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cells can have some specic intrinsic mechanism of motion or they can move due to some forces exerted from the other cells or from the surrounding medium. Therefore we suppose that these both driving forces of cell motion are absent. The absence of convective motion implies that the total cell concentration c 0 , c 0 = c 1 (x, t) + ... + c n (x, t) is constant. Otherwise a nonuniform concentration distribution will result in pressure gradients and the motion of the medium, 2. Cells of the same type which belong to the same space point are identical in the sense that they have the same values of intracellular variables. Distribution of intracellular variables inside each cell is uniform.

Let p 1 , ...., p n be intracellular variables corresponding to cells A 1 , ..., A n . Each of the variables p i , i = 1, ..., n can be a vector. Since cells do not move and since they are identical at each space point, then intracellular variables can be considered as functions of x and of t. We will describe their evolution inside each cell by ordinary dierential equations:

∂p i ∂t = F i , i = 1, ..., n, (1.1)
where F i is the rate of their production or consumption. We write here partial derivative since these functions can depend on x. If intracellular substances can be transported between neighbouring cells by gap junctions, then instead of equation (1.1) we can consider the corresponding reaction-diusion equation.

Next, we introduce extracellular variables u 1 , ..., u m which can be produced or consumed by cells of the given tissue or they can come from other tissues. They can also diuse in the tissue. We describe them by reaction-diusion equations

∂u j ∂t = D j ∂ 2 u j ∂x 2 + G j , j = 1, ..., m, (1.2)
where G j is the rate of their production or consumption. Finally, though the total concentration c 0 is supposed to be constant, individual concentrations c 1 , ...c n can change. This means that cells can change their type but their total number at each space point does not change. Therefore, cells can dierentiate but they cannot self-renew or die.

We need to specify conditions of cell dierentiation. Since it is determined by the intracellular regulation, cells A i can change to A j if the vector of intracellular concentrations p i (x, t) takes some given critical value p ij c . In this case, the variables c i are discontinuous. Cell concentrations can also be described by ordinary dierential equations

∂c i ∂t = H i , i = 1, ..., n, (1.3)
where H i is the rate of their production or disappearance which depend on the intracellular and extracellular variables.

Thus, we have a closed system of equations (1.1)-(1.3) for cell concentrations, intracellular and extracellular variables. Functions F i , G J and H i depend on p i , u j and c i . Let us note that numerical discretization of this model with a nite cell size can be considered as a hybrid model. Hence continuous and hybrid models are closely related in this formulation. In the next section we will consider an analytical example. Section 3 is devoted to the results of numerical simulations of some model problems.

Reaction-diusion waves in physiology

The theory of reaction-diusion waves develops under the inuence of various applications (see [START_REF] Volpert | Traveling wave solutions of parabolic systems[END_REF][START_REF] Volpert | Elliptic partial dierential equations[END_REF], and the references therein). Reaction-diusion waves in physiology describe various transition processes. If we consider a tissue and initiate some cell transformation (dierentiation, proliferation, apoptosis), then it can propagate in space converting the tissue from one state to another one. In particular, various spreading diseases including tumor growth [START_REF] Bessonov | Dynamics of erythroid progenitors and erythroleukemia[END_REF][START_REF] Volpert | Elliptic partial dierential equations[END_REF]) and atherosclerosis [START_REF] Deutsch | Cellular automaton modeling of biological pattern formation[END_REF], 2009, 2012) develop by this mechanism. Travelling waves of cell dierentiation are studied in [START_REF] Trewenack | A traveling wave model for invasion by precursor and dierentiated cells[END_REF].

The mechanism of wave propagation in biological tissues is based on the interaction of intracellular and extracellular regulations. We will consider bistable kinetics of the intracellular regulation of undierentiated cells. Each of the stable stationary points corresponds to dierentiation into one of two types of dierentiated cells. Dierentiated cells produce some substances which diuse in the extracellular matrix and inuence intracellular kinetics of other undierentiated cells. They can promote dierentiation into the same cell type or into the other cell type. We will see that in the second case, two types of dierentiated cells can coexist forming a periodic pattern behind the wave. This periodic in space structure does not appear as a result of instability of a homogeneous in space solution but as a global bifurcation.

Analytical example

We consider a cell population located along the real line. There are two cell types, A and B. Cells of the type A can dierentiate in the cells of the type B. Cells of the type A contain an intracellular protein with the concentration p. When it reaches a critical value p * , the cell changes its type. The cells of the type B produce a growth factor u which can diuse in the extracellular matrix. It can inuence production of the protein p. We will assume that cells do not move. Then p can be considered as a function of the space variable x and of time t. Hence we obtain the following system of equations:

∂u ∂t = d ∂ 2 u ∂x 2 + W 1 -σu, (2.1) ∂p ∂t = W 2 , (2.2)
where W 1 and W 2 are the rates of production of the corresponding substances. Suppose that cells of the type A ll the half-line x < ξ(t) and cells of the type B the half-line x > ξ(t). We will look for a travelling wave solution for which the coordinate ξ(t) moves with a constant speed, ξ = st. Let us note that s < 0. In the moving coordinates, and keeping for convenience the same notations for the concentrations, we obtain the following system of equations:

du ′′ + su ′ + W 1 -σu = 0,
(2.3)

sp ′ + W 2 = 0.
(2.4)

Here prime denotes dierentiation with respect to the independent variable z = x -st. We can assume that cells A are located for z < 0 and cells B for z > 0. Then p < p * for z < 0.

Set

W 1 = k 1 , W 2 = k 2 u.
This means that cells B produce the substance u with a constant rate, and the rate of production of p is a linear function of u.

We solve system (2.3), (2.4). From equation (2.4) we get:

u(x) = u * e λ 1 z , z < 0, u(x) = k 1 σ + ( u * - k 1 σ ) e λ 2 z , z > 0.
Here u(0) = u * ,

λ 1 = - s 2 + √ s 2 4 + σ > 0, λ 2 = - s 2 - √ s 2 4 + σ < 0.
From continuity of the solution and its rst derivative,

u(-0) = u(+0), u ′ (-0) = u ′ (+0),
we obtain the equality

u * λ 1 = ( u * - k 1 σ ) λ 2 ,
which allows us to express u * :

u * = k 1 λ 2 σ(λ 2 -λ 1 )
.

(2.5)

Integrating equation (2.4) from -∞ to 0 and taking into account (2.5), we obtain:

s = - u * k 2 p * λ 1 = - k 1 k 2 λ 2 p * σλ 1 (λ 2 -λ 1 )
.

We can write this relation in another form:

s = k 1 k 2 p * λ 2 1 (λ 2 -λ 1 ) (s < 0). (2.6)
It is an equation with respect to c. Its right-hand side is a decreasing function of c equal 0 at -∞ and negative for s = 0. Therefore equation (2.6) has a unique solution.

This example shows the existence of waves of cell dierentiation. We calculate the speed of wave propagation. In a more complex model of lineage choice (Section 3) existence of waves and their structure will be studied numerically.

Lineage choice

In this section we consider the problem of lineage choice where undierentiated cells dierentiate into one of two types of dierentiated cells. There are three cell types, undierentiated cells A, dierentiated cells B 1 and B 2 . Cells A contain two intracellular proteins, p 1 and p 2 . Their concentrations are described by ordinary dierential equations:

dp 1 dt = F 1 (p 1 , p 2 ) + b 11 u 1 + b 12 u 2 , (3.1) dp 2 dt = F 2 (p 1 , p 2 ) + b 21 u 1 + b 22 u 2 . (3.2)
The functions F 1 and F 2 will be specied below. Extracellular concentration u 1 is produced by dierentiated cells B 1 , and u 2 is produced by cells B 2 . Concentrations u 1 and u 2 are described by the equations

∂u 1 ∂t = d 1 ∂ 2 u 1 ∂x 2 + W 1 , (3.3) ∂u 2 ∂t = d 2 ∂ 2 u 2 ∂x 2 + W 2 . (3.4)
Cells of the type A are located at x > ξ(t), cells B 1 and/or B 2 at x < ξ(t). The value ξ(t) increases in time, that is the wave speed is positive.

If the intracellular concentration p 1 is greater than a critical value,

p 1 ≥ p * 1 , then the cell A changes its type to B 1 , if p 2 ≥ p *
2 , then it changes its type to B 2 . Once a cell is dierentiated, it cannot change any more.

We introduce the concentration c A of cells A, the concentration c 1 of cells B 1 and the concentration c 2 of cells B 2 . At each space point x these three concentrations can have only two values, 0 or 1. Consider some interval lled by cells A. Therefore, in this interval c A = 1, c 1 = c 2 = 0. If at some point x of this interval p 1 becomes greater than p * 1 , then the cell A changes type to B 1 . Hence, for this x, c A = 0, c 1 = 1, c 2 = 0. Similarly, if p 2 becomes greater than p * 2 , then c A = 0, c 1 = 0, c 2 = 1.

We set

W 1 = k 1 c 1 , W 2 = k 2 c 2 .
This means that cells B 1 produce u 1 , cells B 2 produce u 2 . The rates of production vanish if the concentrations of the corresponding cells equal zero.

In the remaining part of this section we present the results of numerical simulations of the model described above. We use an implicit nite dierence scheme with Thomas algorithm.

Bistable kinetics

In order to study lineage choice, we introduce intracellular regulation with bistable kinetics. We set

F 1 (p 1 , p 2 ) = k 1 p 1 (1 -a 11 p 1 -a 12 p 2 ), F 2 (p 1 , p 2 ) = k 2 p 2 (1 -a 21 p 1 -a 22 p 2 ).
(3.5)

If the extracellular variables vanish, u 1 = u 2 = 0, then system (3.1), (3.2) is a closed system of two ordinary dierential equations for the intracellular variables p 1 , p 2 . It has four stationary points, P 0 = (0, 0), P 1 = (1/a 11 , 0), P 2 = (0, 1/a 22 ) and P 3 = (p 0 1 , p 0 2 ), where p 0 1 and p 0 2 is a solution of the system

a 11 p 1 + a 12 p 2 = 1, a 21 p 1 + a 22 p 2 = 1.
We will suppose that it has a positive solution. The point P 0 is always unstable, the points P 1 and P 2 are stable and P 3 is unstable if a 21 > a 11 , a 21 > a 22 . The point P 3 is stable if these inequalities are opposite. In this case P 1 and P 2 are unstable.

Let us consider the case where the points P 1 and P 2 are stable. If the initial condition of this system belongs to the basin of attraction of one of them, then the trajectory approaches this stationary point. If it is P 1 , then the value p 1 will reach the critical value p * 1 and the cell will dierentiate into cell B 1 . If the trajectory approaches the stationary point P 2 , then the value p 2 will reach the critical value p * 2 , and the cell will dierentiate into cell B 2 . These cells will produce extracellular substances u 1 or u 2 which will diuse in the extracellular matrix and inuence intracellular regulation of other cells.

Figure 1 (left) shows the results of numerical simulations of this model with the following values of parameters:

a 11 = a 22 = 0.5, a 12 = a 21 = 1, b 11 = b 22 = 0.1, b 12 = b 21 = 0, D 1 = D 2 = 0.1, k 1 = k 2 = 0.1, p * 1 = p * 2 = 1.5
. This is the basic set of parameters. In what follows we will only indicate the values which are modied in comparison with these ones. The initial condition is p 1 = 0.5 in the interval 0 < x < 1 and p 1 = 0 in the remaining part of the interval. The length of the interval L = 100. All other variables are also set zero. Let us note that we introduce a new notation c for cell concentrations. We put c = 0

if c A = 1, c 1 = 0, c 2 = 0, c = 1 if c A = 0, c 1 = 1c 2 = 0 and c = 2 if c A = 0, c 1 = 0, c 2 = 1.
Due to the choice of initial condition, the intracellular variable p 1 grows and approaches its value at the stationary point P 1 . When it reaches the critical value p * 1 , the cell dierentiates into cell B 1 . Cells B 1 produce the extracellular substance u 1 which diuses along the interval and stimulates further production of the intracellular variable p 1 . Hence we observe a travelling wave of dierentiation of cells A into cells B 1 .

Since the initial concentration p 2 equals zero, it remains zero, and the model is reduced to a single intracellular equation and a single extracellular equation (cf. Section 2). For other choice of initial conditions and parameters, two types of dierentiate cells can be present in the beginning. However one of the two cell lineages will dominate another one and will expand on the whole interval. Therefore undierentiated cells will dierentiate only in one cell lineage. Two cell lineages cannot coexist in this model.

This conclusion remains true even in the case where the point P 3 is stable. The intracellular concentrations p 1 and p 2 will converge to this stationary points. If the critical values p * 1 and p * 2 are less than the values at this stationary point, then cells will dierentiate. Depending on which of the critical values is reached rst, the cell will dierentiate into B 1 or B 2 . As before, only one cell lineage is obtained. 

Stable undierentiated state

In this section we consider the intracellular kinetic functions in the form

F 1 (p 1 , p 2 ) = k 1 p 2 1 (1-a 11 p 1 -a 12 p 2 )-s 1 p 1 , F 2 (p 1 , p 2 ) = k 2 p 2 2 (1-a 21 p 1 -a 22 p 2 )-s 2 p 2 . (3.6)
The dierence in comparison with the functions (3.5) is that the reaction rates are proportional to the second power of the concentrations. The stationary points of the corresponding system

dp 1 dt = F 1 (p 1 , p 2 ), dp 2 dt = F 2 (p 1 , p 2 ) (3.7)
are as follows: P 0 = (0, 0), P 10 = (p

(1) 1 , 0), P 20 = (p (2)
1 , 0), where p

(1)

1 and p

(2)

1 are solutions of the equation

p 1 (1 -a 11 p 1 ) = s 1 k 1 , P 01 = (0, p (1) 
2 ), P 02 = (0, p

2 ), where p

(1) 2 and p

(2) 2 are solutions of the equation

p 2 (1 -a 22 p 2 ) = s 2 k 2 ,
and also up to four stationary points with positive coordinates which can be found as solutions of the system of equations

p 2 = 1 -a 11 p 1 a 12 - s 1 a 12 k 1 1 p 1 , p 1 = 1 -a 22 p 2 a 21 - s 2 a 21 k 2 1 p 2 .
It can have from zero to four positive solutions depending on the values of parameters.

It can be easily veried that the point P 0 is stable. Indeed, the corresponding matrix has negative eigenvalues. Let 0 < p

(1) 1 < p (2) 1 and 0 < p (1) 2 < p (2)
2 . Then the points P 20 and P 02 are also stable. In the case where there are four stationary points with positive coordinates, one of them is stable.

There are two dierent patterns of solutions depending on parameters b ij . Let us consider two specic examples. If b 11 , b 22 > 0 and b 12 = b 21 = 0, then the substances u i , i = 1, 2 produced by cells B i stimulate production of intracellular substances p i . In their turn, they lead to dierentiation of cells A into cells B i . Therefore we observe here a positive feedback between intracellular regulation, extracellular regulation and cell dierentiation. In this case, behavior of the system is qualitatively similar to that described in the previous section. One of the cell lineages B 1 or B 2 dominates another one. It expands on the whole space interval. All cells dierentiate into only one cell lineage. This means that the substance u 1 produced by cells B 1 stimulate production of the intracellular substance p 2 , while u 2 stimulates production of p 1 . Hence there is a negative feedback, and cells B 1 upregulate production of B 2 , while cells B 2 promote productions of cells B 1 . Behavior of the system is qualitatively dierent in this case compared with the previous one. Both types of dierentiated cells can be obtained here.

Figure 2 Let us note that the patterns with two lineages of dierentiated cells can be obtained only in the case where the stationary point P 0 of system (3.6) is stable. Otherwise, if it is unstable, then only one cell lineage will be obtained even in the case of negative feedback between cell dierentiation and production of intracellular proteins. We can give the following explanation. When the two cell lineages appear, they produce the extracellular substances u 1 and u 2 which diuse and inuence undierentiated cells where production of intracellular proteins p 1 and p 2 begins. Even if the concentrations of u 1 and u 2 are small, they are sucient to initiate intracellular reactions since the point P 0 is unstable. Therefore even small extracellular concentrations determine the future choice of undierentiated cells between two cell lineages far ahead the front of dierentiated cells. One of them will nally win this competition, and all dierentiated cells will belong to the same type. If the point P 0 is stable, then small concentrations u 1 and u 2 will not be sucient to start intracellular reactions. They will begin only when dierentiated cells are suciently close. If these are cells B 1 , then they will stimulate production of p 2 and vice versa. This negative feedback results in the coexistence of two cell lineages.

Figure 3: Distributions of dierentiated cells as a function of the space variable for three dierent sets of parameters: q 1 = q 2 = 0.01 (left), q 1 = q 2 = 0.01, D 2 = 0.5 (middle), q 1 = 0.1, q 2 = 0.01 (right). The value c = 0 corresponds to c A = 1, c 1 = 0, c 2 = 0; c = 1 to c A = 0, c 1 = 1, c 2 = 0 and c = 2 to c A = 0, c 1 = 0, c 2 = 1.

Dierent patterns are shown in Figure 3. Undierentiated cells can coexist with both types of dierentiated cells (left and right images) and distribution of dierentiated cells can be dierent in comparison with the previous gure (Figure 3, middle). Figure 4 shows two dierent patterns of cells. In the rst case, the cell concentration c takes the values c = 1, 2, 0, 2 in one period, while in the second case, c = 1, 0, 2, 0, 2.

Thus we obtain coexistence of cell lineages in the case where undierentiated cells are stable from the point of view of intracellular regulation and where the feedback between cell dierentiation and intracellular regulation is negative.

Discussion

The choice of cell fate between self-renewal, dierentiation and apoptosis and the choice of cell lineage are determined by intracellular regulation and possibly inuenced by extracellular regulation. Even if cell culture contains cells of the same type, their fate can be dierent. There are two possible factors which determine their choice: dierent cell environment (extracellular regulation) or small perturbations in the intracellular regulation. Cell environment plays a crucial role in the choice of cell fate. In particular, it is well known that stem cells can self-renew when they are located in stem cell niche, and they lose the capacity of self-renewal when they leave the niche. Let us also mention regulation of red blood cell production in erythroblastic islands in the bone marrow where macrophages control selfrenewal of erythroid progenitors and Fas-ligand producing cells control their dierentiation and apoptosis [START_REF] Eymard | The role of spatial organisation of cells in erythropoiesis[END_REF][START_REF] Fischer | Modelling erythroblastic islands : using a hybrid model to assess the function of central macrophage[END_REF]). Thus, cell-cell interaction and paracrine signaling are important for the choice of cell fate. Even if the cell population consists of cells of the same type, position of individual cells in this population is dierent. Mechanical stresses and density dependent proliferation can result in the dierence of cell behavior, some cells can stop proliferation while some other will continue.

If cells have the same environment, then they can have dierent fates because of perturbations in the intracellular regulation.. Such perturbations can have dierent origin: small number of molecules participating in the regulation, random perturbations, hypothetical existence of mechanisms providing variations in intracellular regulation.

In this work we introduce a spatial heterogeneity in a homogeneous cell population. This perturbation initiates the wave of cell dierentiation which propagates and converts undierentiated cells into one of the lineages of dierentiated cells or in both of them.

Travelling waves of cell dierentiation manifest themselves in various physiological situations. In particular, they are observed in various diseases including inammatory diseases. Cells in the inamed part of the tissue produce proinammatory cytokines which diuse in the tissue and promote inammation of the surrounding cells. This mechanism determines growth of atherosclerotic plaques, development of the inammation induced thrombosis (e.g., in the case of arthritis and cancer) and so on. It is also possible that development of neurodegenerative diseases is related to growth of apoptotic tissue by the same mechanism. Direct biological experiments on the propagation of cell dierentiation would help to describe more precisely these mechanisms and to determine the speed of propagation (i.e., of the disease development). Medical treatment acts to decrease the speed of wave propagation. The dependence of the speed on drug concentration would be an important characteristics of its ecacy and would give some additional information about pharmacokinetics and pharmacodynamics of medical treatment.

There are dierent regimes of propagation of the wave of cell dierentiation. I some of them we observe that two lineages of dierentiated cells can coexist. Coexistence of cell lineages requires some special conditions. In order to clarify this question, consider undifferentiated cells A and two types of dierentiated cells, B 1 and B 2 . We can describe cell dierentiation in terms of probabilities: cells A dierentiate into cells B 1 with probability P 1 or in cells B 2 with probability P 2 . These probabilities can be some given constants or functions of some extracellular variables (for example, u 1 and u 2 , Section 3). If these probabilities are positive, then both cell lineages will always be present. However this approach implies some underlying mechanism which determines cell dierentiation. In the other words, given probabilities of cell dierentiation replace the mechanism of cell dierentiation. Probabilistic approach is justied if we consider a small number of molecules in the intracellular regulation. However if the number of molecules participating in the intracellular regulation is suciently large (at least several hundred), as it is often the case, then we can introduce their concentrations and use deterministic models. In this case, conditions of cell dierentiation into each of cell lineages should be also formulated deterministically. In the model considered above, we suppose that intracellular substances should reach some given critical level. If we use this approach, we do not rely on unknown mechanisms in the model. The model is completely determined. However, in this case we cannot arm a priori that both cell lineages can coexist.

Coexistence of cell lineages is important from the physiological point of view. In hematopoiesis, production of blood cells begins with hematopoietic stem cells and leads to formation of red blood cells, platelets and several lineages of white blood cells. There are several bifurcation points where undierentiated or partially dierentiated cells make a choice between two cell lineages. So we need to understand under which conditions dierent cell lineages can coexist.

The results of this work show that coexistence of two cell lineages requires some particular conditions. If we have a uniform population of undierentiated cells, and we initiate their dierentiation, then usually only one cell lineage persists. Another one disappears even if both of them were initiated at the same time. In order to preserve both cell lineages we need to have stable undierentiated cells from the point of view of intracellular regulation and negative feedback between cell dierentiation and intracellular regulation.
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 1 Figure 1: Snapshot of solution. The curves show the values of the corresponding concentrations as functions of the space variable x. Undierentiated cells A dierentiate into cells B 1 . They produce extracellular substance u 1 . It stimulates production of the intracellular substance p 1 . When it reached the critical value p * 1 , the cell dierentiate. Dierentiated cells gradually ll the whole interval. Left: points P 1 and P 2 are stable, concentration p 2 in the intracellular regulation remains zero. Right: point P 3 is stable. Both concentrations p 1 and p 2 converge to some positive values. However cells A dierentiate only in cells B 1 . The value c = 1 corresponds to c A = 0, c 1 = 1, c 2 = 0 and c = 0 to c A = 1, c 1 = 0, c 2 = 0 (see the explanation in the text).

  Figure 1 (right) shows the distributions of intracellular variables p 1 and p 2 for the values of parameters a 11 = a 22 = 1, a 12 = a 21 = 0.5, b 12 = 0.1, b 21 = 0.05. Though p 2 grows and reaches the same nal value as p * 2 , it reaches its critical value after p 1 . Therefore cells dierentiate only into cells B 1 .

  In the second example, b 11 = b 22 = 0 and b 12 , b 21 > 0.

  shows propagation of the wave of cell dierentiation for the case b 11 = b 22 = 0 and b 12 = b 21 = 0.1 (the values of other parameters are given in Section 3.1). The distribution of the concentration of cells c behind the wave represents a periodic patterns with the values c = 1 (cells B 1 ) and c = 2 (cells B 2 ). Distributions of p 1 and p 2 , u 1 and u 2 have also space oscillations.

Figure 2 :

 2 Figure 2: A snapshot of solution. The curves show the values of the corresponding concentrations as functions of the space variable x. A travelling wave of cell dierentiation propagates from the left to the right. The distribution of cells B 1 (c = 1) and B 2 (c = 2) behind the wave is periodic (left image). Distributions of p 1 , p 2 (middle) and of u 1 , u 2 (right) oscillate in space. The value c = 0 corresponds to c A = 1, c 1 = 0, c 2 = 0; c = 1 to c A = 0, c 1 = 1, c 2 = 0 and c = 2 to c A = 0, c 1 = 0, c 2 = 1. (see the explanation in the text).

Figure 4 :

 4 Figure 4: Periodic pattern of cell distribution behind the wave (left). Zoom on the cell concentration distribution (middle) for s 2 = 0.15. The pattern is dierent for s 2 = 0.34 (right). The value c = 0 corresponds to c A = 1, c 1 = 0, c 2 = 0; c = 1 to c A = 0, c 1 = 1, c 2 = 0 and c = 2 to c A = 0, c 1 = 0, c 2 = 1.