions of (1.11).

For a complete statement of the result, and a proof of existence and uniqueness of solutions to these
problems, see later Section 3.2 and also [11] Chapter 2.

We introduce here the notations for the shape derivatives of the Dirichlet-Neumann operator. More
precisely, we define the open set Γ Ă Ht0`1pRdq2 as:

Γ “ tΓ “ pζ, bq P Ht0`1pRdq2, Dh0 ą 0,@X P R
d, εζpXq ` 1 ´ βbpXq ě h0u

and, given a ψ P
.

Hs`1{2pRdq, the mapping:

Grε¨, β¨s : Γ ÝÑ Hs´1{2pRdq
Γ “ pζ, bq ÞÝÑ Grεζ, βbsψ.

We can prove the differentiability of this mapping. See Appendix B for more details. We denote
djGph, kqψ the j-th derivative of the mapping at pζ, bq in the direction ph, kq. When we only differentiate
in one direction, and when no ambiguity is possible, we simply denote djGphqψ or djGpkqψ.

1.3.3 Functional spaces

The standard scalar product on L2pRdq is denoted by p , q2 and the associated norm | ¨ |2. We will
denote the norm of the Sobolev spaces HspRdq by | ¨ |Hs . We denote the norms of W k,8pRdq by | ¨ |Wk,8

or simply | ¨ |8 “ | ¨ |W 0,8 when no ambiguity is possible.

We introduce the following functional Sobolev-type spaces, or Beppo-Levi spaces:

Definition We denote 9Hs`1pRdq the topological vector space

9Hs`1pRdq “ tu P L2
locpRdq, ∇u P HspRdqu

endowed with the (semi) norm |u| 9Hs`1pRdq “ |∇u|HspRdq.

Just remark that 9Hs`1pRdq{Rd is a Banach space (see for instance [8]).
The space variables z P R and X P R

d play different roles in the equations since the Euler formulation
(1.1) is posed for pX, zq P Ωt. Therefore, X lives in the whole space R

d (which allows to take fractional
Sobolev type norms in space), while z is actually bounded. For this reason, we denote the L2 norm on
S by }¨}, and we introduce the following Banach spaces:

Definition The Banach space pHs,kpp´1, 0q ˆ R
dq, }.}Hs,kq is defined by

Hs,kpp´1, 0q ˆ R
dq “

kč

j“0

Hjpp´1, 0q;Hs´jpRdqq, }u}Hs,k “
kÿ

j“0

}Λs´jBjzu}2.

We will denote }¨}Hs “ }¨}Hs,0 when no ambiguity is possible. To sum up, | ¨ | will denote a norm on R
d

while } ¨ } will denote a norm on the flat strip S.
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2 A dispersive estimate for the linear Water-Waves equations in

dimension 1

We prove in this section the dispersive estimate of Theorem 1.1 and Theorem 1.2. We first introduce
some classical results on the oscillatory integrals, and some technical results on the Littlewood-Paley
decomposition.

2.1 Technical tools

2.1.1 Littlewood-Palay decomposition

We briefly recall the Littlewood-Paley decomposition. Let ψ P C8
0 pRq be such that

suppψ Ă p´1; 1q, ψpξq “ 1 for |ξ| ď 1{2.
We now define for all k P Z, a function ψk by:

@ξ P R, ψkpξq “ ψpξ{2kq ´ ψpξ{2k´1q (2.12)

which is compactly supported in 2k´1 ď |ξ| ď 2k`1. We then define the operators Pk for all k P Z by:

@ξ P R, yPkfpξq “ ψkpξq pfpξq (2.13)

for all f P S 1pRq. We recall here Bernstein’s Lemma:

Lemma 2.1 Let k P Z and Pk defined by (2.13). For every 1 ď p ď q ď 8 and all s ě 0, one has:

|Pkg|Lq ď C2kp1{p´1{qq|Pkg|Lp

and
|Pkg|Lp ď C2´sk|p´∆qs{2Pkg|Lp

for all g P SpRq, where C does not depend on k, s, p, q.

We also give the two following technical results (see for instance [5] for a complete proof):

Lemma 2.2 Let k P Z and Pk defined by (2.13). One has:

|Bξ yPkϕ|2 ď C2´kp|ϕ|2 ` |xBxϕ|2q,

for all ϕ P SpRq, where C does not depend on k.

Lemma 2.3 Let k P Z and Pk defined by (2.13). For all s ą 1{2 one has

| yPkϕ|8 ď C2´skp|ϕ|Hs ` |xBxϕ|2q,

for all ϕ P SpRq, where C does not depend on k, s.

2.1.2 Some results on oscillatory integrals

We invoke later in this paper the following Van der Corput Lemma, which is a refinement of the stationary
phase lemma:

Lemma 2.4 Let Φ P CkpRq, and a ă b be such that, either:

( 1) @x P ra; bs, |Φpkqpxq| ě 1 if k ą 1;

( 2) @x P ra; bs, |Φ1pxq| ě 1 and Φ1 is monotonic.

Then, there exists C ą 0 which only depends on k such that

@t ą 0, |
ż b

a

eitΦpξqdξ| ď C

t1{k .

Note that in the above Lemma, C does not depend on a nor b.
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2.2 Proof of the main result

We prove in this section the following dispersive estimate for the linearized Water-Waves equations in
dimension 1:

Theorem 2.5 Let

ω :

$
’&
’%

R ÝÑ R

ξ ÞÝÑ
d

|ξ| tanhp?
µ|ξ|q

?
µ

.

Then, there exists C ą 0 independent on µ such that, for all µ ą 0:

@t ą 0, @ϕ P SpRq |eitωpDqϕ|8 ď Cp 1

µ1{4
1

p1 ` t{?
µq1{8 ` 1

p1 ` t{?
µq1{2 qp|ϕ|H1 ` |xBxϕ|2q.

Note that the dependence of µ in the dispersive estimate has been precisely mentioned. This is crucial
in view of using a decay estimate for the Water-Waves equations, since the properties of the solutions,
and even the dispersive properties of the problem may completely vary with respect to the size of the
shallowness parameter µ, as one should see by studying for example the asymptotic regimes when µ

goes to zero. See for instance the Chapter 5 on shallow water models in [11]. Notice that, if one sets
λ “ t?

µ
in the statement of Theorem 2.5, one recovers the result by Aynur Bulut (1.8) when µ goes to

`8: indeed, one writes eitωpDq “ e
i t?

µ
gp?

µDq
with gpxq ÝÑ

xÑ`8

a
|x|. Moreover, this result does not need

any assumption on the size of µ (while µ ď µ0 is a common assumption in the Water-Waves results).

In [13], a similar decay as one given by Theorem 2.5 is proved but only for functions ϕ such that
pϕp0q “ 0 and with L1 and H2 weighted spaces, which are less convenient for practical use than H1 space
and L2-weighted space. However, a short adaptation of the proof of [13] shows that a decay of order 1

t1{3

can be obtained if pϕp0q ‰ 0, which is a better decay than one of Theorem 2.5. We can however adapt the
proof of Theorem 2.5, and still get some better estimates than [13] (without any assumption on pϕp0q)
that we also prove in this paper:

Theorem 2.6 With the notations of Theorem 2.5, the following estimates hold:

1. There exists C ą 0 independent on µ such that, for all µ ą 0:

@t ą 0, @ϕ P SpRq |eitωpDqϕ|8 ď Cp 1

µ3{4
1

p1 ` t{?
µq1{3 |ϕ|L1

` 1

p1 ` t{?
µq1{2 p|ϕ|H1 ` |xBxϕ|2qq.

2. There exists C ą 0 independent on µ such that, for all µ ą 0:

@t ą 0, @ϕ P SpRq |eitωpDqϕ|8 ď Cp 1

µ3{4
1

p1 ` t{?
µq1{3 |xϕ|L2

` 1

p1 ` t{?
µq1{2 p|ϕ|H1 ` |xBxϕ|2qq.

The Theorem 2.6 gives a better decay than Theorem 2.5 for the linear operator of the Water-Waves,
however its use in view of long time results for the full Water-Waves equation (1.4) may require to prove
that solutions are bounded in L1 norm, or in |x ¨ |L2 norm, which is difficult. Indeed, the proof of local
existence for this equation in weighted spaces requires the control of the commutator rG, xs, which is
difficult to get (while the one for rG, xsBx is less difficult to get, see later Section 3.2).

The proof is based on a stationary phase result and a use of the Littlewood decomposition. More
precisely, the control of oscillatory integrals of the form

ż b

a

eitΦpξqdξ

9



consists in the precise study of where the phase Φ may be stationary. Here, the derivative of the phase

Φpξq “ tpωpξq ` xξ{tq (2.14)

may vanish and we are therefore led to study the behaviour of the second derivative Φ2. However,
|Φ2pξq| „

ξÑ8
C

|ξ|3{2 and therefore Φ2 cannot be bounded from below by a constant and one cannot apply

Van der Corput’s Lemma 2.4. We therefore need to compensate the bad bound of Φ2 with good weighted
estimates on pϕ.

Proof The result is easy to get for |t{?
µ| ď 1 by using the continuous injection H1pRq Ă L8pRq, and

therefore we assume that t ą ?
µ (the case t ă ´?

µ is similar). Let fix x P R with x ‰ 0. In all this
proof, we will denote by C any constant which does not depend on µ, x, t, k. As explained above, the
derivative of the phase, Φ1, may vanish and therefore one needs a close study of the second derivative
Φ2 “ ω2. Note that ωpξq “ 1?

µ
gp?

µξq with gpξq “
a

|ξ| tanhp|ξ|q. It is easy to show that

|g2pξq| „
ξÑ0

|ξ|, |g2pξq| „
ξÑ`8

|ξ|´3{2. (2.15)

As suggested by the behaviour of ω2, we split the study of the linear operator eitωpDq into low and high
frequencies cases. To this purpose, one can define χ a smooth compactly supported function equals to 1 in

the neighbourhood of the origin, and write ϕ “ χpDqϕ`p1´χpDqqϕ, with as usual {χpDqϕpξq “ χpξq pϕpξq
for all ϕ P SpRq. Note that the estimate of Theorem 2.5 stay true if we prove it for χpDqp?

µ|Dγ |qϕ or
p1 ´ χp?

µ|Dγ |qqϕ instead of ϕ.

We write:

eitωpDqϕ “
ż

R

eiptωpξq`xξq pϕpξqdξ

“
ż

|ξ|ďy0{?
µ

eiptωpξq`xξq pϕpξqdξ `
ż

|ξ|ąy0{?
µ

eiptωpξq`xξq pϕpξqdξ. (2.16)

Taking the last remark into account, we first assume that pϕ is compactly supported in some r0; y0?
µ

r for

some y0 ą 0. In this case, we only need to control the first term of (2.16). One sets δ ą 0 and splits the
integral into two parts (recall that the phase Φ is defined by (2.14)):

|
ż

|ξ|ď y0?
µ

eitΦpξq pϕpξqdξ| ď |
ż

|ξ|ďδ
eitΦpξq pϕpξqdξ| ` |

ż

δď|ξ|ď y0?
µ

eitΦpξq pϕpξqdξ|. (2.17)

We now use Cauchy-Schwarz inequality to control the first integral of the right hand side of (2.17):

|
ż

|ξ|ďδ
eitΦpξq pϕpξqdξ| ď

?
2δ|ϕ|2. (2.18)

For the second integral of the right hand side of (2.17), we only consider the integral over rδ; y0{?
µs

where Φ is smooth (the integral over r´y0{?
µ;´δr is controlled by the exact same technique using the

symmetry of Φ2). We integrate by parts in the second integral of the right hand side of (2.17) (remember
that pϕ is compactly supported in r0; y0?

µ
r):

|
ż

δďξď y0?
µ

eitΦpξq pϕpξqdξ| ď | ´
ż

δďξď y0?
µ

ż ξ

δ

eitΦpsqds
d

dξ
pϕpξqdξ|.

Using Cauchy-Schwarz inequality, one gets:

|
ż

δďξď y0?
µ

eitΦpξq pϕpξqdξ| ď
?
y0

µ1{4 sup
δďξď y0?

µ

|
ż ξ

δ

eitΦpsqds| ˆ |1δď|ξ|
1

ξ
pξ d
dξ

pϕqpξq|2

ď C

δµ1{4 sup
δďξď y0?

µ

|
ż ξ

δ

eitΦpsqds|p|ϕ|2 ` |xBxϕ|2q. (2.19)
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We now give a control of the oscillatory integral of (2.19). Recall that ω “ 1?
µ
gp?

µξq with (2.15).

Therefore, there exists C ą 0 independent on µ such that |Φ2psq| ě Cµ|ξ| on r0; y0{?
µs (see also Figure

1). Therefore, one has:

@δ ď s ď y0?
µ
, |Φ2psq| ě µs ě µδ.

Using Van der Corput’s Lemma 2.4, one gets the control:

sup
δďξď y0?

µ

|
ż ξ

δ

eitΦpsqds| ď C?
µδt

. (2.20)

Putting together (2.20) into (2.19), one gets:

|
ż

δďξď y0?
µ

eitΦpξq pϕpξqdξ| ď C

δµ1{4
1?
µδt

p|ϕ|2 ` |xBxϕ|2q. (2.21)

Combining the estimates of (2.18) and (2.21), one obtains:

|
ż

|ξ|ď y0?
µ

eitΦpξq pϕpξqdξ| ď p
?
2δ ` C

δµ1{4
1?
µδt

qp|ϕ|2 ` |xBxϕ|2q.

The above quantity is minimal for δ “ 1
µ3{8t1{4 and therefore, we finally get:

|
ż

|ξ|ď y0?
µ

eitΦpξq pϕpξqdξ| ď 1

µ3{16 t
1{8. (2.22)
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Figure 1: Graph of Φ2

We now assume that pϕ has its support in r y0?
µ
;`8r. In this case, we only need to focus on the second

term of the right hand side of (2.16). We are led to control in L8 norm the quantity
ş
R
eitΦpξq pϕpξqdξ

where supppϕ Ă r y0?
µ
;`8r. The following lines are an adaptation of [5]. Using the Littlewood-Paley

decomposition, we split eitωpDqϕ into

eitωpDqϕ “
ÿ

kPZ
2kďλptq

Pke
itωpDqϕ `

ÿ

λptqď2kďΛptq
Pke

itωpDqϕ `
ÿ

2kěΛptq
Pke

itωpDqϕ

where

λptq “ C1p1 ` |t{?
µ|q´1, Λptq “ 1

C1

p1 ` |t{?
µ|q,

with C1 ą 1. We therefore have
|peitωpDqϕqpxq| ď S1 ` S2 ` S3,

11



with:

S1 “
ÿ

2kďλptq
|PkeitωpDqϕpxq|,

S2 “
ÿ

λptqď2kďΛptq
|PkeitωpDqϕpxq|,

S3 “
ÿ

2kěΛptq
|PkeitωpDqϕpxq|.

The term S1 is controlled by using Bernstein’s Lemma 2.1:

S1 ď
ÿ

2kďλptq
|PkeitωpDqϕpxq|8

ď C
ÿ

2kďλptq
2k{2|PkeitωpDqϕpxq|2

ď Cλptq1{2|ϕpxq|2
ď Cp1 ` |t{?

µ|q´1{2|ϕ|2. (2.23)

Using again Bernstein’s Lemma 2.1, one gets the control of S3:

S3 ď
ÿ

2kěΛptq
|PkeitωpDqϕpxq|8

ď
ÿ

2kěΛptq
2k{2|PkeitωpDqϕpxq|2

ď C
ÿ

2kěΛptq
2´k{2|PkeitωpDqϕpxq|H1

ď Cp1 ` |t{?
µ|q´1{2|ϕ|H1 . (2.24)

For the control of S2, we need a close study of oscillatory integrals of the form
ş
R
eitpx{tξ`ωpξqq yPkϕpξqdξ.

Therefore, we need precise bounds for the oscillatory phase ξ ÞÑ px{tqξ ` ωpξq and its derivatives. We
are led to split the summation set of S2 into three parts:

I1 “ tk P Z, λptq ď 2k ď Λptq, 2k{2 ď |t{x|{C2u,
I2 “ tk P Z, λptq ď 2k ď Λptq, |t{x|{C2 ď 2k{2 ď C2|t{x|u,
I3 “ tk P Z, λptq ď 2k ď Λptq, 2k{2 ě C2|t{x|u,

where C2 has to be set. We therefore set

S2j “
ÿ

Ij

|
ż

R

eipxξ`tωpξqq yPkϕpξqdξ|, j “ 1, 2, 3.

The contributions of I1 and I3 are the most easy to get. One writes, for all k P I1:
ż

R

eitΦpξq yPkϕpξqdξ “
ż

R

d

dξ
p
ż ξ

2k´1

eitΦpsqdsq yPkϕpξqdξ

“ ´
ż

R

ż ξ

2k´1

eitΦpsqds
d

dξ
yPkϕpξqdξ

by integrating by parts, and recalling that supp yPkϕ Ă suppψk Ă t2k´1 ď |ξ| ď 2k`1u. We now use
Cauchy-Schwarz inequality to get:

|
ż

R

eitΦpξq yPkϕpξqdξ| ď C2k{2 sup
ξPsuppψkXsupp pϕ

|
ż ξ

2k´1

eitΦpsqds| ˆ | d
dξ

yPkϕ|2. (2.25)
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We are therefore led to control the oscillatory integral
şξ
2k´1 e

itΦpsqds with ξ P suppψk X supppϕ. We put
this integral under the form ż ξ

2k´1

eitΦpsqds “
ż ξ

2k´1

eitppx{tqs`ωpsqqds

and we use the following lower bound for the derivative of the phase:

|x{t ` ω1psq| ě |ω1psq| ´ |x{t|.

Now, recall that k P I1 and therefore |x{t| ď 2´k{2C2. Moreover, recall that ωpξq “ 1?
µ
gp?

µξq with

|g1pξq| „
ξÑ`8

|ξ|´1{2, and that supppϕ Ă ry0{?
µ;`8r. Therefore, the derivative of ω is bounded from

below on supppϕ by C3

µ1{4 |s|´1{2 where C3 is independent on µ. We therefore get:

|x{t` ω1psq| ě C3

µ1{4 |s|´1{2 ´ 2´k{2C2.

Now, since s P suppψk, one has

|x{t ` ω1psq| ě C3

µ1{4
1?
2
2´k{2 ´ 2´k{2C2

ě C3

µ1{4 2
´k{2

provided
C3

µ1{4
?
2

´ C2 ě Cµ1{4

with C independent on k, µ, x. We therefore set

C2 “ C3

2
?
2µ1{4 . (2.26)

Now, one can apply the Van der Corput Lemma 2.4 and get:

|
ż ξ

2k´1

eitppx{tqs`ωpsqqds ď C|t|´12k{2µ1{4. (2.27)

Using Lemma 2.2, one has:

| d
dξ

yPkϕ|2 ď 2´kp|ϕ|2 ` |xBxϕ|2q. (2.28)

Putting together (2.25), (2.27) and (2.28), one finally gets, for all k P I1:
ż

R

eitΦpξq yPkϕpξqdξ ď µ1{4 C

|t| p|ϕ|2 ` |xBxϕ|2q.

We now sum over k P I1. Since the set has a Oplogp|t|q number of elements (recall that it is included in
tλptq ď 2k ď Λptqu), we get:

S21 ď µ1{4 C

|t|
ÿ

kPI1
p|ϕ|2 ` |xBxϕ|2q

ď Cµ1{4

|t| logp|t|qp|ϕ|2 ` |xBxϕ|2q

ď Cµ1{4|t|´1{2p|ϕ|2 ` |xBxϕ|2q. (2.29)

The control for S23 is similar and therefore we omit it and focus on the most difficult term which is
S22. One starts to notice that there is a finite number of terms which is of the form C logpµq with C

independent on t, x, µ in the set I2. Indeed, if k P I2 then one has

´ logpC2q ` logp|t{x|q ď k ď logpC2q ` logp|t{x|q,
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and C2 has been set in (2.26). Therefore, it suffices to control the integrals
ş
R
eitΦpξq yPkϕpξqdξ for k P I2

by a term of the form C
t1{2 with C independent on x, t, k. For k P I2, the derivative of the phase Φ may

vanishes, and one needs to control the second derivative and use a Van der Corput type result. Let c be
the minimum of |Φ1| on r2k´1; 2k`1s.

- 1st case : Φ1pcq “ 0 We split the integral into three terms:

ż

R

eitΦpξq yPkϕpξqdξ “
ż c´δ

2k´1

eitΦpξq yPkϕpξqdξ `
ż c`δ

c´δ
eitΦpξq yPkϕpξqdξ `

ż 2k`1

c`δ
eitΦpξq yPkϕpξqdξ. (2.30)

The second integral of the right hand side of (2.30) is estimated as follows:

|
ż c`δ

c´δ
eitΦpξq yPkϕpξqdξ| ď 2δ| yPkϕpξq|8

ď 2δ2´skp|ϕ|Hs ` |xBxϕ|2q (2.31)

where we used Lemma 2.3 to derive the last inequality, with s ą 1{2 to be set. We now focus on the
control of the first integral of the right hand side of (2.30) (the last integral is controlled by using the
same technique). Integrating by parts, one gets:

|
ż c´δ

2k´1

eitΦpξq yPkϕpξqdξ| “ | ´
ż c´δ

2k´1

ż ξ

2k´1

eitΦpsqds
d

dξ
p yPkϕqpξqdξ|

ď 2k{2 sup
ξPsupp pϕXr2k´1;c´δs

|
ż ξ

2k´1

eitΦpsqds|| d
dξ

yPkϕ|2. (2.32)

One now estimates |
şξ
2k´1 e

itΦpsqds| for ξ P r2k´1; c ´ δs X supppϕ. Recall that ωpξq “ 1?
µ
gp?

µξq with

(2.15), and that supppϕ Ă ry0{?
µ;`8r. Therefore, for ξ P r2k´1; c´ δs X supppϕ, there exists C ą 0 such

that |Φ2pξq| ě C
µ1{4|ξ|3{2 and therefore, one has:

|Φ1psq| “
ż s

c

|Φ2psq|ds ` Φ1pcq

ě
ż s

c

C

µ1{4ξ3{2

ě Cµ´1{4p 1?
c

´ 1?
s

q

ě Cµ´1{4 c´ s?
c
?
sp?

c ` ?
sq ě Cµ´1{4 δ

23k{2

where we used the fact that |c ´ s| ě δ for s P r2k´1; ξs and ξ P r2k´1; c ´ δs. Therefore, using Van der
Corput’s Lemma 2.4, one gets ż ξ

2k´1

eitΦpsqds ď C
µ1{423k{2

tδ
. (2.33)

Using Lemma 2.2, one has

| d
dξ

yPkϕ|2 ď 2´kp|ϕ|2 ` |xBxϕ|2q (2.34)

and putting together (2.33) and (2.34) in (2.32), one obtains:

|
ż c´δ

2k´1

eitΦpξq yPkϕpξqdξ| ď C
µ1{423k{2

tδ
2k{22´kp|ϕ|2 ` |xBxϕ|2q. (2.35)

Putting together (2.35) and (2.31), one finally obtains:

|
ż

R

eitΦpξq yPkϕpξqdξ| ď Cpµ
1{42k

tδ
` δ2´skqp|ϕ|H1 ` |xBxϕ|2q. (2.36)
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The above right hand side is minimal with respect to δ if δ “ 2sk{2µ1{8 2k{2

t1{2 . We therefore set s “ 1 and
get the control:

|
ż

R

eitΦpξq yPkϕpξqdξ| ď µ1{8 C

t1{2 .

At last, one gets by summation on k P I2 (recall that there is a Oplogpµqq number of terms in I2):

S22 ď µ1{4

t1{2 p|ϕ|H1 ` |xBxϕ|2q. (2.37)

-2nd case : Φ1pcq ‰ 0 It is the same technique as above, noticing that in this case Φ1 is monotonic and
does not vanish, and therefore c is one of the bounds of the integral.

Conclusion : Putting together (2.22),(2.23),(2.24),(2.29) and (2.37), and taking the supremum
over all x P R

˚ (note that all these estimates are independent on x), one gets:

|eitωpDqϕ|8 ď Cp 1

µ1{4
1

p1 ` t{?
µq1{8 ` 1

p1 ` t{?
µq1{2 qp|ϕ|H1 ` |xBxϕ|2q.

l

We now give a short proof for a better decay estimate, but with other norms of control:

Proof of Theorem 2.6 We use the same notations as ones of the proof of Theorem 2.5. One can
control the first integral of the right hand side of (2.16) differently:

|
ż

|ξ|ď y0?
µ

eiptωpξq`xξqϕpξqdξ| ď |
ż

|ξ|ď y0?
µ

eiptωpξq`xξqdξ|8|ϕ|L1 .

We now control the integral
ş

|ξ|ď y0?
µ

eitΦpξqdξ in L8 norm. One has Φ3pξq “ ω3pξq “ µg3p?
µξq with the

notations of the proof of Theorem 2.5. One can check by computation that g3pξq „
ξÑ0

´1 and therefore,

using Van der Corput’s Lemma 2.4, one gets:

ż

|ξ|ď y0?
µ

eitΦpξqdξ ď C

pµtq1{3 .

One gets the first estimate of Theorem 2.6.

Another way to control the first integral of the right hand side of (2.16) is by integrating by parts:

|
ż

|ξ|ď y0?
µ

eiptωpξq`xξqϕpξqdξ| “ |
ż

|ξ|ď y0?
µ

ż ξ

0

eiptωpsq`xsqds
d

dξ
pϕpξqdξ|

and thus, using Cauchy-Schwarz inequality, one gets:

|
ż

|ξ|ď y0?
µ

eiptωpξq`xξqϕpξqdξ| ď
?
y0

µ1{4 sup
ξPr0; y0?

µ
r
|
ż ξ

0

eiptωpsq`xsqds|| d
dξ

pϕ|2.

One estimates as above

sup
ξPr0; y0?

µ
r
|
ż ξ

0

eiptωpsq`xsqds| ď C

pµtq1{3

and one gets the second estimate of Theorem 2.6. l

Remark 2.7 It should be possible to prove a dispersive decay in dimension 2, using the previous results,
since the phase Φ introduced in the proof of Theorem 2.5 has a radial symmetry.
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3 Local existence for the Water-Waves equations in weighted

spaces in dimension d “ 1, 2

In view of practical use of Theorem 2.5 to prove some long time (or even global time) results in the case
of the full Water-Waves equations (1.4), one may need to control xBxϕ in L2 norm, for ϕ a solution of the
equations. We prove in this section a local existence result for the Water-Waves equations in weighted
spaces. To this purpose, we briefly give some reminders about the Water-Waves equations, and we state
the local existence result proved by [4]. We then give a commutator estimate which is the key point for
local existence in weighted spaces. Note that in this Section we do not make any assumption on the
dimension unlike in the previous one, and that all the results proved in this section stand in dimensions
d “ 1, 2. The local existence result in weighted spaces is used for instance in [14], where the default of
compactness in the rigid lid limit for the Water-Waves equations is investigated.

3.1 The Water-Waves equations

We briefly give some reminders about the Water-Waves equations and its local existence (see [11] Chapter
4 for a complete study). Let t0 ą d{2 and N ě t0 ` t0 _ 2 ` 3{2 (where a _ b “ suppa, bq). The energy
for the Water-Waves equations is the following (see 1.3 for the notations):

EN pUq “ |Pψ|Ht0`3{2 `
ÿ

|α|ďN
|ζpαq|2 ` |ψpαq|2 (3.38)

where ζpαq, ψpαq are the so called Alinhac’s good unknowns:

@α P N
d, ζpαq “ Bαζ, ψpαq “ Bαψ ´ εwBαζ

with

w “ Gψ ` εµ∇γζ ¨ ∇γψ

1 ` ε2µ|∇γζ|2 .

We consider solutions U “ pζ, ψq of the Water Waves equations in the following space:

ENT “ tU P Cpr0, T s ;Ht0`2 ˆ
.

H2pRdqq, EN pUp.qq P L8pr0, T squ.

The following quantity, called the Rayleigh-Taylor coefficient plays an important role in the Water-Waves
problem:

apζ, ψq “ 1 ` εpBt ` εV ¨ ∇γqw “ ´ε P0

ρag
pBzP q|z“εζ

where
V “ ∇

γψ ´ εw∇γζ.

As suggested by the notations, V and w are respectively the horizontal and vertical components of the
velocity evaluated at the surface. We recall that the notation a _ b stands for maxpa, bq. We can now
state the local existence result by Alvarez-Samaniego Lannes (see [4] and [11] Chapter 3 for reference):

Theorem 3.1 Let t0 ą d{2,N ě t0 ` t0 _ 2 ` 3{2. Let U0 “ pζ0, ψ0q P EN0 , b P HN`1_t0`1pRdq. Let
ε, β, γ, µ be such that

0 ď ε, β, γ ď 1, 0 ď µ ď µmax

with µmax ą 0 and moreover assume that:

Dhmin ą 0, Da0 ą 0, 1 ` εζ0 ´ βb ě hmin and apU0q ě a0.

Then, there exists T ą 0 and a unique solution Uε P ENT
ε_β

to (1.4) with initial data U0. Moreover,

1

T
“ C1, and sup

tPr0; T
ε_β

s
E
N pUεptqq “ C2

with Ci “ CpEN pU0q, 1

hmin
,
1

a0
q for i “ 1, 2.
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3.2 A commutator estimate

The key point of the local existence result we prove in this Section is the commutator result of Proposition
3.5 below. We first need to introduce some technical results about the resolution of the Dirichlet-Neumann
problem (1.5). We use here the notations of Section 3.1. We recall the introduction of the diffeomorphism
Σ defined by (1.10) which maps Ω into S “ R

d ˆ p´1, 0q. We also recall that Φ is a solution of (1.5) if
and only if φ “ Φ ˝ Σ is a solution of the following problem:

#
∇µ,γ ¨ P pΣq∇µ,γφ “ 0

φz“0 “ ψ, Bnφz“´1 “ 0,
(3.39)

where
P pΣq “ | detJΣ|J´1

Σ
tpJ´1

Σ q, (3.40)

where JΣ is the Jacobian matrix of the diffeomorphism Σ. For the sake of clarity in the proof of the
main result of this section, we introduce the following notations, for all ζ, b, t0 satisfying the hypothesis
of Theorem 3.1:

M0 “ Cp 1

hmin

, µmax, |ζ|Ht0`1 , |b|Ht0`1q,

M “ Cp 1

hmin

, µmax, |ζ|Ht0`2 , |b|Ht0`2q,

Mpsq “ M0 “ CpM0, |ζ|Hs , |b|Hsq,

(3.41)

where C denotes a non decreasing function of its arguments. One can prove (see [11] Chapter 2 and
equation (2.26)) that

P pΣq “ Id `QpΣq (3.42)

with
}QpΣq}Hs,1 ď M0|pεζ, βbq|Hs`1{2 . (3.43)

One can also prove the coercivity of P pΣq:

@Θ P R
d, P pΣqΘ ¨ Θ ě kpΣqΘ2 (3.44)

where
1

kpΣq ď M0.

3.2.1 Technical results about the boundary problem (3.39)

As usual for an elliptic problem of the form (3.39) with a Dirichlet condition, we are looking for solutions
in the space ψ `H1

0,surf pSq where H1
0,surf pSq is the set of functions of H1pSq with a vanishing trace at

z “ 0 (recall that S is the flat strip R
d ˆ p´1; 0q). More precisely, we have:

Definition We define H1
0,surf as the completion of DpRd ˆ r´1; 0rq endowed with the H1 norm of S.

We now define the variational solutions to the elliptic equation (3.39). To this purpose, we introduce for
all ψ P S 1pRdq the smoothed distribution

ψ:p., zq “ χp?
µz|Dγ |qψ (3.45)

where χ is a smooth compactly supported function equals to 1 in the neighbourhood of the origin.

Definition For all ψ P 9H1{2 a variational solution to (3.39) is φ “ φ̃` ψ: such that

ż

S

∇µ,γ φ̃ ¨ P pΣq∇µ,γϕ “ ´
ż

S

∇µ,γψ: ¨ P pΣq∇µ,γϕ

for all ϕ P H1
0,surf pSq.
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Remark 3.2 As expected for an elliptic problem of the form (3.39), if ψ P HspRdq, the solution Φ should
be in Hs`1{2pSq (as ψ is the trace of Φ on z “ 0). Therefore, if one uses ψ instead of ψ: in Definition
3.2.1, then the formulation provides the same regularity for Φ as for ψ. Instead of brutally considering ψ
(which is a function defined on R

d) as a function of S, we introduce ψ: which is indeed 1{2 more regular
than ψ and is defined on all S.

We are now able to give the existence result for the problem (3.39) (recall the notations of (3.41) for the
constants M and Mpsq, and see [11] for reference):

Proposition 3.3 Let t0 ą d{2 and s ě 0. Let ζ, b P Hs`1{2 XHt0`1pRdq be such that

Dhmin ą 0, @X P R
d, 1 ` εζpXq ´ βbpXq ě hmin.

Then, for all ψ P 9Hs`1{2pRdq, there exists a unique variational solution φ to (3.39). Moreover, this
solution satisfies:

@0 ď s ď t0 ` 3{2, }Λs∇µ,γφ}2 ď ?
µMps` 1{2q|Pψ|Hs ,

@t0 ` 3{2 ď s, }Λs∇µ,γφ}2 ď ?
µMp|Pψ|Hs ` |pεζ, βbq|Hs`1{2 |Pψ|Ht0`3{2q.

Moreover, if s ě ´t0 ` 1, the same estimates hold on }∇µ,γφ}Hs,1 .

3.2.2 Main result

We prove in this section an estimate for the commutator r 1
µ
G, xsBx in Hs norm, where x is one of the

variable of Rd (we denote x instead of xj for the sake of clarity). In the case of a flat bottom and a flat
surface in dimension 1, one has for all ϕ P SpRdq and all ξ ą 0:

{
r 1
µ
G, xsBxϕ “ d

dξ
p tanhp?

µξq
?
µ

ξqξ pϕpξq “
` tanhp?

µξq
?
µ

` p1 ´ tanhp?
µξq2qξ

˘
ξ pϕpξq,

and thus one should expect a control of the form

|r 1
µ
G, xsBxϕ|Hs`1{2 ď C|Pϕ|Hs`3{2 ,

with C independent on µ, where we recall that P acts like the square root of the Dirichlet-Neumann
operator and is defined by

P “ |Dγ |
p1 ` ?

µ|Dγ |q1{2 .

Remark 3.4 – The operator 1
µ
G has to be seen as a 3{2 order operator instead of an one order

operator if one needs a bound which is not singular with respect to µ. Indeed, the brutal bound
tanhp?

µξq?
µ

ď 1
µ1{2 is singular in µ. We still gain one derivative in the commutator r 1

µ
G, xs and have

controls uniforms with respect to µ.

– In the statement of Proposition 3.3, we distinguish the cases s ` 1{2 ą t0 and s ` 1{2 ă t0. This
is to have tame estimates with respect to the Hs norms of the unknowns, for high values of s.

The following Proposition shows that the result stands true with non flat bottom and surface, and in all
dimensions. We denote xaycond “ a is cond is satisfied, and else 0.

Proposition 3.5 Let t0 ą d{2, s ě ´1{2, and ζ, b P Ht0`2pRdq be such that

Dhmin ą 0, @X P R
d, 1 ` εζpXq ´ βbpXq ě hmin.

We denote x one of the variables of Rd. Then, one has for all ϕ P 9Hs`2pRdq:

|r 1
µ
G, xsBxϕ|Hs`1{2 ď µMps ` 1q|Pϕ|Hs`3{2 ` x|Pϕ|Ht0`2 |pεζ, βbq|Hs`1qys`1{2ąt0 .

Moreover, if ∇f P Ht0`1{2 XHs`1{2, one has for all ϕ P 9Hs`2pRdq:

|r 1
µ
G, xsfBxϕ|Hs`1{2 ď µMps ` 1q|∇γf |Ht0`1{2 |Pϕ|Hs`3{2

` x|Pϕ|Ht0`2 |pεζ, βbq|Hs`1q|∇γf |Hs`1{2ys`1{2ąt0 .
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Remark 3.6 The fact that the commutator is applied to Bxϕ instead of ϕ is crucial in this result. This
is due to the fact that one only controls ∇µ,γΦ instead of Φ, where Φ solves (3.39), and thus some terms
of the form xΦ are not controlled (while there derivatives are controlled). Remark that the second point
of the Proposition implies the first one (just take f “ 1), but its proof requires to use the first point as
one shall see during the proof below.

Proof The proof is an adaptation of the commutator estimate rΛs, 1
µ
Gs which is proved in r11s, using

a duality argument. We set
v “ Bxϕ.

For all v P 9H1{2, we will denote vh the solution of the Dirichlet-Neumann problem (3.39) with boundary

condition v
h
z“0 “ v. This notation stands for "harmonic extension of v". We recall the notation ψ: for

all ψ P S 1pRdq given by (3.45). We now write, for all u P SpRdq:

pΛs`1{2u, rG, xsvq2 “ pΛs`1{2u,Gxvq2 ´ pxΛs`1{2u,Gvq2.

Since pΛs`1{2xuq:
z“0 “ Λs`1{2xu, we get using Green’s identity that

pu, rG, xsvq “
ż

S

∇
µ,γΛs`1{2u: ¨ P pΣq∇µ,γpxvqh ´

ż

S

P pΣq∇µ,γvh ¨ ∇µ,γpxΛs`1{2u:q

“
ż

S

∇µ,γΛs`1{2u: ¨ P pΣq∇µ,γ
`
pxvqh ´ xvh

˘
`

ż

S

∇µ,γΛs`1{2u: ¨ P pΣqp∇µ,γxqvh

´
ż

S

P pΣq∇µ,γvh ¨ p∇µ,γxqΛs`1{2u:. (3.46)

We start to control the easiest term of (3.46), using Cauchy-Schwarz inequality (recall that | ¨ | stands
for norms on R

d while } ¨ } stands for norms on the flat strip S “ R
d ˆ p´1; 0q):

|
ż

S

P pΣq∇µ,γvh ¨ p∇µ,γxqΛs`1{2u:| ď ?
µ}u:}2

›››Λs`1{2P pΣq∇µ,γvh
›››
2

where the
?
µ factor comes from the definition of ∇µ,γx “ tp?

µBx, γ
?
µBy, Bzqx (see Section 1.3) and

the fact that Bzx “ 0. Using the definition of u:, one has easily

|u:|2 ď }u}2. (3.47)

We now use the product estimate of Proposition A.1 and the decomposition P pΣq “ Id `Q of (3.42) to
write:

@0 ď s` 1{2 ď t0,
›››Λs`1{2P pΣq∇µ,γvh

›››
2

ď Cp1 ` }Q}L8Ht0 q
››∇µ,γvh

››
Hs`1{2,0

@t0 ` 3{2 ă s` 1{2,
››Λs`1P pΣq∇µ,γvh

››
2

ď Cp1 ` }Q}L8Ht0 q
››∇µ,γvh

››
Hs`1{2,0

`}Λs`1{2Q}2}∇µ,γvh}L8Ht0 .

(3.48)

Remark 3.7 We don’t treat the case t0 ă s ď t0 `3{2, since we will obtain it by interpolation of the two
cases above. One has to combine the difference in the product estimate of Proposition A.1 between the
cases 0 ď s`1 ď t0 and t0 ă s, and the difference in Lemma 3.8 between the cases 0 ď s`1 ď t0`3{2 and
t0 ` 3{2 ă s. For this reason, we split the proof in only two cases, and get the third one by interpolation.

One has, using (3.43) and the embedding Hs`1{2,1 in L8HspRdq given by Proposition A.2:

}Q}L8Ht0 ď M0, }Λs`1{2Q}2 ď M0|pεζ, βbq|Hs`1 . (3.49)

We use Proposition 3.3 and Proposition A.2 to write:

@0 ď s` 1{2 ď t0,
››∇µ,γvh

››
Hs`1{2,0 ď ?

µMps` 1q|Pv|Hs`1

@t0 ` 3{2 ă s ` 1{2,
››∇µ,γvh

››
Hs`1{2,0 ď ?

µMp|Pv|Hs`1{2 ` |pεζ, βbq|Hs`1 |Pv|Ht0`3{2q
››∇µ,γvh

››
L8Ht0

ď ?
µM0|Pψ|Ht0`1{2 .

(3.50)
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Combining (3.49) and (3.50) in (3.48), one finally gets:

@0 ď s ` 1{2 ď t0,
›››Λs`1{2P pΣq∇µ,γvh

›››
2

ď ?
µMps ` 1q|Pv|Hs`1{2

@t0 ` 3{2 ă s` 1{2,
›››Λs`1{2P pΣq∇µ,γvh

›››
2

ď ?
µMp|Pv|Hs`1{2 ` |Pv|Ht0`1 |pεζ, βbq|Hs`1 q.

(3.51)

Combining (3.51) with (3.47), one finally gets:

|
ż

S

P pΣq∇µ,γvh ¨ p∇µ,γxqΛs`1{2u:| ď µMps ` 1q|Pv|Hs`1{2 ` x|Pv|Ht0`1 |pεζ, βbq|Hs`1 qys`1{2ąt0 |u|2
(3.52)

where we recall the notation xaycond “ a if cond is satisfied, and else 0. Note that we got the result for
t0 ă s ă t0 ` 3{2 by interpolation. Remembering that v “ Bxϕ, one gets the control of Proposition 3.5
for this term.

We now focus on the most difficult term of (3.46) (the last term of (3.46) is estimated by a similar
technique). Using Cauchy-Schwarz inequality, one gets:

|
ż

S

∇µ,γΛs`1{2u: ¨ P pΣq ¨ ∇µ,γ
`
pxvqh ´ xvh

˘
| ď }Λs`1P pΣq∇µ,γ

`
pxvqh ´ xvh

˘
}2}Λ´1{2∇µ,γu:}2.

Using the definition of u: given by (3.45), one has easily

}Λ´1{2∇µ,γu:}2 ď Cµ1{4|u|2. (3.53)

The product estimate of Proposition A.1 shows that

@0 ď s` 1 ď t0, }Λs`1P pΣq∇µ,γ
`
pxvqh ´ xvh

˘
}2 ď Cp1 ` }Q}L8Ht0 q}Λs`1∇µ,γ

`
pxvqh ´ xvh

˘
}2

@t0 ` 3{2 ď s ` 1, }Λs`1P pΣq∇µ,γ
`
pxvqh ´ xvh

˘
}2 ď Cp1 ` }Q|L8Ht0 q}Λs`1∇µ,γ

`
pxvqh ´ xvh

˘
}2

`}Λs`1Q}2}∇µ,γ
`
pxvqh ´ xvh

˘
}L8Ht0 .

One has }Q}L8Ht0 ď M0 and }Λs`1Q}2 ď M0|pεζ, βbq|Hs`3{2 . The proof of Proposition 3.5 is completed
if one can prove:

@s ě ´1{2, }Λs`1∇µ,γ
`
pxvqh ´ xvh

˘
}2 ď µMps` 1{2q|Pϕ|Hs`1

` x|Pϕ|Ht0`2 |pεζ, βbq|Hs`1 qys`1ąt0 .
(3.54)

Note that the case t0 ď s ď t0 ` 3{2 is obtained by interpolation. We now prove the estimate (3.54) for
s ` 1 ď t0. The case s ` 1 ą t0 ` 3{2 is estimated by the same technique, so we omit it for the sake of
clarity. The case t0 ď s ď t0 ` 3{2 is obtained by interpolation. The quantity w “ pxvqh ´ xvh satisfies
the following elliptic equation:

#
∇µ,γ ¨ pP pΣq∇µ,γwq “ ´∇µ,γ ¨ pP pΣq∇µ,γxvhq ´ P pΣq∇µ,γx ¨ ∇µ,γvh

wz“0 “ 0, Bnwz“´1 “ 0.
(3.55)

We now prove the following elliptic regularity type result:

Lemma 3.8 Let t0 ą d{2, s ě 0 and Σ be the diffeomorphism from Ω to S defined by (1.10). Let
ζ, b P Ht0`1 XHs`1{2pRdq be such that

Dhmin ą 0, @X P R
d, 1 ` εζpXq ´ βbpXq ě hmin.

We consider the following elliptic problem:

#
∇µ,γ ¨ pP pΣq∇µ,γwq “ ´∇µ,γ ¨ g ` f

wz“0 “ 0, Bnwz“´1 “ 0.
(3.56)
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Then, there exists a unique variational solution w P H1
0,surf pSq to the boundary value problem (3.56).

Moreover, one has :

@0 ď s ď t0 ` 3{2, ?
µ@}Λs∇µ,γw}2 ď Mps` 1{2qp}g}Hs,1 ` }f}Hs´1,0q

@t0 ` 3{2 ď s,
?
µ@}Λs∇µ,γw}2 ď Mp}g}Hs,1 ` }f}Hs´1,0

` |pεζ, βbq|Hs`1{2 p}g}Ht0`1{2,1 ` }f |Ht0´1{2,0q.

Proof By definition, w is a variational solution to (3.56) if for all θ P H1
0,surf pSq, one has

ż

S

∇
µ,γw ¨ P∇µ,γθ “ ´

ż

S

p∇µ,γ ¨ gqθ `
ż

S

fθ

“
ż

S

g ¨ ∇µ,γθ `
ż

S

fθ ´
ż

z“´1

gθ.

(3.57)

The existence and uniqueness follows from the coercivity of P given by (3.44) and the Lax-Milgram
Theorem. We now introduce Λsδ “ ΛsχpδΛq for δ ą 0 and χ a smooth and compactly supported
function, equals to 1 in a neighbourhood of zero. If w P H1

0,surf pSq is the variational solution of (3.56),

then pΛsδq2w is also in H1
0,surf pSq, and thus, taking θ “ pΛsδq2w in (3.57) (recall that P “ I `Q):

ż

S

∇
µ,γΛsδw ¨ P∇µ,γΛsδθ “

ż

S

Λsδg ¨ ∇µ,γΛsδw `
ż

S

ΛsδfΛ
s
δw ´

ż

z“´1

ΛsδgΛ
s
δw

`
ż

S

rQ,Λsδs∇µ,γw ¨ ∇µ,γΛsδw.

We now use Cauchy-Schwarz inequality and the coercivity of P (see (3.44)) to get:

kpΣq}∇µ,γΛsδw}22 ď }Λsδg}2}∇µ,γΛsδw}2 ` }Λs´1
δ f}2}Λs`1

δ w}2 ` |Λs`1{2
δ wp.,´1q|2|Λs´1{2

δ g|2
` }rQ,Λsδs∇µ,γw}2}∇µ,γΛsδw}2.

(3.58)

Since Λs`1
δ w P H1

0,surf pSq, one has using Poincaré’s inequality (recall that S “ R
d ˆ p´1, 0q and

H1
0,surf pSq is the set of H1 functions of S with vanishing trace at the surface):

}Λs`1
δ w}2 ď }Λsδw}H1,0

ď 1?
µ

}Λsδ∇µ,γw}L2 ,
(3.59)

where the 1?
µ

factor comes from the definition of ∇µ,γ . Moreover, one has for all s P R, using Proposition

A.2:
|u|Hs´1{2 ď }u}Hs,1

and thus one can write:

|Λs´1{2
δ gp.,´1q|2 ď }g}Hs,1 . (3.60)

From now, the idea of the proof is to show a commutator estimate of the form

@0 ď s ď t0 ` 3{2, }rΛsδ, Qsp∇µ,γwq}2 ď Mps` 1{2q}Λs´ε
δ ∇

µ,γw}2
@t0 ` 3{2 ď s, }rΛsδ, Qsp∇µ,γwq}2 ď Mp|pεζ, βbq|Hs`1{2 p}g}Ht0`1{2,1

`}f}Ht0´1{2,0q}Λs´α
δ ∇

µ,γw}2,
(3.61)

for some α ą 0.
Putting together (3.59), (3.60) and (3.61) into (3.58), letting δ goes to zero and using a finite induction

on s, one gets the result of Lemma 3.8. However the commutator estimate (3.61) is technical to obtain,
and therefore we omit the proof for the sake of clarity (see [11] Lemma 2.38 for details). l

We now go back to the proof of (3.54). For 0 ď s` 1 ď t0, one has, using Lemma 3.8:

}Λs`1
∇
µ,γppxvqh ´ xvhq}2 ď Mps ` 1{2q 1?

µ
p}P pΣqp∇µ,γxqvh}Hs`1,1 ` }P pΣq∇µ,γx ¨ ∇µ,γvh}Hs,0q

ď Mps ` 1{2qp1 ` }Q}Ht0`1,1qp}vh}Hs`1,1 ` }∇µ,γvh}Hs,0
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where we used the product estimate of Proposition A.1 to derive the last inequality, and where the 1?
µ

factor has been canceled by ∇µ,γx which has a
?
µ factor (recall the definition of ∇µ,γ). Using Lemma

3.3, we get the bound
}∇µ,γvh}Hs,0 ď ?

µ|Pv|Hs . (3.62)

To control vh in Hs`1,1 norm, we recall that v “ Bxϕ and we notice that

pBxϕqh ´ Bxpϕqh P H1
0,surf pSq

and we write

}vh}Hs`1,1 ď }pBxϕqh ´ Bxpϕqh}Hs`1,1 ` }Bxpϕqh}Hs`1,1 . (3.63)

To control the first term of the right hand side of (3.63), we use the Poincaré’s inequality on the flat
strip S:

}pBxϕqh ´ Bxpϕqh}Hs`1,1 ď }∇µ,γppBxϕqh ´ Bxpϕqhqq}Hs,0 .

Now, if one defines
w “ pBxϕqh ´ Bxpϕqh

then w satisfies the following boundary problem:

#
∇µ,γ ¨ pP pΣq∇µ,γwq “ ´∇µ,γ ¨ g
wz“0 “ 0, Bnwz“´1 “ ´g ¨ ez

(3.64)

with g “ rP pΣq, Bxs∇µ,γϕh, and ez the unit normal vector in the vertical direction. Adapting the proof
of Lemma 3.8 (see also Lemma 2.38 in [11]), one can prove

}∇µ,γw}Hs,0 ď Mps ` 1{2q}∇µ,γϕh}Hs

and using Proposition 3.3, one finally gets

}pBxϕqh ´ Bxpϕqh}Hs`1,1 ď Mps` 1{2q|Pϕ|Hs . (3.65)

To control the second term of the rhs of (3.63), one uses Proposition 3.3 again:

}Bxpϕqh}Hs`1,1 ď 1?
µ

}∇µ,γϕh}Hs`1,1

ď Mps` 1{2q|Pϕ|Hs`1 . (3.66)

Putting together (3.65) and (3.66) into (3.63), one gets

|vh|Hs`1,1 ď Mps ` 1{2q|Pϕ|Hs`1 . (3.67)

Putting together (3.62) and (3.67), we proved:

}Λs`1∇µ,γppxvqh ´ xvhq}2 ď Mps` 1{2q|Pϕ|Hs`1

which is the desired result (3.54). It concludes the proof of the first point of Proposition 3.5.

The proof of the second point of Proposition 3.5 only requires a small adaptation of the proof above.
The only technical change is the control of }vh}Hs`1,1 . We write, with v “ fBxϕ:

}vh}Hs`1,1 ď }pfBxϕqh ´ fpBxϕqh}Hs`1,1 ` }fpBxϕqh}Hs`1,1 (3.68)

The second term of the right hand side of (3.68) is controlled using Proposition A.1, and the control
of pBxϕqh proved above. To control the first term of the right hand side of (3.68), one remarks that
w “ pfBxϕqh ´ fpBxϕqh P H1

0,surf pSq solves the following boundary problem:

#
∇µ,γ ¨ pP pΣq∇µ,γwq “ ´∇µ,γfP pΣq∇µ,γpBxϕqh ´ ∇µ,γ ¨ pP pΣqpBxϕqh∇µ,γfq
wz“0 “ 0, Bnwz“´1 “ ´P pΣqpBxϕhq∇µ,γζ ¨ ez

(3.69)

and we use the Poincaré’s inequality on the flat strip S to control }pfBxϕqh ´ fpBxϕqh}Hs`1,1 by
}∇µ,γw}Hs,0 , and adapt the proof of Lemma 3.8 above to get the control of this latter term.

l
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3.3 Local existence in weighted Sobolev Spaces

We prove here an existence result for the Water-Waves equation in weighted Sobolev spaces (see also
[15] for another use of weighted spaces for the Water-Waves). We recall that x denotes the identity of
R
d, and we define, for all N ě 2 the energy ENx by

ENx “ EN pζ, ψq `
ÿ

αPNd,1ď|α|ďN´2

|xζpαq|22 ` |Pxψpαq|22

where EN is the standard energy for the Water-Waves equations given by (3.38).

Theorem 3.9 Let us consider the assumptions of Theorem 3.1, and then consider T ą 0 and pζ, ψq the
unique solution provided by the theorem on r0; T

ε_β s of the Water-Waves equation (1.4). If pζ0, ψ0q P ENx ,
then one has

pζ, ψq P L8pr0; T

ε_ β
s, ENx q,

with
pζ, ψqL8pr0; T

ε_β
s,EN

x q ď C2,

where C2 is a constant of the form C2 “ CpEN pU0q, 1
hmin

, 1
a0

q with C a non decreasing continuous
function of its arguments.

Remark 3.10 – Note that there are less space derivatives for the weighted norms |xζpαq|22`|Pxψpαq|22
than for the "Sobolev" norms EN . This is due to the presence of commutators of the form rG, xsψpαq
in the evolution equation for ψpαq, which are of order 1 (at least) in ψpαq.

– Note also that we control Pψpαq, ζpαq only for |α| ě 1. This is due to the fact that we only control
terms of the form xBxϕ.

Proof The proof is an adaptation of the proof of the Theorem 3.1 (see [11] Chapter 4 for a full proof).
Therefore, we only give the main ideas and insist on the specificity of using weights. Considering the
result given by Theorem 3.1, we only need to recover estimates for weighted norms (estimates for the
"classical Sobolev" norms of EN are done in the proof of the local existence result of [11]). We recall
(see for instance [11] Chapter 3 for reference) that one has:

pψ, 1
µ
Gψq2 ď M0|Pψ|22 and |Pψ|22 ď M0pψ, 1

µ
Gψq2

Therefore, we set, for all 0 ď |α| ď N ´ 2:

Eα “ 1

2µ
pGxψpαq, xψpαqq2 ` 1

2
pxζpαq, xζpαqq

and look for a control of Eα. We now differentiate Eα with respect to time and get, using the symmetry
of G:

d

dt
Eα “ pGxψpαq, Btxψpαqq2 ` pdGpεBtζqxψpαq, xψpαqq2 ` pBtxζpαq, xζpαqq2 ` 1

2
pxζpαq, pBtaqxζpαqq2.

We now need an equation in terms of ζpαq, ψpαq. To this purpose, one computes Bα of the equations (1.4).
One gets in the first equation a term of the form

BαGrεζ, βbsψ “ Grεζ, βbsBαψ `
ÿ

νăα,δ1`...`δm`l1`...`ln`ν“α
dGpBδ1εζ, ..., Bδmεζ, Bl1βb, ..., BlnβbqBνψ

where dG denotes the shape derivative of Grεζ, βbs with respect to the bottom b and the surface ζ. We
therefore obtain, after computations, a system of the form (see [11] Chapter 4 for details):

$
&
%

Btζpαq ` εV ¨ ∇γζpαq ´ 1

µ
Gψpαq “ Rα

Btψpαq ` aζpαq ` εV ¨ ∇γψpαq “ Sα
(3.70)
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with
|xRα|2 ` |PxSα|2 ď CpENx q (3.71)

with C a continuous function of its arguments. In order to get a control of the form (3.71), one can
adapt the proof of the control for the shape derivatives of G given in Proposition 3.28 of [11] (we do not
detail this proof here). We therefore have, replacing Btpζpαq, ψpαqq by their expression given by (3.70):

d

dt
Eα “ 1

µ
pGxψpαq, axζpαqq2 ´ 1

µ
pGxψpαq, axζpαqq2

` εpxaζpαq, xV ¨ ∇γζpαqq2 ` ε

µ
pGxψpαq, xV ¨ ∇γψpαqq2

` 1

µ
pdGpεBtζqxψpαq, xψpαqq2 ` 1

µ
prG, xsψpαq, xaζpαqq2.

(3.72)

The first two terms of (3.72) are the one of order 1 with respect to the unknowns xζpαq, xψpαq but cancel
one another, thanks to the symmetry of the equation.

The two terms of the second line of (3.72) are of contributions of order 0 to the energy estimate, with
respect to the unknowns, thanks to the symmetry. More precisely, one computes, integrating by parts:

pxaζpαq, xV ¨ ∇γζpαqq2 “
dÿ

j“1

ppxaζpαq, xV jBjζpαqq2

“ ´
dÿ

j“1

pxV jBjζpαq, xaζpαqq2 ´ pBjpV jaqxζpαq, xζpαqq2 ´ ppBjxqV jaζpαq, xζpαqq2

and therefore one has

pxaζpαq, xV ¨ ∇γζpαqq2 “ ´1

2
pBjpV jaqxζpαq, xζpαqq2 ´ 1

2
ppBjxqV jaζpαq, xζpαqq2. (3.73)

Using Proposition B.1, it is possible to prove that |V j |W 1,8 ` |a|W 1,8 ď EN and therefore one gets from
(3.73) the control:

|pxaζpαq, xV ¨ ∇γζpαqq2| ď CpEN qp|xζpαq|22 ` |ζpαq|2|xζpαq|2
ď CpEN qEα

(3.74)

where C is continuous and non decreasing. For the control of the second term of the second line of (3.72),
one writes:

1

µ
pGxψpαq, xV ¨ ∇γψpαqq2 “ 1

µ
pGxψpαq, V ¨ pxψpαqqq2 ´ 1

µ
pGxψpαq, pV ¨ ∇γxqψpαqq2.

We use Proposition B.5 to write (recall the notations of M given by (3.41)):

| 1
µ

pGxψpαq, V ¨ pxψpαqqq2| ď M |V |W 1,8 |Pxψ|22

and again, using the Proposition (B.1) one can control the W 1,8 norm of V by the energy and get

| 1
µ

pGxψpαq, V ¨ pxψpαqqq2| ď CpEN qEα. (3.75)

We now use Proposition B.3 with s “ 1 to compute:

| 1
µ

pGxψpαq, pV ¨ ∇γxqψpαqq2| ď µM |Pxψpαq|2|pV ¨ ∇γxqψpαq|2

and one can prove, using the definition of P and standard Sobolev estimates:

|pV ¨ ∇γxqψpαq|2 ď |V |Ht0 |Pψpαq|2
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and therefore, using Proposition (B.1) again to control |V |Ht0 by the energy, one finally gets

| 1
µ

pGxψpαq, pV ¨ ∇γxqψpαqq2| ď CpEN qEα. (3.76)

Putting together (3.75) and (3.76), one proved

| 1
µ

pGxψpαq, xV ¨ ∇γψpαqq2| ď CpEN qEα. (3.77)

The first term of the third line of (3.72) is estimated by using Proposition B.3. The only non trivial
remaining term to control in (3.72) is the last one, which is the commutator 1

µ
prG, xsψpαq, xaζpαqq2. Recall

that |α| ą 1 and that:

ψpαq “ Bαζ ´ εwBαψ

and one gets therefore, using Proposition 3.5, one can control both of these terms by CpEN qEα. One
can obtain by summing on all α, 1 ď |α| ď N ´ 1 the following energy estimate:

d

dt
E
N
x ď CpEN qENx

with C a continuous function of its arguments. Using a Gronwall’s Lemma, one can conclude and end
the proof of the Theorem. l.

A Estimates on the flat strip S

We recall the notation a _ b “ maxpa, bq and we define L8Hs “ L8pp´1; 0q;HspRdqq and use the
notation xaysąt0 “ a if s ą t0 and else 0 .

Proposition A.1 Let t0 ą d{2. If s ě ´t0, f, g P L8Ht0 XHs,0, one has fg P Hs,0 and

}fg}Hs,0 ď C }f}L8Ht0 }g}Hs,0 ` x}f}Hs,0 }g}L8Ht0 ysąt0 .

The following Proposition states a L8 embedding result for the Beppo-Levi spaces:

Proposition A.2 For all s P R:

(1) The mapping u ÞÑ u|z“0 extends continuously from Hs`1,1 to Hs`1{2pRdq.
(2) The space Hs`1{2,1 is continuously embedded in L8Hs.

B The Dirichlet Neumann Operator

Here are for the sake of convenience some technical results about the Dirichlet Neumann operator, and
its estimates in Sobolev norms. See [11] Chapter 3 for complete proofs. The first two propositions give
a control of the Dirichlet-Neumann operator.

Proposition B.1 Let t0>d/2, 0 ď s ď t0 ` 3{2 and pζ, βq P Ht0`1 XHs`1{2pRdq such that

Dh0 ą 0,@X P R
d, εζpXq ´ βbpXq ` 1 ě h0.

( 1) The operator G maps continuously
.

Hs`1{2pRdq into Hs´1{2pRdq and one has

|Gψ|Hs´1{2 ď µ3{4Mps` 1{2q|Pψ|Hs ,

where Mps` 1{2q is a constant of the form Cp 1
h0

, |ζ|Ht0`1 , |b|Ht0`1 , |ζ|Hs`1{2 , |b|Hs`1{2q.

( 2) The operator G maps continuously
.

Hs`1pRdq into Hs´1{2pRdq and one has

|Gψ|Hs´1{2 ď µMps` 1q|Pψ|Hs`1{2 ,

where Mps` 1q is a constant of the form Cp 1
h0
, |ζ|Ht0`1 , |b|Ht0`1 , |ζ|Hs`1 , |b|Hs`1q.
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Moreover, it is possible to replace Gψ by w in the previous result, where w “ Gψ`εµ∇γζ¨∇γψ
1`ε2µ|∇γζ|2 (vertical

component of the velocity U “ ∇X,zΦ at the surface).

Remark B.2 In all this paper, we consider the Water-Waves problem in finite depth. This is crucial
for all these regularity results on G. For instance, in the linear case ζ “ b “ 0, the Dirichlet-Neumann
operator is |Dγ | tanhp|Dγ |q in finite depth, while it is |Dγ | in infinite depth. The low frequencies are
therefore affected differently.

Proposition B.3 Let t0 ą d{2, and 0 ď s ď t0 ` 1{2. Let also ζ, b P Ht0`1pRdq be such that

Dh0 ą 0,@X P R
d, 1 ` εζpXq ´ βbpXq ě h0.

Then, for all ψ1, ψ2 P
.

Hs`1{2pRdq, we have

pΛsGψ1,Λ
sψ2q2 ď µM0|Pψ1|Hs |Pψ2|Hs ,

where M0 is a constant of the form Cp 1
h0

, |ζ|Ht0`1 , |b|Ht0`1q.

The second result gives a control of the shape derivatives of the Dirichlet-Neumann operator. More
precisely, we define the open set Γ Ă Ht0`1pRdq2 as:

Γ “ tΓ “ pζ, bq P Ht0`1pRdq2, Dh0 ą 0,@X P R
d, εζpXq ` 1 ´ βbpXq ě h0u

and, given a ψ P
.

Hs`1{2pRdq, the mapping:

Grε¨, β¨s : Γ ÝÑ Hs´1{2pRdq
Γ “ pζ, bq ÞÝÑ Grεζ, βbsψ. (B.78)

We can prove the differentiability of this mapping. The following Proposition gives estimates of the
shape derivatives of G.

Proposition B.4 Let t0 ą d{2 and pζ, bq P Ht0`1 be such that

Dh0 ą 0,@X P R
d, εζpXq ´ βbpXq ` 1 ě h0.

Then, for all 0 ď s ď t0 ` 1{2,

|djGph, kqψ|Hs´1{2 ď M0µ
3{4

jź

m“1

|pεhm, βkmq|Ht0`1 |Pψ|Hs .

The following commutator estimate is useful (see [11] Proposition 3.30):

Proposition B.5 Let t0 ą d{2 and ζ, b P Ht0`2pRdq such that:

Dh0 ą 0,@X P R
d, εζpXq ´ βbpXq ` 1 ě h0.

For all V P Ht0`1pRdq2 and u P H1{2pRdq, one has

ppV ¨ ∇γuq, 1
µ
Guq ď M |V |W 1,8 |Pu|22,

where M is a constant of the form Cp 1
h0

, |ζ|Ht0`2 , |b|Ht0`2q.
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