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Numerical time integration schemes for nonsmooth multibody systems in the event-driven framework

Objectives & Motivations

Motivations

High-fidelity dynamical simulation of mechanisms
Nonsmooth multi-body systems with

I Signorini unilateral contact,

I Coulomb friction,

I Newton (or Poisson) impact law,

I clearances in joints.

Industrial context

I Real CAD geometries with edge discontinuities

I Robustness w.r.t large number of events:
contact activation and deactivation
finite accumulation of impacts
stick/slip transitions.
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Objectives & Motivations

Motivations

Simulation of Circuit breakers (INRIA/Schneider Electric)
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Objectives & Motivations

Motivations

Simulation of watch chronograph mechanism (INRIA/ANSYS)

Objectives & Motivations – 3/33



Numerical time integration schemes for nonsmooth multibody systems in the event-driven framework

Objectives & Motivations

Objectives

I Time–integration methods in an event–driven framework

I Review of D.A.E. integrators with various indices (from 1 to 3).

I Standard comparisons on academical examples

I Performance profiles on industrial benchmarks
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Modeling framework

Modeling framework

Signorini unilateral contact and impact law

Body A

Body B

CA

nγ

T1

T2

CB

gγ

Figure: Signed distance between two bodies A
and B at contact γ

Unilateral contact law :

0 6 g(q) ⊥ λ > 0. (1)

Newton Impact law:

if g(q) 6 0, then U+ = −eU− (2)

U : normal relative velocity (U = ġ)
e : kinetic coefficient of restitution
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Modeling framework

Modeling framework (cont.)

Equations of motion

q̇ = v

M(q)v̇ = F (q, v , t) + GT (q)λ

gα(q) = 0, α ∈ B

0 6 gβ(q) ⊥ λβ > 0, β ∈ U,

if gβ(q) 6 0, then Uβ,+ = −eUβ,−

(3)

I g(q) ∈ Rm : vector of constraints

I B ⊂ N index set of bilateral constraints

I U ⊂ N index set of unilateral constraints

I G(q) = ∇T g(q) ∈ Rm×n Jacobian matrix of the constraints

I λ ∈ Rm is the Lagrange multipliers vector associated to the constraints.
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Modeling framework

Modeling framework (cont.)

Index sets of active constraints
The set of all constraints is denoted by I0 = B ∪ U.
Closed contacts index set:

I1 = {γ ∈ I0, g
γ(q) = 0}

Closed contacts index set for a non trivial period of time:

I2 = {γ ∈ I0, g
γ(q) = 0, ġγ(q) = 0}

Position based constraints : index-3 differential algebraic equation.
On the period over which I2 is constant, we solve

q̇ = v

M(q)v̇ = F (q, v , t) + GT (q)λ

gγ(q) = 0, γ ∈ I2.

(4)
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Modeling framework

Modeling framework (cont.)

Lower index differential algebraic equation

Velocity based constraints : index-2 differential algebraic equation.
If the constraint g(·) is differentiated once with respect to time, one obtains the
following index-2 DAE 

q̇ = v

M(q)v̇ = F (q, v , t) + GT (q)λ

Gγ(q)v = 0, γ ∈ I2.

(5)

Acceleration based constraints : index-1 differential algebraic equation.
If g(·) is differentiated twice, one gets the index-1 DAE

q̇ = v

M(q)v̇ = F (q, v , t) + GT (q)λ

Gγ(q)v̇ +
dGγ(q)

dt
v = 0, γ ∈ I2.

(6)
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Numerical time integration methods

Time–stepping vs. Event-driven scheme

Time–stepping schemes

Principle of nonsmooth event capturing methods

1. A unique formulation of the dynamics is considered. For instance, a dynamics in
terms of measures. 

mdu = dr

q̇ = u+

0 6 dr ⊥ u̇+ > 0 if q 6 0

(7)

2. The time-integration is based on a consistent approximation of the equations in
terms of measures. For instance,∫

]tk ,tk+1]
du =

∫
]tk ,tk+1]

du = (u+(tk+1)− u+(tk )) ≈ (uk+1 − uk ) (8)

3. Consistent approximation of measure inclusion.

−dr ∈ NK(t)(u+(t)) (9)
Ü


pk+1 ≈

∫
]tk ,tk+1]

dr

pk+1 ∈ NK(t)(uk+1)

(10)
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Numerical time integration methods

Time–stepping vs. Event-driven scheme

Event-driven schemes

Principle of nonsmooth event tracking methods
Time-decomposition of the dynamics in

I modes, time-intervals in which the dynamics is smooth (I1 and I2 invariant),

I discrete events, times where the dynamics is nonsmooth (changes in I1 and/or I2).

Comments
On the numerical point of view, we need

I detect events with for instance root-finding procedure.
I Dichotomy and interval arithmetic
I Newton procedure for C 2 function and polynomials

I solve the non smooth dynamics at events with a reinitialization rule of the state,

I integrate the smooth dynamics between two events with any DAE solvers
associated with a given index formulation.
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Numerical time integration methods

Time–stepping vs. Event-driven scheme

Comparison

Numerical time–integration methods for Nonsmooth Multibody systems (NSMBS):

Nonsmooth event capturing methods (Time–stepping methods)

� robust, stable and proof of convergence

� low kinematic level for the constraints

� able to deal with finite accumulation

� very low order of accuracy even in free flight motions

Nonsmooth event tracking methods (Event–driven methods)

� higher order accuracy integration of free flight motions

� no proof of convergence

� sensitivity to numerical thresholds

� reformulation of constraints at higher kinematic levels.

� unable to deal with finite accumulation
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Numerical time integration methods

Mechanical D.A.E. integrators

Index-1 DAE integrators

Using the acceleration based constraints, we have to solveI 0 0
0 M(q) −GT (q)
0 G(q) 0

q̇
v̇
λ

 =

 v
F (q, v , t)

− dG(q)
dt

v

 (11)

The Lagrange multipliers λ(v , q, t) can be obtained for a given q and v by solving[
G(q)M−1(q)GT (q)

]
λ(v , q, t) = −

[
G(q)M−1F (q, v , t) +

dG(q)

dt
v

]
(12)

The following index-1 DAE[
I 0
0 M(q)

](
q̇
v̇

)
=

(
v

F (q, v , t) + GT (q)λ(v , q, t)

)
(13)

can be numerically solved by a any solver for ODE.
We use in the work embedded 4/5 order Runge–Kutta-Fehlberg (RKF45) method.
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Numerical time integration methods

Mechanical D.A.E. integrators

Index-2 DAE integrators

Half-explicit method of order 5 (HEM5) [Brasey and Hairer, 1993]

8 stages Ti = tn + cih M(Qi )V̇i = F (Qi ,Vi ,Ti ) + GT (Qi )Λi

Q̇i = Vi

G(Qi )Vi = 0,

(14)

At each stage, we solve Qi = qn + h
∑
j<i

aij Q̇j , Vi = vn + h
∑
j<i

aij V̇j .(
M(Qi ) −GT (Qi )
G(Qi+1) 0

)(
V̇i

Λi

)
=

(
F (Qi ,Vi ,Ti )

ri

)
, (15)

where ri = −
G(Qi+1)

hai+1,i
(vn + h

i−1∑
j=1

ai+1,j V̇j ).

Comments

I Exact enforcement velocity constraints G(Qi )Vi = 0 , ∀i = 1 . . . 8.

I Λi is NOT an approximation of λ(Ti )

I non symmetric matrix solver.

Numerical time integration methods – 13/33



Numerical time integration schemes for nonsmooth multibody systems in the event-driven framework

Numerical time integration methods

Mechanical D.A.E. integrators

Index-2 DAE integrators

Partitioned half-explicit method of order 5/6 (PHEM56) [Murua, 1997]

6 stages 
Q̇i = Vi

M(Qi , τi )V̇i = F (Qi ,Vi , τi ) + GT (Q̄i , τi )Λi

G(Q̄i , τ̄i )V̄i = 0,

(14)

where 
Qi = qn + h

∑
j<i aijVj , Vi = vn + h

∑
j<i aij V̇j

Q̄i = qn + h
∑

j6i āijVj , V̄i = vn + h
∑

j6i āij V̇j

τi = tn + cih, τ̄i = tn + c̄ih.

(15)

At each stage, we solve(
M(Qi , τi ) −GT (Qi , τi )
G(Q̄i , τ̄i ) 0

)(
V̇i

Λi

)
=

(
F (Qi ,Vi , τi )

ri

)
(16)

with ri = −
G(Q̄i , τ̄i )

hāi,i
(vn + h

i−1∑
j=1

āi,j V̇j ).
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Numerical time integration methods

Mechanical D.A.E. integrators

Index-3 DAE integrators

The generalized-α cheme. (Géradin & Cardona 1989, Brüls & Arnold 2007)

Collocation of the dynamics at time tn+1

Mq̈n+1 = F (qn+1, q̇n+1, tn+1) + GT (qn+1)λn+1 (17)

α-schemes approximations: qn+1 = qn + hq̇n + h2( 1
2
− β)an + h2βan+1

q̇n+1 = q̇n + h(1− γ) + hγan+1

(1− αm)an+1 + αman = (1− αf )q̈n+1 + αf q̈n.
(18)

Newton’s iterations to reduce the dynamical and the constraint residuals{
Rq = M(q, t)q̈ − F (q, q̇, t)− GT (q)λ
Rλ = g(q) or Rλ = G(q)q̇

(19)

Comments

I Enforcement of the constraints at the Newton tolerance:

g(qn+1) = 0 or G(qn+1)q̇n+1
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Numerical time integration methods

Mechanical D.A.E. integrators

Time step size control strategy

General formula

hopt = safe

(
tol h

err

)1/p

h. (20)

with err a practical error estimation, and tol the user defined tolerance.

I For the generalized-α scheme (p = 2) (Géradin & Cardona 1989) :

err = qn+1 − qn −
1

h
q̇n −

h2

3
q̈n −

h2

6
q̈n+1 +O(h4). (21)

I For the HEM5 scheme (p = 5):

err1 = ‖qn+1 − Q8‖s = O(h4),

err2 = ‖qn+1 − qn − h( 5
2
Q7 − 3

2
Q8)‖

s
= O(h3),

err = err1
2

err1+0.01 err2
= O(h5)

(22)

I For the RK-Fehlberg scheme: err = ‖y5thorder − y4thorder‖ and p = 4.
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Numerical time integration methods

Mechanical D.A.E. integrators

Projection on the constrained manifolds

1. Projection on position constraint:
Qn the position obtained at time tn. The projected position qn is obtained by{

M(Qn)(qn − Qn) + GT (Qn)Λ = 0
g(qn) = 0

(23)

2. Projection on velocity constraint:
Vn the velocity obtained at time tn. The projected velocity vn is obtained by{

M(Qn)(vn − Vn) + GT (qn)Λ = 0
G(qn)vn = 0.

(24)

Similar projection techniques can be found in [Shampine, 1986, Hairer and Wanner,
2002, Eich, 1993, Rheinboldt and Simeon, 1995].
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Comparison on academic examples

Academic Examples

Four-bar linkage

d

ϕ1

l1

ϕ2

l2

ϕ3

l3

q = [ϕ1, ϕ2, ϕ3]T

g1(q) := l1 cos(ϕ1)+l2 cos(ϕ2)−l3 cos(ϕ3)−d1 = 0

g2(q) := l1 sin(ϕ1)+l2 sin(ϕ2)−l3 sin(ϕ3) = 0

Slider-Crank mechanism

x

α1

l1

α2 l2

q = [α1, α2]T

g1(q) := l1 sin(α1)+l2 sin(α2) = 0

Flexible slider-Crank mechanism (Simeon (1994))

α1

α2
q = [α1, α2, x , q1, q2, q3, q4]T

g1(q) := l1 sin(α1)+l2 sin(α2)+q4 sinα2 = 0

g2(q) := x−l1 cos(α1)−l2 cos(α2)−q4 cos(α2) = 0

g3(q) := α1 − Ωt = 0
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Comparison on academic examples

Numerical simulation settings

I Solvers : RKF45, HEM5, PHEM56, Index-2 and index-3 generalized-α schemes.

Table: Parameters for time step control

Integration toler-
ance (tol)

Minimum time
step

Tolerance of
Newton’s loop

Maximum
drift of g
and ġ

safety factor
(s)

[10−10, 10−2](*) 10−6s 10−10 10−2 0.9

(*) We vary the value of tol to compare the computational effort and the drift of the constraints
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Comparison on academic examples

Slider-crank mechanism. Violation of the constraints

10-1110-1010-910-810-710-610-510-410-310-210-1

Precision

10-17

10-15

10-13

10-11

10-9

10-7
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10-1

101

|
g
| ∞

HEM5
PHEM56
RKF
α-scheme at position level
α-scheme at velocity level

(a) maximum of violation of the position constraint

10-1110-1010-910-810-710-610-510-410-310-210-1

Precision

10-17
10-16
10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3

| ġ
| ∞

HEM5
PHEM56
RKF
α-scheme at position level
α-scheme at velocity level

(b) maximum of violation of the velocity constraint

Figure: Slider crank: simulation characteristics
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Comparison on academic examples

Work-Precision diagrams
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(a) Four-bar linkage
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(b) Slider-crank

Figure: Work/Precision diagrams for the four-bar linkage, the slider-crank, and the flexible
slider-crank
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Comparison on academic examples

Work-Precision diagrams

10-1110-1010-910-810-710-610-510-410-310-210-1

Precision
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PHEM56
RKF
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(a) Flexible slider-crank

Figure: Work/Precision diagrams for the four-bar linkage, the slider-crank, and the flexible
slider-crank
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Comparison on industrial examples

Industrial Examples

Industrial benchmark libraries

I Non regression tests of ANSYS Rigid Body Solver RDB.

I Implemented solvers in ANSYS RDB : RK4, HEM5, index-2 generalized-α scheme

I Coordinate projection on the constraints at velocity (if needed) and position levels

I User required accuracy : tol = 10−4

Table: Characteristics of the sets of problems

# of DOF # of joints eq. # of contacts
Set Id. # of problems in the set Max Min Max Min Max

1 43 19 1 38 2 -
2 25 18 2 22 3 -
3 21 11 2 15 2 7
4 9 31 5 15 4 1
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Comparison on industrial examples

Industrial Examples

Illustrations of the first set

(a) Epicyclic gear train (b) Rotating disk attached to a
rod with a collar

(c) A cam mechanism

Figure: Examples from the first set
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Comparison on industrial examples

Industrial Examples

Illustrations of the second set

(a) Windshield wiper (b) Trunnion mechanism

(c) Air piston (d) Subway door

Figure: Examples from the second set
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Comparison on industrial examples

Industrial Examples

Illustrations of the third set

(a) Press machine (b) An excavator model

(c) A watch mechanism sub-assembly (d) Escapement of a mechanical watch

Figure: Examples from the third set
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Comparison on industrial examples

Industrial Examples

Illustrations of the fourth set

(a) Beam under gravity in contact with a cylinder

Figure: Example from the fourth set
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Comparison on industrial examples

Performance profiles [Dolan and Moré, 2002]

I Given a set of problems P
I Given a set of solvers S
I A performance measure for each problem with a solver tp,s (cpu time, flops, ...)

I Compute the performance ratio

τp,s =
tp,s

min
s∈S

tp,s
> 1 (25)

I Compute the performance profile ρs(τ) : [1,+∞]→ [0, 1] for each solver s ∈ S

ρs(τ) =
1

|P|
∣∣{p ∈ P | τp,s 6 τ}

∣∣ (26)

The value of ρs(1) is the probability that the solver s will win over the rest of the
solvers.
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Comparison on industrial examples

Performance profiles on first and second sets

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
τ
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0.4
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Figure: Performance profile of the first set
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Figure: Performance profile of the second set
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Comparison on industrial examples

Performance profiles on third and fourth sets

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
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Figure: Performance profile of the third set
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Figure: Performance profile of the fourth set
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Comparison on industrial examples

Details on the fourth set

1 2 3 4 5 6 7 8 9
Problem identifier
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(b) # steps

Figure: Average time step, number of iterations of the fourth set

Comments

I The set is mainly composed of flexible linear beams examples.

I Problem 3 is different : a stiff problem.
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Comparison on industrial examples

A stiff problem: rotor mechanism

disk

shaft

y

z

x

kz dz

kx dx

v

Figure: Rotor mechanism
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Comparison on industrial examples

A stiff problem: rotor mechanism

Table: Eccentrically suspended rotating beam: average time step size, simulation time, number of
accepted steps and number of rejected steps for different tolerances.

method tolerance average h ts accepted rejected

HEM5
10−2 4.22 10−4 548.98 34123 1381
10−4 4.20 10−4 549.70 34364 1393
10−6 2.40 10−4 985.79 62255 179

RK4
10−2 3.38 10−4 384.13 41428 2903
10−4 3.34 10−4 376.89 41700 2825
10−6 3.37 10−4 398.29 41562 2876

α-scheme,
ρ∞ = 0.99

10−2 9.61 10−2 10.55 156 0
10−4 8.01 10−3 86.32 1869 3
10−6 2.35 10−3 264.80 6371 3

α-scheme,
ρ∞ = 0.8

10−2 9.61 10−2 10.69 156 0
10−4 3.16 10−2 24.42 474 0
10−6 6.15 10−3 109.83 2437 0

α-scheme,
ρ∞ = 0.5

10−2 9.61 10−2 11.29 156 0
10−4 2.74 10−2 28.72 538 0
10−6 5.50 10−3 123.09 2714 0
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Conclusions

Conclusions

I Computational effort:
Half explicit solvers (HEM5 and PHEM56) outperforms the other solvers.

I Drift :
Index 2 DAE solvers are the best compromise for the constraints drift by
controlling drift at the accelerarion and position level at order 1

I Stiff Dynamics:
Fully implicit solvers (generalized-α) are required to efficiently integrate the
dynamics.

I Implementation effort:
Half explicit solvers (HEM5 and PHEM56) requires more effort to be
implemented:

I Non symmetric linear system solvers
I High sensitivity to rank deficiency of the active constraints.
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Conclusions

Thank you for your attention.
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