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Abstract

The aim of this work is to compute time optimal controls for a perturbation of a Brockett
integrator with state constraints. Brockett integrator and its perturbations appears in many appli-
cations fields. One of them described in details in this note is the swimming of micro-organisms.
We present some key results for a fast and robust numerical method to compute time optimal
controls for the perturbation of a Brockett integrator. This numerical method is based on explicit
formulae of time optimal controls for the Brockett integrator. The methodology presented in this
work is applied to the time optimal control of a micro-swimmer.

Keywords. Time optimal controllability, State constraints, Numerical resolution, Brockett inte-
grator, Micro-swimmers.
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1 Introduction

In this paper, we consider the system:

ḣ = 〈V (α), λ〉 (1.1a)

α̇ = λ , (1.1b)

where (h, α) ∈ R × R
n are the state variables, λ ∈ R

n is the control variable and V : Rn → R
n

is a given map. In (1.1a), 〈·, ·〉 denotes the Euclidean product in R
n. The system (1.1a), (1.1b) is

completed with the initial conditions:

h(0) = 0 and α(0) = 0 . (1.1c)

The first aim of this work is the following. Given T > 0, hf ∈ R
∗ and c > 0, find a control

λ : [0, T ] → R
n such that the final target hf is reached at time T :

h(T ) = hf and α(T ) = 0 , (1.2)

together with the state constraint:

|α(t)| 6 c (t ∈ [0, T ]) , (1.3)
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where | · | denotes the Euclidean norm in R
n.

Providing that V ∈ C∞(Rn,Rn) and the Jacobian matrix ∇V (0) ∈ Mn(R) is not symmetric,
we prove that this control problem can be solved. More precisely, there exists a minimal time
T ⋆ = T ⋆(hf , c) > 0 such that the control problem (1.1)-(1.3) admits a solution λ ∈ BV ([0, T ],Rn)
together with the control constraint:

|λ(t)| 6 1 (for a.e. t ∈ [0, T ]) . (1.4)

The second aim of this work which actually constitutes the main issue of this note, is to present
an efficient numerical method for the computation of time optimal controls for the system (1.1)-
(1.4). The method relies on explicit optimal solutions given in [22] for the time optimal control
problem (1.1)-(1.4) with V (α) = Mα where M ∈ Mn(R) is a non-symmetric matrix. The numerical
method is also based on a full direct discretization as depicted in [30, § 9.II.1]. Let us mention that
(1.1) with V (α) = Mα is a natural extension of the Brockett integrator:

ḣ = α2λ1 − α1λ2 ,

α̇1 = λ1 ,

α̇2 = λ2 .

Roughly speaking, up to some adaptations, our numerical method is a full direct discretization
method (see [30, § 9.II.1]) initialized with the analytic solution obtained in [22] for M = ∇V (0).
Numerical examples will show that this initialisation procedure provides better results than arbi-
trary initial guesses. It improves the robustness and reduces the computational time.

This strategy is applied to the time optimal control of micro-swimmers. We will see that the
efficiency of the micro-swimmer we consider is low and the minimal time is high. Our strategy also
provides a preliminary estimate of the minimal control time and hence we also get an estimate of
the time discretization step required for suitable results. In this note, we only focus on numerical
results. No theoretical proof of robustness nor algorithmic complexity are given. We emphasize that
even if direct discretization methods are robust for control problems, knowing an approximation of
the optimal solution is even better.

Moreover, in this note, for the sake of clarity, we only present the dimension case n = 2, but a
similar methodology can be obtained for any n > 2.

This note is organized as follows. We first give controllability and time optimal controllability
results for the control problem (1.1)-(1.4) in section 2. Analytic results obtained in [22] are recall
in section 3. In section 4, we present the numerical strategy and its application to time optimal
micro-swimmers is studied in section 5.

2 Controllability and time optimal controllability

Using Chow Theorem, the following controllability result holds.

Proposition 2.1. Let c > 0 and V ∈ C∞(R2,R2) be given and assume that the Jacobian matrix
∇V (0) is not symmetric i.e. :

∇V (0) 6= (∇V (0))
⊤

.

Then, for every hf ∈ R
∗ and every T > 0, there exists λ ∈ C0([0, T ],R2) with |λ(t)| 6 1 for all

t ∈ [0, T ] such that the solution of (1.1) satisfies the final condition (1.2) together with the state
constraint (1.3).

Proof. Let us write f1(h, α) =
(

V1(α), 1, 0
)⊤

and f2(h, α) =
(

V2(α), 0, 1
)⊤

for V (α) = (V1(α), V2(α))
⊤.

The system (1.1) becomes:
d

dt

(

h

α

)

= λ1f1(h, α) + λ2f2(h, α) .
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The Lie bracket of f1 and f2 at the point 0 is given by:

[f1, f2]0 =





∂α1
V2(0)− ∂α2

V1(0)
0
0



 ,

which does not vanish if ∇V (0) is not a symmetric matrix. Thus, under this assumption, the Lie
algebra generated by {f1, f2} and evaluated at the point 0 is of dimension 3. In addition, this Lie
algebra is independent of h and the fist order Lie bracket is continuous with respect to α. Therefore,
there exists ε > 0 such that for every (h, α) ∈ R × B0(ε), the Lie algebra generated by {f1, f2}
evaluated at the point (h, α) is of dimension 3.
The result follows from Chow’s Theorem (see for instance [30, chap. 5, Proposition 5.14], [1] or [17]).

This result combined with the Filippov Theorem (see for instance [1, 10, 16]) leads to the
following optimal control result:

Proposition 2.2. Let c > 0 and V ∈ C∞(R2,R2) such that ∇V (0) 6= (∇V (0))
⊤
. Then, the set of

times T > 0 such that there exists λ ∈ BV (0, T )2 with |λ(t)| 6 1 for almost every time t ∈ [0, T ]
and such that the solution (h, α) of (1.1) satisfies the final condition (1.2) together with the state
constraint (1.3) on α, admits a minimum value T ⋆ = T ⋆(hf , c) > 0.

Remark 2.3. 1. The constraint |λ(t)| 6 1 on the control variable λ is necessary to make the
time minimal control problem relevant. Without this constraint, one can build a sequence of
time (Tn)n ∈ (R∗

+)
N and associated controls λn ∈ BV (0, Tn)

2 solving the control problem such
that Tn → 0. Thus, the corresponding time optimal control does not make sense.

2. As in [22, Proposition 3.3], it can be proved that if λ is a time optimal control, then |λ(t)| = 1
for almost every t ∈ [0, T ⋆]. Consequently, the control variable can be written as λ(t) =
R(Θ(t)) for almost every t, with Θ(t) ∈ R and

R(θ) =

(

cos θ − sin θ
sin θ cos θ

)

(θ ∈ R) , (2.5)

denotes the rotation matrix of angle θ.

3 An approximate linearized time optimal control problem

For a small parameter c > 0, we have V (α) = V (0)+∇V (0)α+o(c) for every α ∈ B0(c). Instead of
considering the time optimal controllability of the system (1.1), we first consider the approximated
linear system:

ḣ = 〈V (0) +∇V (0)α, λ〉 , (3.6a)

α̇ = λ , (3.6b)

with the initial condition (1.1c).
We assume that the Jacobian matrix of V at α = 0 is not symmetric. Thus, Proposition 2.2 ensures
the existence of a minimal time T ⋆ such that the solution (h, α, λ) of the control problem (3.6) with
initial condition (1.1c) satisfies (1.2) together with (1.3) and (1.4). In addition, according to [22,
Proposition 7], this optimal time T ⋆ and time optimal controls can be explicitly computed.

Proposition 3.1. Let hf 6= 0, c > 0 and V ∈ C∞(R2,R2). Let γ ∈ R such that γJ =

1
2

(

∇V (0)− (∇V (0))⊤
)

with J =

(

0 −1
1 0

)

. Assume γ 6= 0 and define:

d⋆ =

√

2|hf |

π|γ|
and τ =

πc

2
.
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Then, the minimal time T ⋆ of the control problem (3.6), (1.1c), (1.2), (1.3) and (1.4) is given
by:

T ⋆ =







πd⋆ if c > d⋆ ,

π(d⋆)2

2c
+ τ otherwise.

Moreover, the time optimal control λ⋆ is continuous and given by:

λ⋆(t) = R (Θ(t) + Θ0)

(

1
0

)

(t ∈ [0, T ⋆]) ;

where, for every θ ∈ R, R(θ) is the rotation matrix of angle θ defined by (2.5), Θ0 is any real
constant and Θ(t) is given by:

• If c > d⋆,

Θ(t) = sign(γhf )2π
t

T ⋆
(t ∈ [0, T ⋆]) ;

• if c < d⋆,

Θ(t) =































sign(γhf)π
t

τ
if t ∈ [0, τ) ,

sign(γhf)π
t+ τ

2τ
if t ∈ [τ, T ⋆ − τ ] ,

sign(γhf)π
t+ τ − T∗

2

τ
if t ∈ (T ⋆ − τ, T ⋆] .

Proof. Since α(0) = α(T ), it can be easily proved that λ is a control on [0, T ] for the system (3.6),
(1.1c)-(1.4) if and only if λ is a control on [0, T ] for the following system:

ḣ =
〈

1
2

(

∇V (0)− (∇V (0))⊤
)

α, λ
〉

, (3.7a)

α̇ = λ , (3.7b)

together with (3.6), (1.1c)-(1.4). The result follows from [22, Proposition 7].

Remark 3.2. Let us explain the formulae of the optimal solution given in Proposition 3.1. The
optimal deformation α⋆(t) =

∫ t

0
λ⋆(s) ds possesses the following characteristics (see Figure 1):

• If c > d⋆, the optimal trajectory t 7→ α⋆(t) is a circle of diameter d⋆, starting from 0;

• if c < d⋆, the optimal trajectory t 7→ α⋆(t) is composed of three arcs of circle. The first arc
of circle is an half-circle of diameter c, starting from 0 . The second one lies on the circle of
diameter 2c, centred at the origin 0. Finally, the third arc of circle is a half-circle of diameter
c, reaching the origin 0 at the final time t = T ⋆ .

4 Numerical computation of a time optimal trajectory

In this section, we will explain our numerical approach for computing optimal trajectories, which
is mainly inspired from [30, § 9.II.1].

4.1 Finite dimensional minimisation problem

Let us rewrite our time optimal control problem as a general optimisation problem. First of all,
we consider a time control T̄ (i.e. a time that solves the control problem (1.1)-(1.4)), so that the
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0

α2

α1

|α| = c

λ(0)

d⋆

0

α2

α1

|α| = c

λ(0)
α(T ⋆ − τ )

α(τ )

(a) Case c > d⋆. (b) Case c < d⋆.

Figure 1: Typical time optimal trajectories of α = (α1 α2)
⊤.

minimal time T ⋆ is lower than T̄ and we define the cost function J0 : (T, λ) ∈ [0, T̄ ]×BV (0, T̄ )2 7→
T ∈ R. The optimisation problem reads as follows:

min T = J0(T, λ)
(T, λ) ∈ [0, T̄ ]×BV (0, T̄ )2 ,
|λ(t)| 6 1 (for a.e. t ∈ [0, T ]) ,
|α(t)| 6 c (t ∈ [0, T ]) ,
α(0) = α(T ) = 0 ,
h(0) = 0 , and h(T ) = hf ,

where α and h are solutions of

{

ḣ = 〈V (α), λ〉 ,
α̇ = λ .

According to item 2 of Remark 2.3, any optimal solution λ satisfies |λ(t)| = 1 for almost every t

and hence it can be expressed as λ(t) = R(Θ(t))e1 for almost every t, with e1 = (1, 0)⊤. The

state variable α is also given by α(t) =
∫ t

0 R(Θ(s))e1 ds. Then, we introduce the new cost function
J1 : (T,Θ) ∈ [0, T̄ ]×BV (0, T̄ ) 7→ T ∈ R and the above optimisation problem can be simplified to:

min T = J1(T,Θ) ,
(T,Θ) ∈ [0, T̄ ]×BV (0, T̄ ) ,
∣

∣

∣

∫ t

0
R(Θ(s))e1 ds

∣

∣

∣ 6 c (t ∈ [0, T ]) ,
∫ T

0
R(Θ(t))e1 dt = 0 ,

∫ T

0

〈

V
(

∫ t

0 R(Θ(s))e1 ds
)

, R(Θ(t))e1

〉

dt = hf .

(4.8)

In order to numerically tackle this problem, we set n ∈ N
∗ an integer and t0 < · · · < tn n + 1

time discretization points. For every i ∈ {0, · · · , n}, we consider Θi ∈ R an approximation of Θ(ti).

Let us also define a quadrature formula I(t0, · · · , tk; f0, · · · , fk) approximating
∫ tk

t0
f(s) ds with

fi = f(ti).
Thus, defining the cost function Jn : (T,Θ0, · · · ,Θn) ∈ R+×R

n+1 7→ T ∈ R, the discretized version

5



of (4.8) is:

min T = Jn(T,Θ0, · · · ,Θn) ,
(

T,Θ0, · · · ,Θn

)

∈ R+ × R
n+1 ,

|αk| 6 c (k ∈ {1, · · · , n− 1}) ,

I
(

0, T
n
, · · · , (n−1)T

n
, T ;R(Θ0)e1, · · · , R(Θn)e1

)

= 0 ,

I
(

0, T
n
, · · · , (n−1)T

n
, T ; 〈V (α0) , R(Θ0)e1〉 , · · · , 〈V (αn) , R(Θn)e1〉

)

= hf ,

with αk = I
(

0, T
n
, · · · , kT

n
;R(Θ0)e1, · · · , R(Θk)e1

)

, for k ∈ {0, · · · , n} .

(4.9)

This nonlinear minimisation problem can be solved for instance with an interior-point method,
SQP (sequential quadratic programming) or an active-set algorithm (see e.g. [7, 9, 13]) as imple-
mented is the Optimization toolbox of MATLAB through the fmincon function. We will see on
practical examples that even if the interior point algorithm is robust with respect to the initialisa-
tion, the better the initialisation guess is, the better the result is.

A natural initialisation procedure is to use the time optimal control obtained analytically for
the linearized problem with ∇V (0)α in place of V (α).

4.2 Numerical example

Let us consider:

V (α) =

(

−α2 + α2
2 + 10α3

2

α1 + α2
1

)

. (4.10)

For the computation of the integrals in the minimisation problem, we use the trapeze method, i.e.,
for f ∈ C([τ0, τ1],R), we approximate

∫ τ1

τ0
f(t) dt by:

I(t0, · · · , tn; f0, · · · , fn) =

n
∑

k=1

tk − tk−1

2
(fk−1 + fk) , (4.11)

with tk = τ0 +
k(τ1−τ0)

n
and fk = f(tk).

In order to numerically solve the optimisation problem (4.9) with (4.10), we use the fmincon

function of the Optimization toolbox of MATLAB with a SQP (sequential quadratic programing)
algorithm.A first observation is that if we choose the initial value (T,Θ0, · · · ,Θn) = (1, 0, · · · , 0),
the algorithm is not converging. On the other hand, when initializing with the optimal solution of
the approximate linearized problem (3.6),(1.1c),(1.2)-(1.4) (see Section 3), we obtain a reasonable
solution to the nonlinear optimisation problem (4.9) (see Figure 2).

The SQP algorithm with the trivial initialisation point (T,Θ0, · · · ,Θn) = (1, 0, · · · , 0) fails to
converge because the discrete state trajectory α0, · · · , αn associated to this control does not fill the
state constraint |αk| 6 c in (4.9). Indeed, for the initial value (T,Θ0, · · · ,Θn) = (1, 0, · · · , 0), due
to (4.11) we have αk = tke1 for all k ∈ {1, · · · , n} and in particular we get |αn| = |Te1| = T = 1.
A way to avoid this is to use the initialisation point:

(T,Θ0, · · · ,Θn) = (1, 0, π, · · · , nπ) , (4.12)

so that the discrete state variables associated to this control are given by αk = 0 (for every k ∈
{0, · · · , n}) and thus, the state constraints are satisfied. We compare in Table 1 the solutions
obtained for these to different types of initialization values. These results show that the algorithm
is more efficient when the optimal solution of the linearized problem is chosen as an initial guess.

In Table 1, the comparison is made with V given by (4.10), the target hf = 1 and the state
constraint given by (1.3) with c = 0.3. The number of discretization points is given by n+1, T ⋆ is
the optimal time obtained, NSQP is the number of iterations inside the SQP algorithm and TCPU

returns the CPU time used for computations.
In addition, the optimal solution for the nonlinear optimization problem (4.9) obtained with

the initial value (4.12) does not look as good as the optimal solution obtained from the optimal
solution of the linearized problem (3.6) (see in comparison Figure 2 and Figure 3).
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h(t)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

h

t

α(t)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

α
2

α1

(a) displacement t 7→ h(t) (b) trajectory of t 7→ α(t)

Θ(t)

0

π

2π

0 1 2 3 4 5

Θ

t

(c) solution t 7→ Θ(t) mod 2π

Figure 2: Solution of the time optimal problem (1.1)-(1.4) with V given by (4.10). The objective is
hf = 1, the constraint parameter c is 0.3 and the number of discretization points n is 300. Numerically,
we obtain a minimal time T = 4.866577.

n T ⋆ NSQP TCPU (s)

50 5.14982 716 26.532

100 4.87109 1340 102.685

150 5.31835 3861 764.928

200 4.96607 1425 291.104

250 5.17521 242 63.278

300 5.12574 1096 546.292

350 4.87108 685 363.426

400 Not converging

450 5.00869 287 287.430

500 5.07592 364 580.006

n T ⋆ NSQP TCPU (s)

50 4.87770 79 3.380

100 4.86974 108 7.381

150 4.86779 135 18.636

200 4.86710 191 32.064

250 4.86676 200 41.511

300 4.86658 213 64.223

350 4.86646 270 123.074

400 4.86721 143 102.644

450 4.86661 157 155.655

500 4.86636 206 389.241

(a) Initialisation with the initial
value (4.12)

(b) Initialisation with the optimal
control obtained for the
linearized problem (3.6)

Table 1: Comparison of the results for the two different types of initialisations with the SQP algorithm.
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h(t)

0

0.2
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0.8
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0 1 2 3 4 5

h

t

α(t)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

α
2

α1

(a) displacement t 7→ h(t) (b) trajectory of t 7→ α(t)

Θ(t)

0

π

2π

0 1 2 3 4 5

Θ

t

(c) solution t 7→ Θ(t) mod 2π

Figure 3: Solution of the time optimal problem (1.1)-(1.4) with V given by (4.10). The objective is
hf = 1, the constraint parameter c is 0.3 and the number of discretization points n is 300. The SQP
algorithm has been initialized with the initial value (4.12).

5 Application to time optimal micro-swimmers

Understanding the motion of micro-organisms is a challenging issue since at their size the fluid
forces are only viscous forces and micro-organisms live in a world where inertia does not exist.
Despite the pioneer works modeling and analysing the motions of micro-swimmers (see for instance
[29, 19, 18, 25, 11, 28, 27]), the swimming of micro-organisms has only been recently tackled as a
control problem. A lot of controllability results for various swimmers has been obtained (see for
instance [4, 5, 24, 26, 23] for axi-symmetric swimmers, [3, 21] for general swimmers or [6, 12] when
the fluid domain is not the whole space R

3).
Let us also point out that numerical strategy for axi-symmetric swimmers have already been

presented in [2]. The work explained in this note can be seen as an improvement of this numerical
strategy when the cost function is reduced to the final time.

In this section, we consider a micro-swimmer performing axi-symmetric deformations. We
denote by (e1, e2, e3) the canonical basis of R3 and we assume that e1 represents the symmetry
axis. At any time, the swimmer will be diffeomorphic to the unit sphere of R3 and its shape at rest
is the unit sphere S0.
The control problem is the following: starting from the initial location 0, reach the final position
hfe1 by shape changes such that at the initial and final positions, the swimmer is the unit sphere
of R3.

For those swimmers, we will study the time optimal controllability of the dynamical system
associated to the swimming problem.
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5.1 Modeling and problem formulation

5.1.1 Axi-symmetric coordinates

Since we are considering axi-symmetric swimmers, we introduce the spherical coordinate system
(r, θ, φ) ∈ R+ × [0, π] × [0, 2π). For every x = (x1 x2 x3)

⊤ ∈ R
3, the spherical coordinates

(r, θ, φ) =
(

r(x), θ(x), φ(x)
)

are such that:

x = r





cos θ
sin θ cosφ
sin θ sinφ



 (x ∈ R
3 , (r, θ, φ) ∈ R+ × [0, π]× [0, 2π)) ,

with the associated local system of unit vectors (er, eθ, eφ) given by (see Figure 4):

er =





cos θ
sin θ cosφ
sin θ sinφ



 , eθ =





− sin θ
cos θ cosφ
cos θ sinφ



 and eφ =





cos θ
− sin θ sinφ
sin θ cosφ



 .

Φ

e2

r

θ

x

eθ

er

eΦe3

e1

Figure 4: Spherical coordinates.

5.1.2 Swimmer’s deformations

The shape of the swimmer at rest is the unit ball of R3 which forms the reference shape denoted
by S0. We assume that the deformation of the swimmer is axi-symmetric with respect to the
symmetry axis e1. More precisely, we assume that the deformation X is built from two elementary
deformations D1 and D2, that is

X(t, x) = x+ α1(t)D1(x) + α2(t)D2(x) , (t > 0 , x ∈ R
3) , (5.13)

where D1 and D2 are axi-symmetric and radial deformations, i.e.

Di(x) = r(x)δi(θ(x))er(x) (t > 0 , x ∈ R
3 , i ∈ {1, 2}) , (5.14)

with δi ∈ C1([0, π],R) and αi ∈ L∞(R+,R) such that:

α1(t)δ1(θ) + α2(t)δ2(θ) > −1 (t > 0 , θ ∈ [0, π]) , (5.15)
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so that X(t, ·) is a C1-diffeomorphism on S0. In practice, we will consider c > 0 small enough such
that (1.3) implies (5.15). We define the domain S(t) occupied by the deformed swimmer at time t

in the reference frame attached to the swimmer:

S(t) = X(t, S0) ⊂ R
3 (t > 0) .

We also assume that the deformation X does not produce any translation. To this end, we
introduce the mass density ρ0(x) = 1 in the shape of the swimmer S0 at rest and we assume that
the mass is locally preserved during the deformation, that is to say that the density of the swimmer
at any time t > 0 is given by:

ρ(t,X(t, x)) =
1

|JacX(t, x)|
(t > 0 , x ∈ S0) ,

where JacX(t, ·) denotes the Jacobian of the mapping X(t, ·). According to (5.13) and (5.14) we
have:

ρ(t,X(t, x)) =
1

(1 + α1(t)δ1(θ(x)) + α2(t)δ2(θ(x)))3
(t > 0 , x ∈ S0) .

With this mass density, we have, for all t > 0:
∫

S(t)

ρ(t, x) dx =

∫

S0

dx := m0 (5.16)

and the mass center of the swimmer is given by:
∫

S(t)

xρ(t, x) dx =

∫

S0

(x+ α1(t)D1(x) + α2(t)D2(x)) dx

=

∫ π

0

∫ 1

0

∫ 2π

0

r (1 + α1(t)δ1(θ) + α2(t)δ2(θ)) er(θ, φ) r
2 sin θdφdrdθ

=

(

α1(t)
π

2

∫ π

0

δ1(θ) cos θ sin θ dθ + α2(t)
π

2

∫ π

0

δ2(θ) cos θ sin θ dθ

)

e1 ,

Consequently, we assume:

∫ π

0

δi(θ) sin(2θ) dθ = 0 (i ∈ {1, 2}) , (5.17)

so that the mass center of the swimmer does not move with the deformation X .
Finally, let us consider the domain S†(t) occupied by the swimmer in the fluid at time t > 0,

which is given by
S†(t) = S(t) + h(t)e1. (5.18)

Since we have assumed that the deformation X does not introduce any translation, h(t)e1 is the
mass center position of the swimmer in the fluid domain at time t. The domains S0, S(t) and S†(t)
are depicted on Figure 5.
In terms of the control theory, α = (α1, α2)

⊤ is the system’s input and h is its output we aim to
control.

5.1.3 Micro-swimmer and fluid flow

It is well known that the system governing the motion of a micro-swimmer is inertia less (see for
instance [20, § 5.3] or [11]) and reduced to the following problem coupling,

• the Stokes equation:

−∆u+∇p = 0 in F(t) , (5.19a)

divu = 0 in F(t) , (5.19b)
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S(t)S0

0 0 0 h(t)

X(t, ·) Id + h(t)e1

S†(t)

Figure 5: The deformation X and the translation he1 of the swimmer.

where F(t) = R
3 \ S(t) and with

lim
|x|→∞

u(t, x) = 0 ; (5.19c)

• the boundary condition (continuity of the velocity at the boundary of the micro-swimmer):

u(t, x) = ḣ(t)e1 +
(

α̇1(t)D1

(

X(t, ·)−1(x)
)

+α̇2(t)D2

(

X(t, ·)−1(x)
))

er
(

X(t, ·)−1(x)
)

; (5.20)

• quasi-static Newton law:
0 = F(t) · e1 , (5.21)

where F(t) =

∫

∂S(t)

σ(u, p)n dΓ with σ(u, p) =
(

∇u+ (∇u)⊤
)

− pI3 is the Cauchy stress

tensor.

The well posedness of (5.19) follows from [14], where the limit (5.19c) has to be understood
in a weak sense (that is

√

1 + |x|2u(x) ∈ L2(F)3). More precisely, we have (u, p) ∈ W 1
0 (F(t))3 ×

L2(F(t)) where we have set:

W 1
0 (F(t)) =

{

ϕ ∈ L2
loc(F(t)) , ∇ϕ ∈ L2(F(t))3 ,

√

1 + |x|2ϕ ∈ L2(F(t))
}

.

This ensures that u|∂F(t) ∈ H
1

2 (∂F(t)) and consequently, the expression

∫

∂S(t)

σ(u, p)n dΓ is seen

as a duality product (since σ(u, p)n ∈ H
−1

2 (∂S(t))3 and 1 ∈ H
1

2 (∂S(t))).

5.1.4 A geometric control problem

Let us first notice that in the full system (5.19)–(5.21) the time does not appear directly but
only through the parameter α(t). Consequently, we define S(α) as the image of S0 by the map
X(α) : x ∈ R

3 7→ x+α1D1(x)+α2D2(x) ∈ R
3, for α ∈ R

2 such that (5.15) holds. For convenience,
we also define the corresponding fluid domain F(α) = R

3 \ S(α).
For every α ∈ R

2 satisfying (5.15), we define (uα
0 , p

α
0 ) the solution of:

−∆u
α
0 +∇pα0 = 0 in F(α) , (5.22a)

divuα
0 = 0 in F(α) , (5.22b)

lim
|x|→∞

u
α
0 (x) = 0 , (5.22c)

u
α
0 (x) = e1, for all x ∈ ∂S(α) (5.22d)

and for i ∈ {1, 2}, (uα
i , p

α
i ) is the solution of:

−∆u
α
i +∇pαi = 0 in F(α) , (5.23a)

divuα
i = 0 in F(α) , (5.23b)
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lim
|x|→∞

u
α
i (x) = 0 , (5.23c)

u
α
i (x) = Di

(

X(α)−1(x)
)

, for all x ∈ ∂S(α) (5.23d)

Then, by decomposing the solution (u(t, ·), p(t, ·)) of (5.19)-(5.20) in terms of {(uα
i , p

α
i )}i∈{0,1,2}

and due to the linearity of the Cauchy stress tensor, relation (5.21) becomes:

ḣ(t)F0(α(t)) · e1 = − (α̇1(t)F1(α(t)) + α̇2(t)F2(α(t))) · e1 , (5.24)

where for every i ∈ {0, 1, 2} and every α ∈ R
2 satisfying (5.15), we have set:

Fi(α) =

∫

∂S(α)

σ(uα
i , p

α
i )n dΓ (5.25)

with σ(uα
i , p

α
i ) =

(

∇u
α
i + (∇u

α
i )

⊤
)

− pαi I3.

By Green formula, we have:

e1 ·

∫

∂F

σ(u0, p0)n dΓ = 2

∫

F

D(u0) : D(u0) dx > 0 .

Consequently, F0(α) · e1 6= 0 and the control problem can be recast as the generalized Brockett
system (1.1) with

V (α) =
−1

F0(α) · e1

(

F1(α) · e1
F2(α) · e1

)

. (5.26)

This system form has been already establish in the pioneer work of F. Alouges, A. DeSimone and
A. Lefebvre [5].
Notice that even if α represents the physical control of the swimming system, it is more convenience
for analysis to consider λ = α̇ as the control variable. This will also allow us to control both the
shape and the position of the swimmer.

We also set the initial conditions (1.1c) for this system and the target position to be reached in
a time T > 0 is given by (1.2). These initial and final conditions mean that the micro-swimmer is
the unit sphere located at the origin at initial time and a unit sphere located in hfe1 at final time
T .

We point out that a state constraint on α is needed to be able to well define Fi(α(t)) for every
time t > 0. This constraint is given by (5.15).

In addition, according to [21, Lemma 1] or [23, Theorem 2.6], there exists c > 0 small enough,
such that the mapping α ∈ R

2 7→ V (α) ∈ R
2 with V defined by (5.26) is of regularity C∞ on B0(2c).

Consequently, we chose c > 0 small enough such that this condition holds together with (5.15).

Remark 5.1. From [23], there exists δ1, δ2 ∈ C1([0, π],R) in (5.15) such that ∇V (0) is not sym-
metric. Moreover, using the arguments of [21], this situation is generic.

5.2 Numerical computation of a time optimal trajectory

Let us consider the deformations D1 and D2 similar to the one given in [23], that is to say that D1

and D2 are given by (5.14) with

δ1(θ) = P2(cos θ) and δ2(θ) = P3(cos θ) , (5.27)

where P2 (resp. P3) is the Legendre polynomial of order 2 (resp. 3). With these two elementary
deformations, we obtain from [27],

V (0) = 0 and ∇V (0) =

(

0 6
35

4
15 0

)

.

These expressions allow us to compute the explicit form of the time optimal controls for the ap-
proximate linearized system (3.6).
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In order to numerically compute the fluid forces Fi(α) · e1 for i ∈ {0, 1, 2}, we use the spherical
harmonics expansion of the exterior Stokes solution given in [8] (see also [15] or [27]). Then, we
compute the time optimal controls by using the direct discretization method explained in section 4.
The initial guess for the discrete nonlinear optimization problem is chosen as the explicit optimal
solution of the approximate linear control problem (3.6) given in Proposition 3.1. We expect that
the approximate optimal deformation for the linearized problem is close to the optimal solution for
the nonlinear problem, so that the direct method will converge quickly.

We apply this computational method with the deformation D1 and D2 given above through
Legendre polynomials and we choose c = 0.3 and hf = 1

2 . The optimal trajectories for h and α are
depicted on Figure 6. The optimal time is T ⋆ ≃ 48.9.
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(a) Optimal trajectory for h. (b) Optimal trajectory for α.

Figure 6: Optimal trajectories for the system (1.1), (1.2)–(1.4) with V given by (5.26) together with
the deformations D1 and D2 defined by (5.14) with (5.27). In addition, we have set c = 0.3 and
hf = 1

2
.

We numerically observe on Figure 6 that the optimal trajectory for α is mainly periodic. On
Figure 7, we also give the optimal trajectory of h during a period in time and finally we plot on
Figure 8 the different shapes of the swimmer under the optimal deformation for different instants
in the time period .

6 Conclusion

In this note, we have presented a numerical strategy for solving a time minimal control problem for
a nonlinear system which generalizes the Brockett integrator. This method is based on the explicit
computation of time optimal controls for a state constraint Brockett system which approximates
the original nonlinear control problem. These explicit solutions are used as initial guesses in the
nonlinear problem. Numerical tests have shown the good behavior of this strategy. This numerical
method is then applied to a time optimal control problem for micro-swimmer with shape changes.
The shapes of the swimmer are small deformations of the unit sphere. Despite two elementary
deformations are used for the swimmer’s shapes, it is easy to extend this work to the case of a finite
number of elementary deformations.

Finally, we observe numerically that the optimal trajectory for α is mainly periodic. It would
be interesting to prove rigorously this property. For instance, one could expect the following result
: for |hf | large enough and for α ∈ A with A a compact set of R2, the trajectory of α is composed
by one starting curve followed by a periodic curve and ending with a final curve. Such a result
would be a real improvement for numerical computations since we would only have to solve three
simpler (but coupled) time optimal control problems.
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Figure 7: Optimal trajectory of h between t0 = 0.5384 and t1 = 2.3002 corresponding to one period
of α.
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Paris, 2005. Théorie & applications. [Theory and applications].

16


	Introduction
	Controllability and time optimal controllability
	An approximate linearized time optimal control problem
	Numerical computation of a time optimal trajectory
	Finite dimensional minimisation problem
	Numerical example

	Application to time optimal micro-swimmers
	Modeling and problem formulation
	Axi-symmetric coordinates
	Swimmer's deformations
	Micro-swimmer and fluid flow
	A geometric control problem

	Numerical computation of a time optimal trajectory

	Conclusion

