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Coupling compositional gas liquid Darcy and free gas flows at

porous and free flow domains interface

R. Masson∗, L. Trenty†, Y. Zhang‡

June 11, 2016

Abstract

This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and
free gas flows at the interface between a porous medium and a free-flow domain. This model
is compared to the reduced model introduced in [6] using a 1D approximation of the gas free
flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow
domain is approximated by a two point flux approximation based on a low-frequency diagonal
approximation of a Steklov-Poincaré type operator. The splitting algorithm and the reduced
model are applied in particular to the modelling of the mass exchanges at the interface between
the storage and the ventilation galleries in radioactive waste deposits.

1 Introduction

Flow and transport processes in domains composed of a porous medium and an adjacent free-flow
region appear in a wide range of applications. It includes for example, industrial drying applications
such as the production of building materials, food processing, and wood and paper production,
or also, environmental applications such as land-atmospheric interaction and soil evaporation and
evapotranspiration. In this article we will focus on the design of efficient algorithms to simulate
the mass exchanges at the interface between the porous and free-flow regions, assuming a fixed
temperature in the porous and free-flow domains. The effect of the vaporization on the temperature
is neglected and will be considered in a future work. Typically in drying processes, the porous medium
initially saturated with the liquid phase is dried by suction in the neighbourhood of the interface
between the porous and free-flow domains. The gas phase penetrates the porous domain and the
liquid phase is vaporized in the free-flow domain. In this work, our focus is not only on the drying of
the porous medium but also on the evolution of the gas composition in the free-flow region. This is
motivated by our main interest for such models to the prediction of the mass exchanges occurring at
the interface between the radioactive waste deep geological repositories and the ventilation excavated
galleries. In this application, the ventilation galleries must be proved to remain safe during the entire
period of reversibility of the storage fixed to 100 years in France by the national savety authorities.

To model such physical processes, one needs to account in the porous medium for the flow of the
liquid and gas phases including the vaporization of the water component in the gas phase and the
dissolution of the gaseous components in the liquid phase. In the free-flow region, a single phase gas
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free flow is considered assuming that the liquid phase is instantaneously vaporized at the interface.
This gas free flow has to be compositional to account for the change of the relative humidity in the
free-flow region which has a strong feedback on the liquid flow rate at the interface.

If many works have been performed to model and discretize the coupling of single phase Darcy
and free flows (see the review [14]), there are much fewer works on the coupling of a two phase
liquid gas compositional Darcy flow with a single phase compositional gas free flow. Such a coupled
model has been recently proposed in [24, 3] using matching conditions at the interface between the
porous-medium and the free-flow regions. These coupling conditions state the continuity of the mo-
lar normal flux of each component taking into account the instantaneous vaporization of the liquid
phase, the continuity of the gas molar fractions, and the liquid gas thermodynamical equilibrium. In
our case, the Beavers-Joseph condition [4] used in [24, 3] is replaced by a no slip condition due to
the low permeability of the porous medium.

The main objective of this article is to design an efficient algorithm to solve this coupled problem.
Sequential algorithms based on Dirichlet-Neumann boundary conditions at the interface (see [12, 10]
and the review [11]) are frequently used for solving drying problems. As mentioned in [12, 10], the
stability of sequential algorithms requires very small time steps at the scale of the free flow leading
to very large CPU times. In order to obtain an efficient algorithm, one needs to be able to use time
steps at the scale of the porous medium with a quasi-stationary computation of the free flow at each
time step. For this purpose, fully coupled algorithms such as the ones developed in [3, 17, 23] have
been introduced, but they lead to non-linear and linear systems which are difficult and expensive to
solve since they do not take advantage of the different levels of coupling in the non-linear system.
Alternatively in [27], for a related but different problem coupling the Richards equation in the porous
medium and the Stokes equation for the liquid phase in the free flow region, the authors introduce a
splitting algorithm using a small time step in the free-flow region and a large time step in the porous
medium.

The algorithm developed in this article is based on a splitting between the strongly and weakly
coupled equations and unknowns of the full system. It can be used either as a fixed point algorithm
leading to the fully coupled solution at convergence or simply as a sequential algorithm which will
be shown to provide a sufficient accuracy compared with the fully coupled solution. Our choice of
the splitting of the full system is based on the physical understanding of the strong and weak cou-
plings in the system. On the one hand, the water molar fraction in the free-flow region is strongly
coupled to the liquid pressure and liquid flux at the porous and free-flow domains interface due to
the liquid gas thermodynamical equilibrium. On the other hand, the gas velocity perturbation in
the free-flow domain, which is induced by the coupling with the porous medium, is small compared
with the forced convection velocity. Consequently, it has a weak feedback on the porous medium.
Therefore, the idea of our splitting strategy is to solve, in a first step, the porous-medium equations
coupled to the convection-diffusion equations for the gas molar fractions in the free-flow domain
at fixed velocity and pressure in the free-flow domain. Then, the total molar normal flux at the
interface is computed and used in the second step of the algorithm to compute the velocity and
pressure in the free-flow domain solving the Navier-Stokes equations. This splitting strategy allows
to use a time step in both domains at the time scale of the porous medium. Compared with fully
coupled approaches, it leads to simpler and smaller linear and non-linear systems to be solved at
each time step with the possibility to use the best available algorithm for each subproblem separately.

The second objective of this paper is to improve the reduced model introduced in [6] based on
a 1D approximation of the flow in the free-flow domain. It is motivated by the large longitudinal
dimension of the ventilation galleries compared with their diameter allowing to reduce the model in
the gallery to a 1D free flow. In the spirit of Convective Mass Transfer Coefficients CMTCs (see the
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review [11] and the references therein for a discussion about CMTCs), the model includes on the free-
flow side a Two Point Flux Approximation (TPFA) of the diffusion fluxes for the gas molar fractions
at the interface. In [6], the practical computation of the TPFA transmissibility at the interface is
not discussed and just said to be related to the convection-diffusion boundary layer thickness in the
free-flow domain.

In this article, a model is proposed to compute this boundary layer thickness parameter or equiv-
alently the TPFA transmissibility for the diffusion flux. It plays an essential role in the reduced
model in order to obtain a good approximation of the liquid evaporation rate at the interface since
it concentrates at the interface all the information on the free-flow velocity and diffusivity. In the
framework of drying problems, the recent review [11] provides a discussion about CMTCs which are
usually obtained using empirical correlations with the gas velocity not taking into account their spa-
tial variations nor the complexity of the free-flow domain geometry. They are also often obtained by
an analogy with Convective Heat Transfer Coefficients which is not always valid (see the comments
in [11]). In this article, the computation of the boundary layer thickness parameter will be based
on a diagonal low-frequency approximation of a Steklov-Poincaré type operator for the stationary
convection-diffusion equation at fixed velocity. It will lead to a boundary layer thickness depending
on the position x at the interface. In addition, our computation will take into account the coupling
with the 1D free flow in the gallery avoiding the use of a fixed reference gas molar fraction as it is
the case for CMTCs (see [11]).

In order to assess the efficiency of the splitting algorithm and the accuracy of the reduced model, a
simple 2D setting exhibited in Figure 2 is used. In the porous medium Ωp, we consider a compositional
liquid gas Darcy flow using the phase pressures and component fugacities formulation introduced in
[22]. In the free-flow domain Ωg, the turbulent nature of the flow is taken into account using an
algebraic model leading to the computation of a mean turbulent profile. This longitudinal mean
turbulent profile is defined as a stationary solution of the RANS model (Reynolds Averaged Navier-
Stokes, see e.g. [7, 5]) without the coupling with the porous-medium flow. Then, this mean turbulent
profile ut provides the turbulent dynamic viscosity µt and the turbulent diffusivity Dt that are used
to compute the velocity, pressure and gas molar fraction in Ωg solving the RANS compositional
model at fixed turbulent viscosity µt and diffusivity Dt. The turbulent viscosity and diffusivity can
be fixed thanks to the small perturbation of the velocity and pressure induced by the coupling in
the free-flow region. Note also that the turbulent diffusivity Dt plays an essential role in the liquid
evaporation rate at the interface.

The 2D domain is discretized using a Cartesian mesh conforming at the interface and refined on
both sides of the interface Γ in order to take into account the viscous boundary layer on the gallery
side and the strong liquid pressure gradient on the porous-medium side. The space discretization
uses a Marker-And-Cell (MAC) scheme for the RANS model [16] and a cell centered finite volume
scheme for the Darcy flow in Ωp and for the convection-diffusion equations in Ωg. In both cases,
the diffusion fluxes (Darcy and turbulent diffusion terms) are approximated by a TPFA and the
convection numerical fluxes are obtained by a first order upwind scheme. The time integration uses
an implicit Euler scheme. Three test cases are considered. The first two test cases are defined by
Andra using data set from lab experiments and in accordance with the deep disposal center for
French radioactive waste project. These two test cases couple a very low permeable porous medium
with either a horizontal or a vertical gallery. The third test case considers the convective drying of
a porous medium with a much larger permeability.

The outline of the paper is the following. In Section 2, the formulation of the coupled model is
introduced using the phase pressures and component fugacities formulation in the porous medium.
Then, the splitting algorithm is described. In Section 3 the reduced model using a 1D model in
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the free-flow domain is described as well as the computation of the gas molar fraction boundary
layer thickness. In Section 4, the 2D setting for our numerical experiments is detailed as well as the
discretization in the porous medium and in the gallery. Then, the results of the three test cases are
presented and discussed.

2 Formulation of the coupled model and splitting algorithm

Let Ωp denote the porous-medium domain and Ωg the free-flow domain. The interface between the
two domains is denoted by Γ = ∂Ωp ∩ ∂Ωg .

In the following, the boundary conditions at the external boundary ∂Ωg\Γ of the free-flow domain
are considered to be independent on time to simplify the presentation. Since our model is at the
time scale of the porous medium, a quasi-stationary RANS model detailed below is used to describe
the mean turbulent flow in the free-flow domain. Hence, the dependence on time of the gas velocity,
pressure and molar fraction in the free-flow domain is only induced by the coupling with the porous
medium.

The following physical assumptions are used in order to simplify the mathematical formulation
of the coupled model and prepare the splitting algorithm. The coupling with the porous medium is
basically assumed to induce a small perturbation of the free-flow gas velocity, pressure, and molar
fraction. Hence, in the free-flow domain, the gas molar and mass densities can be assumed to be
fixed. Also, we can defined an independent on time uncoupled mean turbulent flow denoted by
(ut, pt) corresponding to the stationary solution of the RANS model obtained with a zero normal
velocity at the interface Γ. In our application, it means that we impose ut = 0 at the interface Γ since
a no slip velocity rather than the Beavers-Joseph condition is used thanks to the low permeability of
the porous medium. The turbulent closure used for the computation of the uncoupled flow (ut, pt)
defines a turbulent viscosity denoted by µt(x) from which can be obtained the turbulent diffusivity
denoted by Dt(x). Using the small perturbation assumption, it is assumed that the same turbulent
viscosity and diffusivity can be used in order to compute the coupled flow and transport RANS model
in the free-flow domain.

2.1 Formulation of the coupled model

Let α ∈ {g, l} denote the gas and liquid phases assumed to be both defined by a mixture of compo-
nents i ∈ C among which the water component denoted by e which can vaporize in the gas phase,
and a set of gaseous components j ∈ C \ {e} which can dissolve in the liquid phase. The model
is assumed to be isothermal with a fixed temperature Te. Following [22], the liquid gas Darcy flow
formulation uses the gas pressure pg, the liquid pressure pl, and the component fugacities f = (fi)i∈C
as primary unknowns, denoted by U = (pg, pl, f) in the following. In this formulation, following
[19], the component molar fractions cα = (cαi )i∈C of each phase α ∈ {g, l} are the functions cαi (U)
of U defined by inversion of the equations fα

i (c
α, pg, pl) = fi, i ∈ C, where fα

i is the fugacity of the
component i in the phase α. In addition, for α ∈ {g, l}, the phase pressure pα is extended in the
absence of the phase in such a way that the closure law

∑

i∈C c
α
i (U) = 1 is always imposed (see [22]).

The phase molar and mass densities, as well as the phase viscosities are denoted in the following by
respectively ζα(pα, cα), ρα(pα, cα), µα(pα, cα) for α ∈ {g, l}. For the sake of simplicity, for ξ = ζα, ρα,
or µα, we will use the notation ξ(U) for the function ξ(pα, cα(U)).
Finally, we define the liquid saturation as the function S l(x, pg − pl) of pc = pg − pl defined by
the inverse of the monotone graph extension of the capillary pressure function pc(x, .), and we set
Sg(x, .) = 1 − S l(x, .) (see [22]). This leads to the following set of equations for the unknowns U in
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the porous medium























φ∂tni(x,U) + div (Vi) = 0, i ∈ C on Ωp × (0, T ),

Vi =
∑

α∈{g,l}

−mα
i (x,U)K

(

∇pα − ρα(U)g
)

, i ∈ C on Ωp × (0, T ),

∑

i∈C

cαi (U) = 1, α ∈ {g, l} on Ωp × (0, T ),

(1)

with the number of mole of the component i per unit pore volume defined by

ni(x,U) =
∑

α∈{g,l}

cαi (U)ζα(U)Sα(x, pg − pl),

and the mobility of the component i in phase α defined by

mα
i (x,U) = cαi (U)ζα(U)

kα
r (x,Sα(x, pg − pl))

µα(U) .

In the free-flow domain, let us first define the uncoupled mean turbulent flow as the solution
(ut, pt) of the following stationary RANS model

{

ρgdiv
(

ut ⊗ ut

)

+ div
(

− (µg + µt) (∇ut +∇tut)
)

+∇pt = ρgg on Ωg,

div (ut) = 0 on Ωg,
(2)

with boundary condition ut = 0 at the interface Γ. In (2), µt is the turbulent viscosity which
is modelled e.g. using an algebraic turbulent model or a more advanced k − ǫ model. Note that
the turbulent viscosity µt vanishes at the interface Γ but is much larger than µg away from the
viscous boundary layer. This turbulent flow is responsible for a turbulent diffusivity denoted by Dt

and typically given by Dt =
1

Sc

µt

ρg
where Sc is the Schmidt number (see e.g. [5]). This turbulent

diffusivity, which is much larger than Dg away from the viscous boundary layer, plays an essential
role in the order of magnitude of the evaporation rate.

The coupling of the free flow with the porous-medium flow leads to the new RANS gas velocity u,
pressure p, and gas molar fraction c. Let us denote the velocity and pressure corrections with respect
to the uncoupled flow by ũ = u − ut and p̃ = p − pt. Due to our small perturbation assumption,
the densities can be assumed to be fixed and the turbulent viscosity µt and diffusivity Dt can be set
to be the functions of x provided by the uncoupled flow (ut, pt). Hence, it results that (ũ, p̃, c) are
solutions of the following RANS compositional model







































ρgdiv
(

ut ⊗ ũ+ ũ⊗ ut + ũ⊗ ũ
)

−div
(

(µg + µt) (∇ũ+∇tũ)
)

+∇p̃ = 0 on Ωg × (0, T ),

∂tci + div (Fi) = 0, i ∈ C on Ωg × (0, T ),
Fi = ciu− (Dg +Dt)∇ci, i ∈ C on Ωg × (0, T ),
∑

i∈C

ci = 1 on Ωg × (0, T ).

(3)

Note that in (3) the component molar conservations in the free-flow domain are kept transient only
in order to ease the non-linear solution of the coupled system at the start of the simulation.

At the interface Γ between the free-flow domain and the porous medium, the coupling conditions
are an adaptation to those stated in [24]. As already stated, the Beavers-Joseph condition at the
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interface Γ is replaced by a no slip condition due to the low permeability of the porous medium
in our application. The remaining conditions are the continuity of the molar normal flux for each
component i ∈ C assuming that the liquid phase is instantaneously vaporized, the continuity of the
gas molar fractions, the continuity of the normal component of the normal stress, and the liquid gas
thermodynamical equilibrium. We obtain the following interface conditions



































Vi · n = ζgFi · n, i ∈ C on Γ× (0, T ),
cgi (U) = ci, i ∈ C on Γ× (0, T ),

pg = p+ n ·
(

ρgu⊗ u− µg(∇u+∇tu)
)

n on Γ× (0, T ),
∑

i∈C

cαi (U) = 1, α ∈ {g, l} on Γ× (0, T ),

u ∧ n = 0 on Γ× (0, T ),

(4)

where n denotes the unit normal vector at the interface Γ oriented outward of the porous-medium
domain.

2.2 Splitting algorithm

In [3, 17, 23] the Darcy and free-flow unknowns corresponding in our case to U , u, p and c are solved
using a monolithic Newton algorithm at each time step of a fully implicit Euler time integration
scheme. Given the complexity of the full system, this approach naturally leads to difficulties in
solving the non-linear and linearized systems.

Alternatively, many coupling strategies simply rely on a sequential coupling algorithm of Dirichlet-
Neumann type using typically two different codes for the Darcy and free flows. This type of sequential
coupling algorithm leads to very small time steps due to the strong coupling between the liquid pres-
sure pl and the water molar fraction ce at the interface Γ which is induced by the thermodynamical
equilibrium. For example, in [12, 10], a time step of 0.1 s is reported resulting in roughly 100h of
CPU time for a few days of simulation. We refer to [11] for a recent review including a list of codes
implementing sequential or fully implicit coupling algorithms for the modelling of drying processes
at the interface between a porous medium and a free-flow domain.

Our approach is rather to split the system in two simpler subsystems at each time step of the fully
implicit Euler time integration scheme. In a first step, for given u and p in Ωg, the strongly coupled
unknowns U in Ωp, c in Ωg, and (u·n) at Γ are computed using a Newton algorithm solving the Darcy
flow in the porous medium together with the convection-diffusion equations in the free-flow domain
and part of the interface conditions. The gas velocity u and gas pressure p in Ωg are then computed
in a second step solving the momentum and divergence free equations using step 1 normal velocity
(u ·n) at the interface Γ. The two steps 1 and 2 are iterated, as a fixed point algorithm for the normal
velocity (u ·n) at the interface Γ, until the stopping criteria ‖1−

∑

i∈C ci‖L∞(Ωg) ≤ ǫ is satisfied for a
given accuracy ǫ. The convergence of this fixed point method is expected to be fast due to the weak
dependence of the unknowns U , c, and (u · n) on the velocity and pressure perturbations ũ and p̃.
We will see in the numerical Section 4 that, in practice, the sequential version of this algorithm, i.e.
a single fixed point iteration, suffices to obtain an accurate result. Since the linear and nonlinear
systems of step 1 and step 2 subproblems are smaller and easier to solve separately than the fully
coupled systems, it results that our splitting algorithm is more efficient than fully coupled algorithms.

We detail below the two steps of the splitting algorithm at a given time step ∆tn between
times tn−1 and tn, which are iterated until convergence of the gas molar fractions such that ‖1 −
∑

i∈C ci‖L∞(Ωg) ≤ ǫ. An Euler implicit time integration is used in both domains. The unknowns at
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time tn are denoted with the n superscript. The fixed point iteration count is denoted by k and the
splitting algorithm is initialized with the solution from the previous time step.

Step 1: it computes Un,k in the porous medium, cn,k in the free-flow domain and (u · n)n,k at the
interface, at fixed velocity un,k−1 and pressure pn,k−1 in the free-flow domain, as the solution of the
system coupling the Darcy flow model







































φ
ni(x,Un,k)− ni(x,Un−1)

∆tn
+ div

(

V
n,k
i

)

= 0, i ∈ C on Ωp,

V
n,k
i =

∑

α∈{g,l}

−mα
i (x,Un,k)K

(

∇pα,n,k − ρα(Un,k)g
)

, i ∈ C on Ωp,

∑

i∈C

cαi (Un,k) = 1, α ∈ {g, l} on Ωp,

(5)

with the convection-diffusion equations in the free-flow domain















cn,ki − cn−1
i

∆tn
+ div

(

F
n,k
i

)

= 0, i ∈ C on Ωg,

F
n,k
i = cn,ki un,k−1 − (Dg +Dt)∇cn,ki , i ∈ C on Ωg,

F
n,k
i · n = cn,ki (u · n)n,k −Dg∇cn,ki · n, i ∈ C on Γ.

(6)

and the following subset of the interface conditions



























V
n,k
i · n = ζgFn,k

i · n, i ∈ C on Γ,

cgi (Un,k) = cn,ki , i ∈ C on Γ,

pg,n,k = pn,k−1 + n ·
(

ρgun,k−1 ⊗ un,k−1 − µg(∇un,k−1 +∇tun,k−1)
)

n on Γ,
∑

i∈C

cαi (Un,k) = 1, α ∈ {g, l} on Γ.

(7)

Note that in (6) and (7), the normal gas velocity (u · n)n,k is used for the convection flux at the
interface Γ and not un,k−1 · n. Note also that, in (6), the conservative correction of the normal flux
at the interface Γ is to be understood as a correction at the discrete level. To be rigorous at the
continuous level, one would need to use a non conservative formulation. Both choices are equivalent
at convergence and we found that the first choice was more efficient.

Step 2: Given the normal gas velocity (u · n)n,k at the interface Γ computed at step 1, step 2
computes the gas velocity un,k = ut + ũn,k and the gas pressure pn,k = pt + p̃n,k as the solution at
time tn of the following RANS model























ρgdiv
(

ut ⊗ ũn,k + ũn,k ⊗ ut + ũn,k ⊗ ũn,k
)

−div
(

(µg + µt)(∇ũn,k +∇tũn,k)
)

+∇p̃n,k = 0 on Ωg,

div(ũn,k) = 0 on Ωg,
un,k · n = (u · n)n,k on Γ.

(8)

3 Reduced model

In this section, the free-flow domain Ωg is assumed, to simplify the notations, to be the cylindrical
domain (0, L)× S of length L and of section S with S an open simply connected subdomain of R2.
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Figure 1: Example of reduced model geometry exhibiting the cylindrical free-flow domain Ωg of
section S and lengh L, the porous-medium domain Ωp, and the interface Γ. The curvilinear coordinate
along ∂S is denoted by s.

The porous medium Ωp shares the interface Γ = (0, L) × ∂S with the free-flow domain Ωg. The
curvilinear coordinate along ∂S is denoted by s (see Figure 1). The extension of what follows to
more complex free-flow domains in diffeomorphism with a cylindrical domain is straightforward.

Assuming L large compared to the diameter of the section S, a reduced model has been introduced
in [6] using a 1D approximation of the free-flow and transport model. The good approximation
properties of this reduced model rely crucially on the choice of the transmissibility Dg

δ(x)
at the interface

Γ. This transmissibility is used to approximate by a TPFA the diffusion fluxes for the gas molar
fractions in the free-flow domain at the interface Γ. In [6], the practical computation of δ is not
discussed and just said to be related to the convection-diffusion boundary layer thickness in the
free-flow domain. In this section, the reduced model of [6] is briefly recalled in subsection 3.1.
Then, subsection 3.2 introduces a model to compute δ(x). The role of δ(x) is to concentrate at the
interface Γ the convection diffusion operator in the free-flow domain i.e. all the information about
the turbulent velocity and diffusivity. It will be shown to be exactly the definition of a Steklov-
Poincaré type operator. Since the exact Steklov-Poincaré operator is time dependent and also non
local, the practical definition of δ will be based on (i) an independent on time approximation of the
convection-diffusion operator, and (ii) on a diagonal low-frequency approximation of the Steklov-
Poincaré operator related to this approximate convection-diffusion operator.

3.1 Reduced 1D model in the free-flow domain

The reduced model uses in the free-flow domain, the following mean values in the section S depend-
ing on the longitudinal coordinate x and on time t: the pressure p, the longitudinal velocity u, and
the gas molar fraction c. At the interface Γ, the gas molar fraction cannot be approximated by the
section mean value c due to the convection-diffusion boundary layer. It is given by the gas molar
fraction on the porous medium side cg(U) from the gas molar fraction continuity at the interface.
The gas pressure jump at the interface can be neglected due to the small gas viscosity and to the
small flow rate between the porous medium and the free-flow domain. It results that the free-flow
pressure p of the reduced model can be approximated by the porous medium pressure pg at the
interface. The last unknown of the reduced model is the normal gas velocity at the interface Γ as a

8



function of x ∈ Γ and time t. This normal velocity is denoted by (u · n) with the normal oriented
outward of the porous medium.

The reduced model system amounts to find the porous-medium unknowns U(x, t) on Ωp× (0, T ),
and the free-flow domain unknowns u(x, t), p(x, t), c(x, t) on (0, L)×(0, T ) and (u·n)(x, t) on Γ×(0, T )
satisfying the Darcy flow system (1), the following conservation equations along the free-flow domain























∂tci + ∂x(ciu) =
1

|S|ζg
∫

∂S

Vi · n ds, i ∈ C on (0, L)× (0, T ),
∑

i∈C

ci = 1 on (0, L)× (0, T ),

−∂xp = fpd(u) on (0, L)× (0, T ),

(9)

coupled with the following modified system at the interface Γ


















Vi · n = ζg
(

cgi (U)(u · n)+ + ci(u · n)− +
Dg

δ
(cgi (U)− ci)

)

, i ∈ C on Γ× (0, T ),
∑

i∈C

cαi (U) = 1, α ∈ {g, l} on Γ× (0, T ),

pg = p, on Γ× (0, T ),

(10)

In (10), the notation a+ = max(a, 0) and a− = min(a, 0) has been used. The first interface condition
in (10) accounts for the normal flux continuity of each component i ∈ C using a TPFA of the
convection-diffusion flux in the free-flow domain. The approximation of the convection flux is based
on an upwinding of the gas molar fraction between its value cg(U) at the interface and its mean value
c. The TPFA of the diffusion flux is obtained using the transmissibility Dg

δ
which is discussed in the

next subsection.
The function fpd is the pressure drop model, which is typically given by fpd(u) = (αgu+ βg|u|u)

with αg ≥ 0 and βg ≥ 0, αg +βg > 0. In our application, due to the small gas viscosity, this pressure
drop can be neglected. We refer to [6] for a more detailed explanation of the reduced model.

3.2 Molar fraction boundary layer thickness model

The computation of the boundary layer thickness δ is related to the TPFA of the diffusion flux at the
interface Γ. It is clear that a linear approximation of the gas molar fraction in the normal direction
will be wrong since it does not take into account the boundary layer related to the convection-diffusion
operator.

The derivation of our model is first based on an approximation of the convection-diffusion operator

∂t+div
(

(ut+ ũ)− (Dg+Dt)∇
)

in order to eliminate the time dependent terms. The time derivative

can be neglected since we consider the porous medium time scale. The time dependent velocity
perturbation ũ is small compared with the diffusion term in the viscous boundary layer and it is also
small compared with ut away from the boundary layer. Consequently it can also be neglected and
we introduce the stationary convection-diffusion operator L defined for all d ∈ H1(Ωg) by

Ld = div
(

utd− (Dg +Dt)∇d
)

,

recalling that div(ut) = 0 on Ωg and that ut = 0 and Dt = 0 on Γ. We define the solution d of the
following stationary convection-diffusion equation given a constant boundary condition din ∈ R on
Γg
in = {0} × S and a boundary condition dΓ ∈ H

1

2 (Γ) on Γ:














Ld = 0 on Ωg,
d = dΓ on Γ,
d = din on Γg

in,
∇d · n = 0 on Γg

out = {L} × S.

(11)
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Let us denote by SP the linear Steklov-Poincaré operator such that for all dΓ ∈ H
1

2 (Γ)

SP (dΓ − din) = −∇d · n ∈ H− 1

2 (Γ),

and let us denote by M the linear compact operator from H
1

2 (Γ) to H
1

2 (Γ) such that for all dΓ ∈
H

1

2 (Γ)

M(dΓ − din) =
1

|S|

∫

S

d(., y, z)dydz − din.

Let us denote by 1Γ the function equal to 1 on Γ. Then, we define for din ∈ R, dΓ = dγ1Γ with
dγ ∈ R, din 6= dγ,

δ =
dΓ − 1

|S|

∫

S
d(., y, z)dydz

−∇d · n =
(I −M)1Γ

SP1Γ

This definition of δ is clearly independent on the choice of both dγ and din. Also from the maximum
principle, δ(x) > 0 for all x ∈ Γ.

From the maximum principle and the Fredholm alternative, the linear operator I −M defines a
bijection from H

1

2 (Γ) to H
1

2 (Γ). Hence we can define the operator

SP = SP (I −M)−1,

which relates the normal flux at Γ to the difference between the trace on Γ and the section mean
values as follows

−∇d · n = SP

(

dΓ −
1

|S|

∫

S

d(., y, z)dydz
)

.

In this framework,
1

δ
clearly appears as a diagonal approximation of the operator SP which is built

to be exact for constant boundary conditions on Γ.
It is more usual to relate the flux to the difference between the trace of the gas molar fraction

on Γ and a reference gas molar fraction corresponding in our case to din. With our approach, it
will lead to the diagonal approximation Dg

δ
= DgSP1Γ of the operator DgSP . Our definition has the

advantage to take into account the coupling of the interface conditions with the 1D gas free flow and
avoid the use of a reference gas molar fraction.

3.3 Splitting algorithm for the reduced model

Considering the small size of the 1D free-flow model compared with the porous medium model, the
solution of the reduced model at each time step can be obtained as in [6] using a Newton algorithm
to solve the fully coupled system. In the following numerical experiments it was more convenient
to use the splitting algorithm of subsection 2.2 which is easily adapted to the reduced model as follows.

Step 1: it computes Un,k in the porous medium, cn,k in the 1D free-flow domain and (u ·n)n,k at the
interface, at fixed velocity un,k−1 and pressure pn,k−1 in the 1D free-flow domain, as the solution of
the system coupling the Darcy flow system (5), with the following 1D convection-diffusion equations
in the free-flow domain

cn,ki − cn−1
i

∆tn
+ ∂x

(

cn,ki un,k−1
)

=
1

|S|ζg
∫

∂S

V
n,k
i · n ds, i ∈ C on (0, L), (12)
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Figure 2: Free-flow domain Ωg, porous-medium domain Ωp, interface Γ, and remaining boundaries
for our 2D test case.

and the following subset of the interface conditions



















V
n,k
i · n = ζg

(

cgi (Un,k)((u · n)n,k)+ + cn,ki ((u · n)n,k)− +
Dg

δ
(cgi (Un,k)− cn,ki )

)

, i ∈ C on Γ,
∑

i∈C

cαi (Un,k) = 1, α ∈ {g, l} on Γ,

pg,n,k = pn,k on Γ.

(13)

Step 2: Given the Darcy fluxes at the interface V n,k
i , i ∈ C computed at step 1, step 2 computes the

gas velocity un,k and the gas pressure pn,k as the solution at time tn of the following 1D elliptic (for
p) model







∂xu
n,k =

1

|S|ζg
∫

∂S

∑

i∈C

V
n,k
i · n ds, i ∈ C on (0, L),

−∂xp
n,k = fpd(u

n,k) on (0, L).

(14)

4 Numerical tests

In order to assess the efficiency of the splitting algorithm and to compare the full and reduced models,
we consider in the following tests a simple 2D setting with Ωg = (0, L)×(0, H1), Ω

p = (0, L)×(H1, H2)
and Γ = (0, L)×{H1}. Figure 2 exhibits the two domains, the interface Γ and the external boundaries
Γp
D, Γ

p
N , Γ

g
in, Γ

g
out, and Γg

N . We consider the set of components C = {e, a} where e denotes the water
component, and a the gaseous air component with the fixed Henry constant Ha = 6 ·109 Pa. The gas
molar density is given by ζg(pg) = pg

RTe
mol.m−3, and the liquid molar density is fixed to ζ l = 55555

mol.m−3. The phase viscosities are fixed to µg = 18.51 · 10−6 Pa.s and µl = 10−3 Pa.s. The mass
densities are defined by ρα = ζα

∑

i∈C c
α
i Mi with the molar masses of the components Ma = 29 · 10−3

Kg.mol−1, Me = 18 · 10−3 Kg.mol−1.
The fugacities of the components in the gas phase are given by Dalton’s law for an ideal mixture

of perfect gas f g
i = cgi p

g, i ∈ C. The fugacities of the components in the liquid phase are given by
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Henry’s law for the dissolution of the air component in the liquid phase f l
a = claHa, and by Raoult-

Kelvin’s law for the water component in the liquid phase f l
e = clePsat(Te)exp

(

−(pg−pl)
ζlRTe

)

, where Psat(Te)

is the vapour pressure of the pure water.
The solution of the equation fα(cα, pg, pl) = f leads to the following component molar fractions

cαi as functions of U :














cle(U) =
fe

Psat(Te)
exp

((pg − pl)

ζ lRTe

)

, cla(U) =
fa
Ha

,

cge(U) =
fe
pg
, cga(U) =

fa
pg

.
(15)

The relative permeabilities and capillary pressure in the porous medium are given by the following
van Genuchten laws

kl
r(s

l) =











0 if sl < slr,
1 if sl > 1− sgr ,√

s̄l
(

1− (1− (s̄l)1/m)m
)2

if slr ≤ sl ≤ 1− sgr ,

kg
r(s

g) =











0 if sg < sgr ,
1 if sg > 1− slr,√

1− s̄l
(

1− (s̄l)1/m
)2m

if sgr ≤ sg ≤ 1− slr,

and

sl(−pc) = slr + (1− slr − sgr)
1

(

1 + ( pc
Pr
)n
)m ,

with

s̄l =
sl − slr

1− slr − sgr
.

In our numerical tests, the mean turbulent velocity ut(y) is longitudinal and defined by the mean

turbulent profile ut(y) with ut(y) =

(

ut(y)
0

)

. This mean turbulent profile is obtained using the

following Prandtl algebraic turbulent model for the turbulent viscosity (see [30, 7, 5])

µt = ρg(lm(y))
2|u′

t(y)|, lm(y) = 0.41min(y,H1 − y).

Using this turbulent closure, the RANS model (2) for (ut, pt) amounts to compute the solution (ut, pt)
of the system

{

∂y

(

− (µg + µt)∂yut

)

+ ∂xpt = 0 on Ωg,

∂ypt = −ρgg on Ωg,
(16)

which reduces to the following Ordinary Differential Equation (ODE) for ut(y)
(

µg + ρg(lm(y))
2|u′

t|
)

u′
t = αt(H1/2− y),

to be integrated between y = 0 and y = H1

2
by symmetry. The integration constant of this ODE and

the constant αt are obtained using the conditions ut(0) = 0 and

1

H1

∫ H1

0

ut(y)dy = win,

12



where win is the prescribed mean value of the input velocity. Using the outflow boundary condition
(17) specified below, the turbulent pressure is defined by

pt(x, y) = pout − ρggy − αt(x− L),

where pout is the outflow pressure for y = 0, and g = 9.81m.s−2 is the gravity acceleration. In our
numerical tests, the turbulent diffusivity is related to the turbulent viscosity by

Dt(y) =
µt(y)

ρg
,

corresponding to a Schmidt number of 1.
The porous medium is initially saturated by the liquid phase with imposed pressure plinit and

composition cla,init = 0, cle,init = 1 which combined with the equation cge(Uinit) + cga(Uinit) = 1 defines
the initial unknowns Uinit. At the top porous-medium boundary Γp

D, a Dirichlet boundary condition
is imposed equal to the initial condition UD = Uinit. At both sides Γp

N of the porous medium, a zero
normal flux boundary condition is imposed for all components. The initial condition in the free-flow
domain is given by pinit = 105 Pa and ce,init = 1− ca,init defined by the prescribed relative humidity

Hr,init =
ce,initpinit
Psat(Te)

.

At the boundary Γg
in, the input molar fractions are set to cin = cinit, and the mean turbulent profile

ut(y) is imposed. At the boundary Γg
out, the following outflow boundary conditions are imposed

p− (µg + µt(y))∂xu = pout − ρggy, ∂xv = 0, (17)

with pout = pinit. The usual gradient is used in this outflow condition rather than the symmetric
gradient in such a way that this condition can be satisfied by (ut, pt). The diffusion normal fluxes
are set to zero for all components i ∈ C on Γg

out. At the bottom boundary Γg
N , the velocity u is set

to zero as well as the diffusion normal fluxes for all components i ∈ C.

4.1 Finite Volume Discretization on a Cartesian mesh

The domain (0, L)× (0, H2) is discretized by a non-uniform Cartesian mesh refined at both sides of
the interface Γ. The discretizations of the step 1 and step 2 of the splitting algorithm of subsection
2.2 are briefly described below and we refer to the PhD thesis of Yumeng Zhang [32] for a more
detailed description.

TPFA discretization of Step 1: A finite volume cell centered discretization with a TPFA of the Darcy
fluxes and a first order upwinding of the mobility terms is used for the porous-medium model (5).
Let us refer to [26, 2] for details. The convection-diffusion equations (6) are discretized using as well
a cell centered finite volume scheme with a TPFA of the diffusion fluxes and a first order upwinding
of the convection terms. The discretization of step 1 is conservative in the sense that the same porous
medium and convection-diffusion fluxes are used for the normal fluxes continuity equations of (7).

Let Mp (resp. Mg) denotes the set of cells of Ωp (resp. Ωg). The set of edges of the interface Γ is
denoted by EΓ. The set of discrete unknowns is defined by UK = (pgK , p

l
K , fK) ∈ R

C ×R
2, K ∈ Mp in

the porous medium, by cK ∈ R
C, K ∈ Mg in the free-flow domain, and by Uσ = (pgσ, p

l
σ, fσ) ∈ R

C×R
2

and (u · n)σ ∈ R for all edges σ ∈ EΓ at the interface where (u · n)σ is the normal gas velocity at the
edge σ oriented outward of the free-flow domain.

Since at a given fixed point iteration, the molar fractions do not sum to 1, it is convenient to use
the normalized molar fractions ci =

ci∑
j∈C

cj
, i ∈ C in the discretization of the fluxes at the interface
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Γ. Using the interface conditions, this allows the following elimination of the normal velocity at the
interface: (u · n)σ = 1

ζg

∑

i∈C(Vi · n)σ.
The discrete coupled system at each time step n and at each fixed point iteration k is solved

using a Newton algorithm. For all cells K ∈ Mp and for all edges σ ∈ EΓ, both fugacities fe and
fa can be eliminated from the non-linear system using the closure equations cαe (U) + cαa (U) = 1,
α ∈ {g, l}. Using these eliminations, and the elimination of the normal velocities (u ·n)σ for σ ∈ EΓ,
the Jacobian system to be solved at each Newton iteration reduces to Cardinal(C) equations and
unknowns in each cell K ∈ Mp ∪Mg and at each edge σ ∈ EΓ. This linear system is solved using
the sequential version of the SuperLU direct sparse solver [20], [13].

MAC discretization of Step 2: A staggered MAC (Marker-And-Cell) scheme is used to discretize the
RANS model (8) on the non uniform Cartesian mesh of the domain Ωg. We refer to [16, 25, 31] for a
detailed description. For the domain Ωg, denoting by Nx the number of cells in the x direction and by
Ny the number of cells in the y direction, the discrete unknowns of the staggered MAC discretization
are the vertical edge normal velocity perturbations

ũi+ 1

2
,j, i = 0, · · · , Nx, j = 1, · · · , Ny,

the horizontal edge normal velocities

vi,j+ 1

2

= ṽi,j+ 1

2

, i = 1, · · · , Nx, j = 0, · · · , Ny,

and the cell centered pressure perturbations

p̃i,j, i = 1, · · · , Nx, j = 1, · · · , Ny.

The convection fluxes are discretized using a first order upwind approximation of the velocities. This
discrete system is solved at each time step n and at each fixed point iteration k using a Quasi-Newton
algorithm where the Jacobian matrix is approximated by dropping the non-linear part of the system.
The main advantage of this approach is that this approximate Jacobian does not depend on n nor on
k. Hence it is factorized only once using a direct sparse linear solver and a forward-backward sweep
is performed at each Quasi-Newton iteration. In the numerical experiments the sequential version of
the direct sparse solver SuperLU (see e.g.[13, 20]) is used.

Communications between step 1 and 2: Step 1 sends to step 2 the normal velocities (u · n)k,nσ(i) at the

interface where σ(i) is the one to one mapping between i = 1, · · · , Nx and the set of edges EΓ. Step
2 sends to step 1 the normal velocities at the gallery interior edges, as well as the pressure jumps
at σ(i), i = 1, · · · , Nx which, in all our numerical experiments, are in practice negligible. In the
following numerical experiments the non-linear stopping criteria are fixed to

• ǫNewton = 10−7 for the relative l2 norm of the residual of step 1 non-linear system,

• ǫQuasiNewton = 10−6 for the relative l2 norm of the difference between two successive Quasi-
Newton iterates of the discrete RANS non-linear system,

• ǫF ixedPoint = 10−8 on ‖1−
∑

i∈C ci‖l∞ for the fixed point iterations of the coupled problem.

Let us mention that the reduced model is discretized using the same finite volume schemes adapted
to the 1D model in the free-flow domain. The same Cartesian mesh than for the full dimensional
model is used in the x direction in the free-flow domain and in both directions in the porous-medium
domain.
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4.2 Andra test case with a horizontal gallery

The setting of this test case is exhibited in Figure 3. The porous-medium domain Ωp = (0, L) ×
(H1, H2), with H1 = 5 m and H2 = 15 m, includes two rocktypes. The concrete rocktype in the
domain (0, L)× (H1, H1+1) is defined by the van Genuchten parameters n = 1.54, slr = 0.01, sgr = 0,
Pr = 2 · 106 Pa, the isotropic permeability K = 10−18 m2 and the porosity φ = 0.3. The Callovo
Oxfordian (COx) clay rocktype in the domain (0, L)× (H1 +1, H2) is defined by the van Genuchten
parameters n = 1.49, slr = 0.4, sgr = 0, Pr = 15 · 106 Pa, the isotropic permeability K = 5 · 10−20

m2, and the porosity φ = 0.15. The initial and top boundary liquid pressure in the porous medium
is set to plinit = 40 · 105 Pa, and the temperature is fixed to Te = 303 K both in the porous medium
and in the gallery. The initial and input relative humidity in the gallery is fixed to Hr,init = 0.5
and the ouput and initial pressure in the gallery to pinit = pout = 105 Pa. In the following tests, we
evaluate the influence of the input velocity win and of the length L of the gallery on the mean relative
humidity in the gallery and on the mean evaporation rate at the interface. The input velocity win is
set to 0.05, 0.5 or 5 m. s−1, and the length L is set to 25, 100 or 400 m. The simulation is run over
a period of 200 years, chosen large enough to reach the stationary state, and the time steps range
from 1 s at the start of the simulation to 10 years at the end of the simulation with a total of 123
time steps (see Table 1). To assess the numerical convergence of the discrete solutions, a family of
Cartesian meshes are tested with increasing sizes set to Nx × Ny = 25 × 50, 50 × 100, 100 × 200,
and 200 × 400. All these meshes are uniform in the x direction and are refined in the direction y
on both sides of the interface Γ as well as at the COx and concrete rocktypes interface y = H1 + 1.
The number of cells on both subdomains Ωg and Ωp is roughly the same. To fix ideas, the sizes of
the first cells at both sides of the interface Γ are set to to δy1 in the gallery side and to δy2 in the
porous-medium side with (δy1, δy2) in meters equal to (1.62 ·10−2, 6.95 ·10−3), (7.09 ·10−3, 3.06 ·10−3),
(3.32 · 10−3, 1.44 · 10−3), and (1.61 · 10−3, 6.96 · 10−4) for respectively the meshes 25 × 50, 50 × 100,
100 × 200, and 200 × 400. Note that, with these values of δy1 on the gallery side, the meshes are
refined down to the scale of the laminar boundary layer.

In order to understand the following numerical results, we need to have in mind the orders of
magnitude at the interface Γ of the molar fractions which are such that cla ≪ cle, c

g
e ≪ cga, ce ≪ ca,

and of the molar gas and liquid Darcy fluxes which are such that |Vg ·n| ≪ |Vl ·n|. At the interface
Γ, it follows from the normal fluxes continuity conditions (4) that the water component convection
flux ζgceu · n is small compared to the water component diffusion flux −ζgDg∇ce · n with a ratio
roughly equal to ce.

This can be checked numerically in Figure 4 plotting the mean water component convection and
diffusion fluxes at the interface as a function of time. Using this remark, we can explain the shape of
the mean evaporation rate at the interface as a function of time exhibited in Figure 6. It classically
includes two stages characterized for the first stage by a roughly constant evaporation rate followed
for the second stage by a decrease of the evaporation rate down to the stationary state. It is also
known that the evaporation rate of the first stage weakly depends on the properties of the porous
medium but the duration of the stage does depend on the porous-medium properties. This first stage
actually corresponds to a value of the water component molar fraction ce at the interface roughly
equal to Psat(Te)

pout
(relative humidity Hr equal to 1) due to a relatively large water influx in the gallery.

Using this Dirichlet boundary condition and the previous remark, the value of the water influx can be
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Figure 3: Setting of the Andra test case with a horizontal gallery.

roughly computed from the solution ce of the stationary convection-diffusion equation in the gallery



















div
(

utce − (Dg +Dt)∇ce

)

= 0 on Ωg,

ce =
Psat(Te)

pout
on Γ,

ce = cin on Γg
in,

∇ce · n = 0 on Γg
out ∪ Γg

N .

(18)

which roughly corresponds to the value observed in Figure 6 away from a short transient state. Once
the porous medium is sufficiently dried at the interface, the water influx starts to decrease down
to a much lower stationary state (case of a top boundary bringing water in the porous medium).
This decreasing phase corresponds to the second stage of the drying process. Similarly, as shown
in Figure 6, after a rapid transient increase, the relative humidity in the gallery is roughly constant
during the first stage with a value which can be computed from the solution ce of (18). Then, it
decreases down to a stationary state during the second stage. These two stages of the simulation
and the final stationary state can also be observed in Figure 5 which shows at different times the gas
saturation in the porous medium and the water molar fraction in the gallery. Figure 6 exhibits the
good convergence in space of the relative humidity in the gallery and of the mean evaporation rate
at the interface. Table 1 shows the numerical behavior of the full simulations for various choices of
the length of the gallery L and of the input velocity win and for the four meshes. We can observe a
good scalability of the Newton and Quasi-Newton non-linear solvers and a good convergence of the
fixed point iterations with roughly two or three fixed point iterations by time step. Figure 10 clearly
shows that the solutions of the sequential algorithm, obtained with a single fixed point iteration, and
of the converged fixed point algorithm can hardly be distinguished.

Finally, Figures 7-9 exhibit the comparison of the relative humidity in the gallery and of the
evaporation rate at the interface obtained for the 2D-2D and for the reduced 2D-1D models with
various values of the length L and of the input velocity win. It is clear that the larger the length
the better the approximation of the relative humidity in the gallery provided by the reduced model.
The approximation of the evaporation rate provided by the reduced model is good independently
on the length of the gallery (away from a very short transient state) since it is only related to the
diagonal approximation of the Steklov-Poincaré operator. In all cases, the reduced model provides a
good order of magnitude of all quantities of interest.
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Figure 4: Mean diffusion and convection fluxes of the water component at the interface as a function
of time with L = 100 m, win = 0.5 m.s−1 and the mesh 100× 200.

(1) t = 0 day (2) t = 1.9 · 10−4 day

(3) t = 0.15 day (4) t = 1.1 days

(5) t = 125 days (6) t = 200 years

Figure 5: Gas saturation in the porous medium and water molar fraction in the gallery at different
times with L = 100 m, win = 0.5 m.s−1 and the mesh 100× 200.

17



Figure 6: For each mesh and for L = 100 m, win = 0.5 m.s−1: average of the relative humidity in the
gallery (left) and evaporation rate at the interface (right) as a function of time.

Figure 7: Comparison of the solutions obtained by the 2D-2D and 2D-1D models with L = 25 m
and the mesh 100 × 200: average of relative humidity in the gallery (left), evaporation rate at the
interface (right) as a function of time.

Figure 8: Comparison of the solutions obtained by the 2D-2D and 2D-1D models with L = 100 m
and the mesh 100 × 200: average of the relative humidity in the gallery (left), evaporation rate at
the interface (right) as a function of time.
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Figure 9: Comparison of the solutions obtained by the 2D-2D and 2D-1D models with L = 400 m
and the mesh 100 × 200: average of the relative humidity in the gallery (left), evaporation rate at
the interface (right) as a function of time.

Figure 10: Comparison of the solutions obtained by the fixed-point (FP) and sequential (Seq) algo-
rithms with the mesh 100 × 200: average of the relative humidity in the gallery (left), evaporation
rate at the interface (right) as a function of time.

meshes N∆t NChop NNewton NPt NNVS CPU (s)
25× 50 123 0 504 239 435 7.56
50× 100 123 0 527 257 480 48.64
100× 200 123 0 552 277 525 388.47
200× 400 123 0 582 287 552 3279.18

meshes N∆t NChop NNewton NPt NNVS CPU (s)
25× 50 123 0 591 305 590 8.60
50× 100 123 0 636 315 615 58.86
100× 200 123 0 690 324 634 486.11
200× 400 123 0 753 343 661 4505.81

meshes N∆t NChop NNewton NPt NNVS CPU (s)
25× 50 123 0 673 349 694 9.89
50× 100 123 0 792 368 726 73.12
100× 200 123 0 864 383 778 620.51
200× 400 123 0 923 388 786 7262.62

Table 1: For (L,win) = (25, 5) (above), (100, 0.5) (middle) and (400, 0.05) (below) in m for L and
m.s−1 for win, for each mesh, and for the full 200 years of simulation: number N∆t of successful time
steps, number NChop of time step chops, number NNewton of Newton iterations, number NPt of fixed
point iterations, number NNVS of Quasi-Newton iterations, CPU time in seconds.
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Figure 11: Setting of the Andra test case with a vertical gallery.

4.3 Andra test case with a vertical gallery

We consider in this test case a vertical gallery of length L = 400 m exhibited in Figure 11 (rotated
of 90 degrees clockwise). The gallery is now defined by Ωg = (0, H1) × (0, L) with H1 = 5 m, and
the porous medium by Ωp = (H1, H2) × (0, L) with H2 = 15 m. The first rocktype for y ≤ 200 m
is defined by the parameters of the COx rocktype of the previous test case. The second rocktype is
like the COx rocktype except that the permeability is larger by a factor 100.

The objectives of this test case are the following. Since the duration of the constant evaporation
rate stage depends on the permeability, this test case with two different permeabilities along the
direction of the gallery should exhibit a non constant evaporation rate even during the first stage of
the drying process. Another consequence is that the assumption of a roughly constant water molar
fraction along the direction of the gallery which is used to compute the boundary layer thickness of
the reduced model should no longer be valid even during the first stage of the drying process. Hence
it is a good test case to challenge the reduced 2D-1D model. The simulation is run over a period
of 50 years with an initial time step of 1 s and a maximum time step of 10 years. The numerical
solutions are obtained with the meshes Ny × Nx = 25 × 73, 50 × 143, 100 × 283, which are refined
on both sides of the interface Γ as in the previous test case.

Figure 13 shows as expected that the evaporation rate and the relative humidity are no longer
constant during the first stage of the drying process due to the heterogeneity of the permeability
along the gallery. Figure 12 also clearly shows the influence of the two different permeabilities along
the gallery on the evaporation rate and on the desaturation of the porous medium. We see that the
desaturation front propagates at different time scales in the two rocktype regions. Figure 14 still
exhibits a good match between the 2D-2D and the reduced 2D-1D models. However, as expected, it
is not as good as in the previous test case. Figure 15 exhibits as previously that the solutions of the
sequential and converged fixed point algorithms are basically the same. Table 2 exhibits, as in the
previous test case, the good numerical behavior and scalability of the non-linear solvers.

4.4 Drying test case

In this test case exhibited in Figure 16, we consider the drying by convection of a homogeneous
porous medium Ωp = (0, L) × (H1, H2) with L = 1 m, H1 = 0.5 m, H2 = 1.5 m. The Porous
medium is assumed to be closed at the lateral boundaries Γp

N and at the top boundary Γp
D. The
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(1) t = 0 day (2) t = 6.9 · 10−4 day

(3) t = 7.9 · 10−3 day (4) t = 0.3 day

(5) t = 14 days (6) t = 50 years

Figure 12: Gas saturation in the porous medium and water molar fraction in the gallery at different
times with win = 0.5 m.s−1 and the mesh 100× 283.

Figure 13: For each mesh and for win = 0.5 m.s−1: average of the relative humidity in the gallery
(left) and evaporation rate at the interface (right) as a function of time.
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Figure 14: Comparison of the solutions obtained by the 2D-2D and 2D-1D models with the mesh
100 × 283: average of the relative humidity in the gallery (left), evaporation rate at the interface
(right) as a function of time.

Figure 15: Comparison of the solutions obtained by the fixed-point (FP) and sequential (Seq)
algorithms with the mesh 50×143: average of the relative humidity in the gallery (left), evaporation
rate at the interface (right) as a function of time.

meshes N∆t NChop NNewton NPt NNVS CPU (s)
25× 73 108 0 882 397 765 18.57
50× 143 108 0 963 406 805 123.43
100× 283 108 0 1054 407 810 1155.48

meshes N∆t NChop NNewton NPt NNVS CPU (s)
25× 73 108 0 759 328 619 15.63
50× 143 108 0 857 359 662 106.65
100× 283 108 0 960 362 685 936.90

meshes N∆t NChop NNewton NPt NNVS CPU (s)
25× 73 108 0 595 278 539 12.59
50× 143 108 0 648 278 540 85.77
100× 283 108 0 706 288 551 760.54

Table 2: For win = 0.05 (above), 0.5 (middle) and 5 (below) in m.s−1, for each mesh, and for the full 50
years of simulation: number N∆t of successful time steps, number NChop of time step chops, number
NNewton of Newton iterations, number NPt of fixed point iterations, number NNVS of quasi-newton
iterations, CPU time in seconds.
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Figure 16: Setting of the drying test case.

Figure 17: Mean diffusion and convection fluxes of water component at the interface as a function
of time with the mesh 100× 283.

rocktype is defined by the van Genuchten parameters n = 4, slr = sgr = 0, Pr = 15 · 103 Pa, the
isotropic permeability K = 10−12 m2 and the porosity φ = 0.15. The temperature is fixed to a rather
high value Te = 333 K in order to increase the liquid evaporation rate. Consequently the water
molar fraction at a relative humidity equal to 1 is not small any more and the water convection flux
at the interface is not negligible anymore compared with the water diffusion flux. as exhibited in
Figure 17. Note also that in this test case, the buoyancy forces in the porous medium are not small
any more compared with the capillary forces as it was the case for the horizontal Andra test case.
Therefore, the gas which penetrates in the porous medium rises up to the closed top boundary as
shown in Figure 18. The simulation is run over a period of 100 days with an initial time step of
10−4 s and a maximum time step of 1 day. The numerical solutions are obtained with the meshes
Nx ×Ny = 25× 73, 50× 143, 100× 283, which are, as for the first test case, refined on both sides of
the interface Γ. The number of cells is roughly the same in both subdomains Ωg and Ωp.

The comparison of the 2D-2D and reduced 2D-1D models exhibited in Figure 20 shows not such
a good match for the relative humidity. This is due to the fact that the 1D flow assumption in the
gallery is no longer justified. On the other hand, the evaporation rate and the gas volume still exhibit
a good match. This shows that the approximation provided by the boundary layer thickness model
is still good.

Figure 19 shows that the spatial convergence is almost achieved for the coarsest mesh due to
the strong refinement at the interface Γ. Figure 21 exhibits as before that the sequential algorithm
provides basically the same accuracy than the converged fixed point algorithm. The numerical
behavior given by Table 3 is still good.
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(1) t = 0 day (2) t = 3.1 · 10−7 day

(3) t = 2.9 · 10−3 day (4) t = 0.11 day

(5) t = 1 day (6) t = 100 days

Figure 18: Gas saturation in the porous medium and water molar fraction in the gallery at different
times with win = 10 m.s−1 and the mesh 100× 283.
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Figure 19: For each mesh and for win = 1 m.s−1: average of the relative humidity in the gallery (left)
and evaporation rate at the interface (right) as a function of time.

Figure 20: Comparison of the solutions obtained by the 2D-2D and 2D-1D models with the mesh
50 × 143: average of the relative humidity in the gallery (left), evaporation rate at the interface
(right) as a function of time.

Figure 21: Comparison of the solutions obtained by the fixed-point (FP) and sequential (Seq)
algorithms with the mesh 50×143: average of the relative humidity in the gallery (left), evaporation
rate at the interface (right) as a function of time.
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meshes N∆t NChop NNewton NPt NNVS CPU (s)
25× 73 215 2 1879 625 1265 38.00
50× 143 218 3 2767 675 1390 334.00
100× 283 233 7 4458 752 1562 4251.28

meshes N∆t NChop NNewton NPt NNVS CPU (s)
25× 73 208 0 1446 551 1017 30.47
50× 143 212 1 2233 593 1104 271.19
100× 283 223 4 3561 643 1183 3485.42

Table 3: For win = 1 (above) and 10 (below) in m.s−1 , for each mesh, , and for the full 100 days of
simulation: number N∆t of successful time steps, number NChop of time step chops, number NNewton

of Newton iterations, number NPt of fixed point iterations, number NNVS of quasi-newton iterations,
CPU time in seconds.

5 Conclusions

In this article, a splitting algorithm has been introduced to solve the problem of coupling a liquid
gas Darcy flow in a porous medium and a free gas flow. It can be used either as a fixed point or
sequential algorithm. Our splitting is chosen in order to preserve the strong coupling between the
water molar fraction in the free-flow domain and the liquid pressure and liquid flux at the interface,
while it relaxes the weak coupling between the porous medium and the velocity and pressure in the
free-flow domain. A good convergence of this fixed point algorithm has been observed on Andra and
drying test cases in a simple 2D geometrical setting. This algorithm has the advantage compared
with fully coupled approaches [3, 17, 23] to lead to the non-linear and linear solutions of simpler
sub-systems. It also allows large time steps at the time scale of the porous medium as opposed to
usual sequential algorithms [12, 10] for which the time steps are limited by the time scale of the free
gas flow.

This model is compared with a reduced model using a 1D model in the free-flow domain. This
reduced model uses an approximation of the gas molar fraction boundary layer thickness based on
a low-frequency approximation of a Steklov-Poincaré operator. The comparisons performed on the
2D test cases show a good match of the evaporation rate. They also exhibit a good match of the
relative humidity in the gallery for high ratios between the length and the diameter of the gallery.
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