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Sharp Strichartz estimates for water waves systems

Quang-Huy Nguyen

Abstract. We prove for reasonably smooth solutions the optimal Strichartz es-
timates for pure gravity waves and the semi-classical Strichartz estimates for
gravity-capillary waves; for both 2D and 3D waves. Here, by optimal we mean
the gains of regularity obtained for the linearized systems. Our proofs combine the
paradifferential reductions of Alazard-Burq-Zuily [1, 3] with a dispersive estimate
using a localized wave package type parametrix of Koch-Tataru [19].

1. Introduction

Water waves systems govern the dynamic of an interface between a fluid domain
and the vacuum. It is well-known that these systems are dispersive, i.e., waves at
different frequency propagate at different speed. For approximate models of water
waves in certain regimes such as Kadomtsev-Petviashvili equations, Korteweg-de
Vries equations, Schrodinger equations, wave equations,...dispersive properties have
been extensively studied. For the fully nonlinear system of water waves, dispersive
properties are however less understood.
On the one hand, in global dynamic, dispersive properties have been considered in

establishing the existence of global (or almost global) solutions for small, localized,
smooth data by the works of Wu [25, 26], Germain-Masmoudi-Shatah [12, 13],
Ionescu-Pusateri [17, 18], Alazard-Delort [5], Ifrim-Tataru [15, 16]. On the other
hand, in local dynamic, dispersive properties and more precisely Strichartz estimates
have been exploited in proving the existence of local-in-time solutions with rough,
generic data, initiated by the work of Alazard-Burq-Zuily [4] and then followed by
de Poyferré-Nguyen [10, 11]. Prior to these, a Strichartz estimate was proved for
2D gravity-capillary waves by Christianson-Hur-Staffilani [9]. Unlike the case of
semilinear Schrodinger (wave) equations, water waves systems are quasilinear in na-
ture and thus how much regularity one can gain in Strichartz estimates depends
also on the smoothness of solutions under consideration. In other words, in term of
dispersive analysis (for generic solutions), the nonlinear systems are not obviously
dictated by their linearizations. In fact, the Strichartz estimates proved in [4], [11]
are non optimal compared to the linearized systems. We address in this paper the
following problem:
At which level of regularity, solutions to the fully nonlinear systems of water waves
obey the same Strichartz estimates as its linearization?
Remark first that due to the systematic use of symbolic calculus in the framework
of semi-classical analysis in [4], [11] we were not able to reach sharp Strichartz esti-
mates by simply adapting their method to the case of sufficiently smooth solutions.

The author was supported in part by Agence Nationale de la Recherche project ANAÉ ANR-
13-BS01-0010-03.
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In this paper, we choose to work on the The Zakharov-Craig-Sulem formulation of
water waves, which is recalled now.

1.1. The The Zakharov-Craig-Sulem formulation of water waves. We
consider an incompressible inviscid fluid with unit density moving in a time-dependent
domain

Ω = {(t, x, y) ∈ [0, T ]×Rd ×R : (x, y) ∈ Ωt}
where each Ωt is a domain located underneath a free surface

Σt = {(x, y) ×Rd ×R : y = η(t, x)}
and above a fixed bottom Γ = ∂Ωt \ Σt. We make the following assumption on the
domain: Assumption (H)
Each Ωt is the intersection of the haft space

Ω1,t = {(x, y)×Rd ×R : y = η(t, x)}
and an open connected set Ω2 containing a fixed strip around Σt, i.e., there exists
h > 0 such that for all t ∈ [0, T ]

{(x, y) ×Rd ×R : η(x)− h ≤ y ≤ η(t, x)} ⊂ Ω2.

Assume that the velocity field v admits a potential φ : Ω → R, i.e, v = ∇φ. Using
the Zakharov formulation, we introduce the trace of φ on the free surface

ψ(t, x) = φ(t, x, η(t, x)).

Then φ(t, x, y) is the unique variational solution of

(1.1) ∆φ = 0 in Ωt, φ(t, x, η(t, x)) = ψ(t, x).

The Dirichlet-Neumann operator is then defined by

G(η)ψ =
√

1 + |∇xη|2
(∂φ
∂n


Σ

)

= (∂yφ)(t, x, η(t, x)) −∇xη(t, x) · (∇xφ)(t, x, η(t, x)).

The gravity-capillary waves (see [20]) problem consists in solving the following sys-
tem of (η, ψ):

(1.2)





∂tη = G(η)ψ,

∂tψ + gη − σH(η) +
1

2
|∇xψ|2 −

1

2

(∇xη · ∇xψ +G(η)ψ)2

1 + |∇xη|2
= 0,

where σ is the surface tension coefficient and H(η) is the mean curvature of the free
surface:

H(η) = div

(
∇η√

1 + |∇η|2

)
.

In the regime of large wavelengths, one can discard the effect of surface tension by
taking σ = 0 in the system (1.3) to obtain the system of pure gravity water waves

(1.3)





∂tη = G(η)ψ,

∂tψ + gη +
1

2
|∇xψ|2 −

1

2

(∇xη · ∇xψ +G(η)ψ)2

1 + |∇xη|2
= 0,

The physical dimensions are d = 1, 2. For terminologies, when d = 1 (respectively
d = 2) we call (1.2), (1.3) the 2D (respectively 3D) waves systems. It is important
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to introduce the vertical and horizontal components of the trace of the velocity on
Σ, which can be expressed in terms of η and ψ:

(1.4) B = (vy)|Σ =
∇xη · ∇xψ +G(η)ψ

1 + |∇xη|2
, V = (vx)|Σ = ∇xψ −B∇xη.

We recall also that the Taylor coefficient defined by a = −∂P
∂y


Σ
can be defined in

terms of η, ψ,B, V only (see §4.2 in [3]).

1.2. Known results and main theorems.

1.2.1. Pure gravity water waves. For the system (1.3) of pure gravity water
waves, the only existent Strichartz estimate, to our knowledge, is [4] where the
authors proved Strichartz estimates for rough solutions with a gain of

(1.5) µ =
1

24
− when d = 1, µ =

1

12
− when d ≥ 2

The starting point of this result is the symmetrization of (1.2) into a quasilinear para-
differential equation of the following form (see Appendix A for the paradifferential
calculus theory and Theorem 2.2 below for a precise reduction statement)

(1.6) (∂t + TV · ∇+ iTγ)u = f ∈ L∞
t H

s

x, s > 1 +
d

2
,

where γ is a symbol of order 1
2 .

Let us now look at the linearization of (1.3) (take g = 1 and infinite depth) around
the rest state (0, 0): {

∂tη − |Dx|ψ = 0,

∂tψ + η = 0

which is equivalent to, after imposing u := η + i|Dx|
1
2ψ,

(1.7) ∂tu+ i|Dx|
1
2u = 0.

For this Schrodinger-type dispersive equation we can prove classically the Strichartz
estimates

(1.8) ‖u‖
LpW s−d

2+µopt,∞
≤ C(s, d) ‖u|t=0‖Hs ,

{
µopt =

1
8 , p = 4 if d = 1,

µopt =
1
4−, p = 2 if d ≥ 2,

from which the estimates for the original unknowns η, ψ can be recovered. Our first
result states that the fully nonlinear system (1.3) enjoys Strichartz estimates with
the same gain as in (1.10), for solutions slightly smoother than the energy threshold
in [3].

Notation 1.1. Denote

Hs = Hs+ 1
2 (Rd)×Hs+ 1

2 (Rd)×Hs(Rd)×Hs(Rd),

Ws =W r+ 1
2
,∞(Rd)×W r+ 1

2
,∞(Rd)×W r,∞(Rd)×W r,∞(Rd).

Theorem 1.2. Let d = 1, 2 and consider a solution (η, ψ) of (1.3) on the time
interval I = [0, T ], T < +∞ such that Ωt satisfies Ht for every t ∈ [0, T ] and

(η, ψ,B, V ) ∈ C([0, T ];Hs).

(see Theorem 1.2, [3]). Define
{
s(d) = 5

3 +
d
2 , µopt(d) =

1
8 , p(d) = 4 if d = 1,

s(d) = 2 + d
2 , µopt(d) =

1
4−, p(d) = 2 if d ≥ 2.
3



Then for any s > s(d) we have

(η, ψ,B, V ) ∈ Lp(d)(I;Ws− d
2
+µopt(d),∞).

1.2.2. Gravity-capillary waves. Let us now look at the linearization of (1.2) (with
infinite depth) around the rest state (0, 0),

{
∂tη − |Dx|ψ = 0,

∂tψ −∆η = 0

or equivalently, with Φ = |Dx|
1
2 η + iψ

(1.9) ∂tΦ+ i|Dx|
3
2Φ = 0,

for which one can easily prove the following Strichartz estimates

(1.10) ‖Φ‖
LpW s−d

2+µopt,∞
≤ C(s, d) ‖Φ|t=0‖Hs ,

{
µopt =

3
8 , p = 4 if d = 1,

µopt =
3
4−, p = 2 if d ≥ 2.

Turning to the nonlinear case, in high dimensions (d ≥ 2) the geometry can be non
trivial and hence trapping can occur. As a consequence, natural dispersive estimates
expected are the one constructed at small time scales which are tailored to the

frequencies. The propagator e−it|Dx|
3
2 has the speed of propagation at order |ξ| 12 .

Hence, for time |t| < |ξ|− 1
2 , we expect no problem due to the global geometry. This

leads to the so called semi-classical Strichartz estimate. This terminology appeared
in [8] for a study of the Schrödinger equations on compact manifolds. To realize this

heuristic argument, one multiplies both side of (1.9) by h
3
2 with h = 2−j, j ∈ N

and make a change of temporal variables t = h
1
2σ, u(σ, x) = Φ(h

1
2σ, x) to derive the

semi-classical equation

(1.11) h∂σu+ |hDx|
3
2u = 0.

Then the optimal dispersive estimates for (1.11) implies the semi-classical Strichartz
estimates for (1.9) with a lost of 1

8 derivatives when d = 1 and 1
4 derivatives when

d ≥ 2.
In [1] it was proved that if

(1.12) (η, ψ) ∈ C([0, T ];Hs+ 1
2 ×Hs), s > 2 +

d

2

then system (1.2) can be symmetrized into a single equation analogous to its lin-
earization (1.9):

(1.13) (∂t + TV · ∇+ iTγ)u = f ∈ L∞Hs, γ ∈ Γ
3
2 ;

from which the local-wellposedness was obtain at this regularity level-(1.12). Using
this reduction, Alazard-Burq-Zuily [2] established, for 2D waves, the semi-classical
Strichartz estimate at the threshold (1.12) and the classical (optimal) Strichartz
estimate when s > 5 + 1

2 . We remark that in [1], the semi-classical gain is achieved
due to the fact that after a para change of variables, the highest order term Tγu in

(1.13) is converted into the simple Fourier multiplier |Dx|
3
2 . Unfortunately, such a

reduction can not work for the 3D case and hence, semi-classical Strichartz estimate
in this case is much more difficult to establish, especially at the regularity level
(1.12). In the present paper, we want to investigate the semi-classical Strichartz
estimate for (1.2) when d ≥ 2, assuming that the solution is slightly smoother than
(1.12) (1/2 derivatives). Our second result reads as follows.

4



Theorem 1.3. Let d ≥ 2 and 0 < T < ∞. Consider a solution (η, ψ) of (1.2) on
the time interval I = [0, T ] such that Ωt satisfies H(t) for every t ∈ [0, T ] and

(η, ψ) ∈ C([0, T ];Hs+ 1
2 (Rd)×Hs(Rd)).

If s > 5
2 +

d
2 then for every ε > 0, there holds

(η, ψ) ∈ L2([0, T ];W s+1−ε− d
2 (Rd)×W s+ 1

2
−ε− d

2
,∞(Rd)).

Remark 1.4. Our proof of Theorem 1.3 works equally for the 2D waves (d = 1),

when (η, ψ) ∈ C([0, T ];Hs+ 1
2 (R)×Hs(R)) with s > 5

2+
1
2 . On the other hand, using

the paracomposition reduction in [2] we can indeed improve the preceding regularity
to s > 2 + 1

2 , which is the same as Theorem 1.1 in [2].

1.2.3. On the proof of the main results. In [4, 11] the authors worked completely
in the semi-classical formulism and proved dispersive estimate using the approxima-
tion WKB method. This allowed the authors to prove Strichartz estimates with
nontrivial gains even for very rough backgrounds. However, we emphasize that with
this method, we were not able to reach the classical or semi-classical level as in
Theorem 1.2 and 1.3. The dispersive estimates for principally normal pseudodiffer-
ential operators in [19] require more regularity (C2) of the symbols to control the
Hamiltonian flow and apply the FBI transform technique. This indeed allows us
to obtain sharp dispersive estimates when the characteristic set of the symbol has
maximal nonvanishing curvatures.
For the proof of our main results, we shall combine the para-differential reduction in
the works of Alazard-Burq-Zuily with the phase transform method in the work [19]
of Koch-Tataru. Notice that the later works effectively for operators of order 1, after
renormalizing. For gravity-capillary waves (see (1.13)) the dispersive term has order
3
2 and thus the semi-classical time-scale brings it to the one of order 1 and hence
leads to the semi-classical Strichartz estimate in Theorem 1.3. For the pure gravity
waves (1.6), one observes that the dispersive term iTγ has order 1

2 which is lower
than the transport term TV ·∇. Here, we follow [4], suppressing this transport term
by straightening the vector field ∂t+TV ·∇ and then make another change of spatial
variables to convert it to an operator of order 1. However, the new symbol then
is not in the standard form p(x, ξ) to apply phase transforms and other technical
issues appear. The proof of Theorem 1.2 thus requires much more care.

2. Preliminaries

2.1. Symmetrization of system (1.3). We first recall the symmetrization
of system (1.3) to a single quasilinear equation, performed in [1]. This reduction
requires the following symbols:

• Symbols of the Dirichlet-Neumann operator

λ(1) :=
√

(1 + |∇η|2)|ξ|2 − (∇η · ξ)2,

λ(0) :=
1 + |∇η|2
2λ(1)

{
div(α(1)∇η) + i∂ξλ

(1) · ∇α(1)
}
, α(1) :=

λ(1) + i∇η · ξ
1 + |∇η|2 .

• Symbols of the mean-curvature operator:

ℓ(2) := (1 + |∇η|2)− 1
2

(
|ξ|2 − (∇η · ξ)2

1 + |∇η|2
)
, ℓ(1) := − i

2
(∂x · ∂ξ)ℓ(2);
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• Symbols using for symmetrization

q :=
(
1 + (∇xη)

2
)− 1

2 , p =
(
1 + (∇xη)

2
)− 5

4 |ξ| 12 + p(−
1
2
),

where p(−
1
2
) := F (∇xη, ξ)∂

α
x η, with |α| = 2 and F ∈ C∞(Rd×Rd \{0};C)

is homogeneous of order −1
2 in ξ.

• Symbols in the symmetrized equation:

γ :=
√
l(2)λ(1) =

(
|ξ|2 (1 + |∇η|2)− (∇η · ξ)2

1 + |∇η|2

) 3
4

,

ω := − i

2
(∂ξ · ∂x)

√
l(2)λ(1), ω1 :=

√
l(2)

λ(1)
ℜλ(0)
2

.

Then with the good-unknown U := ψ − TBη, it was proved in [1] that

Theorem 2.1 ([1, Corollary 4.9]). Let s > 2+ d
2 and (η, ψ) ∈ C0([0, T ];Hs+ 1

2 ×Hs)
be a solution to the gravity-capillary wave system (1.2) and satisfies condition (Ht)
for every t ∈ [0, T ]. The complex-valued function u := Tpη + iTqU then solves the
following para-differential equation

(2.1) ∂tu+ TV · ∇u+ iTγ+ω+ω1u = f,

where, there exists a nondecreasing function F : R+ ×R+ → R+, in dependent of
(η, ψ), such that

(2.2) ‖f‖L∞([0,T ];Hs) ≤ F
(
‖(η, ψ)‖

L∞([0,T ];Hs+1
2×Hs)

)
.

2.2. Symmetrization of system (1.2). Define first the principle symbol of
the Dirichlet-Neumann operator

λ =
((

1 + |∇η|2
)
|ξ|2 −

(
ξ · ∇η

)2) 1
2
.

Next, set ζ = ∇η and introduce

Us := 〈Dx〉s V + Tζ〈Dx〉s B, ζs := 〈Dx〉s ζ.

Theorem 2.2 ([3, Proposition 4.10]). Let s > 1 + d
2 and (η, ψ) ∈ C0([0, T ];Hs+ 1

2 ×
Hs) be a solution to the pure gravity water wave system (1.3) such that condition
(Ht) is fulfilled for every t ∈ [0, T ] and the velocity trace

(B,V ) ∈ C0([0, T ];Hs+ 1
2 ×Hs);

and there exists c0 > 0 such that a(t, x) ≥ c0. Then the complex-valued function

u := 〈Dx〉−s (Us − iT√
a/λ
ζs)

solves the following para-differential equation

(2.3) ∂tu+ TV · ∇u+ iTγu = f,

where γ =
√
aλ and

‖a− g‖
L∞([0,T ];Hs−1

2 )
+ ‖f‖L∞([0,T ];Hs) ≤ F

(
‖(η, ψ)(t)‖

Hs+1
2
, ‖(V,B)(t)‖Hs

)
.

Remark 2.3. The change of variables (η, ψ) 7→ u in Theorem 2.1 and (η, ψ,B, V ) 7→
u in Theorem 2.2 are essentially ”invertible” in the sense that one can recover Sobolev
estimates and Hölder estimates for (η, ψ,B, V ) from those for u by virtue of the
symbolic calculus for para-differential operators contained in Theorem A.4.
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2.3. Para and pseudo differential operators. Since the para-differential
setting is not suitable for proving dispersive estimates, we shall change it into the
pseudo-differential one, whose standard definitions are recalled here.

Definition 2.4. 1. For any m ∈ R, 0 ≤ δ1, δ2, ρ ≤ 1 we denote by Sm
ρ,δ1,δ2

the class

of all symbols a(x, y, ξ) : (Rd)3 → C satisfying
∣∣∣∂αx ∂βy ∂γξ a(x, y, ξ)

∣∣∣ ≤ Cα,β,γ(1 + |ξ|)m+δ1|α|+δ2|β|−ρ|γ|.

The corresponding pseudo-differential operator is defined by

Op(a)u(x) =

∫

Rd

ei(x−y)ξa(x, y, ξ)u(y)dydξ.

When a : (Rd)2 → C we consider it as a symbol in Sm
ρ,δ1,0

that does not depend on
y and rename Sm

ρ,δ1,0
≡ Sm

ρ,δ1
.

2. For any symbol a(x, ξ) ∈ Sm
ρ,δ the Weyl quantization Opw(a) ≡ aw(x,Dx) is

defined by Opw(a)u(x) = Op(b)u(x) with b(x, y, ξ) := a(x+y
2 , ξ) ∈ Sm

ρ,δ,δ.

We shall later need to transform the operators Op(a) to Opw(a). This is done by
means of the following result, which can be easily deduce from [24], Proposition
0.3.A.

Proposition 2.5. For any symbol a ∈ Sm
ρ,δ with m ∈ R, 0 ≤ δ < ρ ≤ 1 there

exists a symbol b ∈ Sm
ρ,δ such that Opw(a) = Op(b). Moreover, we have the following

asymptotic expansion in the sense of symbolic calculus:

b(x, ξ) ∼
∑

|α|≥0

(−i)|α|
α!2|α|

∂αx · ∂αξ a(x, ξ).

Remark that for all α, ∂αx · ∂αξ a(x, ξ) ∈ S
m−(ρ−δ)|α|
ρ,δ .

Now, let a ∈ Γm
r , r > 0 be a para-differential symbol (see Definition A.2) and define

(2.4) ∀j ∈ Z, ∀δ > 0, Sjδ(a)(x, ξ) = ψ(2−jδDx)a(x, ξ)

the spatial regularization of the symbol a, where ψ is the Littlewood-Paley function
defined in (A.1). We first prove a Bernstein’s type inequality for Sjδ(a).

Lemma 2.6. If a ∈ Γm
ρ then for all α, β ∈ Nd, |α| ≥ ρ, there exists a constant Cα,β

such that for all (x, ξ) ∈ R2d

|∂αx ∂βξ Sjδ(a)(x, ξ)| ≤ Cα,β2
j(|α|−ρ)‖∂βξ a(·, ξ)‖W ρ,∞(Rd).

Proof. If |α| = ρ the estimate is obvious by writing ∂αx ∂
β
ξ Sjδ(a) as a convolution

of ∂αx ∂
β
ξ a with a kernel. Considering now |α| > ρ. Recall the dyadic partition of

unity (A.2): 1 =
∑∞

k=0∆k where each ∆k is spectrally supported in the annulus

{2k−1 ≤ |ξ| ≤ 2k+1}. Using this partition, we can write

∂αx ∂
β
ξ Sjδ(a)(x, ξ) =

+∞∑

k=0

∆k∂
α
xψ(2

−jδDx)∂
β
ξ a(x, ξ) :=

+∞∑

k=0

uk

If 1
22

k ≥ 2jδ then ∆kψ(2
−jδDx) = 0. Therefore

∂αx ∂
β
ξ Sjδ(a)(x, ξ) =

2+[jδ]∑

k=0

uk.
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Now, introducing ϕ1(ξ) ∈ C∞
c (Rd), supported in {1

3 ≤ ξ| ≤ 3} one has

uk = 2k|α|ϕ1(2
−kDx)ψ(2

−jδDx)∆k∂
β
ξ a(x, ξ).

Consequently,

‖uk‖L∞(Rd) ≤ 2k|α|‖∆kD
β
ξ a(·, ξ)‖L∞(Rd) ≤ C2k|α|2−kρ‖∂βξ a(·, ξ)‖W ρ,∞(Rd).

It follows that

‖∂αx ∂βξ Sjδ(a)(x, ξ)‖L∞(Rd) ≤ C

2+[jδ]∑

k=0

2k(|α|−ρ)‖Dβ
ξ a(·, ξ)‖W ρ,∞(Rd).

Finally, since |α| − ρ > 0 we deduce that

‖∂αx ∂βξ Sjδ(a)(x, ξ)‖L∞(Rd) ≤ C2jδ(|α|−ρ)‖∂βξ a(·, ξ)‖W ρ,∞(Rd),

which concludes the proof. �

We show in the next Proposition that after localizing a distribution u in frequency,
one can go from para-differential operators to pseudo-differential operators when
acting on u.

Proposition 2.7. For every j ∈ N∗, define

Rju := Ta∆ju− Sj−3(a)(x,Dx)∆ju.

Then the spectrum of Rju is contained in an annulus {c−1
1 2j−1 ≤ |ξ| ≤ c12

j+1} and
for every µ ∈ R we have

‖Rju‖Hµ−m+r(Rd) ≤ CMm
r (a) ‖u‖Hµ(Rd)

where the constants c1, C > 0 are independent of a, u, j.

Proof. Recall first the definition (A.5) of Tau, where we have ̺ = 1 on the
support of ϕj for any j ≥ 1, so

Rju = Ta∆ju− Sj−3(a)(x,Dx)̺(Dx)∆ju.

In the following proof, we shall use the presentation of Métivier [22] on pseudodif-
ferential and paradifferential operators. To be compatible with [22] we also abuse
notations: by Γm

r we denote the class of symbols a satisfying the growth condition
(A.3) for any ξ ∈ Rd and by Mm

0 the semi-norm (A.4) where the suppremum is
taken over ξ ∈ Rd.
1. By definition (A.5) it holds that Tav = Op(σa̺)v, where Op(σa̺) denotes the

classical pseudodifferential operator with symbol

σa(x, ξ)̺(ξ) = χ(Dx, ξ)a(x, ξ)̺(ξ).

Hence Rju = Op(aj)u with

aj(x, ξ) = σa(x, ξ)̺(ξ)ϕj(ξ)− Sj−3(a)(x, ξ)̺(ξ)ϕj (ξ).

Now, we write

aj =
(
σa̺ϕj − a̺ϕj

)
+
(
a̺ϕj − Sj−3(a)̺ϕj

)
= a1j + a2j .

Applying Proposition 5.8(ii) in [22] gives a1j ∈ Γm−r
0 and (remark that (ϕj)j is

bounded in Γ0
r)

Mm−r
0 (a1j ) ≤ CMm

r (a̺ϕj) ≤ CMm
r (aρ).
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On the other hand, if we denote b = a̺ϕ then a2j(x, ξ) = b(x, ξ)−ψj−3(Dx, ξ)b(x, ξ).

Taking into account the fact that suppϕj ⊂ B(0, C2j) we may estimate

|a2j (x, ξ)| ≤
∑

k≥j−2

|∆jb(x, ξ)| ≤
∑

k≥j−2

2−kr ‖b(·, ξ)‖W r,∞

≤ C2−jr ‖b(·, ξ)‖W r,∞ = C2−jr|ϕj(ξ)| ‖a(·, ξ)̺(ξ)‖W r,∞

≤ C(1 + |ξ|)m−rMm
r (a̺), ∀ξ ∈ Rd.

By the same method for estimating |∂αξ a2j | we obtain that a2j ∈ Γm−r
0 and hence

aj ∈ Γm−r
0 ; moreover

Mm−r
0 (aj) ≤ CMm

r (a̺).

2. Property (A.7) implies in particular that

Fx(σa)(η, ξ) = 0 for |η| ≥ ε2(1 + |ξ|),
here we denote Fx the Fourier transform with respect the the patial variable x.
On the other hand, by definition of the smoothing operator

FxSj−3(a)(x, ξ)̺(ξ)ϕj(ξ) = ψ(2−(j−3)η)Fxa(η, ξ)̺(ξ)ϕ(2
−jξ)

which is vanishing if |η| ≥ 1
2(1 + |ξ|). Indeed, if either |ξ| > 2j+1 or |ξ| ≤ 2j−1 then

ϕ(2−jξ) = 0. Considering 2j−1 < |ξ| ≤ 2j+1 then |η| ≥ 1
2(1 + |ξ|) > 2j−2 and thus

ψ(2−(j−3)η) = 0. We have proved the existence of 0 < ε < 1 such that

(2.5) Fxaj(η, ξ) = 0 for |η| ≥ ε(1 + |ξ|).
3. By the spectral property (2.5) one can use the Bernstein’s inequalities (see

Corollary 4.1.7, [22]) to prove that aj is a pseudodifferential symbol in the class
Sm−r
1,1 . Then, applying Theorem 4.3.5 in [22] we conclude that

‖Rju‖Hµ−m+r(Rd) = ‖Op(aj)u‖Hµ−m+r(Rd) ≤ CMm−r
0 (aj) ‖u‖Hµ(Rd) .

Finally, the Fourier transform of Rju reads

F(Rju)(ξ) =

∫

Rd

Fx(aj)(ξ − η, η)û(η)dη.

Using the spectral localization property (2.5) and the fact that Fx(aj)(ξ − η, η)
contains the factor ϕj(η) we conclude that the spectrum of Rju is contained in an
annulus of size 2j as claimed. �

2.4. A result of Koch-Tataru. In this paragraph, we recall the dispersive
estimates proved by Koch-Tataru [19] based on the technique of FBI transform on
phase space. These estimates were established for the following class of operators.

Definition 2.8. For λ > 1, m ∈ R and k = 0, 1, ... consider classes of symbols
p : T ∗Rd → C, denoted by λmSk

λ, which satisfy

(2.6)

∣∣∣∂αx ∂βξ p(x, ξ)
∣∣∣ ≤ cα,βλ

m−|β|, |α| ≤ k,
∣∣∣∂αx ∂βξ p(x, ξ)

∣∣∣ ≤ cα,βλ
m+

|α|−k

2
−|β|, |α| ≥ k.

The mentioned result reads

Proposition 2.9 ([19, Proposition 4.7]). Let p(σ, x, ξ) ∈ λS2
λ be a real symbol

in (x, ξ), uniformly in σ ∈ [0, 1]. Assume that p satisfies the following curvature
condition
(A) for each (σ, x, ξ) ∈ [0, 1] ×Rd × Cλ, |det ∂2ξp| & λ−d, where Cλ = {c−1λ ≤ |ξ| ≤
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cλ}.
Denote by S(σ, σ0) the flow maps of Dσ+Opw(p). Then for any χ ∈ S0

λ such that for

all x ∈ Rd, χ(x, ·) compactly supported in C′
λ = {c′−1λ ≤ |ξ| ≤ c′λ}with 1 < c′ < c,

we have

‖S(σ, σ0)(χ(x,Dx)v0)‖L∞ . λ
d
2 |σ − σ0|

−d
2 ‖v0‖L1 , ∀σ, σ0 ∈ [0, 1].

Remark 2.10. In the statement of Proposition 4.7, [19], condition (A) is stated
for (x, ξ) ∈ Bλ := {|x| ≤ 1, |ξ| ≤ λ} and correspondingly, χ is supported in B; in
addition, the usual quantization χ(x,Dx) is replaced by the Weyl quantization χw.
However, one can inspect easily its proof to see that if (A) is fulfilled globally in x
then we have the above variant.

2.5. Remarks on the symbolic calculus for λmSk
λ. Let a ∈ λmSk

m, k ≥ 0
and suppose that on the support of a(x, ξ), λ−1|ξ| ∼ 1. It follows by definition of
λmSk

λ that a ∈ Sm
1, 1

2

. Observe however that when k ≥ 1, a behaves better than a

general symbol in Sm
1, 1

2

. In this paragraph we present some enhanced properties of

λmSk
λ with k ≥ 1.

First, we are concerned with the relation between the the Weyl quantization and
the usual quantization. According to Proposition 2.5, for a ∈ Sm

1, 1
2

there holds

Opw(a)−Op(a) = Op(r), r ∈ Sm− 1
2

1, 1
2

.

In fact, we have

Opw(a) = Op(ã), ã(x, y, ξ) = a(
x+ y

2
, ξ)

and

ã(x, y, ξ) = a(x+
y − x

2
, ξ) = a(x, ξ) +

1

2

∫ 1

0
(∂xa)(x+ s

y − x

2
, ξ)ds (y − x).

It follows that

(2.7) Opw(a)−Op(a) = Op(r),

with

(2.8) r(x, y, ξ) = − i

2

∫ 1

0
(∂ξ∂xa)(x+ s

y − x

2
, ξ)ds.

We now show that in fact r is of order m− 1 as in the case a ∈ Sm
1,0.

Lemma 2.11. Let a ∈ λmSk
λ, k ≥ 1 satisfying λ−1|ξ| ∼ 1 on the support of a(x, ξ).

Then we have the relation (2.7)-(2.8) with r ∈ Sm−1
1, 1

2
, 1
2

.

Proof. For any α, β, ν ∈ Nd we have

|∂αx ∂βy ∂νξ r(x, y, ξ)| ≤
{

Cα,β,νλ
m−|ν|−11λ−1 |ξ|∼1(ξ), if |α| + |β|+ 1 ≤ k,

Cα,β,νλ
m+

|α|+1+|β|−k

2
−|ν|−11λ−1 |ξ|∼1(ξ), if |α|+ |β|+ 1 ≥ k.

Since k ≥ 1,
|α|+ 1 + |β| − k

2
≤ |α|+ |β|

2
Consequently, it holds that

|∂αx ∂βy ∂νξ r(x, y, ξ)| ≤ Cα,β,ν(1 + |ξ|)(m−1)+
|α|+|β|

2
−|ν|, ∀α, β, ν ∈ Nd;

in other words, r ∈ Sm−1
1, 1

2
, 1
2

. �
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For the composition rule we prove

Lemma 2.12. Let p ∈ Sn
1,0 and a ∈ λmSk

λ, k ≥ 1 satisfying λ−1|ξ| ∼ 1 on the support

of a(x, ξ). Then we have

Op(p) ◦Op(a)−Op(pa) = Op(r)

with r ∈ Sn+m−1
1, 1

2

.

Proof. According to Proposition 0.3.C [24], one has Op(p) ◦ Op(a) = Op(b)
with

b ∼
∑

|α|≥0

(−i)|α|
α!

∂αξ p(x, ξ)∂
α
x a(x, ξ)

in the sense of symbol asymptotic. The general term in the above expansion belongs

to S
n+m−

|α|
2

1, 1
2

, hence

(b− pa)−
∑

|α|=1

(−i)|α|
α!

∂αξ p(x, ξ)∂
α
x a(x, ξ) ∈ Sn+m−1

1, 1
2

.

It then suffices to show that cα := ∂αξ p(x, ξ)∂
α
x a(x, ξ) ∈ Sn+m−1

1, 1
2

for |α| = 1 or again,

∂αx a(x, ξ) ∈ Sm
1, 1

2

for |α| = 1. The later follows along the same lines as in the proof

of Lemma 2.11. �

In the same spirit we have the following result on adjoint operators, taking into
account Proposition 0.3.B [24].

Lemma 2.13. Let a ∈ λmSk
λ, k ≥ 1 satisfying λ−1|ξ| ∼ 1 on the support of a(x, ξ).

Then we have
Op∗(a)−Op(ā) = Op(r)

with r ∈ Sm−1
1, 1

2

and ā is the complex conjugate of a.

Notation 2.14. Throughout this article, we write A . B if there exists a constant
C > 0 such that A ≤ CB, where C may depend on the coefficients of the equations
under consideration. If the constant C involved has some explicit dependency, say,
on some quantity µ, we emphasize it by denoting A .µ B.

3. Proof of Theorem 1.3

Throughout this section, the dimension d is greater than or equal 2 and s > 5
2 + d

2
is a Sobolev index.

3.1. Littlewood-Paley reduction. We shall prove Strichasrtz estimate for
solution u to (2.1), which is a quasilinear para-differential equation with time-
dependent coefficients. Remark that since

(η, ψ) ∈ C0([0, T ];Hs+ 1
2 ×Hs),

we have
V ∈ C0([0, T ];Hs−1), γ(·, ξ) ∈ C0([0, T ];Hs− 1

2 ).

The first step in our proof consists in localizing (2.1) at frequency 2j using the
Littlewood-Paley decomposition (cf. Definition A.1 1.). For every j ≥ 0, the dyadic
piece ∆ju solves

(3.1) (∂t + TV · ∇+ iTγ+ω)∆ju = Fj ,
11



with

(3.2) F 1
j := ∆jf − i∆j(Tω1u) + i [Tγ ,∆j ] + i [Tω,∆j ]u+ [TV ,∆j ] · ∇u.

Remark that for each j ≥ 1, ∆ju is spectrally supported in {2j−1 ≤ |ξ| ≤ 2j+1}. In
views of Proposition 2.7 and the fact that γ ∈ Γ

3
2
3
2

, ω ∈ Γ
1
2
1
2

and V · ξ ∈ Γ1
1, equation

(3.1) can be rewritten as

(3.3) (∂t + Sj−3(V ) · ∇+ iSj−3(γ)(x,Dx))∆ju = F 2
j ,

with

(3.4) F 2
j := F 1

j +Rj ,

Rju is spectrally supported in an annulus {c−1
1 2j−1 ≤ |ξ| ≤ c12

j+1} and satisfies

(3.5) ‖Rj‖Hs
. ‖u‖Hs .

Next, we use (2.4) to smooth out the symbols by δ = 1
2 derivatives.

Now, let 1
2 < c1 < c2 < c3, Ck := {(2ck)−1 ≤ |ξ| ≤ 2ck}, k = 1, 2, 3 and

ϕ̃ ∈ C∞, supp ϕ̃ ⊂ C3, ϕ̃ ≡ 1 on C2.

Then, equation (3.3) is equivalent to

(3.6) Lj∆ju :=
(
∂t + S(j−3) 1

2
(V ) · ∇ϕ̃(2−jDx)

+iS(j−3) 1
2
(γ)(x,Dx)ϕ̃(2

−jDx) + iS(j−3) 1
2
(ω)(x,Dx)ϕ̃(2

−jDx)
)
∆ju = Fj ,

with

(3.7) Fj = F 2
j + F 3

j := F 2
j + i

(
S(j−3) 1

2
γ(x,Dx)− Sj−3γ(x,Dx)

)
∆ju

+ i
(
S(j−3) 1

2
ω(x,Dx)− Sj−3ω(x,Dx)

)
∆ju+

(
S(j−3) 1

2
(V )− Sj−3(V )

)
· ∇∆ju.

3.2. Semi-classical time scale. Observe that the highest order operator on
the left-hand side of (3.3) has order 3

2 , which does not match the result in [19] that
we want to apply. Therefore, we reduce it to an operator of order 1 by multiplying

both side by h
1
2 , where

h := 2−j ,

then making a change of temporal variables t = h
1
2σ. For this purpose, let us reset

the symbols in this new time scale:

Γh(σ, x, ξ) = h
1
2S(j−3) 1

2
(γ)(h

1
2σ, x, ξ)ϕ̃(hξ),(3.8)

Ωh(σ, x, ξ) = h
1
2S(j−3) 1

2
(ω)(h

1
2σ, x, ξ)ϕ̃(hξ),(3.9)

Vh(σ, x, ξ) = h
1
2S(j−3) 1

2
(V )(h

1
2σ, x) · ξϕ̃(hξ).(3.10)

Next, set

wh(σ, x) = ∆ju(h
1
2σ, x), Gh(σ, x) = −ih 1

2Fj(h
1
2σ, x).

Equation (3.6) is then equivalent to

(3.11) (Dt + Γh(σ, x,Dx) + Ωh(σ, x,Dx) + Vh(σ, x,Dx))wh(σ, x) = Gh(σ, x).

In what follows, we shall prove the classical Strichartz estimate for (3.11), from
which the semi-classical Strichartz estimate for (3.6) follows.
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We now replace the pseudo-differential operators in (3.11) by the corresponding
Weyl operators using Proposition 2.5. Noticing that ω = −i

2 γ, we set

(3.12)
Opw(Γh) = Op(Γh) + Op(Ωh) +R1

h,

Opw(Vh) = Op(Vh) +R2
h.

Inserting these identities into (3.11) leads to

(3.13)
Lhwh(σ, x) := (Dt + Γw

h (σ, x,Dx) + V w
h (σ, x,Dx))wh(σ, x)

= Gh(σ, x) +R1
h(σ, x)wh(σ, x) +R2

h(σ, x)wh(σ, x).

3.3. Classical Strichartz estimate for (3.11) (⇔ (3.13)). In this step, we
shall show that Theorem 2.9 can be applied to the real symbol

ph := Γh + Vh.

Set λ = h−1 = 2j . First, the characteristic set of γ has maximal (d) nonvanishing
curvatures:

Proposition 3.1. Let C be a fixed annulus in Rd.
1. There exists an absolute constant Cd > 0 such that with c0 = Cd(1+‖∇η‖L∞(I×Rd))

we have

(3.14) sup
(t,x,ξ)∈I×Rd×C

∣∣det ∂2ξγ(t, x, ξ)
∣∣ ≥ c0.

2. For any 0 < δ ≤ 1 there exists j0 ∈ N large enough such that

(3.15) sup
(t,x,ξ)∈I×Rd×C

∣∣det ∂2ξSjδ(γ)(t, x, ξ)
∣∣ ≥ c0.

Proof. 1. For the proof of part 1, we refer to Corollary 4.7, [4]. Part 2. is a
consequence of part 1. because Sjδ(γ) is a small perturbation of γ when j is large
enough (see for instance Proposition 4.5, [4]). �

Lemma 3.2. 1. We have Γh ∈ λS2
λ, Vh ∈ λ

3
4S2

λ and hence ph ∈ λS2
λ.

2. There exists h0 > 0 small enough such that for 0 < h ≤ h0, the symbol ph satisfies
condition (A) in Theorem 2.9 with Cλ = λC2.

Proof. 1. Remark that since γ and V are respectively W 2,∞ and W
3
2
,∞ in x,

assertion 1. then follows easily from Lemma 2.6 and the fact that on the support of
ϕ̃(hξ) we have |ξ| ∼ λ.

2. Let ξ ∈ λC2. We have ϕ̃(h̃ξ) = 1, hence ∂2ξVh vanishes and since γ is homogeneous

of order 3
2 in ξ,

∂2ξΓh(σ, x, ξ) = ∂2ξ

(
h

1
2S(j−3) 1

2
(γ)(h

1
2σ, x, ξ)

)
= h

(
∂2ξS(j−3) 1

2
(γ)
)
(h

1
2σ, x, hξ).

Therefore, condition (A) is verified by virtue of (3.15). �

Calling Sh(σ, σ0) the flow map of the evolution operator Lh = Dt + Opw(ph) (see
(3.13)), we have

Lemma 3.3. If v0h is spectrally supported in λC1 =
{
(2c1)

−1h−1 ≤ |ξ| ≤ 2c1h
−1
}
then

(i)
∥∥Sh(σ, σ0)v0h

∥∥
L∞(Rd)

. h−
d
2 |σ − σ0|−

d
2
∥∥v0h
∥∥
L1(Rd)

,
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for all σ, σ0 ∈ [0, 1] and 0 < h ≤ h0.
(ii) with q > 2 and 2

q = d
2 − d

r ,

∥∥Sh(·, 0)v0h
∥∥
Lq([0,1],Lr)

. h
−1
q
∥∥v0h
∥∥
L2 .

Proof. By Lemma 3.2, (i) is a direct consequence of Proposition 2.9 if one
chooses

χ(ξ) ∈ C∞, suppχ ⊂ {(2c1,2)−1λ ≤ |ξ| ≤ 2c1,2λ}, c1 < c1,2 < c2, χ ≡ 1 in C1.

For (ii) we remark that since Opw(Γh) and Opw(Vh) are self-adjoint, Sh(σ, σ0) is
isometric in L2. This combining with the dispersive estimate (i) and a standard
TT ∗ argument (see the abstract semi-classical Strichartz estimate in Theorem 10.7,
[27]) yields (ii). �

Lemma 3.4. For any µ ∈ R, the operators Sh(σ, τ) are bounded on Hµ(Rd) uni-
formly in t, s ∈ I .

Proof. This result bases on a standard energy estimate. However, the proof
requires more care since we are not working on standard operators of classes Sm

1,0.

Without loss of generality we assume τ = 0 and let f(t, x) be a solution of

(∂t + iOpw(ph)) f(t, x) = 0, f(0, x) = f0(x).

We first apply Lemma 2.11 to obtain

Opw(ph) = Op(ph) + Op(rh), rh ∈ S0
1, 1

2
, 1
2

.

Then f solves the problem

(∂t + iOp(ph) + iOp(rh)) f(t, z) = 0, f(0, x) = f0(x).

Let µ ∈ R and set fµ := 〈Dz〉µf then

d

dt
‖fµ‖2L2 = −i〈(Op(ph)−Op∗(ph)) f

µ, fµ〉+ 2ℜ〈F, fµ〉

where
F := i [Op(ph), 〈Dz〉µ] f − i〈Dz〉µOp(rh)f.

According to Lemma 2.12 one has [Op(ph), 〈Dz〉µ] ∈ Sµ

1, 1
2

. This combining with the

fact that rh ∈ S0
1, 1

2
, 1
2

gives

‖F‖L2 . ‖f‖Hµ .

On the other hand, since ph is real, Lemma 2.13 implies

Op(ph)−Op∗(ph) ∈ S0
1, 1

2

.

Consequently, we have∥∥(Op(p0h)−Op∗(p0h)
)
fµ
∥∥
L2 . ‖fµ‖L2 .

Finally, we conclude by Gronwall’s inequality that

‖f(t)‖Hµ . ‖f0‖Hµ , ∀t ∈ I.

�

Proposition 3.5. If wh is a solution to (3.11) with data wh(0) = w0
h and

supp ŵh, supp ŵ0
h ⊂ λC1

then we have for all ε > 0

‖wh‖
L2+ε([0,1],W s−d

2+ 1
2−ε,∞)

.ε

∥∥w0
h

∥∥
Hs

+ ‖Gh‖L1([0,1],Hs) + h
1
2 ‖wh‖L1([0,1],Hs) .
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Proof. To simplify notations, let us write Sh(σ, τ) = S(σ, τ). If wh is a solution
to (3.11) and it is also a solution to (3.13). By Duhamel’s formula, there holds

wh(σ, 0) = Sh(σ, 0)w
0
h +

∫ σ

0
S(σ, τ)[Gh(τ)]dτ +

∫ σ

0
S(σ, τ)[(R1

hwh +R2
hwh)(τ)]dτ.

Let us call (I) and (II), respectively, the first and the second integral on the right-

hand side. Choosing c1 large enough such that supp Ĝh ⊂ λC1, Lemma 3.3 (ii)
gives

‖(I)‖Lq([0,1],Lr) . h−
1
q ‖Gh‖L1([0,1];L2)

For (II) we set

bαh =
(−i)|α|
α!2|α|

∂αx ∂
α
ξ Γh(σ, x, ξ), |α| ≥ 2; cαh =

(−i)|α|
α!2|α|

∂αx ∂
α
ξ Vh(σ, x, ξ), |α| ≥ 1.

For each |α| ≥ 2, since γ is W 2,∞ in x we have by applying Lemma 2.6
∥∥∂µx∂νξ (∂αx ∂αξ Γh)

∥∥ . (1 + |ξ|)1+
|µ|+|α|−2

2
−(|ν|+|α|) . (1 + |ξ|)−

|α|
2
+

|µ|
2
−|ν|,

hence bαh ∈ S
−

|α|
2

1, 1
2

. Similarly, it holds that cαh ∈ S
−

|α|
2

1, 1
2

for V ∈ W 1,∞. Taking q > 2

and 2
q = d

2 − d
r , we claim that uniformly in τ ∈ [0, 1]

(3.16)
∥∥S(σ, τ)[(R1

hwh)(τ)]
∥∥
Lq
σLr

x
. h

− 1
q
+1 ‖wh(τ)‖L2

x
.

Indeed, by the asymptotic expansion in Proposition 2.5 it holds that

R1
h =

N−1∑

|α|=2

Op(bαh) + Op(rNh ), rNh ∈ S
1−N

2

1, 1
2

, ∀N ≥ 3.

If we choose c1 large enough then each Op(bαhwh)(τ) is spectrally supported in λC1

(and so is wh) so that Lemma 3.3 (ii) can be applied to derive

(3.17) ‖S(σ, τ)[Op(bαh)wh(τ)]‖Lq
σLr

x
≤ h

− 1
q ‖Op(bαh)wh‖L2

x
. h

− 1
q
+ |α|

2 ‖wh(τ)‖L2
x
.

For Op(rNh ) one uses the Sobolev embedding H
d
2 →֒ Lr, ∀r ∈ [2,+∞) to estimate

‖S(σ, τ)[Op(rNh )wh(τ)]‖Lr
x
. ‖S(σ, τ)[Op(rNh )wh(τ)]‖

H
d
2
x

.

On the other hand, we know from Lemma 3.4 that S(σ, τ) is bounded from Hµ to
Hµ uniformly in σ, τ ∈ [0, 1] for all µ ∈ R. Hence

(3.18) ‖S(σ, τ)[Op(rNh )wh(τ)]‖Lr
x
. h−1+N

2
− d

2 ‖wh(τ)‖L2
x
.

Choosing N = N(d) large enough, we conclude the claim (3.16) from (3.17) and
(3.18).
In the same way, we obtain the following estimate for R2

h (which is also uniformly
in τ ∈ [0, 1]) ∥∥S(σ, τ)[(R2

hwh)(τ)]
∥∥
Lq
σLr

x
. h

− 1
q
+ 1

2 ‖wh(τ)‖L2
x
.

Putting otgether the estimates above leads to

‖wh‖LqLr ≤ h−
1
q

(∥∥w0
h

∥∥
L2 + ‖Gh‖L1([0,1];L2) + h

1
2 ‖wh‖L1L2

)
.

Taking q = 2 + ε then h
−1
q ≤ h

−1
2 . We multiply both sides by h−s and use the

frequency localization of wh, w
0
h to get

‖wh‖
L2+εW s−1

2 ,r .ε

∥∥w0
h

∥∥
Hs

+ ‖Gh‖L1Hs + h
1
2 ‖wh‖L1Hs .
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Finally s− 1
2 = (d2−1+ε)+(s− d

2+
1
2−ε) and d

2−1+ε > d
2−1+ ε

2+ε = d
r . Consequently,

the Sobolev embedding W s− 1
2
,r →֒ W s− d

2
+ 1

2
−ε,∞ concludes the proof. �

3.4. Semi-classical Strichartz estimate for (3.6). From the preceding Propo-
sition, one deduces the corresponding Strichartz estimate for uj ≡ ∆ju as a solution

of (3.6) via the change of temporal variables wh(σ, x) = uj(h
1
2σ, x) as follows.

Corollary 3.6. If uj is solution to (3.6), i.e., Ljuj = Fj with data u0j and

uj, u
0
j , Fj are spectrally supported in 2jC1 then uj satisfies with Ij = [0, 2−

j
2 ] =

[0, h
1
2 ] and ε > 0

‖uj‖
L2+ε(Ij ;W

s−d
2+ 3

4−ε,∞)
.ε

∥∥u0j
∥∥
Hs

+ ‖Fj‖L1(Ij ;Hs) + ‖uj‖L1Hs
.

The next step consists in gluing the estimates on small time scales above to derive
an estimate on the whole interval of time [0, 1] to the price of loosing 1

4 derivatives.

Corollary 3.7. If uj is solution to Ljuj = Fj with data u0j and uj , u
0
j , Fj are

spectrally supported in C1
h then uj satisfies with I = [0, T ] and ε > 0

‖uj‖
L2(I;W s−d

2+1
2−ε,∞)

.ε ‖Fj‖
L2(I;Hs−1

2 )
+ ‖uj‖L∞(I,Hs) .

Proof. Let χ ∈ C∞
0 (0, 2) equal to one on [12 ,

3
2 ]. For 0 ≤ k ≤ [Th−

1
2 ]− 2 define

Ij,k = [kh
1
2 , (k + 2)h

1
2 ), χj,k(t) = χ

(t− kh
1
2

h
1
2

)
, uj,k = χj,k(t)uj .

Then each uj,k is a solution to

Ljuj,k = χj,kFj + h−
1
2χ′
(t− kh

1
2

h
1
2

)
uj , uj,k(t = kh

1
2 ) = 0,

from which we deduce by virtue of Corollary 3.6

‖uj,k‖
L2(Ij,k;W

s−d
2+ 3

4−ε,∞)
.ε ‖Fj‖L1(Ij,k;Hs) + h−

1
2 ‖uj‖L1(Ij,k;Hs) .

Notice that χj,k = 1 on
(
(k + 1

2)h
1
2 , (k + 3

2 )h
1
2

)
we get

‖uj,k‖
L2((k+ 1

2
)h

1
2 ,(k+ 3

2
)h

1
2 );W s−d

2+ 3
4−ε,∞)

.ε ‖Fj‖L1(Ij,k;Hs) + h−
1
2 ‖uj‖L1(Ij,k;Hs)

.ε h
1
4 ‖Fj‖L2(Ij,k;Hs) + h−

1
4 ‖uj‖L2(Ij,k;Hs) .

Squaring both sides of the above inequality and then summing in 0 ≤ k ≤ [Th−
1
2 ]−

2 =: Nh yields with Jj := [12h
1
2 , (Nh − 1

2)h
1
2 )

‖uj‖
L2(Jj ;W

s−d
2+ 3

4−ε,∞)
.ε h

1
4 ‖Fj‖L2(I;Hs) + h−

1
4 ‖uj‖L2(I;Hs)

or, equivalently after multiplying by h
1
4

(3.19) ‖uj‖
L2(Jj ;W

s−d
2+ 1

2−ε,∞)
.ε ‖Fj‖

L2(I;Hs− 1
2 )

+ ‖uj‖L2(I;Hs) .
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On the other hand, on J = [0, 12h
1
2 ] one can apply Corollary 3.6 and Hölder’s in-

equality to have
(3.20)

‖uj‖
L2(J ;W s−d

2+1
2−ε,∞)

. h
1
4 ‖uj‖

L2(J ;W s−d
2+ 3

4− ε
2 ,∞)

.ε h
1
4

∥∥u0j
∥∥
Hs

+ h
1
2 ‖Fj‖L2(J ;Hs) + h

1
2 ‖uj‖L2(J,Hs)

.ε ‖uj‖
L∞(I,Hs−1

4 )
+ ‖Fj‖

L2(I;Hs− 1
2 )

+ ‖uj‖
L2(I,Hs− 1

2 )
.

Likewise, we have (3.20) with J = [(Nh − 1
2 )h

1
2 , T ] and thus (3.19) concludes that

‖uj‖
L2(I;W s−d

2+1
2−ε,∞)

.ε ‖Fj‖
L2(I;Hs−1

2 )
+ ‖uj‖L∞(I,Hs) .

�

In the finally step, we shall glue the estimates for ∆ju over different frequency
regimes to obtain an estimate for u, from which the corresponding estimates for
(η, ψ) follow.

3.5. Concluding the proof of Theorem 1.3. If u is a solution to (2.1) with
data u0 then by (3.6), the dyadic piece ∆ju is a solution to Lj∆ju = Fj with Fj

given by (3.7). Applying Corollary 3.7 one gets

(3.21) ‖∆ju‖
L2(I;W s−d

2+ 1
2−ε,∞)

.ε ‖Fj‖
L2(I;Hs− 1

2 )
+ ‖∆ju‖L∞(I;Hs) .

Recall that Fj = F 1
j + Rj + F 3

j where F k
j are given in (3.2), (3.7) and from (3.5)

that

‖Rj‖Hs
≤ ‖u‖Hs .

Using the symbolic calculus Theorem A.4 one obtains without any difficulty that
∥∥F 1

j

∥∥
L2Hs− 1

2
. ‖u‖L2(I;Hs) .

For F 3
j we consider for example

Aj := S(j−3) 1
2
γ(x,Dx)∆ju− Sj−3γ(x,Dx)∆ju

=
(
S(j−3) 1

2
γ(x,Dx)∆ju− γ(x,Dx)∆ju

)
+ (γ(x,Dx)∆ju− Sj−3γ(x,Dx)∆ju)

= A1
j +A2

j .

More generally, let a ∈ Γm
ρ , homogeneous of degree m in ξ. Using the spherical

harmonic decomposition we can assume a(x, ξ) = b(x)c(ξ) with b ∈ W ρ,∞ and c is
homogeneous of order m. Then with Sδj(a)(x, ξ) = Sδj(b)(x)c(ξ) one has
(3.22)

‖(Sδj(a)(x,Dx)− a(x,Dx))v‖L2 ≤ ‖Sδj(b)− b‖L∞ ‖c(Dx)v‖L2 . 2−δjρ ‖v‖Hm .

Since γ ∈ Γ
3
2
2 is homogeneous of degree 3

2 in ξ, the Hs− 1
2 -norm of A1

j now can be
bounded by

2j(s−
1
2
)− 1

2
j2+ 3

2
j ‖∆ju‖L2 . ‖u‖Hs

while ∥∥A2
j

∥∥
Hs− 1

2
. 2j(s−

1
2
)−2j+ 3

2
j ‖∆ju‖L2 . ‖u‖Hs−1 .

Similarly, we have
∥∥F 3

j

∥∥
L2Hs−1

2
. ‖u‖L2(I;Hs) + ‖f‖L2(I;Hs) .

17



The estimate (3.21) then implies

‖∆ju‖
L2(I;W s−d

2+ 1
2−ε,∞)

.ε ‖u‖L∞(I;Hs) + ‖f‖
L2(I;Hs− 1

2 )
.

Gluing these estimates together one derives

(3.23)

‖u‖
L2(I;W s−d

2+1
2−2ε,∞)

≤
∑

j

2−jε ‖∆ju‖
L2(I;W s−d

2+1
2−ε,∞)

.ε ‖u‖L∞(I;Hs) + ‖f‖
L2(I;Hs− 1

2 )
.

Recall that u = Tpη+iTq(ψ−TBη). From (3.23) one can use the symbolic calculus for
para-differential operators in Theorem A.4 to recover the corresponding estimates
for (η, ψ) (cf. [1], [2]):

‖η‖
L2(I;W s−d

2+1−2ε,∞)
+ ‖ψ‖

L2(I;W s−d
2+ 1

2−2ε,∞)
. Fε

(
‖(η, ψ)‖

L∞([0,T ];Hs+1
2×Hs)

)
.

The proof of Theorem 1.3 is complete.

4. Proof of Theorem 1.2

We consider three parameters δ ∈ (0, 1), r0 ∈ [0, 1], r1 ∈ [0, 12 ], which shall be
determined later and assume that

(4.1) V ∈ L∞(I;W 1+r0,∞(Rd)), γ(·, ξ) ∈ L∞(I;W
1
2
+r1,∞(Rd)).

4.1. Littlewood-Paley reduction. For every j ≥ 0, the dyadic piece ∆ju
solves the equation

(4.2) (∂t + TV · ∇+ iTγ)∆ju = Fj ,

where

(4.3) F 1
j := ∆jf + i [Tγ ,∆j] + [TV ,∆j ] · ∇u.

In view of Proposition 2.7 one has

(4.4) (∂t + Sj−3(V ) · ∇+ iSj−3(γ)(x,Dx))∆ju = F 2
j ,

with

(4.5) F 2
j := F 1

j +Rj ,

Rju is spectrally supported in an annulus {c−1
1 2j−1 ≤ |ξ| ≤ c12

j+1} and

(4.6) ‖Rj‖Hs . ‖u‖Hs .

Now, let 1
2 < c1 < ... < c5, Ck := {(2ck)−1 ≤ |ξ| ≤ 2ck}, k = 1, 5 and

ϕ̃ ∈ C∞, supp ϕ̃ ⊂ C5, ϕ̃ ≡ 1 on C4.

Equation (4.4) is then equivalent to

(4.7)
(
∂t + S(j−3)δ(V ) · ∇+ iS(j−3)δ(γ)(x,Dx)ϕ̃(2

−jDx)
)
∆ju = Fj ,

with

(4.8) Fj = F 2
j + F 3

j := F 2
j + i

(
S(j−3)δγ(x,Dx)− Sj−3γ(x,Dx)

)
∆ju

+
(
S(j−3)δ(V )− Sj−3(V )

)
· ∇∆ju.

Let us define the operator corresponding to the homogeneous problem of (4.7)

(4.9) Lj := ∂t + S(j−3)δ(V ) · ∇+ iS(j−3)δ(γ)(x,Dx)ϕ̃(2
−jDx).
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To prove Strichartz estimate for ∆ju as a solution to (4.7), we shall first establish a
”pseudo dispersive estimate” for Lj . Set

h := 2−j , h̃ := h
1
2 .

4.2. Straightening the vector field. Following [4] we straighten the vector
field ∂t + S(j−3)δ · ∇ by considering the system

(4.10)

{
Ẋk(s) = S(j−3)δ(Vk)(s,X(s)), 1 ≤ k ≤ d, X = (X1, . . . ,Xd)

Xk(0) = xk.

Since V ∈ L∞([0, T ];L∞
x ), system (4.10) has unique solution on I = [0, T ], which

shall be denoted for simplicity by X(s, x;h), or even X(s, x). Estimates for the flow
s 7→ X(s, ·) is given in the next Proposition.

Proposition 4.1. For fixed (s, h) the map x 7→ X(s;x, h) belongs to C∞(Rd,Rd).
Moreover, for all (s, h) ∈ I × (0, 1] we have

‖(∂xX)(s, ·;h) − Id‖L∞(Rd) ≤ F
(
‖V ‖L∞([0,T ];W 1,∞

)
|s|,

(4.11)

‖(∂αxX)(s, ·;h)‖L∞(Rd) ≤α F
(
‖V ‖L∞([0,T ];W 1+r0,∞

)
h−δ(|α|−(1+r0))|s|, |α| ≥ 2.

(4.12)

Proof. Here we follow the poof Proposition 4.10, [4]. The improvement is due
to the following estimate (by applying Lemma 2.6)

(4.13)
∥∥∥∂βxSjδ(V )(s)

∥∥∥
L∞(Rd)

≤ Cβh
−δ(|β|−1−r0) ‖V (s)‖W 1+r0,∞ , ∀|β| ≥ 2.

(i) To prove (4.11) we differentiate the system with respect to xl to obtain




˙∂Xk

∂xl
(s) =

d∑

q=1

Sjδ

(∂Vk
∂xq

)
(s,X(s))

∂Xq

∂xl
(s)

∂Xk

∂xl
(0) = δkl

from which we deduce

(4.14)
∂Xk

∂xl
(s) = δkl +

∫
s

0

d∑

q=1

Sjδ

(∂Vk
∂xq

)
(σ,X(σ))

∂Xq

∂xl
(σ) dσ.

Setting |∇X| =∑d
k,l=1 |∂Xk

∂xl
| we obtain from (4.14)

|∇X(s)| ≤ Cd +

∫
s

0
|∇V (σ,X(σ))| |∇X(σ)| dσ.

The Gronwall inequality implies that

(4.15) |∇X(s)| ≤ F(‖V ‖W 1,∞) ∀s ∈ I.
Coming back to (4.14) and using (4.15) lead to

∣∣∣∣
∂X

∂x
(s)− Id

∣∣∣∣ ≤ F(‖V ‖W 1,∞)

∫
s

0
‖∇V (σ, ·)‖L∞(Rd) dσ ≤ F1(‖V ‖W 1,∞)|s|.

(ii) We shall prove (4.12) for |α| = 2 first and then prove by induction on |α| that
the estimate

‖(∂αxX)(s; ·, h)‖L∞(Rd) ≤ Fα(‖V ‖W 1+r0,∞)h−δ(|α|−1−r0)
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for 2 ≤ |α| ≤ k implies (4.12) for |α| = k + 1.
Differentiating |α| times (|α| ≥ 2) the system (4.10) and using the Faa-di-Bruno
formula we obtain

(4.16)
d

ds

(
∂αxX

)
(s) = Sjδ(∇V )(s,X(s))∂αxX + (1)

where the term (1) is a finite linear combination of terms of the form

Aβ(s, x) = ∂βx
(
Sjδ(V )

)
(s,X(s))

q∏

i=1

(
∂Li
x X(s)

)Ki

where

2 ≤ |β| ≤ |α|, 1 ≤ q ≤ |α|,
q∑

i=1

|Ki|Li = α,

q∑

i=1

Ki = β.

1. When |α| = 2, we have

Aβ(s, x) = ∂βx
(
Sjδ(V )

)
(s,X(s))

q∏

i=1

(
∂Li
x X(s)

)Ki

with |Li| = 1 and |β| = |α| = 2. It then follows from (i) that

|
q∏

i=1

(
∂Li
x X(s)

)Ki | ≤ F(‖V ‖W 1,∞).

On the other hand, we have by (4.13)
∥∥∥∂βxSjδ(V )(s)

∥∥∥
L∞(Rd)

≤ Ch−δ(|α|−1−r0) ‖V (s)‖W 1+r0,∞ .

Consequently, it holds that

‖(1)‖L∞(Rd) ≤ h−δ(|α|−1−r0)F(‖V ‖W 1+r0,∞),

from which we obtain (4.12) for |α| = 2 by using (4.16) and Gronwall’s inequality.
2. Assuming now that (4.12) holds with |α| = k ≥ 2, we shall prove it for |α| = k+1.
Indeed, from (4.11) and the induction hypothesis it holds for any 1 ≤ |ν| ≤ k that

‖(∂νxX)(s, ·;h)‖L∞(Rd) ≤α F
(
‖V ‖L∞([0,T ];W 1+r0,∞

)
h−δ(|ν|−1)|s|.

Therefore, with 1 ≤ |Li| < |α| we can write in view of the estimate (4.13)

‖Aβ(s, ·)‖L∞(Rd) ≤
∥∥∂βx

(
Sjδ(V )

)
(s, ·)

∥∥
L∞(Rd)

q∏

i=1

∥∥∥∂Li
x X(s, ·)

∥∥∥
|Ki|

L∞(Rd)

≤ Ch−δ(|β|−1−r0)‖V (s, ·)‖W 1+r0,∞h
−δ

∑q
i=1 |Ki|(|Li|−1)F(‖V ‖W 1+r0,∞)

≤ h−δ(|α|−1−r0)F(‖V ‖W 1+r0,∞)‖V (s, ·)‖W 1+r0,∞ .

As before, we conclude by (4.16) and Gronwall’s inequality.

�

In view of (4.11) the mapping x 7→ X(s, x;h) is a C∞-diffeomorphism when 0 ≤
s ≤ T0 small enough. This restriction of T is harmless for one can iterate the final
estimate over time intervals of length T0 which depends only on ‖V ‖L∞([0,T ];W 1,∞).

Now, in (4.9) we first make the change of spatial variables

(4.17) vh(t, y) = uj(t,X(t, y;h))
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so that

(4.18)
(
∂t + S(j−3)δ(V ) · ∇

)
uj(t,X(t, y;h) = ∂tvh(t, y).

Denoting

(4.19) qh(x, ξ) := S(j−3)δ(γ)(x, ξ)ϕ̃(hξ),

let us compute this dispersive term after the above change of variables. To this end,
one sets

(4.20)
H(y, y′) =

∫ 1

0

∂X

∂x
(λy + (1− λ)y′) dλ, M(y, y′) =

(
tH(y, y′)

)−1

M0(y) =
(
t
(∂X
∂x

(y)
))−1

, J(y, y′) =
∣∣∣det

(∂X
∂x

(y′)
)∣∣∣|detM(y, y′)|.

Then,

(Op(qh)uj) ◦X(y) = (2π)−d

∫∫
ei(X(y)−x′)·ηqh(X(y), η)uj(x

′)dx′dη.

Now, we make two changes of variables x′ = X(y′), then η =M(y, y′)ξ to obtain

(Op(qh)uj) ◦X(y) = (2π)−d

∫∫
ei(y−y′)·ζqh

(
X(y),M(y, y′)ζ

)
J(y, y′)vh(y

′) dy′ dζ.

Observe that the pseudo-differential operator above is still of order 1
2 . To change its

order to 1, we need to make in addition another change of spatial variables

(4.21) y = h
1
2 z, y′ = h̃z′, wh(z

′) = vh(h̃z
′), ξ = h̃ζ

so that

(4.22) (Op(qh)uj) ◦X(y) = (2π)−d

∫∫
ei(z−z′)·ξqh

(
X(h̃z),M

(
h̃z, h̃z′

)
h̃−1ξ

)
×

× J
(
h̃z, h̃z′

)
wh(z

′) dz′ dξ.

Summing up, with
(4.23)

ph(z, z
′, ξ) := qh

(
X(h̃z),M

(
h̃z, h̃z′

)
h̃−1ξ

)
J
(
h̃z, h̃z′

)
, wh(t, z) = uj(t,X(t, h̃z))

it holds that

(Op(qh)uj) ◦X(h̃z) = Op(ph)wh(z),

which combines with (4.18) and (4.9) yields
(4.24)

(Ljuj) (t,X(t, h̃z)) = (∂t + iOp(ph))wh(t, z), wh(t, z) = uj(t,X(t, h̃z)).

We have transformed the operator Lj of order 1
2 into the right-hand side of (4.24),

which has order 1.

4.3. Approximation of the symbol ph. Observe that ph in (4.23) depends
on (z, z′, ξ) which is not in the standard form to use the phase space transform in
[19]. Therefore, one need to approximate ph by some symbol depend only on (z, ξ).
A general result can be found in Proposition 0.3A [24]. However, here we need
the difference between ph and its approximation to be more regular, so we have to
inspect more carefully the smoothness of ph. To do this, one writes as for (2.7)-(2.8)

ph(z, z
′, ξ) = ph(z, z, ξ) +

∫ 1

0
∂z′ph(z, z + s(z′ − z), ξ)ds(z′ − z)

:= p0h(z, ξ) + r0h(z, z
′, ξ)(z′ − z),
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where

(4.25) p0h(z, ξ) = ph(z, z, ξ) = qh
(
X(h̃z),M0(h̃z)h̃

−1ξ
)
.

On the other hand,

Op(r0h.(z
′ − z))w(z) = −iOp(rh)w(z)

with

rh(z, z
′, ξ) =

∫ 1

0
∂ξ∂z′ph(z, z + s(z′ − z), ξ)ds.

To simplify notations, we denote [z, z′]s = z + s(z′ − z) so that

(4.26) rh(z, z
′, ξ) =

∫ 1

0
∂ξ∂z′qh

(
X(h̃z),M

(
h̃z, h̃[z, z′]s

)
h̃−1ξ

)
J
(
h̃z, h̃[z, z′]s

)
ds.

In conclusion, Op(ph) = Op(p0h)− iOp(rh).

4.3.1. The symbol p0h. First, Lemma 4.1 implies directly the estimates forM and
J .

Lemma 4.2. It holds for (α,α′) ∈ (Nd)2 that

|∂αz ∂α
′

z′ M(z, z′)|+ |∂αz ∂α
′

z′ J(z, z
′)| .α,α′

{
1, if |α|+ |α′| = 0,

h̃−2δ(|α|+|α′|−r0), if |α|+ |α′| ≥ 1.

On the other hand, by Bernstein’s inequalities and the fact that on the support of

ϕ̃(hξ), |ξ| ∼ h̃−2, we can estimate the derivatives of qh given by (4.19) as follows.

Lemma 4.3. We have for (α, β) ∈ (Nd)2

∣∣∣∂αx ∂βξ qh(x, ξ)
∣∣∣ .α,β

{
h̃−1+2|β|, if |α| = 0,

h̃−1−2δ(|α|−( 1
2
+r1))+2|β|, if |α| ≥ 1.

We now prove study the regularity of the symbol p0h.

Proposition 4.4. Choosing r0, r1 satisfying

(4.27) 2δ(1 − r0) ≤ 1, 2δ(2 − r0) ≤ 2, 2δ(
1

2
− r1) ≤ 1, 2δ(

3

2
− r1) ≤ 2

then the symbol p0h verifies

(i) for all (α, β) ∈ Nd, |α| ≤ 2

(4.28)
∣∣∣∂αz ∂βξ p0h(z, ξ)

∣∣∣ .α,β h̃
−1+|β|1

h̃|ξ|∼1
(ξ),

(ii) for all (α, β) ∈ Nd, |α| ≥ 3

(4.29)
∣∣∣∂αz ∂βξ p0h(z, ξ)

∣∣∣ .α,β h̃
−1−(2δ−1)(|α|−2)+|β|1

h̃|ξ|∼1
(ξ).

Proof. To simplify notations, we shall denote in this proof q ≡ qh.
(i) Observe that (4.28) is trivial when α = 0. The argument below is independent of
the dimension, however let us further simplify the notations by writing as if d = 1.
For |α| = 1, we compute

∂αz p
0(z, ξ) = qx

(
X(h̃z),M0(h̃z)h̃

−1ξ
)
h̃X ′(h̃z)(4.30)

+ qξ
(
X(h̃z),M0(h̃z)h̃

−1ξ
)
(h̃−1ξ)h̃M ′

0(h̃z).(4.31)
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For |α| = 2, we have

∂αz p
0
h(z, ξ) = qxx(· · · )h̃2(X ′)2 + 2qxξ(· · · )X ′M ′

0h̃ξ + qξξ(· · · )(M ′
0)

2ξ2,(4.32)

+ qx(· · · )h̃2X ′′ + qξ(· · · )(h̃ξ)M ′′
0 .(4.33)

Remark that on the support of p0(z, ξ), h̃|ξ| ∼ 1,using Proposition 4.1, Lemmas 4.2
and 4.3 one deduces easily that

∣∣∂αz p0(z, ξ)
∣∣ .α h̃

−1−2δ( 1
2
−r1)+1 + h̃−1+2−1−2δ(1−r0), |α| = 1,

∣∣∂αz p0(z, ξ)
∣∣ .α h̃

−1−2δ( 3
2
−r1)+2 + h̃−1−2δ( 1

2
−r1)+2−2δ(1−r0) + h̃−1+4−4δ(1−r0)−2

+ h̃−1−2δ( 1
2
−r1)+2−2δ(1−r0) + h̃−1+2−2δ(2−r0), |α| = 2.

Under conditions (4.27), it follows that
∣∣∂αz p0(z, ξ)

∣∣ .α h̃
−11

h̃|ξ|∼1
(ξ), |α| ≤ 2.

To obtain (i) it remains to estimate ∂βξ (∂
α
z p

h
0) for |α| ≤ 2 and β ∈ Nd. From

the explicit expressions (4.30), (4.32) of ∂αz p
0
h above, we see that there are two

possibilities when differentiating in ξ. A possibility is that a derivative falls down to

q. This makes appear the factor M0(h̃z)h̃
−1 while we gain h̃2 when differentiating

q in ξ (by Lemma 4.3), we thus gain h̃.Another possibility is that a derivative falls

down to ξν , ν = 1, 2, which results in νξν−1. Since ξ ∼ h̃−1 on the support of p0h
one deduces that ξν−1 ∼ ξν h̃, which means that we still gain h̃. Therefore, in both

cases we gain h̃ when differentiating once in ξ and thus (4.28) follows.
(ii) As just explained above, it suffices to prove (4.29) with β = 0. From the formula
(4.32), the proof of (4.29) reduces to showing for |α| ≥ 0

|∂αz Aj(z, ξ, h)| .α,β h̃
−1−(2δ−1)|α|1

h̃|ξ|∼1
(ξ), j = 1, 5

with 



A1 = qxξ
(
X(h̃z),M0(h̃z)h̃

−1ξ
)
h̃−1,

A2 = qxx
(
X(h̃z),M0(h̃z)h̃

−1ξ
)
h̃2,

A3 = qξξ
(
X(h̃z),M0(h̃z)h̃

−1ξ
)
h̃−4,

A4 = qx
(
X(h̃z),M0(h̃z)h̃

−1ξ
)
h̃,

A5 = qξ
(
X(h̃z),M0(h̃z)h̃

−1ξ
)
h̃−2

and

|∂αz Bj(z, h)| .α,β h̃
−(2δ−1)|α|, j = 1, 4

with 



B1 = X ′(h̃z),

B2 = h̃M ′
0(h̃z),

B3 = h̃X ′′(h̃z),

B4 = h̃2M ′′(h̃z).

1. Bj. It follows from Lemma (4.11) that

|∂αz B1| = |∂αzX ′(h̃z)| = h̃|α||(∂α+1
x X)(h̃z)| . h̃|α|−2δ|α| . h̃−1−(2δ−1)|α|.

On the other hand, (4.12) and the condition 2δ(1 − r0) ≤ 1 imply

|∂αz B3| = h̃|∂αzX ′′(h̃z)| = h̃1+|α||(∂α+2
x X)(h̃z)| . h̃1+|α|−2δ(|α|+1−r0) . h̃−(2δ−1)|α|.
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Remark that M ′
0(h̃z) is as smooth as X ′′(h̃z), the preceding estimate also holds for

B2. For B4, we apply (4.12) and use the condition 2δ(2 − r0) ≤ 2 to estimate

|∂αz B4| = h̃2|∂αzM ′′
0 (h̃z)| = h̃2+|α||(∂α+2

x M0)(h̃z)| . h̃|α|+2−2δ(|α|+2−r0) . h̃−(2δ−1)|α|.

2. A1. For for α = 0, Lemma 4.3 gives

|A1| . h̃−1−2δ( 1
2
−r1)+2−1 . h̃−1

since 2δ(12 − r1) ≤ 1. Considering now |α| ≥ 1, we write using the Faa-di-Bruno
formula that ∂αz A1 is a linear combination of terms of the form

C1 = h̃|α|−1
(
∂a+1
x ∂b+1

ξ q
)
(· · · )

r∏

j=1

(
(∂

Lj
x X)(h̃z)

)Pj
(
(∂

Lj
x M0)(h̃z)h̃

−1ξ
)Qj

where 1 ≤ |a|+ |b| ≤ |α|, |Lj | ≥ 1, ∀j = 1, r and

r∑

j=1

Pj = a,
r∑

j=1

Qj = b,
r∑

j=1

(|Pj |+ |Qj|)Lj = α.

According to Lemma 4.3,

|
(
∂a+1
x ∂b+1

ξ q
)
(· · · )| . h̃−1−2δ(|a|+ 1

2
−r1)+2(|b|+1).

On the other hand, since |Lj | ≥ 1 Lemmas 4.3, 4.2 allow us to estimate the product
appearing in C1 as follows

|
r∏

j=1

| . h̃K , K =
r∑

j=1

(
− 2δ(|Lj | − 1)|Pj | − 2δ(|Lj | − r0)|Pj |

)
− 2

r∑

j=1

|Qj |

= −2δ|α| + 2δ|a| + 2δr0|b| − 2|b|.

Therefore, |C1| . h̃L with

L = |α| − 1− 1− 2δ(|a| + 1

2
− r1) + 2(|b|+ 1)− 2δ|α| + 2δ|a| + 2δr0|b| − 2|b|

≥ −1− (2δ − 1)|α| + 1− 2δ(
1

2
− r1)

≥ −1− (2δ − 1)|α|,

where we have used again the condition that 2δ(12 − r1) ≤ 1. The proof for A1 is
complete.
3. A2, A3, A4, A5. The estimate for these terms can be derived along the same
lines as for A3, where one need to make use of the condition 2δ(32 − r1) ≤ 2 for A2

and the condition 2δ(12 − r1) ≤ 1 for A4. �

From now on, we always assume condition (4.27) for r0 and r1.

4.3.2. The symbol rh. The next lemma provides the order of rh and shows that it
decays in ξ faster than in (z, z′) which shall be important in our “pseudo-dispersive
estimates” in paragraph 4.4.

Lemma 4.5. For any (α,α′, ξ) ∈ (Nd)3

∣∣∣∂αz ∂α
′

z′ ∂
β
ξ rh(z, z

′, ξ)
∣∣∣ .α,α′,β h̃

1−2δ(1−r0)−(2δ−1)(|α|+|α′|)+|β|1
{h̃|ξ|∼1}

(ξ).

Consequently, we have rh ∈ S
−1+2δ(1−r0)
1,(2δ−1),(2δ−1).
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Proof. Recall the definition (4.26) of rh, on the support of this symbol we have

|ξ| ∼ h̃−1. In this proof, all the estimates are uniform in s ∈ [0, 1]. It follows from
Lemma 4.2 that

∀(α,α′) ∈ (Nd)2,
∣∣∣∂αz ∂α

′

z′ J
(
h̃z, h̃[z, z′]s

)∣∣∣ .α,α′ h̃−(2δ−1)(|α|+|α′|).

Next, setting
q̃(x, ξ) = S(j−3)δ(γ)(x, ξ)ϕ̃(ξ)

we see that

q
(
X(h̃z),M

(
h̃z, h̃[z, z′]s

)
h̃−1ξ

)
= h̃−1q̃

(
X(h̃z),M

(
h̃z, h̃[z, z′]s

)
h̃ξ
)
.

The proof of this lemma then boils down to showing for any (α,α′, β) ∈ (Nd)3,

(4.34)
∣∣∣∂βξ ∂αz ∂α

′

z′ ∂ξ∂z′ q̃(X(z),M(z, [z, z′ ]s)ξ)
∣∣∣ .α,α′,β h̃

−2δ(|α|+|α′|)−2δ(1−r0).

We compute

Ξ := ∂ξ∂z′ q̃(X(z),M(z, [z, z′ ]s)ξ) = sq̃ξξ(· · · )Mz′ξM + sq̃ξ(· · · )Mz′ ,

which is bounded by h̃−2δ(1−r0) in view of Lemma 4.2 and the fact that |ξ| ∼ 1
on the support of q̃. For the same reason we see that taking ξ-derivatives of Ξ is
harmless (notice that M is bounded), so we only need to prove (4.34) for |β| = 0.
Indeed, one has again by Lemma 4.2

(4.35)
∣∣∣
(
∂αz ∂

α′

z′ M
)
(·)
∣∣∣+
∣∣∣
(
∂αz ∂

α′

z′ Mz′

)
(·)
∣∣∣ . h̃−2δ(|α|+|α′|)−2δ(1−r0)

On the other hand, using the Faa-di-Bruno formula (as in the proof of Proposition
4.4) we can prove that

∣∣∣∂αz ∂α
′

z′ (∂
γ
ξ q̃)
(
X(z),M(z, [z, z′ ]s)ξ

)∣∣∣ . h̃−2δ(|α|+|α′|),

from which we conclude the proof. �

In view of equation (4.24) we have proved that

(4.36) (Ljuj) (t,X(t, h̃z) =
(
∂t + iOp(p0h)

)
wh(t, z)− iOp(rh)wh(t, z)

via the relation wh(t, z) = uj(t,X(t, h̃z)).

4.4. A “pseudo dispersive estimate” for Lj. In this step, we shall show
that Theorem 2.9 can be applied to the evolution operator

Lh := Dt +Opw(p0h).

Henceforth, we set

δ =
3

4
, λ = h̃−1.

Proposition 4.4 then shows that p0h belongs to λS2
λ. Using Lemma 2.11 to replace

Op(p0h) in (4.36) by Opw(ph) we have

(4.37) Opw(p0h) = Op(p0h) + Op(r′h)

with r′h ∈ S0
1, 1

2
, 1
2

. On the other hand, since 2δ(1 − r0) ≤ 1, Lemma 4.5 combining

with (4.36), (4.37) leads to

Proposition 4.6. There holds for some symbol r1h ∈ S0
1, 1

2
, 1
2

that

(4.38)
1

i
(Ljuj) (t,X(t, h̃z) =

(
Dt +Opw(p0h)

)
wh(t, z) + Op(r1h)wh(t, z).
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Next, we recall the following proposition, which shows that the the characteristic
set of p0h has d nonvanishing curvatures.

Proposition 4.7 ([4, Proposition 4.16]). Let C be a fixed annulus in Rd. For any
0 < δ < 1 there exist m0 > 0, h0 > 0 such that

sup
(t,x,ξ,h)∈I×Rd×(C×(0,h0]

∣∣det ∂2ξSδj(γ)(t, x, ξ)
∣∣ ≥ m0.

Calling Sj, Sh are, respectively, the propagator of Lj, Lh, we are now in position
to apply Theorem 2.9 to derive dispersive estimates for Sh.

Proposition 4.8. For any symbol χ ∈ S0
λ satisfying for all z ∈ Rd, suppχ(z, ·) ⊂

λC2 we have

(4.39)
∥∥Sh(t, t0)

(
χ(z,Dz)f

)∥∥
L∞ . h̃−

d
2 |t− t0|−

d
2 ‖f‖L1 ,

for all t, t0 ∈ [0, 1] and 0 < h̃ ≤ h̃0.
If in addition, χ(z,Dz) : L

2 → L2 then for any r ∈ [2,∞] there holds by interpolation

(4.40)
∥∥Sh(t, t0)

(
χ(z,Dz)f

)∥∥
Lr . h̃−d( 1

2
− 1

r
) |t− t0|−d( 1

2
− 1

r
) ‖f‖Lr′ .

where r′ is the conjugate exponent of r, i.e., 1
r +

1
r′ = 1.

Proof. We have seen that p0h ∈ λS2
λ. On the other hand, ϕ̃ ≡ 1 in C4, Propo-

sition 4.7 then gives

sup
(t,x,ξ,h)∈I×Rd×C4×(0,h0]

∣∣det
(
∂2ξSδj(γ)(t, x, ξ)ϕ̃(ξ)

)∣∣ & 1.

Remark that (4.11) implies |M0(y)| ≥ c0 for all y ∈ Rd (by choosing T small enough
as explained after Proposition 4.1). Consequently,

sup
(t,x,ξ,h)∈I×Rd×(λC3)×(0,h0]

∣∣det ∂2ξ p0h
∣∣ & λ−d

if c3 < c4 is chosen appropriately. In other word, condition (A) in Theorem 2.9 is
fulfilled with c = c3 and thus the Proposition follows. �

Let ϕ1 be a smooth function verifying

suppϕ1 ⊂ {(2c2)−1 ≤ |ξ| ≤ 2c2}, ϕ1 ≡ 1 in {(2c1)−1 ≤ |ξ| ≤ 2c1}.

Lemma 4.9. For f(t, z) = g(t,X(t, h̃z)) we have

(4.41) (ϕ1(hDx)g) (t,X(t, h̃z)) = ϕ∗
h(z,Dz)f(t, z)− iOp(r2h)f(t, z),

with

ϕ∗
h(z, ξ) = ϕ1

(
M0(h̃z)h̃ξ

)
,(4.42)

r2h(z, z
′, ξ) =

∫ 1

0
∂ξ∂z′ϕ1

(
M(h̃z, h̃[z, z′]s)h̃ξ

)
J
(
h̃z, h̃[z, z′]s

)
ds.(4.43)

Moreover, for every (α,α′, ξ) ∈ (Nd)3 there hold
∣∣∣∂αz ∂βξ ϕ∗

h(z, ξ)
∣∣∣ .α,β h̃

−(2δ−1)+|β|1
{h̃|ξ|∼1}

,(4.44)
∣∣∣∂αz ∂α

′

z′ ∂
β
ξ r

2
h(z, z

′, ξ)
∣∣∣ .α,α′,β h̃

2−2δ(1−r0)−(2δ−1)(|α|+|α′ |)+|β|1
{h̃|ξ|∼1}

.(4.45)
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Proof. The formulas (4.41) and (4.42), (4.43) are derived along the same lines

as in paragraph 4.2, 4.3 where we performed the change of variables x = X(t, h̃z)
to derive (4.36).
1. Proof of (4.44).
Observe first that

∂βξ ϕ
∗
h(z, ξ) = (∂γϕ1)

(
M0(h̃z)h̃ξ

)(
M0(h̃z)

)γ
h̃|β|

where |γ| = |β|. Next, Lemma 4.2 implies for every α ∈ Nd,
∣∣∣∂αz (∂γϕ1)

(
M0(h̃z)h̃ξ

)∣∣∣+
∣∣∣∂αz
(
M0(h̃z)

)γ∣∣∣ . h̃−(2δ−1)|α|,

and thus (4.44) follows.
2. For (4.45) one proceeds exactly as in the proof of Lemma 4.5. �

Corollary 4.10. If g is spectrally supported in the annulus 1
hC1 then for any r ∈

[2,∞] we have

(4.46)
∥∥∥Sh(t, t0)

(
g ◦X(t0, h̃z)

)∥∥∥
Lr

. h̃−d( 2
r′
− 1

2
) |t− t0|−d( 1

2
− 1

r
) ‖g‖Lr′

+
∥∥∥S(t, t0)Op(r2h)

(
g ◦X(t0, h̃z)

)∥∥∥
Lr
,

for all t, t0 ∈ [0, 1] and 0 < h̃ ≤ h̃0.

Proof. We first apply the identity (4.41) at t = t0 and notice that ϕ1(hξ) = 1
if ξ ∈ 1

hC1 to have

g ◦X(t0, h̃z) = ϕ∗
h(z,Dz)

(
g ◦X(t0, h̃z)

)
(z) − iOp(r2h)

(
g ◦X(t0, h̃z)

)
(z).

The estimate (4.44) implies that ϕ∗
h ∈ S0

λ ∩ S0
1, 1

2

(λ = h̃−1), so the estimate (4.40)

applied to χ = ϕ∗
h and f(z) = g ◦X(t0, h̃z) gives for r ∈ [2,∞]

∥∥∥Sh(t, t0)
(
g ◦X(t0, h̃z)

)∥∥∥
Lr

. h̃−d( 1
2
− 1

r
) |t− t0|−d( 1

2
− 1

r
)
∥∥∥g ◦X(t0, h̃z)

∥∥∥
Lr′

+
∥∥∥S(t, t0)Op(r2h)

(
g ◦X(t0, h̃z)

)∥∥∥
Lr
.

Finally, since X is Lipschitz we have∥∥∥g ◦X(t0, h̃z)
∥∥∥
Lr′

. h̃−
d
r′ ‖g‖Lr′ ,

from which we conclude the proof. �

To control the right-hand side of the estimate in the preceding Corollary, we use the
following Lemma, whose proof is identical to that of Lemma 3.4.

Lemma 4.11. For any µ ∈ R, the operators Sh(t, s), Sj(t, s) are bounded on Hµ(Rd)
uniformly in t, s ∈ I .

Henceforth, we choose ε0 > 0 arbitrarily small and

(4.47) r1 =
1

6
; r0 =

2

3
+ ε0 when d = 1, r0 = 1 when d = 2.

so that

2δ(1 − r0) =
1

2
− 3

2
ε0, 2δ(2 − r0) = 2− 3

2
ε0 when d = 1,

2δ(1 − r0) = 0, 2δ(2 − r0) =
3

2
when d = 2

27



and (4.27) is fulfilled.
The next proposition proves what we called “pseudo-dispersive estimates” above.

Proposition 4.12. If Ljuj(t, x) = 0 and uj(t), t ∈ [0, T ] are spectrally supported

in 1
hC1 then for any t0 ∈ [0, T ] and r ∈ [2,∞] we have

‖uj(t)‖Lr . h̃−d( 2
r′
− 1

2
) |t− t0|−d( 1

2
− 1

r
) ‖uj(t0)‖Lr′ + h−

d
4 ‖uj(t0)‖L2

where r = ∞ when d = 1 and r ∈ [2,∞) when d = 2.

Proof. First, equation (4.38) implies that wh(t, z) := uj(t,X(t, h̃z)) satisfies

wh(t) = Sh(t, t0)wh(t0)−
∫ t

t0

S(t, s)
(
Oph(r

1
h)
)
wh(s)ds =: (1) + (2).

Applying Corollary 4.10 to g(x) = uj(t0, x) and then using the Sobolev embeddings

H
d
2
+ε →֒ L∞, H

d
2 →֒ Lr, ∀r ∈ [2,∞)

together with Lemma 4.11 one gets

‖(1)‖Lr . h̃−d( 2
r′
− 1

2
) |t− t0|−d( 1

2
− 1

r
) ‖uj(t0)‖L1 +

∥∥Op(r2h)wh(t0)
∥∥
H

d
2+εr

where

εr = 0, if r ∈ [2,∞), εr =
3

2
ε0, if r = ∞.

The estimate (4.45) gives r2h ∈ S
−2+2δ(1−r0)

1, 1
2
, 1
2

, hence

∥∥Op(r2h)wh(t0)
∥∥
H

d
2+εr

. ‖wh(t0)‖
H

d
2+εr−2+2δ(1−r0)

.

Similarly, since r1h ∈ S
−1+2δ(1−r0)

1, 1
2
, 1
2

one deduces with the aid of Lemma 4.11

‖(2)‖Lr .

∫ t

t0

‖wh(s)‖
H

d
2+εr−1+2δ(1−r0)

ds.

Putting together the estimates above, one obtains

‖wh(t)‖Lr . h̃−d( 2
r′
− 1

2
) |t− t0|−d( 1

2
− 1

r
) ‖uj(t0)‖Lr′ +

∫ t

t0

‖wh(s)‖
H

d
2+εr−1+2δ(1−r0)

ds.

When d = 1, r = ∞, d
2 + εr − 1 + 2δ(1 − r0) = 0 and since X(t, ·) ∈ W 1,∞(Rd) we

have for all s ∈ [t0, t]

‖wh(s)‖
H

d
2+εr−1+2δ(1−r0)

. h̃−
d
2 ‖uj(s)‖L2 .

When d = 2, r ∈ [2,∞), d
2 + εr − 1 + 2δ(1 − r0) = 0 and thus by Lemma 4.11 it

holds for all s ∈ [t0, t] that

‖wh(s)‖
H

d
2+εr−1+2δ(1−r0)

ds . h̃−
d
2 ‖uj(s)‖L2 ds . h̃−

d
2 ‖uj(s)‖L2 .

On the other hand, by Lemma (4.11), ‖uj(s)‖L2 . ‖uj(t0)‖L2 for all s ∈ [t0, t].
Finally, noticing that

‖uj(t)‖Lr . h̃
1
r ‖wh‖Lr . ‖wh‖Lr

we conclude the proof. �

Remark 4.13. Strictly speaking, the preceding estimate is not a standard dispersive
estimate since it does not show decay in time on the right hand side. The appearance

of the non-decaying term h−
d
4 ‖uj(t0)‖L2 is however harmless for the purpose of

proving Strichartz estimate in the next paragraph.
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4.5. Strichartz estimates.

Proposition 4.14. Suppose that Ljuj(t, x) = 0 and uj(t), t ∈ I := [0, T ] is spec-

trally supported in 1
hC1. Then,

(i) when d = 1 we have

(4.48) ‖uj‖L4(I;L∞) . h−
3
8 ‖uj |t=0‖L2 ,

(ii) when d = 2 we have with q > 2, 2
q +

2
r = 1

(4.49) ‖uj‖Lq(I;Lr) . h
1
4
− 1

r′ ‖uj |t=0‖L2 ;

consequently, for any s0 ∈ R and ε > 0

(4.50) ‖uj‖
L2+ε(I;W s0−

3
4−ε,∞)

. ‖uj|t=0‖Hs0 .

Proof. For the two estimates (4.48), (4.49), using the TT ∗ argument, one need
to show that

K :=

∫

I
S(t, s)ds : Lq′(I;Lr′) → Lq(I, Lr)

with norm bounded by hM whereM = −3
4 when d = 1 and M = 1

2 − 2
r′ when d = 2.

Moreover, since uj is spectrally supported in 1
hC1, it suffices to prove

(4.51) ‖Kf‖Lq(I,Lr) . hM ‖f‖Lq′ (I;Lr′)

for every f spectrally supported in 1
hC1.

In view of the ”pseudo dispersive estimate” in Proposition 4.12,

‖K(t)f‖Lr . (1) + (2), with

(1) = h−d( 1
r′
− 1

4
)

∫

I
|t− s|−d( 1

2
− 1

r
) ‖f(s)‖Lr′ ds,

(2) = h−
d
4

∫

I
‖f(s)‖L2 ds.

(i) d = 1, (q, r) = (4,∞). By the Hardy-Littlewood-Sobolev inequality, ‖(1)‖Lq
t
is

bounded by the right-hand side of (4.51). On the other hand, (2) can be estimated
using Sobolev embedding as

(2) . h−
d
4h−

d
2 ‖f(s)‖L1 ds . h−

3d
4 ‖f‖L1L1 ,

which concludes the proof of (4.48).
(ii) d = 2, q > 2, 2

q +
2
r = 1. Again, the Hardy-Littlewood-Sobolev inequality yields

‖(1)‖Lq . h−d( 1
r′
− 1

4
) ‖f‖Lq′ (I;Lr′) .

For (2) one uses the embedding Lr′ →֒ L2, r′ ∈ [1, 2)

‖f(s)‖L2 . h
d
2
− d

r′ ‖f(s)‖Lr′ ,

which implies

(2) . h
d
4
− d

r′ ‖f‖L1Lr′ .

The estimate (4.49) then follows.
Now, for any ε > 0, let q = 2 + ε then

2

r
=

ε

ε+ 2
,

1

4
− 1

r′
= −3

4
+

ε

2(ε + 2)
.
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Multiplying both sides of (4.49) by h−s0 yields

(4.52) ‖uj‖
Lq(I;W

s0+
3
4− ε

2(ε+2)
,r
)
. ‖uj|t=0‖Hs0 .

Writing s0 − 3
4 +

ε
2(ε+2) = a+ b, a = s0 − 3

4 − ε, b = ε+ ε
2(ε+2) >

d
r we obtain (4.50)

from (4.52) via the Sobolev embedding W a+b,r(Rd) →֒ W a,∞ if b > d
r . �

Recall from (4.1) and (4.47) that we have required

(4.53) V ∈ L∞(I;W ρ,∞(Rd)), γ(·, ξ) ∈ L∞(I;W
2
3
,∞(Rd))

where ρ = 5
3 + ε0, ε0 > 0 when d = 1 and ρ = 2 when d = 2.

Theorem 4.15. Let s0 ∈ R, I = [0, T ], T ∈ (0,+∞) and u ∈ L∞(I,Hs0(Rd)) be a
solution to the problem

∂tu+ TV · ∇u+ iTγu = f, u|t=0 = u0

where γ =
√
λa as defined in Theorem 2.2.

1. When d = 1, if for some ε0 > 0, V ∈ L∞(I,W
5
3
+ε0,∞(Rd)), η ∈ L∞(I,W

5
3
,∞(Rd))

then
‖u‖

L4(I;W s0−
3
8 ,∞)

.
∥∥u0
∥∥
Hs0

+ ‖f‖L1(I,Hs0 ) .

2. When d = 2, if V ∈ L∞(I,W 2,∞(Rd)), η ∈ L∞(I,W
5
3
,∞(Rd)) then for every

ε > 0
‖u‖

L2+ε(I;W s0−
3
4−ε,∞)

.ε

∥∥u0
∥∥
Hs0

+ ‖f‖L1(I,Hs0 ) .

In the above estimates, the dependent constants depend on a finite number of semi-
norms of the symbols V and γ.

Proof. If u is a solution to (2.3) with data u0 then by (4.7), the dyadic piece
∆ju is a solution to Lj∆ju = Fj with Fj given by (4.8) spectrally supported in
1
hC1 if c1 large enough. Under the regularity of V, γ given in 1. and 2., condition
(4.53) is fulfilled. Using Duhamel’s formula and applying the Strichartz estimates
in Proposition 4.14 we deduce that

(4.54) ‖∆ju‖
Lq(I;W s0−

d
2+µ,∞)

.
∥∥∆ju

0
∥∥
Hs0

+ ‖Fj‖L1(I;Hs0 ) ,

where

q = 4, µ =
1

8
, when d = 1; q = 2 + ε, µ =

1

4
− ε, when d = 2.

We are left with the estimate for Fj = F 1
j +Rj+F

3
j where F k

j are given by (4.3), (4.8).
Defining

∆̃j =
∑

|k−j|≤3

∆k,

it follows from (4.5) that

‖Rj‖Hs0 . ‖∆̃ju‖Hs0 .

Using the symbolic calculus Theorem A.4 one obtains without any difficulty that
∥∥F 1

j

∥∥
L1(I;Hs0 )

. ‖∆̃ju‖L1(I;Hs0 ).

For F 3
j we use (3.22) to obtain that: if

V ∈ L∞(I,W
4
3
,∞(Rd)), η ∈ L∞(I,W

5
3
,∞(Rd))

then

(4.55)
∥∥F 3

j

∥∥
L1(I;Hs0)

. ‖∆ju‖L1(I;Hs0 ) + ‖∆jf‖L1(I;Hs0 ) .
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Finally, putting together the above estimates we conclude from (4.54) that

‖u‖
Lq(I;W s0−

d
2+µ,∞)

≤
∑

j

‖∆ju‖
Lq(I;W s0−

d
2+µ,∞)

.
∥∥u0
∥∥
Hs0

+ ‖u‖L1(I;Hs0 ) + ‖f‖L1(I;Hs0 )

.
∥∥u0
∥∥
Hs0

+ ‖f‖L1(I;Hs0 ) ,

where in the last inequality, we have used the energy estimate

‖u‖L∞(I;Hs0 ) .
∥∥u0
∥∥
Hs0

+ ‖f‖L1(I;Hs0) .

The proof is complete. �

According to Remark 2.3, after having the estimate for u-solution to (2.3) one can
use the symbolic calculus to obtain the desired estimates for the original solution
(η, ψ,B, V ) as stated in Theorem 1.2.

Acknowledgment. This work was partially supported by the labex LMH through
the grant no ANR-11-LABX-0056-LMH in the ”Programme des Investissements
d’Avenir”. I sincerely thank Prof. Nicolas Burq and Prof. Claude Zuily for many
helpful discussions and encouragements. I thank Prof. Daniel Tataru for suggest-
ing me his joint work [19] with Herbert Koch, with whom I shared an interesting
discussion.

Appendix A.

Definition A.1. 1. (Littlewood-Paley decomposition) Let ψ ∈ C∞
0 (Rd) be such that

(A.1) ψ(θ) = 1 for |θ| ≤ 1, ψ(θ) = 0 for |θ| > 2.

Then we define χ(θ, η) =
∑+∞

k=0 ψk−3(θ)ϕk(η), where

ψk(θ) = κ(2−kθ) for k ∈ Z, ϕ0 = κ0, and ϕk = ψk − ψk−1 for k ≥ 1.

Given a temperate distribution u and an integer k in N we also introduce Sku and
∆ku by Sku = ψk(Dx)u and ∆ku = Sku − Sk−1u for k ≥ 1 and ∆0u = S0u. Then
we have the formal decomposition

(A.2) u =
∞∑

k=0

∆ku.

2. (Hölder spaces) For k ∈ N, we denote by W k,∞(Rd) the usual Sobolev spaces.
For ρ = k + σ, k ∈ N, σ ∈ (0, 1) denote by W ρ,∞(Rd) the space of functions
whose derivatives up to order k are bounded and uniformly Hölder continuous with
exponent σ.

Let us review notations and results about Bony’s paradifferential calculus (cf. [7],
[22]).

Definition A.2. 1. (Symbols) Given ρ ∈ [0,∞) and m ∈ R, Γm
ρ (Rd) denotes the

space of locally bounded functions a(x, ξ) on Rd×(Rd\0), which are C∞ with respect
to ξ for ξ 6= 0 and such that, for all α ∈ Nd and all ξ 6= 0, the function x 7→ ∂αξ a(x, ξ)

belongs to W ρ,∞(Rd) and there exists a constant Cα such that,

(A.3) ∀ |ξ| ≥ 1

2
,
∥∥∂αξ a(·, ξ)

∥∥
W ρ,∞(Rd)

≤ Cα(1 + |ξ|)m−|α|.
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Let a ∈ Γm
ρ (Rd), we define the semi-norm

(A.4) Mm
ρ (a) = sup

|α|≤2(d+2)+ρ
sup

|ξ|≥1/2

∥∥∥(1 + |ξ|)|α|−m∂αξ a(·, ξ)
∥∥∥
W ρ,∞(Rd)

.

2. (Paradifferential operators) Given a symbol a, we define the paradifferential op-
erator Ta by

(A.5) T̂au(ξ) = (2π)−d

∫
χ(ξ − η, η)â(ξ − η, η)ρ(η)û(η) dη,

where â(θ, ξ) =
∫
e−ix·θa(x, ξ) dx is the Fourier transform of a with respect to the

first variable; χ and ρ are two fixed C∞ functions such that:

(A.6) ρ(η) = 0 for |η| ≤ 1

5
, ρ(η) = 1 for |η| ≥ 1

4
,

and χ(θ, η) is defined by χ(θ, η) =
∑+∞

k=0 κk−3(θ)ϕk(η).

We remark that the cut-off function χ in the preceding definition has the following
properties for some 0 < ε1 < ε2 < 1

(A.7)

{
χ(η, ξ) = 1, for |η| ≤ ε1(1 + |ξ),
χ(η, ξ) = 0, for |η| ≥ ε2(1 + |ξ).

Definition A.3. Letm ∈ R. An operator T is said to be of order m if, for all µ ∈ R,
it is bounded from Hµ to Hµ−m.

Symbolic calculus for paradifferential operators is summarized in the following the-
orem.

Theorem A.4. (Symbolic calculus) Let m ∈ R and ρ ∈ [0,∞).
(i) If a ∈ Γm

0 (Rd), then Ta is of order m. Moreover, for all µ ∈ R there exists a
constant K such that

(A.8) ‖Ta‖Hµ→Hµ−m ≤ KMm
0 (a).

(ii) If a ∈ Γm
ρ (Rd), b ∈ Γm′

ρ (Rd) then TaTb − Ta♯b is of order m+m′ − ρ with

a♯b :=
∑

|α|<ρ

(−i)α
α!

∂αξ a(x, ξ)∂
α
x b(x, ξ).

Moreover, for all µ ∈ R there exists a constant K such that

(A.9) ‖TaTb − Ta♯b‖Hµ→Hµ−m−m′+ρ ≤ KMm
ρ (a)Mm′

0 (b) +KMm
0 (a)Mm′

ρ (b).

(iii) Let a ∈ Γm
ρ (Rd). Denote by (Ta)

∗ the adjoint operator of Ta and by a the
complex conjugate of a. Then (Ta)

∗ − Tb is of order m− ρ with

b :=
∑

|α|<ρ

(−i)α
α!

∂αξ ∂
α
x ā(x, ξ).

Moreover, for all µ there exists a constant K such that

(A.10) ‖(Ta)∗ − Tb‖Hµ→Hµ−m+ρ ≤ KMm
ρ (a).
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