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Abstract: In this short communication, we first recall a version of the Pontryagin maximum
principle for general finite-dimensional nonlinear optimal sampled-data control problems. This
result was recently obtained in [L. Bourdin and E. Trélat, Optimal sampled-data control, and
generalizations on time scales, arXiv:1501.07361, 2015]. Then we discuss the maximization
condition for optimal sampled-data controls that can be seen as an average of the weak
maximization condition stated in the classical Pontryagin maximum principle for optimal
(permanent) controls. Finally, applying this theorem, we solve a linear-quadratic example based
on the classical parking problem.
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1. INTRODUCTION

Optimal control theory is concerned with the analysis of
controlled dynamical systems, where one aims at steering
such a system from a given configuration to some de-
sired target by minimizing some criterion. The Pontryagin
maximum principle (in short, PMP), established at the
end of the 50’s for general finite-dimensional nonlinear
continuous-time dynamics (see Pontryagin et al. (1962),
and see Gamkrekidze (2006) for the history of this dis-
covery), is certainly the milestone of the classical optimal
control theory. It provides a first-order necessary condition
for optimality, by asserting that any optimal trajectory
must be the projection of an extremal. The PMP then
reduces the search of optimal trajectories to a boundary
value problem posed on extremals. Optimal control the-
ory, and in particular the PMP, has an immense field of
applications in various domains, and it is not our aim here
to list them.

We speak of a purely continuous-time optimal control prob-
lem, when both the state q and the control u evolve contin-
uously in time, and the control system under consideration
has the form

q̇(t) = f(t, q(t), u(t)), for a.e. t ∈ R
+,

where q(t) ∈ R
n and u(t) ∈ Ω ⊂ R

m. Such models
assume that the control is permanent, that is, the value
of u(t) can be chosen at each time t ∈ R

+. We refer the
reader to textbooks on continuous optimal control theory
such as Agrachev et al. (2004); Bonnard et al. (2003,
2006); Bressan et al. (2007); Bryson et al. (1975); Bullo
et al. (2005); Hestenes (1966); Jurdjevic (1997); Lee et al.
(1967); Pontryagin et al. (1962); Schättler et al. (2012);
Sethi et al. (2000); Trélat (2005) for many examples of
theoretical or practical applications.

We speak of a purely discrete-time optimal control problem,
when both the state q and the control u evolve in a discrete
way in time, and the control system under consideration
has the form

qk+1 − qk = f(k, qk, uk), k ∈ N,

where qk ∈ R
n and uk ∈ Ω ⊂ R

m. As in the continuous
case, such models assume that the control is permanent,
that is, the value of uk can be chosen at each time k ∈ N.
A version of the PMP for such discrete-time control sys-
tems has been established in Halkin (1966); Holtzman
(1966); Holtzman et al. (1966) under appropriate con-
vexity assumptions. The considerable development of the
discrete-time control theory was in particular motivated
by the need of considering digital systems or discrete ap-
proximations in numerical simulations of differential con-
trol systems (see the textbooks Boltyanski (1978); Canon
et al. (1970); Mordukhovich (2006); Sethi et al. (2000)).
It can be noted that some early works devoted to the
discrete-time PMP (like Fan et al. (1964)) are mathemat-
ically incorrect. Some counterexamples were provided in
Boltyanski (1978) (see also Mordukhovich (2006)), show-
ing that, as is now well known, the exact analogous of
the continuous-time PMP does not hold at the discrete
level. More precisely, the maximization condition of the
continuous-time PMP cannot be expected to hold in gen-
eral in the discrete-time case. Nevertheless, a weaker con-
dition can be derived, in terms of nonpositive gradient
condition (see Theorem 42.1 in Boltyanski (1978)).

We speak of an optimal sampled-data control problem,
when the state q evolves continuously in time, whereas the
control u evolves in a discrete way in time. This hybrid
situation is often considered in practice for problems in
which the evolution of the state is very quick (and thus
can be considered continuous) with respect to that of the



control. We often speak, in that case, of digital control.
This refers to a situation where, due for instance to
hardware limitations or to technical difficulties, the value
u(t) of the control can be chosen only at times t = kT ,
where T > 0 is fixed and k ∈ N. This means that, once
the value u(kT ) is fixed, u(t) remains constant over the
time interval [kT, (k+1)T ). Hence the trajectory q evolves
according to

q̇(t) = f(t, q(t), u(kT )), for a.e. t ∈ [kT, (k + 1)T ), k ∈ N.

In other words, this sample-and-hold procedure consists of
“freezing” the value of u at each controlling time t = kT on
the corresponding sampling time interval [kT, (k + 1)T ),
where T is called the sampling period. In this situation,
the control of the system is clearly nonpermanent.

To the best of our knowledge, the classical optimal
control theory does not treat general nonlinear optimal
sampled-data control problems, but concerns either purely
continuous-time, or purely discrete-time optimal (perma-
nent) control problems. In Bourdin and Trélat (2015) we
provided a version of the PMP that can be applied to gen-
eral nonlinear optimal sampled-data control problems. 1

In this short communication, we first recall in Section 2 the
above mentioned PMP. Then a discussion is provided con-
cerning the maximization condition for optimal sampled-
data controls that can be seen as an average of the weak
maximization condition stated in the classical PMP for
optimal (permanent) controls. Finally, in Section 3, we
solve a linear-quadratic example based on the classical
parking problem.

2. MAIN RESULT

Let m, n and j be nonzero integers. In the sequel, we
denote by 〈·, ·〉n the classical scalar product in R

n. Let
T > 0 be an arbitrary sampling period. In what follows, for
any real number t, we denote by E(t) the integer part of t,
defined as the unique integer such that E(t) ≤ t < E(t)+1.
Note that k = E(t/T ) whenever kT ≤ t < (k + 1)T .

In this section, we are interested in the general nonlinear
optimal sampled-data control problem given by

(OSDCP)
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
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



min

∫ tf

0

f0(τ, q(τ), u(kT )) dτ, with k = E(τ/T ),

q̇(t) = f(t, q(t), u(kT )), with k = E(t/T ),

u(kT ) ∈ Ω,

g(q(0), q(tf )) ∈ S.

Here, f : R×R
n ×R

m → R
n, f0 : R×R

n ×R
m → R and

g : Rn × R
n → R

j are of class C 1, and Ω (resp., S) is a
non-empty closed convex subset of Rm (resp., of Rj). The
final time tf ≥ 0 can be fixed or not.

Recall that g is said to be submersive at a point (q1, q2) ∈
R

n × R
n if the differential of g at this point is surjective.

We define as usual the Hamiltonian H : R × R
n × R

n ×
R× R

m → R by

H(t, q, p, p0, u) = 〈p, f(t, q, u)〉n + p0f0(t, q, u).

1 Actually we established in Bourdin and Trélat (2015) a PMP in
the much more general framework of time scales, which unifies and
extends continuous-time and discrete-time issues. But it is not our
aim here to enunciate this result in its whole generality.

2.1 Statement

In Bourdin and Trélat (2015) we proved the following
theorem.

Theorem 1. (PMP for (OSDCP)). If a trajectory q, de-
fined on [0, tf ] and associated with a sampled-data control
u, is an optimal solution of (OSDCP), then there exists
a nontrivial couple (p, p0), where p : [0, tf ] → R

n is an
absolutely continuous mapping (called adjoint vector) and
p0 ≤ 0, such that the following conditions hold:

• Extremal equations:

q̇(t) = ∂pH(t, q(t), p(t), p0, u(kT )),

ṗ(t) = −∂qH(t, q(t), p(t), p0, u(kT )),

for almost every t ∈ [0, tf), with k = E(t/T ).

• Maximization condition:
For every controlling time kT ∈ [0, tf ) such that
(k + 1)T ≤ tf , we have

〈 1

T

∫ (k+1)T

kT

∂uH(τ, q(τ), p(τ), p0, u(kT )) dτ

, y − u(kT )
〉

m
≤ 0, (1)

for every y ∈ Ω. In the case where kT ∈ [0, tf ) with
(k + 1)T > tf , the above maximization condition
is still valid provided 1

T
is replaced with 1

tf−kT
and

(k + 1)T is replaced with tf .

• Transversality conditions on the adjoint vec-
tor:
If g is submersive at (q(0), q(tf )), then the nontrivial
couple (p, p0) can be selected to satisfy

p(0) = −∂1g(q(0), q(tf ))
⊤ψ,

p(tf ) = ∂2g(q(0), q(tf ))
⊤ψ,

where −ψ belongs to the orthogonal of S at the point
g(q(0), q(tf )) ∈ S.

• Transversality condition on the final time:
If the final time is left free in the optimal sampled-
data control problem (OSDCP) and if tf > 0, then
the nontrivial couple (p, p0) can be moreover selected
to satisfy

H(tf , q(tf ), p(tf ), p
0, u(kfT )) = 0,

where kf = E(tf/T ) whenever tf /∈ NT , and kf =
E(tf/T )− 1 whenever tf ∈ NT .

The maximization condition (1), which is satisfied for
every y ∈ Ω, gives a necessary condition allowing to
compute u(kT ) in general, and this, for all controlling
times kT ∈ [0, tf). We will solve in Section 3 an example
of optimal sampled-data control problem, and show how
these computations can be done in a simple way.

Remark 1. As is well known, the nontrivial couple (p, p0)
of Theorem 1, which is a Lagrange multiplier, is defined up
to a multiplicative scalar. Defining as usual an extremal as
a quadruple (q, p, p0, u) solution of the extremal equations,
an extremal is said to be normal whenever p0 6= 0 and
abnormal whenever p0 = 0. In the normal case p0 6= 0,
it is usual to normalize the Lagrange multiplier so that
p0 = −1.



Remark 2. Let us describe some typical situations of ter-
minal conditions g(q(0), q(tf )) ∈ S in (OSDCP), and of
the corresponding transversality conditions on the adjoint
vector.

• If the initial and final points are fixed in (OSDCP),
that is, if we impose q(0) = q0 and q(tf ) = qf , then
j = 2n, g(q1, q2) = (q1, q2) and S = {q0} × {qf}. In
that case, the transversality conditions on the adjoint
vector give no additional information.

• If the initial point is fixed, that is, if we impose q(0) =
q0, and if the final point is left free in (OSDCP), then
j = n, g(q1, q2) = q1 and S = {q0}. In that case,
the transversality conditions on the adjoint vector
imply that p(tf ) = 0. Moreover, we have p0 6= 0 2

and we can normalize the Lagrange multiplier so that
p0 = −1 (see Remark 1).

• If the periodic condition q(0) = q(tf ) is imposed
in (OSDCP), then j = n, g(q1, q2) = q1 − q2 and
S = {0}. In that case, the transversality conditions
on the adjoint vector yield that p(0) = p(tf ).

We stress that, in all examples above, the function g is
indeed a submersion.

Remark 3. In Bourdin and Trélat (2015) we also provided
a result stating the existence of optimal solutions for
(OSDCP), under some appropriate compactness and con-
vexity assumptions. Actually, if the existence of solutions
is stated, the necessary conditions provided in Theorem 1
may prove the uniqueness of the optimal solution.

2.2 Averaging of the classical weak maximization condition

Let us compare the maximization condition (1) with
respect to that of the classical PMP. Let us consider the
following general nonlinear optimal (permanent) control
problem

(OCP)
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


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
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





min

∫ tf

0

f0(τ, q(τ), u(τ)) dτ,

q̇(t) = f(t, q(t), u(t)),

u(t) ∈ Ω,

g(q(0), q(tf )) ∈ S.

In the sequel, we will denote by u∗ an optimal (permanent)
control. In the case of (OCP), the statement of the
classical PMP coincides with that of Theorem 1, except the
maximization condition (1). 3 Indeed, the maximization
condition in the classical PMP is celebrated to be given
by

u∗(t) ∈ argmax
y∈Ω

H((t, q(t), p(t), p0, y), (2)

for a.e. t ∈ [0, tf ). Note that (2) can be directly weakened
as follows:

〈

∂uH(t, q(t), p(t), p0, u∗(t)), y − u∗(t)
〉

m
≤ 0, (3)

2 Indeed, if p0 = 0, then the adjoint vector p is trivial from the
extremal equation and from the final condition p(tf ) = 0. This leads
to a contradiction since the couple (p, p0) has to be nontrivial.
3 Actually the transversality condition on the final time is slightly
different. Precisely, if the final time is left free in the optimal control
problem (OCP) and if tf > 0, then the nontrivial couple (p, p0)
can be selected such that the function t 7→ H(t, q(t), p(t), p0, u∗(t))
is equal almost everywhere to a continuous function vanishing at
t = tf .

for every y ∈ Ω and for a.e. t ∈ [0, tf). If the classical
PMP is stated with the nonpositive gradient condition (3),
the literature speaks of weak formulation of the classical
PMP. 4

It is worth to emphasize that the maximization condi-
tion (1) given in Theorem 1 can be seen as an average of
the weak maximization condition (3) given in the classical
PMP. For this reason we speak of nonpositive average
gradient condition.

Remark 4. In the case where the Hamiltonian H is con-
cave in u, the strong and the weak formulations of the
classical PMP are obviously equivalent. In a similar way,
if H is concave in u, note that the maximization condi-
tion (1) in Theorem 1 can be written as

u(kT ) ∈ argmax
y∈Ω

1

T

∫ (k+1)T

kT

H(τ, q(τ), p(τ), p0, y) dτ,

for all controlling times kT ∈ [0, tf). In the case where
(k + 1)T > tf , the above maximization condition is still
valid provided 1

T
is replaced with 1

tf−kT
and (k + 1)T

is replaced with tf . In that case we speak of pointwise
maximization of the average Hamiltonian.

3. THE PARKING PROBLEM

In this section, we consider the classical double integrator

q̈ = u, u ∈ [−1, 1],

which can represent a car with position q ∈ R and with
bounded acceleration u acting as the control. Let us study
the classical problem of parking the car at the origin, from
an initial position M > 0 and with a fixed final time
tf > 0, minimizing the energy

∫ tf

0

u2 dτ.

In the sequel we first give some recalls on the classical per-
manent control case (solved with the help of the classical
PMP). Then we solve the sampled-data control case with
the help of Theorem 1 and compare the two situations.

3.1 Recalls on the permanent control case

The above optimal control problem, in the permanent
control case, can be summarized as follows:


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
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




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





min

∫ tf

0

u(τ)2 dτ,

(

q̇1(t)
q̇2(t)

)

=

(

q2(t)
u(t)

)

,

u(t) ∈ [−1, 1],
(

q1(0)
q2(0)

)

=

(

M
0

)

,

(

q1(tf )
q2(tf )

)

=

(

0
0

)

.

In the sequel we assume that t2f > 4M in order to ensure
the existence of a solution.
4 As mentioned in the introduction, only the weak formulation of
the classical PMP can be extended to the discrete case. To extend
the strong formulation of the classical PMP to the discrete case, one
has to consider additional convexity assumptions on the dynamics,
see Remark 4 or Halkin (1966); Holtzman (1966); Holtzman et al.
(1966) for example.



From the classical PMP, one can prove that, if 4M < t2f <

6M , the optimal (permanent) control u∗ is given by

u∗(t) =































−1 if 0 ≤ t ≤ t1,

2t− tf
√

3(t2f − 4M)
if t1 ≤ t ≤ tf − t1,

1 if t1 ≤ t ≤ tf ,

where t1 = 1
2 (tf −

√

3(t2f − 4M)) <
tf
2 , see Figure 1. If

0
|
tf

|
t1

|
tf − t1

u∗−

−

Fig. 1. Optimal (permanent) control, if 4M < t2f < 6M

6M ≤ t2f , one can prove that the optimal (permanent)
control u∗ is given by

u∗(t) =
6M

t3f
(2t− tf ), t ∈ [0, tf ],

see Figure 2.

0
|
tf

u∗
−

−

Fig. 2. Optimal (permanent) control, if 6M ≤ t2f

3.2 The sampled-data control case

In this section, we consider the corresponding optimal
sampled-data control problem given by
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min

∫ tf

0

u(kT )2 dτ, with k = E(τ/T ),

(

q̇1(t)
q̇2(t)

)

=

(

q2(t)
u(kT )

)

, with k = E(t/T ),

u(kT ) ∈ [−1, 1],
(

q1(0)
q2(0)

)

=

(

M
0

)

,

(

q1(tf )
q2(tf )

)

=

(

0
0

)

,

where T > 0 is a fixed sampling period. In order to
avoid the case where a controlling time kT is such that
(k + 1)T > tf and in order to simplify the redaction, we
assume that tf = KT for some K ∈ N

∗.

Let us apply Theorem 1 in the normal case p0 = −1. From
the extremal equations, the adjoint vector p = (p1 p2)

⊤ is

such that p1 is constant and p2(t) = p1(tf − t) + p2(tf ) is
affine. The maximization condition (1) provides

1

T
(y − u(kT ))

∫ (k+1)T

kT

p2(τ) − 2u(kT ) dτ ≤ 0,

that is

(y−u(kT ))

[

−2u(kT ) + p1

(

tf − kT −
T

2

)

+ p2(tf )

]

≤ 0,

for all k = 0, . . . ,K − 1 and all y ∈ [−1, 1]. Let us write
this maximization condition as

(y − u(kT ))Γk(u(kT )) ≤ 0,

for all k = 0, . . . ,K − 1 and all y ∈ [−1, 1], where
Γk : [−1, 1] → R is a decreasing affine function. It clearly
follows that

• if Γk(−1) < 0, then u(kT ) = −1;
• if Γk(1) > 0, then u(kT ) = 1;
• if Γk(−1) > 0 and Γk(1) < 0, then u(kT ) is the unique
solution of Γk(x) = 0 given by

u(kT ) =
1

2

[

p1

(

tf − kT −
T

2

)

+ p2(tf )

]

.

Hence, for each couple (p1, p2(tf )), the above method
allows to compute explicitly the associated values u(kT )
for all k = 0, . . . ,K − 1. Unfortunately, the transversal-
ity conditions on the adjoint vector do not provide any
additional information on the values of p1 and p2(tf ), see
Remark 2. As a consequence, and as usual, we proceed to
a numerical shooting method on the application

(p1, p2(tf )) 7−→ (q1(tf ), q2(tf ))

in order to guarantee the final constraints q1(tf ) =
q2(tf ) = 0. 5

Finally we obtain the following numerical results. The
values u(kT ) are represented with blue crosses and the
red curve corresponds to the optimal (permanent) control
u∗ obtained in Section 3.1.

• With M = 2, tf = 3 (in the case 4M < t2f < 6M)
and for T = 1, T = 0.5, T = 0.1 and T = 0.01, we
obtain:
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• With M = 2, tf = 4 (in the case 6M ≤ t2f ) and for
T = 1, T = 0.5, T = 0.1 and T = 0.01, we obtain:

5 In order to initiate the shooting method, we take the values of p1
and p2(tf ) from the classical permanent control case, see Section 3.1.
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Remark 5. The previous numerical results naturally lead
us to ask about the convergence of the optimal sampled-
data control to the optimal (permanent) control when
the sampling period T tends to 0. Actually, this natural
question also emerges from the maximization condition (1)
that can be seen as an average of the weak maximization
condition of the classical PMP, see Section 2.2. Indeed,
note that the interval of average is smaller and smaller as
the sampling period T is reduced. Similarly, an important
scientific perspective concerns the convergence of the op-
timal trajectory associated to a sampled-data control to
the optimal trajectory associated to a permanent control.
These important issues both constitute a forthcoming re-
search project of the two authors of this note.

Remark 6. Note that the above graphics only represent
(by blue crosses) the discrete values u(kT ) of the sampled-
data control u at each controlling time t = kT . Let us
provide some graphics representing the sample-and-hold
procedure consisting of “freezing” the control at each
controlling time kT on the corresponding sampling time
interval [kT, (k + 1)T ). We fix T = 0.5 and we consider
first (M, tf ) = (2, 3), then (M, tf ) = (2, 4). We obtain:
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