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Numerical time integration schemes for nonsmooth multibody systems in the event-driven framework
Objectives & Motivations

Motivations

High-fidelity dynamical simulation of mechanisms
Nonsmooth multi-body systems with

> Signorini unilateral contact,

» Coulomb friction,

> Newton (or Poisson) impact law,

> clearances in joints.

Industrial context

> Real CAD geometries with edge discontinuities

> Robustness w.r.t large number of events:
contact activation and deactivation
finite accumulation of impacts
stick/slip transitions.
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Objectives & Motivations

Motivations

Simulation of Circuit breakers (INRIA/Schneider Electric)
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Motivations

Numerical time integration schemes for nonsmooth multibody systems in the event-driven framework

Simulation of watch chronograph mechanism (INRIA/ANSYS)
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Objectives & Motivations

Objectives

> Time—integration methods in an event—driven framework
> Review of D.A.E. integrators with various indices (from 1 to 3).
>

Standard comparisons on academical examples

> Performance profiles on industrial benchmarks
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Modeling framework

Modeling framework

Signorini unilateral contact and impact law
Unilateral contact law :

Body B
0<g(qg)Lx>0. (1)
Newton Impact law:

if g(q) <0, then UT = —eU™ (2)

U : normal relative velocity (U = &)
e : kinetic coefficient of restitution

Body A

Figure: Signed distance between two bodies A
and B at contact
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Modeling framework

Modeling framework (cont.)

Equations of motion

g=v
M(q)V = F(q,v,t) + G’ (q)X
g%(q)=0,a€B (3)

0<g”(q) LN >0,8€T,
if gﬁ(q) <0, then UPt = —eUP—

v

g(q) € R™ : vector of constraints
B C N index set of bilateral constraints

U C N index set of unilateral constraints

v

G(q) = VTg(q) € R™*" Jacobian matrix of the constraints

v

A € R™ is the Lagrange multipliers vector associated to the constraints.
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Modeling framework

Modeling framework (cont.)

Index sets of active constraints
The set of all constraints is denoted by lp =B U U.
Closed contacts index set:

h={y€h,g"(q) =0}
Closed contacts index set for a non trivial period of time:

h={y€lh,g"(q)=0,£"(q) =0}

Position based constraints : index-3 differential algebraic equation.

On the period over which k is constant, we solve
g=v
M(q)v = F(q,v,t) + GT(q)A (4)
g'(q)=0,v¢€h.
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Modeling framework

Modeling framework (cont.)

Lower index differential algebraic equation

Velocity based constraints : index-2 differential algebraic equation.

If the constraint g(+) is differentiated once with respect to time, one obtains the
following index-2 DAE

=V

(q)v = F(q,v,t) + G (q)A (5)
G (q)v=0,vE€ bh.

S

Acceleration based constraints : index-1 differential algebraic equation.
If g(-) is differentiated twice, one gets the index-1 DAE

d =V
M(q)v = F(q,v,t) + GT(q)A (6)
G(q)v + %(q)v =0,v€h.
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Numerical time integration methods

L Time-stepping vs. Event-driven scheme

Time—stepping schemes

Principle of nonsmooth event capturing methods

1. A unique formulation of the dynamics is considered. For instance, a dynamics in
terms of measures.
mdu = dr

g=ut (7
0<drLiut>0ifg<0

2. The time-integration is based on a consistent approximation of the equations in
terms of measures. For instance,

[ - du = (u" (1) — 0H ())& (s — ) (8)
Ttistiy] Ttistis]

3. Consistent approximation of measure inclusion.

Pk+1 = dr

—dr € NK(t)(u+(t)) 9 - Ttisthya] (10)

Prs1 € Nicey(Urs1)
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Numerical time integration methods

L Time-stepping vs. Event-driven scheme

Event-driven schemes

Principle of nonsmooth event tracking methods
Time-decomposition of the dynamics in
> modes, time-intervals in which the dynamics is smooth (/1 and k invariant),

> discrete events, times where the dynamics is nonsmooth (changes in /1 and/or ).

Comments
On the numerical point of view, we need

> detect events with for instance root-finding procedure.

> Dichotomy and interval arithmetic
> Newton procedure for C? function and polynomials

> solve the non smooth dynamics at events with a reinitialization rule of the state,

> integrate the smooth dynamics between two events with any DAE solvers
associated with a given index formulation.
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Numerical time integration methods

L Time-stepping vs. Event-driven scheme

Comparison

Numerical time—integration methods for Nonsmooth Multibody systems (NSMBS):

Nonsmooth event capturing methods (Time-stepping methods)

@ robust, stable and proof of convergence
@ low kinematic level for the constraints
@ able to deal with finite accumulation

© very low order of accuracy even in free flight motions

Nonsmooth event tracking methods (Event—driven methods)

@ higher order accuracy integration of free flight motions

no proof of convergence

S]

© sensitivity to numerical thresholds

© reformulation of constraints at higher kinematic levels.
S]

unable to deal with finite accumulation
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Numerical time integration methods

L Mechanical D.A.E. integrators

Index-1 DAE integrators

Using the acceleration based constraints, we have to solve

I 0 0 g v
0 M(q) —-GT(q)| |v]| =[F(qvst) (11)
0 G(q) 0 A — ),

The Lagrange multipliers A(v, g, t) can be obtained for a given g and v by solving

0,

[G(@M ™ @)GT(@)] Alv,a,8) = - [G(qw—lF(q, vie)+ (12)

The following index-1 DAE

[(l) M(()q)} (3) - (F(cn v,t) + GVT(q)A(v,qJ)) (13)

can be numerically solved by a any solver for ODE.
We use in the work embedded 4/5 order Runge—Kutta-Fehlberg (RKF45) method.
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Numerical time integration methods
L~ Mechanical D.A.E. integrators

Index-2 DAE integrators

Half-explicit method of order 5 (HEM5) [Brasey and Hairer, 1993]
8 stages T; = tp + c;ih

M(Q)Vi = F(Qi, Vi, Ti) + GT(Q)A;

Qi=V (14)
G(Q)V: =0,
At each stage, we solve Q; =qgn+h >, a,-jQJ-  Vi=va+hd afj‘\-/j .
J<i J<i
M(Q,) —GT(Qi) V, — F(Q,‘,V,',T,’) (15)
G(Qit1) 0 Ai ri ’
G(Qiy1) = :
where r; = —Tm(w] + h;am,j‘/j)-
Comments

» Exact enforcement velocity constraints G(Q;)V; =0,Vi=1...8.
» A; is NOT an approximation of A\(T;)

> non symmetric matrix solver.
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Numerical time integration methods
L~ Mechanical D.A.E. integrators

Index-2 DAE integrators

Partitioned half-explicit method of order 5/6 (PHEMb56) [Murua, 1997]

6 stages
=V
M(Q;, i)V = F(Q;, Vi, i) + GT(Qi, i)\ (14)
G(Q;, T)Vi =0,
where .
Qi:q"+hzj<,’aij\/j7 Vi—Vn+th<,-3ij\./j
Qi:qn+h2j<igﬁ‘/j; \7i—Vn+hZJ<,'§ijVj (15)
T = tn + cih, T; = th + G h.

At each stage, we solve

(M(Qim) —GT(Q,,T»)( v, ):( F(Qr, Vo) ) (16)

with r; = — (QHTI)( n+hZaUVJ)
ha; ; =
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Numerical time integration methods
L~ Mechanical D.A.E. integrators

Index-3 DAE integrators

The generalized-a cheme. (Géradin & Cardona 1989, Briils & Arnold 2007)
Collocation of the dynamics at time tp41

Méni1 = F(@ni1, dni1, tar1) + G (Gni1)Ani1 (17)

a-schemes approximations:

Gn+1 = Gn + hgn + h? % — B)an + h2ﬁan+l
dn+1 = Gn + h(1 — ) + hyapia (18)
(1 —am)ant1 + aman = (1 — af)fnr1 + ardn.

Newton's iterations to reduce the dynamical and the constraint residuals

{ Rq = M(q, ) — F(,d,t) — GT(q)

Ry=g(q) o  Ry=G(g)q (19)

Comments

> Enforcement of the constraints at the Newton tolerance:

g(qn+1) =0 or G(qn+1)é’n+l
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Numerical time integration methods
L Mechanical D.A.E. integrators

Time step size control strategy

General formula

tol h\ /P
hopt = safe( ° ) h. (20)
err
with err a practical error estimation, and tol the user defined tolerance.
> For the generalized-a scheme (p = 2) (Géradin & Cardona 1989) :
1, W, K,
err =(gn+1 — qn — 7 q9n — - Gqn — —qn+1 + O(h4)- (21)
h 3 6
> For the HEM5 scheme (p = 5):
err1 = [|gns1 — Qgll, = O(h*),
erry = ||qnt1 — g0 — h(3 Q7 — 3@g)||, = O(h?), (22)

err= — S O(h%)

err;+0.01 errp

> For the RK-Fehlberg scheme: err = ||y5thorger — Yathorger|| @and p = 4.
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Numerical time integration methods
L Mechanical D.A.E. integrators

Projection on the constrained manifolds

1. Projection on position constraint:
Qn the position obtained at time t,. The projected position g, is obtained by

M(Qn)(qn — Qn) + GT(Qn)A =0
(23)
g(gn) =0
2. Projection on velocity constraint:
V,, the velocity obtained at time t,. The projected velocity v, is obtained by
M(Qn)(Vn_ Vn)+GT(qn)/\:0 (24)
G(gn)vn = 0.

Similar projection techniques can be found in [Shampine, 1986, Hairer and Wanner,
2002, Eich, 1993, Rheinboldt and Simeon, 1995].
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Comparison on academic examples

Academic Examples

Four-bar linkage

= [e1, 2. 03"
g1(q) := h cos(p1)+h cos(p2)—1l cos(p3)—di =0
82(q) := h sin(p1)+hsin(p2)—lsin(p3) =0

q=lo1, aa]"

g1(q) := hsin(a1)+hsin(a2) =0

Flexible slider-Crank mechanism (Simeon (1994))

q=[a1, a2, x, g1, g2, 3, Ga] "

g1(q) := hsin(a1)+hsin(a2)+qgasinas =0

.,; 82(q) := x—h cos(a1)—h cos(az)—qa cos(az) = 0

g3(q) =1 —Qt=0
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Comparison on academic examples

Numerical simulation settings

> Solvers : RKF45, HEM5, PHEMS56, Index-2 and index-3 generalized-a schemes.

Table: Parameters for time step control

Integration toler- | Minimum time | Tolerance of Maximum safety factor
ance (tol) step Newton's loop drift of g | (s)

and g
[10710,1072](*) | 107 Cs 1010 102 0.9

(*) We vary the value of tol to compare the computational effort and the drift of the constraints
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Comparison on academic examples

Slider-crank mechanism. Violation of the constraints

10" 102
@@ HEM5 10%
107 < PHEMS6 g 5 Y
V-V RKF 0
10° E-@ a-scheme at position level |1 10 g
s %\ 94 o-scheme at velocity level 107
10° 8
10
—g : @8 HEM5
107 N \V\ T 10° ><>¢ PHEMS6
3 2 T <1070 V-V RKF
10° 8 ¥ 101 B8 a-scheme at position level
" .\ \ 1072 44 a-scheme at velocity level
10°
\0——1 10"
o3 10-14
-15
-15 10
10 ool &
1047 10-17
10" 107 10° 10* 10° 10° 107 10° 10° 107 10™* 10" 107 10° 10* 10° 10° 107 10° 10° 107° 10
Precision Precision
(a) maximum of violation of the position constraint (b) maximum of violation of the velocity constraint

Figure: Slider crank: simulation characteristics
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Comparison on academic examples

Work-Precision diagrams

10° 10
@ HEMS @@ HEM5
< PHEMS6 /I <X PHEMS6
V-V RKF V-V RKF
102 H E-8 o-scheme at position level JI/ 10t B8 a-scheme at position level /.
94 o-scheme at velocity level 94 o-scheme at velocity level /||/ %
g g
o v
¢ %/‘ 2 ~ /
£ 10! /I A _ £ 10° /‘; — -
’ "4\"//"/// ! ——
10° s 10"
o /</
/// S
0] T 07 107 105 108 107 108 107 107 101 0] T T 07 107 10t a0t 107 0% 105 10% 1o
100 10° 107 10" 107 10" 10° 10" 10" 107 10 107 10° 107 10" 10° 10" 10° 10" 10" 107 10
Precision Precision
(a) Four-bar linkage (b) Slider-crank

Figure: Work/Precision diagrams for the four-bar linkage, the slider-crank, and the flexible
slider-crank
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Comparison on academic examples

Work-Precision diagrams

10
®-@ HEMS5
<X PHEM56
3 |[¥-¥ RKF
10 B8 a-scheme at position level /‘
94 o-scheme at velocity level
. > —
T paa— —
A yal
B *o—
2 10t o o=
& / /"/
. I /
10° !
v
107

10" 107 107 10* 10° 10° 107 10° 10° 10 10™

Precision

(a) Flexible slider-crank

Figure: Work/Precision diagrams for the four-bar linkage, the slider-crank, and the flexible
slider-crank
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Comparison on industrial examples

Industrial Examples

Industrial benchmark libraries

> Non regression tests of ANSYS Rigid Body Solver RDB.
> Implemented solvers in ANSYS RDB : RK4, HEMS5, index-2 generalized-a scheme
> Coordinate projection on the constraints at velocity (if needed) and position levels

» User required accuracy : tol = 10~*

Table: Characteristics of the sets of problems

# of DOF # of joints eq. # of contacts
Set Id. # of problems in the set Max Min Max Min Max
1 43 19 1 38 2 -
2 25 18 2 22 3 -
3 21 11 2 15 2 7
4 9 31 5 15 4 1
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|—Comparison on industrial examples
Industrial Examples

Illustrations of the first set

=5
(a) Epicyclic gear train

- B
e ’ s e :
(b) Rotating disk attached to a

rod with a collar

(c) A cam mechanism

Figure: Examples from the first set

=
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|—Comparison on industrial examples
Industrial Examples
[llustrations of the second set

(a) Windshield wiper

(b) Trunnion mechanism

(c) Air piston

(d) Subway door
Figure: Examples from the second set

[m]
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Industrial Examples
lllustrations of the third set

=

(b) An excavator model

(c) A watch mechanism sub-assembly

(d) Escapement of a mechanical watch
Figure: Examples from the third set

[m]

=
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Industrial Examples

Illustrations of the fourth set

e

(a) Beam under gravity in contact with a cylinder

Figure: Example from the fourth set

[m]

=
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Comparison on industrial examples

Performance profiles [Dolan and Moré, 2002]

» Given a set of problems P

> Given a set of solvers S

> A performance measure for each problem with a solver t, s (cpu time, flops, ...)
» Compute the performance ratio

Tos = — P55 (25)

.S "
min t, s
ses P

» Compute the performance profile ps(7) : [1,+00] — [0, 1] for each solver s € S

1
ps(T) = WHP €EP|7ps < 7'}‘ (26)
The value of ps(1) is the probability that the solver s will win over the rest of the

solvers.
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Comparison on industrial examples

Performance profiles on first and second sets

1.0 R 1.0
- [ LI . 2ax L] "
L]
L] []
0 % 0.8
X
X
o. 0.6l X [mwrHems ||
N x < X X X RK4
¥V cscheme
0.4] 0.4
A,
X ‘ v Y X
0 vy HEMS 0.
yYVY'yY? X X RK4 X v v
v ¥ ¥ a-scheme vy vy vvevyy?'YY
090 12 14 16 18 20 22 24 26 28 9% 12 14 16 18 2.0
Figure: Performance profile of the first set Figure: Performance profile of the second set
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Comparison on industrial examples

Performance profiles on third and fourth sets

1.0 1.
[ [] [] [] [] " u X
x X X 0.9 m . - - x
08 0.8 3
X
X 07
0.
X 0.6
< < X
x 0.
0.4] X X
0.4
vyyvyy v v v.v v
0 v um HEMS o
vy X X RK4 3 Y
vvyVvyy V¥ V¥ a-scheme
0. 0. X
Y0 12 14 16 18 20 22 24 26 1o 12 4 16
Figure: Performance profile of the third set Figure: Performance profile of the fourth set
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Comparison on industrial examples

Details on the fourth set

10°

Number of performed steps

m m HEMS
X X RK4
¥ ¥ a-scheme

Problem identifier

(b) # steps

Figure: Average time step, number of iterations of the fourth set

10"
107
g
o
¢
®
% Y v x % ¥
§
107
um HEMS
b X X RK&
¥ ¥ a-scheme
a
1077 2 4 7 ]
Problem identifier
(a) haverage
Comments

> The set is mainly composed of flexible linear beams examples.

> Problem 3 is different : a stiff problem.

Comparison on industrial examples
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Comparison on industrial examples

A stiff problem: rotor mechanism

(1sssssss000s
. 1500000500000
disk 290000000452

Figure: Rotor mechanism
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Comparison on industrial examples

A stiff problem: rotor mechanism

Table: Eccentrically suspended rotating beam: average time step size, simulation time, number of
accepted steps and number of rejected steps for different tolerances.

method tolerance average h accepted rejected
102 | 422107 34123 | 1381
HEMS 10=* | 4.20 10~% | 549.70 | 34364 | 1393
10~6 | 2.40 10~* | 985.79 | 62255 | 179
102 3.38 10 ¢ 41428 | 2903
RK4 10~* | 3.34 10~* | 376.89 | 41700 | 2825
1076 | 3.37 107* | 398.29 | 41562 | 2876
102 | 9.61 102 156 0
acscheme, | 154 | g0 10-3 1869 3
poo =099 156 | 235 10-3 6371 3
102 9.61 102 156 0
a-scheme, |54 | 316 10-2 474 0
poo =08 | 156 | 615 10-3 2437 0
102 9.61 102 156 0
a-scheme, | yo-4 | 574 102 538 0
poo =05 | 156 | 550 103 2714 0
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Conclusions

Conclusions

» Computational effort:
Half explicit solvers (HEM5 and PHEM56) outperforms the other solvers.

> Drift :
Index 2 DAE solvers are the best compromise for the constraints drift by
controlling drift at the accelerarion and position level at order 1

> Stiff Dynamics:
Fully implicit solvers (generalized-c) are required to efficiently integrate the
dynamics.

> Implementation effort:

Half explicit solvers (HEM5 and PHEM56) requires more effort to be
implemented:

> Non symmetric linear system solvers
> High sensitivity to rank deficiency of the active constraints.
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Thank you for your attention.
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