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INTRODUCTION

Continental margins are generally highly produc-
tive areas compared to the open sea and provide the
main spawning habitats for small pelagic fishes
(Palomera et al. 2007, Planque et al. 2007, Bellido et
al. 2008, Nicolle et al. 2009). Shallow waters, stronger
currents, river discharges, and wind-driven up -
welling cause strong variations in physical struc-

tures, resulting in a variety of hydrological patterns
(Yanagi 2000). Physical processes have direct effects
on the production of the first trophic levels by mixing
different water masses and bringing nutrients from
terrestrial runoff and coastal upwelling. To under-
stand how these environmental conditions affect zoo-
plankton distributions at the mesoscale, physical and
biological variables must to be measured simultane-
ously at a sufficiently high resolution to detect fine
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ABSTRACT: The size structure of zooplankton communities in the Gulf of Lion, NW Mediterra -
nean Sea, was studied in May 2010 and January 2011. The integrated physical and biological
measurements provided a 3D view with high spatial resolution of the physical and biological
 variables and their correlations over the whole gulf. The effects of physical processes such as
freshwater input, coastal upwelling, and water column mixing by winds on phytoplankton and
zooplankton distributions were analyzed using these data. During the winter, strong northerly
winds mixed the water column, and the vertical distributions of biological variables were uniform
over most of the gulf while there were local hot spots with high chlorophyll a (chl a) concentrations
in front of the Rhône mouths and in coastal areas. During the spring, light winds and water column
stratification resulted in less vertical mixing, and the Rhône River freshwater plume spread over a
large part of the gulf. The nutrients delivered by the freshwater input encouraged high primary
production in the surface layer. In the pycnocline, a thin layer of high particle concentration was
associated with these high phytoplankton biomasses. Three habitats were distinguished based on
statistical analysis performed on biological and physical variables: (1) the coastal area character-
ized by shallow waters, high chl a concentrations, and a steep slope of the normalized biomass size
spectrum (NBSS); (2) the area affected by the Rhône with high stratification and flat NBSS slope;
and (3) the continental shelf with a deep mixed layer, relatively low particle concentrations, and
moderate NBSS slope. Defining habitat is a relevant approach to designing new zooplankton sam-
pling strategies, validating distribution models and including the zooplankton compartment in
trophodynamic studies.
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structures in the water column (Labat et al. 2009,
Möller et al. 2012, Ohman et al. 2012). The data from
high-resolution measurements can be used to deter-
mine zooplankton habitats with specific hydrological
and biological features. Recent advances in in situ
optical and acoustic sensors have made such high-
resolution measurements of physical and biological
variables possible (Mikkelsen & Pejrup 2001, Davis
et al. 2004, Jiang et al. 2007, Picheral et al. 2010,
Powell & Ohman 2012). The laser optical plankton
counter (LOPC) can be used to measure the size
spectrum of zooplankton communities (Herman et al.
2004) and can also be coupled with other sensors to
monitor simultaneous changes in the physical and
biological variables along the water column. In con-
junction with net tows to establish ground truth, this
size structure approach provides important informa-
tion on the functioning of marine ecosystems. The
characteristics of the size spectrum have been suc-
cessfully used in several studies as an indicator for
the dyna mics of plankton communities (Matsuno et
al. 2012, Tarling et al. 2012, Schultes et al. 2013,
Basedow et al. 2014). Size-based mathematical mod-
els have been developed and can be used to deter-
mine the characteristics of plankton communities
and to quantify the efficiency of energy transfer
between trophic levels (Zhou 2006, Andersen et al.
2009). Sizes of zooplankton organisms also play an
important role in predator−prey interactions, espe-

cially in the survival of fish larvae (Plounevez &
Champalbert 2000, Costalago et al. 2012, Nikoliou -
dakis et al. 2012). Although the concept of habitat is
widely used and well defined for the study of fish
(Bellido et al. 2008, Giannoulaki et al. 2011, Tugores
et al. 2011, Salas-Berrios et al. 2013), only a few stud-
ies have used this concept for zooplankton. The spe-
cies-based ap proach used to study fish is difficult to
transpose to the zooplankton compartment, espe-
cially in tropical and temperate regions with high
biodiversity. Zooplankton habitats are therefore gen-
erally defined as function of the environmental con-
ditions that create a specific assemblage of species
characterized by taxonomic composition (Schulz et
al. 2012, Sano et al. 2013) or size structure features
(Matsuno et al. 2012). In this study, we characterized
zooplankton communities by their abundances and
size structures rather than by taxonomic composition.
The term ‘habitat’ is used to refer to geographical
areas where there are statistically meaningful rela-
tionships between the environmental conditions and
zooplankton community variables.

The Gulf of Lion in the northwestern (NW) Medi-
terranean Sea has a large continental shelf up to
80 km wide (Fig. 1). Several rivers, in particular the
Rhône River, flow into the Gulf of Lion carrying
freshwater, terrestrial particles, and nutrients. The
Northern Current (NC) flows southwestwards along
the continental slope and sometimes intrudes onto

the shelf, bringing oligotrophic waters
into the gulf. Strong winds such as the
Mistral and Tramontane occur fre-
quently, creating coastal upwellings
and driving the dispersion and dilu-
tion of the Rhône River plume. The
hydrography of the Gulf of Lion is well
documented (Millot 1990, Broche et al.
1998, Petren ko et al. 2005) and simu-
lated by several physical models
(Estournel et al. 2003, André et al.
2005, Rubio et al. 2009). The MARS-
3D hydrodynamic model simulates cir-
culation in the NW Mediterranean
and resolves the coastal dynamics.
The effects of the Rhône River plume
on biological processes have been
described in many studies dealing
with nutrient inputs, phytoplankton
growth, and zooplankton grazing and
behavior (Gau dy et al. 1990, Pagano et
al. 1993, Pujo-Pay et al. 2006, Diaz et
al. 2008). However, very few studies
have been undertaken for the area
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Fig. 1. Schematic representation of the main hydroclimatic phenomena that
interact with the physical features in the Gulf of Lion. Tramontane and Mistral
are frequently occurring strong winds that create coastal upwellings and drive 

the dispersion and dilution of the Rhône River plume
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spanning coastal runoff to the NC in the past 25 yr
(Kouwenberg 1994, Gaudy et al. 2003), and these do
not provide an overall view of the distributions. Fur-
thermore, only 1 study focused on the size structure
of zooplankton communities (Rian dey 2005). Consid-
erable efforts have been made to study trophic
dynamics and effects of physical processes at differ-
ent scales in the Gulf of Lion (Raimbault & Durrieu de
Madron 2003, Bănaru et al. 2013), but, despite the
key position of the zooplankton compartment in the
food web, no studies have used a specific sampling
strategy to determine zooplankton dynamics.

Two surveys were conducted in May 2010 and Jan-
uary 2011 over the entire Gulf of Lion to produce 3D
maps of zooplankton distributions and environmen-
tal conditions simultaneously at a synoptic scale. The
aims of this study were (1) to define spatial zooplank-
ton habitats in relation to environmental conditions,
(2) to identify the main processes shaping the habi-
tats, and (3) to suggest a method suitable for coastal
marine ecosystem monitoring and management in
the future.

MATERIALS AND METHODS

Data collection and sampling

Two surveys were conducted on board the RV
‘Téthys II’: from 25 April to 2 May 2010 (COSTEAU 4)
and from 23 to 27 January 2011 (COSTEAU 6). Six
transects from the coast to the open sea were sur-
veyed with up to 15 sampling stations at regular
intervals of 2.5 nautical miles (Table 1). All sampling
operations were carried out during the day from the
bottom, or a maximum depth of 200 m for offshore
stations, to the surface using a Seabird 911 CTD

(Sea-Bird Electronics), an Aqua Tracka 3 fluorometer
(Chelsea Technologies Group), and a LOPC (Herman
et al. 2004) mounted on a 12-bottle Rosette water
sampler. Water samples were collected at a range of
depths and immediately filtered using GF/F filters. In
the laboratory, chlorophyll a (chl a) was extracted in
an acetone solution as described by Aminot &
Kérouel (2004). The regression between in situ-mea-
sured fluorescence (fluo) and laboratory-measured
chl a were de termined as chl a = 1.64 × fluo (R2 = 0.77,
n = 202) for COSTEAU 4 and chl a = 5.43 × fluo (R2 =
0.83, n = 201) for COSTEAU 6. Wind data were ob -
tained from the maritime meteorological station and
weather forecast model Aladin from Météo-France.

The recently developed LOPC has already been
used in several studies (Finlay et al. 2007, Checkley
et al. 2008, Gaardsted et al. 2010, Ohman et al. 2012,
Basedow et al. 2013). The high acquisition rate of the
LOPC, and the simultaneous measurements of other
variables, provides the fine spatial resolution map-
ping necessary for understanding the interactions be-
tween environmental conditions and zooplankton
communities. The LOPC was coupled to a data logger
and a micro-CTD to measure the vertical dis tribution
of the size spectrum and abundance of particles (zoo-
plankton and suspended particulate matter) from
100 µm to 1 cm equivalent spherical diameter (ESD;
Herman et al. 2004). The LOPC has a flow-through
tunnel with an open area of 7 × 7 cm and measures
the attenuation of the light intensity caused by parti-
cles passing through the tunnel and crossing at the
laser beam. The digital size of the particles is inferred
from the changes in intensity and is converted to the
ESD. The data were processed using a program de-
veloped on MATLAB software (Mathworks). Like
other laser-based sensors, the LOPC does not distin-
guish between organisms and suspended particulate
matter (SPM). However, recent studies have de-
scribed the development of new theoretical ways for
separating living and non-living particles, based on
the lognormal distribution ex pected for particle spec-
tra (Petrik et al. 2013), and using an opacity index to
separate zooplankton organisms from SPM for parti-
cles over 1.5 mm ESD (Checkley et al. 2008). Unfortu-
nately, these methods were not suitable for this study
owing to the low concentrations of organisms over 2
mm ESD in the Mediterranean Sea and the small vol-
ume of water analyzed at each cast.

Spatial and transect maps were generated using
Ocean Data View (Schlitzer 2014) with the embed-
ded gridding software DIVA (Troupin et al. 2012).
Data from a hull-mounted acoustic Doppler current
profiler (ADCP, 150 kHz, RD Instruments) and simu-
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Tran- —— COSTEAU 4 —— —— COSTEAU 6 ——
sect Date No. of Date No. of 

(dd/mm) stations (dd/mm) stations

A 27/04 11 (+ 2 trans.) 23/01 13 (+ 1 trans.)
B 28/04 14 24/01 7
C 29/04 12 25/01 15 (+ 2 trans.)
D 30/04 14 (+ 1 trans.) 26/01 14 (+ 1 trans.)
E 01/05 6 27/01 15
F 02/05 6

Table 1. Dates and numbers of stations for each transect dur-
ing 2 sampling campaigns in the NW Mediterranean Sea:
COSTEAU 4 (2010) and COSTEAU 6 (2011); ‘trans.’ stations
were between 2 transects. Positions of the stations are 

shown in Fig. 3a
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lations from the MARS-3D hydrographic model
(André et al. 2005) were used to assess the stability of
the physical structures during the surveys.

Habitat mapping

The methodology used to define habitats followed
a sequence of operations: (1) selection of a limited
number of measured or calculated variables; (2) prin-
cipal component analysis (PCA) of these variables;
(3) cluster analysis of the stations characterized by
their coordinates on the principal components (PCs);
(4) definition of the number of clusters using an
objective measure of partitioning efficiency.

The first step characterized each station using a
limited set of variables representing hydrological
and biological features and including vertical infor-
mation (Table 2). Several sets of variables were
tested with the objective of balancing them between
physical and biological variables. Physical variables
were selected to be representative of all the physical
processes occurring in the gulf. Five variables were
selected: sea surface temperature and salinity, mixed
layer depth, stratification index, and potential den-
sity at the bottom. The stratification index was calcu-
lated using the Brunt-Väisälä frequency (N). Each
station where at some depths N2 was higher than
10−3 s−2 was considered to have a pronounced pycno-
cline. To calculate the intensity of the pycnocline, a
density profile model (ρmod) was defined using the
following function:

(1)

where ρh0 (density at top of section), Δρh (density
change over the section), and z0 (absolute depth at
inflexion point) were evaluated directly on a profile
section centered on the pycnocline. Parameter α was
estimated using least-squares minimization of the
difference between the modeled density profile and
the observed profile. Differentiating this equation
related to dz gives:

(2)

The stratification index dρmod/dz is the value of the
slope at the inflexion point, where z = z0:

(3)

The depth at which N2 was greater than 0.2 ×
10−3 s−2 was taken to define the mixed layer depth. In

addition to the chl a concentration, biological vari-
ables were selected to characterize zooplankton com-
munities. The selection was based on the type of data
obtained by the optical sensors used. The variables
selected were the abundance of 3 particle size classes
integrated along the water column and the slope of
the normalized biomass size spectrum (NBSS).

The next step was to perform a PCA on the data set
constructed from all of these variables. This step iden-
tified any signi ficant correlation between the vari-
ables, showed which variables influenced the vari-
ability between stations, and reduced the number of
variables to the 3 principal components. Outliers were
defined arbitrarily by calculating the Mahalanobis
distance (MD) for the distributions of stations, and
setting a threshold of MD2 = 50, which resulted in 2
outliers (out of 165 stations). Although outliers were
excluded from the data set used for the calculation,
their coordinates on the PC axes were calculated.
The PCA was performed separately on the data sets
for each survey in order to avoid the cluster definition
being biased by the variability in the variables be -
tween the 2 surveys.

A cluster analysis was then performed on the sta-
tions characterized by the PCs. The Davies-Bouldin
(DB) index, which is an objective measure of parti-
tioning efficiency, provided the optimal number of
groups defined by clustering (Davies & Bouldin
1979). The number 3 was selected since it gave one
of the lowest DB index values for both the COSTEAU
4 and the COSTEAU 6 surveys (Fig. 2), making it
possible to compare the distribution of the habitats
between the 2 periods. Furthermore, although the
DB index was relatively low for 7 clusters for the May
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Variable Notation Unit

Physical conditions
SST Temp_0 °C
SSS Sal_0
Bottom potential density Rho_b kg m−3

Mixed layer depth Z_ML m
Stratification index Rho_grad

Biological conditions
Integrated chlorophyll a Chla_int mg m−3

concentration
Integrated particle abundance no. m−3

0.1−0.3 mm X0.1−0.3mm

0.3−0.5 mm X0.3−0.5mm

>0.5 mm X0.5mm

Slope of NBSS

Table 2. Physical and biological variables and indices. SST:
sea surface temperature; SSS: sea surface salinity; NBSS: 

normalized biomass size spectrum
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data, it was preferable to have a limited number of
habitats for summarizing the information and be able
to explain the differences between each region. All
statistical tests were carried out using the dudi.pca,
kmeans, and index.DB functions of the ‘R’ free statis-
tical software (R Development Core Team 2014).

Size spectrum

Normalized biomass size spectra (NBSS) were cal-
culated as described by Herman & Harvey (2006).
Using logarithmic bins provided high resolution for
small sizes and avoided empty classes for large sizes.
The biomass within each size class was divided by
the class width to normalize the biomass size spec-
trum. Finally, each NBBS was divided by the corre-
sponding volume of filtered water. A linear regres-
sion performed on the NBSS provided the slope and
the y-intercept of the NBSS. NBSS slopes were cal -
culated from the third class (120 µm ESD) to the first
empty class in the spectrum. The NBSS slope is
linked to the community assimilation efficiency
across the size spectrum and the number of trophic
levels (Gaedke 1993, Gilabert 2001, Zhou 2006).

RESULTS

Weather conditions and river discharges

During the January survey, strong northerly winds
blew regularly and played an important role in
homogenizing and cooling the water column. The
Rhône River discharge was up to 3410 m3 s−1 2 wk

before the survey, well above the annual average
(1721 m3 s−1; Ludwig et al. 2009) but below extreme
flash flood events (>5000 m3 s−1). In May, the winds
were light with frequent changes in direction, and
the Rhône River discharge was slightly below the
annual average, down to 1343 m3 s−1 during the 2 wk
preceding the survey.

Stability of the physical structures

The stability of the physical structures during the
survey (6 d for COSTEAU 4 and 5 d for COSTEAU 6)
was investigated using ADCP data (not included in
this paper) and simulations from the hydrodynamic
circulation model MARS-3D. The predictions from
the MARS-3D model gave a better, more detailed
insight of spatial and temporal scales of variability.
The wind conditions and river flows, which are the
main factors of non-stationarity over short time scales
in the Gulf of Lion, were constant during both sur-
veys, resulting in the model predicting nearly stable
physical structures. This was in agreement with the
low values of currents inferred from ADCP data. We
therefore assumed that the spatial distributions were
quasi-stationary and good representatives of their
mean values over the time scales of the surveys.

Hydrological structures

In January 2011, the effect of the Rhône was limi -
ted to the area near the coast, easily identifiable with
colder, low salinity surface waters compared to the
marine waters (temperature, T < 12°C and salinity,
S < 35; Fig. 3a). The Rhône divides into 2 branches
50 km upstream of the coast, which explains the
presence of 2 plumes: 1 to the east associated with
the Great Rhône and 1 to the west associated with
the Little Rhône. Along the continental slope, S > 38
and high temperature (>13°C) revealed the presence
of the NC. Cooling processes take place in the west-
ern part of the Gulf of Lion in the shallowest waters
(<11.5°C). The slight decrease in salinity was associ-
ated with the mouths of several small rivers. Cooling
processes were found along Transect D with a tongue
of cold water (<11.5°C) in the bottom layer (Fig. 3b).
A front separating the continental shelf waters from
the NC waters was also clearly identifiable (S > 38
and T > 13°C), 50 km away from the coast. The Rhône
River plume was a very thin surface layer near the
coast (less than 3 m thick) and diluted vertically
towards the open sea.

35

Fig. 2. Davies-Bouldin index of partitioning efficiency as a
function of number of clusters. Lower index values indicate
better partitioning. The black arrow shows the number of 

clusters selected
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Fig. 3. COSTEAU 6 (23 to 27 January 2011): (a) Spatial distributions of sea surface temperature (SST), sea surface salinity
(SSS), chlorophyll a (chl a) concentration, and particle concentration (laser optical particle counter [LOPC] counts, 0.1−35 mm
equivalent spherical diameter [ESD]). Stations are represented by the black dots and Transects A–F are indicated. (b) Vertical
distributions of sea temperature (T ), sea salinity (S), chl a concentration, and particle concentration along Transect D. Black 

vertical lines represent the fluorometer-CTD-LOPC casts
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In May 2010, the Rhône outflow affected a large
part of the Gulf of Lion, far out to the west to the coast
and to the south up to the continental slope (S < 37
and T > 16°C; Fig. 4a). The tip of the plume curved
slightly westward. At the surface, continental shelf
waters were only visible in the eastern part of the
gulf (S > 38). Transect D in front of the mouth of the
Little Rhône crossed the tip of the Great Rhône
plume. The spring warming of the surface waters
stratifies the water column along the whole transect.
In the vicinity of the Rhône River plume, mixing of
warmer waters with the fresh water of the plume cre-
ated a strong potential density gradient between the
surface and bottom layers. The pycnocline was at a
depth of around 12 m (Fig. 4b).

Chlorophyll a and zooplankton distributions

During the winter survey (23 to 27 January 2011),
the integrated chl a concentrations were highest in
coastal waters, in front of the Rhône estuaries and in
the coldest waters in the western part of the gulf
(Fig. 3a). However, concentrations on the continental
shelf were fairly high, generally over 0.5 mg m−3. In the
center of the gulf, the vertical distributions showed 3
identifiable patterns (Fig. 3b): the highest concentra-
tions were situated near the coast in the subsurface
water layer affected by freshwater inputs, intermedi-
ate concentrations were found in continental shelf
waters, and the lowest concentrations were in the oli-
gotrophic waters of the NC.

The distributions of particle concentrations were
correlated with chl a distributions: the highest con-
centrations were found near the coast in the west-
ern part of the gulf and in front of the estuaries,
especially that of the Little Rhône (Fig. 3a). On the
continental shelf, the particle concentrations were
lower but uniform. In the water column, high parti-
cle concentrations were concentrated in a thin
layer centered on the pycnocline (Fig. 3b). Farther
offshore, some smaller patches appeared near the
surface.

During the spring survey (27 April to 2 May 2010),
vertically integrated chl a concentrations were not
uniformly distributed and, although there were a few
hot spots in the coastal area, concentrations were
lower than in January (Fig. 4a). Mean concentrations
on the continental shelf were also quite low com-
pared to January (<0.3 mg m−3). Along transect D,
chl a vertical distributions were very patchy (Fig. 4b).
The highest concentrations were found in the
 freshest waters at the tip of the Rhône River plume

(>1.5 mg m−3). Deeper, about 40 m, concentrations
occasionally reached 0.5 mg m−3.

The highest particle concentrations were in the
coastal area, in both the western and eastern parts of
the gulf (>150 × 103 counts m−3; Fig. 4a). High parti-
cle concentrations, correlated with the spatial distri-
bution of the Rhône River plume, were also present
far from the coast on the shelf. Vertical particle distri-
butions show several patches distributed in the sub-
surface layer at the interface between the warm sur-
face waters and the colder continental shelf waters
(Fig. 4b). The highest concentrations were found in
the Rhône River plume (>400 × 103 counts m−3). Con-
centrations under the pycnocline were quite low
(>30 × 103 counts m−3), although several hot spots
appeared near the bottom on the shelf up to the con-
tinental slope.

Analytical results

Statistical tests were performed separately for each
data set. In January, the first PC calculated by the
PCA had positive coordinates for mixed layer depth
and sea surface temperature and negative coordinates
for small- and medium-sized particles (Table 3). The
second component was defined by the stratification
index and the NBSS slope on the positive side and
sea surface salinity on the negative. The correlation
circle formed by PCs 1 and 2 (Fig. 5a) shows a posi-
tive correlation between the abundance of small par-
ticles and chl a concentration, and be tween the strat-
ification index and the abundance of large particles.

In May, the main pattern from the variable coordi-
nates was a positive correlation between water col-
umn stratification (Rho_grad, Temp_0, and Sal_0)
and the abundance of large particles (Table 3). The
second component showed that the NBSS slopes
were negatively correlated with chl a concentrations
and the abundance of small particles. Some of the
patterns highlighted by the correlation circle
(Fig. 5b) were similar to those found for the January
data (Fig. 5a), with similar correlations between the
water column stratification and the abundance of
large particles and between chl a concentrations and
the abundance of small particles.

Stations D1 and E1 were considered as outliers for
COSTEAU 6 (January) and COSTEAU 4 (May),
respectively. These stations gave extreme values
which were clearly different from the other stations
(Fig. 6). Station D1 was the shallowest station (15 m
depth) with extreme values for chl a and particle con-
centrations. Station E1, in front of the Rhône River

37
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Fig. 4. COSTEAU 4 (27 April to 2 May 2010): (a) Spatial distributions of sea surface temperature (SST), sea surface salinity
(SSS), chlorophyll a (chl a) concentration, and particle concentration (laser optical particle counter [LOPC] counts, 0.1−35 mm
equivalent spherical diameter [ESD]). Stations are represented by the black dots and Transects A−F are indicated. (b) Vertical
distributions of sea temperature (T ), sea salinity (S ), chl a concentration, and particle concentration along Transect D. Black 

vertical lines represent the F-CTD-LOPC casts
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mouth, was characterized by the
freshest surface waters (Sal_0 < 25)
and therefore a very stratified water
column (Rho_grad very high).

Habitat mapping

The plot of the 3 groups of stations
defined by the cluster analysis pro-
duced a consistent spatial represen-
tation for the 2 surveys (Fig. 7). In
January, Habitat 2 contained only 3
stations directly in front of the Rhône
River mouth, whereas in May this
habitat covered a large area in front
of the Rhône River mouth and along
the coast to the west. Habitat 1 cov-
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Para- ———– COSTEAU 6 –——— ———–– COSTEAU 4 ————
meter PC1 PC2 PC3 PC1 PC2 PC3

(−44.50%) (−24.70%) (−13.50%) (−43.90%) (−19.90%) (−11.60%)

Z_ML 0.79 −0.16 −0.39 0.5 0.24 0.54
Rho_grad −0.51 0.76 0.06 −0.75 0.45 −0.29
Temp_0 0.89 0.03 −0.16 −0.78 0.3 −0.22
Sal_0 0.66 −0.65 −0.16 0.82 −0.37 0.28
Rho_b 0.13 0.38 0.72 0.44 0 −0.57
Chla_int −0.67 −0.55 −0.12 −0.39 −0.56 −0.02
X0.1−0.3mm −0.84 −0.47 −0.09 −0.7 −0.62 0.06
X0.3−0.5mm −0.89 −0.03 −0.32 −0.86 −0.26 0.29
X0.5mm −0.4 0.59 −0.59 −0.8 0.12 0.43
NBSS slope 0.46 0.65 −0.39 −0.03 0.85 0.25

Table 3. Correlation coefficients of the parameters (with percentages of the total
variance in parentheses) for the 3 first principal components for COSTEAU 6
(January) and COSTEAU 4 (May). Significant coefficients of each component
are shown in bold. Parameter abbreviations are defined in Table 2; NBSS: 

normalized biomass size spectrum

Fig. 5. Principal component analysis correlation circle on axes 1 and 2 for (a) COSTEAU 6 (January) and (b) COSTEAU 4 
(May). Abbreviations are given in Table 2

Fig. 6. Positions of the stations (gray crosses) in the plane formed by the first 2 principal components for (a) COSTEAU 6
 (January) and (b) COSTEAU 4 (May). The results of cluster analysis are represented using the minimum volume enclosing
ellipsoid function. Red crosses represent (a) Station D1 and (b) Station E1, which are considered to be outliers. Red diamonds 

represent the centers of the ellipses
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ered only the west part of the coast in
May, but in January it included an ad-
ditional area in the center. Habitat 3
was the most extensive of the 3 habi-
tats, containing all stations situated
along the slope and in the eastern part
of the gulf to the Bay of Marseilles.
There were similarities between the
distribution and the characteristics of
the 3 habitats even though statistical
tests were performed independently
on the 2 data sets. The means of the
variables defining the 3 habitats showed
the following features (Table 4):
• Habitat 1, coastal area: shallow

waters, steep NBSS slope, high chl a
concentration

• Habitat 2, area affected by the Rhône:
marked stratification, flat NBSS slope

• Habitat 3, continental shelf: deep
mixed layer, low density gradient,
low particle concentrations

Habitat characteristics

To confirm the definition of the habi-
tats, the size spectra of living and non-
living particles from 100 µm to 5 mm
ESD were investigated using NBSS
(Fig. 8). NBSS showed diffe r ent pat-
terns between the 2 surveys in each of
the 3 habitats. In general, NBSS shapes
were linear in January whereas a break
point appeared around 1.5 log(µg) for
May stations, and the mean NBSS
slopes were steeper in January than in
May. Within each survey, the NBSS
slopes were steepest in Habitat 1, ow-

40

Fig. 7. Spatial distribution of the 3 habitats defined by the cluster analysis for
(a) COSTEAU 6 (January) and (b) COSTEAU 4 (May). Habitat 1 (green) corre-
sponds to ‘coastal area,’ Habitat 2 (red) to ‘area affected by the Rhône,’ and 

Habitat 3 (blue) to ‘continental shelf.’ Black dots represent the stations

Z_ML Rho_grad Temp_0 Sal_0 Rho_b Chla_int X0.1−0.3mm X0.3−0.5mm X0.5mm NBSS slope

January
Habitat 1 18 0.07 11.35 37.08 28.69 0.93 127910 6119 890 −1.15
Habitat 2 1 1.46 11.57 33.88 28.71 0.47 63480 7610 2730 −0.79
Habitat 3 74 0.02 12.58 37.70 28.70 0.53 35620 2932 1207 −0.85

May
Habitat 1 1.8 0.13 16.16 36.78 28.72 0.50 165491 14800 3075 −1.03
Habitat 2 2.6 0.59 17.26 34.95 28.64 0.38 89478 15480 6389 −0.74
Habitat 3 5.3 0.13 16.19 37.07 28.73 0.32 31656 4698 1632 −0.80

Table 4. Mean values of the parameters within the 3 habitats for the 2 campaigns. Parameter abbreviations are defined in 
Table 2; NBSS: normalized biomass size spectrum
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ing to the high abundances of small particles (<0.9
log(µg); 0.3 mm ESD) and flattest in Habitat 2, owing
to the high abundances of large particles (>1.6
log(µg); 0.5 mm ESD). In Habitat 3, NBSS slopes had
intermediate values and a lower y-intercept.

Based on the spatial proportion, i.e. the ratio be -
tween the number of stations included in the habitat
and the total number of stations, and the mean parti-
cle concentrations in each habitat (Table 4), the indi-

cators of the contributions to the global zooplankton
stock were calculated for 3 size classes in January
and May (Table 5). In January, most of the medium to
large organisms were concentrated in the continental
shelf habitat, while the small organisms used both
the continental shelf and the coastal area. In May,
most of the large organisms were in the area affected
by the Rhône, while small organisms were equally
distributed across the 3 habitats.
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Fig. 8. Normalized biomass size spectrum (NBSS) of the stations (light grey lines) included in the 3 habitats (see Fig. 7) for the
2 campaigns. The mean NBSS and standard deviation for each habitat is represented by the squares and the error bars. Mean 

NBSS slopes (± SD) and number of stations (n) are shown
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DISCUSSION

LOPC data

The use of in situ optical counters in coastal regions
and stratified waters could be tricky owing to high
particle concentration peaks caused by resuspension
and aggregation processes. For the LOPC, coinci-
dence issues could result in incoherent multi-
 element plankton (MEP) sequences and an overesti-
mation of large-particle abundances. Schultes &
Lopes (2009) suggested the ratio of Total Count
(TC):MEP Count as an indicator to show whether a
profile is coherent. If this ratio drops below 20, the
system has been probably overloaded by MEP counts
during counting. In the present study, incoherent
MEP sequences appeared in stratified waters (9 out
of 135 stations) and did not always correspond to a
TC:MEP ratio below 20 (2 out of 135 stations). This is
probably because the ratio was integrated along the
water column and its mean value will depend on the
height of the water column under the pycnocline,
where the ratio is generally very low owing to high
transparent aggregate concentrations. Basedow et al.
(2014) showed that in polar regions, a low TC:MEP
ratio can also be the result of a high concentration of
large organisms. In all cases, the number of profiles
concerned in this study is low and we consider that
the conditions were suitable for LOPC during the
 surveys.

Physical processes

The regions of freshwater influence (Simpson 1997)
for the Rhône River were different for the 2  surveys.
The plume position, movement, and dilution were
closely associated with wind conditions. During the
January survey, strong northerly winds mixed the
water column and diluted the Rhône River plume,
leaving only a small area affected by the freshwater

input. In May, a lens of freshwater was
separated from the rest of the plume
(Fig. 4a). Light winds pushed the plume
southwards. At the same time, the Coriolis
force caused the tip of the plume to drift to
the west (Ekman transport). The creation
of freshwater lenses and, more generally,
the stratification of the water column at
this time imply that a large part of the gulf
was affected by the Rhône River discharge
during the May survey.

The NC separates the continental shelf
from the open sea. Intrusions were recorded along
Transect D in the east of the gulf in January (Fig. 3b).
At this time, the NC was narrow, strong, and close to
the slope with frequent intrusions onto the shelf
(Estournel et al. 2003, Petrenko 2003). Saltier and
ultra- oligotrophic waters carried by the NC intrude
onto the shelf and create a front with the continental
shelf waters. In the coastal western part of the gulf,
the cold, strong northerly winds cool the shallowest
waters and mix them with freshwaters coming from
the Rhône River and other sources (Broche et al.
1998, Petrenko 2003).

Environmental conditions

Hydrodynamic conditions in the coastal area have
a significant influence on the distribution and avail-
ability of nutrients and therefore drive the distribu-
tion and the population dynamics of primary produc-
ers. In the Gulf of Lion, the winds and the fluvial
inputs are the 2 main factors affecting the physical
structures. The combination of these 2 factors creates
2 main highly productive areas, viz. the nearshore
area and the area where the Rhône river plume is
diluted (Champalbert 1996, Lefevre et al. 1997,
Gaudy et al. 2003), corresponding to 2 of the 3 habi-
tats identified by statistical analysis in this study.

The habitat in the nearshore area is characterized
by shallow mixed waters and high chl a concentra-
tions. In this area (<50 m depth), biological produc-
tion was increased by nutrient-rich freshwater dis-
charges and wind-driven resuspension, especially in
the western part, where there are many river mouths
and the Tramontane is frequent and strong.

The habitat in the area affected by the Rhône
waters is characterized by stratified waters caused by
the freshwater runoff in a thin surface layer. The
Rhône River plume has food webs that are time
dependent and can be divided into several steps from
microbial loop dominance at the mouth, to large size
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———— January ———— ————— May —————
X0.1–0.3mm X0.3−0.5mm X0.5mm X0.1−0.3mm X0.3−0.5mm X0.5mm

Habitat 1 L M S M S S
Habitat 2 VS S S M L VL
Habitat 3 L VL VL M M L

Table 5. Indicators of zooplankton stock for each habitat estimated from
the spatial proportion and the mean particle concentrations (VS: very
small; S: small; M: medium; L: large, VL: very large) within 3 size classes
during January and May surveys. Spatial distribution of the habitats is 

shown in Fig. 7 and mean particle concentrations in Table 4
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phytoplankton production a few days later (Diaz et
al. 2008). The combination of high chl a concentra-
tion in the surface waters with a stratified water col-
umn results in an increase in biomass at the interface
of the water masses which is caused by a slowing
down of the sinking biomass and aggregation pro-
cesses at the pycnocline (Alldredge et al. 2002,
Checkley et al. 2008, Jackson & Checkley 2011). This
represents an important source of food for zooplank-
ton which come to feed at the front between the
water masses (Gaudy et al. 1990, 1996, Pagano et al.
1993). The spread of this habitat is closely linked to
the hydroclimatic conditions, especially thermal
stratification and wind.

The third habitat was characterized by the mean
conditions on the continental shelf and was less
affected by coastal dynamic variability. The biologi-
cal production was lower in this area than in the
other 2 habitats, owing to the oligotrophic influence
of the NC and to the lack of nutrient inputs.

Zooplankton habitats

Based on the zooplankton size structure and the
environmental conditions, 3 zooplankton habitats
were defined (Table 4, Fig. 7). In this study, vertical
information was integrated to produce 2D habitat
maps that are easier to use and visualize. Defining
habitats is a statistical way of analyzing the distribu-
tion of zooplankton communities as a function of
environmental conditions (Zarauz et al. 2007, Schulz
et al. 2012). This approach is particularly useful for
continental shelves and, more generally, coastal
areas where changing physical structures have a sig-
nificant effect on the marine ecosystems by creating
different environmental patterns. Given the variabil-
ity of the physical structures, habitats can only be
identified by mapping the study area at high spatial
resolution and checking that the physical structures
are stable during the surveys. Using in situ optical
captors was less time-consuming than traditional
sampling and provides characteristics of size spectra
as indicators of zooplankton communities. The pro-
cesses which shape the habitats lead to different zoo-
plankton size structure characterized by changes in
NBSS slopes (Fig. 8).

Mixed-water ecosystems are known to promote
small mesozooplankton production (Jackson et al.
1997, Checkley et al. 2008), which is in agreement
with the steep NBSS measured in the nearshore
habitat. It is likely that the highly variable hydro -
logical conditions in the shallowest waters are not

favorable to the development of large-sized species.
The steepness of the slope indicates a short food web
adapted to episodic phytoplankton bloom driven by
winds. This habitat is the most productive during the
winter and supports biological production within the
Gulf of Lion when production on the shelf is low
(Kouwenberg 1994, Gaudy et al. 2003). Moreover,
despite the small area covered by this habitat, there
was a large stock of small-sized species in January
(Table 5).

Stratified ecosystems encourage the development
of large copepods (Williams et al. 1994, Poulet et al.
1996, Sourisseau & Carlotti 2006), which is confirmed
by the flat NBSS found in the habitat closely associ-
ated with the spreading of the Rhône waters. The
diversity of food sources prevented food limitation for
zooplankton and encouraged the biodiversity of spe-
cies resulting in the ecosystem being efficient at
transferring the biomass from the small to large
organisms, illustrated by the flattening of the slopes
(Zhou et al. 2009, Basedow et al. 2010). When the
water is stratified and the Rhône waters are spread
widely, as during the May survey, this habitat is a
refuge for large zooplankton species (Table 5).

A coastal to offshore gradient in particle concentra-
tions was observed during this study which agrees
with previous surveys conducted in the Gulf of Lion
(Kouwenberg 1994, Gaudy et al. 2003). The third
habitat was the main part of the continental shelf, the
continental slope, and the eastern end of the gulf and
had lower particle concentrations than the other
habitats. The oligotrophic influence of the NC was
clear, especially in the eastern part of the shelf. How-
ever, this habitat is larger than the other 2 and is an
important reserve for large species during the winter
(Table 5).

The differences between the NBSSs for the habi-
tats confirm that the size structures and, therefore,
zooplankton communities were not the same, show-
ing that they were distinct zooplankton habitats, or
‘guilds,’ according to the classification proposed by
Costello (2009).

Use and future of habitat definition

Based on data from field samples over 2 periods,
our study shows a significant correlation between
physical and biological features (Fig. 5, Table 3).
Although statistical analysis was performed sepa-
rately on the data sets for each survey, the character-
istics of the habitats are similar. This is due to the per-
manent presence of certain processes, such as the
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Rhône water runoff and the wind-driven mixing of
coastal waters, which drive the distribution of the habi-
tats. Therefore, changes in the distribution of habitats
can be determined by identifying the variables which
characterize these processes and by estimating the
values of these variables at high  spatio-temporal res-
olution using simulations from hydro logical models
(Planque et al. 2004, Zarauz et al. 2007). Remote
sensing data also provide certain variables that are
characteristic of the surface layer. These types of
data can be used to determine spatial distribution of
the habitats during the year.

Defining habitats provides a firm basis for develop-
ing efficient sampling strategies for studying zoo-
plankton dynamics by defining a limited number of
stations that are representative of specific conditions.
By mapping large, consistent habitats to collate the
information on zooplankton distribution and charac-
teristics, defining habitats is the best way of in -
cluding zooplankton communities in trophodynamic
studies, especially in the Gulf of Lion which is consid-
ered to be one of the main reproduction areas for
small pelagic species (Plounevez & Champalbert
2000, Palomera et al. 2007). Furthermore, determin-
ing habitats with distinct zooplankton size structures
provides important information given that recent
studies have highlighted the role of prey size in the
recruitment success of fish larvae (Irigoien et al.
2009, Costalago et al. 2011). Defining habitats would
also be useful for validating zooplankton distribution
models and estimating indicators of zooplankton
stocks in different parts of and over the whole gulf, as
shown in Table 5. This type of information is suitable
for coastal management programs, such as coastal
ecosystem observatory networks, in order to deter-
mine the best means for protecting and preserving
coastal marine ecosystems.
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