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SHARP REGULARITY AND CAUCHY PROBLEM OF THE

SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION WITH

DEBYE-YUKAWA POTENTIAL

LÉO GLANGETAS, HAO-GUANG LI

Abstract. In this paper, we study the Cauchy problem for the linear spatially ho-

mogeneous Boltzamnn equation with Debye-Yukawa potential. Using the spec-

tral decomposition of the linear operator, we prove that, for an initial datum in

the sense of distribution which contains the dual of the Sobolev spaces, there

exists a unique solution which belongs to a more regular Sobolev space for any

positive time. We also study the sharp regularity of the solution.

1. Introduction and main results

In this work, we consider the spatially homogeneous Boltzmann equation

∂ f

∂t
= Q( f , f ) (1.1)

where f = f (t, v) is the density distribution function depending only on two varia-

bles t ≥ 0 and v ∈ R3. The Boltzmann bilinear collision operator is given by

Q(g, f )(v) =

∫

R3

∫

S 2

B(v − v∗, σ)
(
g(v′∗) f (v′) − g(v∗) f (v)

)
dv∗dσ,

where for σ ∈ S2, the symbols v′∗ and v′ are abbreviations for the expressions,

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ,

which are obtained in such a way that collision preserves momentum and kinetic

energy, namely

v′∗ + v′ = v + v∗, |v′∗|2 + |v′|2 = |v|2 + |v∗|2.
For monatomic gas, the collision cross section B(v − v∗, σ) is a non-negative func-

tion which depends only on |v − v∗| and cos θ which is defined through the scalar

product in R3 by

cos θ =
v − v∗
|v − v∗|

· σ.

Without loss of generality, we may assume that B(v− v∗, σ) is supported on the set

cos θ ≥ 0, i.e. where 0 ≤ θ ≤ π
2
. See for example [12], [26] for more explanations

about the support of θ. For physical models, the collision cross section usually

takes the form

B(v − v∗, σ) = Φ(|v − v∗|)b(cos θ),

with a kinetic factor

Φ(|v − v∗|) = |v − v∗|γ, γ ∈] − 3,+∞[.
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The molecules are said to be Maxwellian when the parameter γ = 0.

Except for the hard sphere model, the function b(cos θ) has a singularity at θ = 0.

For instance, in the important model case of the inverse-power potentials,

φ(ρ) =
1

ρr
, with r > 1,

with ρ being the distance between two interacting particles in the physical 3-

dimensional space R3,

b(cos θ) sin θ ≈ Kθ−1− 2
r , as θ→ 0+,

The notation a ≈ b means that there exist positive constants C2 > C1 > 0, such that

C1 a ≤ b ≤ C2 a.

Notice that the Boltzmann collision operator is not well defined for the case when

r = 1 corresponding to the Coulomb potential.

If the inter-molecule potential satisfies the Debye-Yukawa type potentials where

the potential function is given by

φ(ρ) =
1

ρ eρ
s , with s > 0,

then the collision cross section has a singularity in the following form

b(cos θ) ≈ θ−2(log θ−1)
2
s
−1, when θ→ 0+, with s > 0. (1.2)

This explicit formula was first appeared in the Appendix in [19]. In some sense,

the Debye-Yukawa type potentials is a model between the Coulomb potential cor-

responding to s = 0 and the inverse-power potential. For further details on the

physics background and the derivation of the Boltzmann equation, we refer the

reader to the extensive expositions [3], [26].

We linearize the Boltzmann equation near the absolute Maxwellian distribution

µ(v) = (2π)−
3
2 e−

|v|2
2 .

Let f (t, v) = µ(v) +
√
µ(v)g(t, v). Plugging this expression into (1.1), we have

∂g

∂t
+L[g] = Γ(g, g)

with

Γ(g, h) =
1
√
µ

Q(
√
µg,
√
µh), L(g) = − 1

√
µ

[Q(
√
µg, µ) + Q(µ,

√
µg)].

Then the Cauchy problem (1.1) can be re-writed in the form
{
∂tg +L(g) = Γ(g, g),

g|t=0 = g0.

In the present work, we consider the linearized Cauchy problem
{
∂tg +L(g) = 0,

g|t=0 = g0.
(1.3)

In the case of the inverse-power potential with r > 1, the regularity of the Boltz-

mann equation has been studied by numerous papers. It is well known that the non-

cutoff spatially homogeneous Boltzmann equation enjoys an S (R3)-regularizing

effect for the weak solutions to the Cauchy problem (see [5, 19]). Regarding the
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Gevrey regularity, Ukai showed in [25] that the Cauchy problem for the Boltzmann

equation has a unique local solution in Gevrey classes. Then, Desvillettes, Furioli

and Terraneo proved in [4] the propagation of Gevrey regularity for solutions of

the Boltzmann equation with Maxwellian molecules. For mild singularities, Mori-

moto and Ukai proved in [18] the Gevrey regularity of smooth Maxwellian decay

solutions to the Cauchy problem of the spatially homogeneous Boltzmann equa-

tion with a modified kinetic factor. See also [28] for the non-modified case. On the

other hand, Lekrine and Xu proved in [11] the property of Gevrey smoothing effect

for the weak solutions to the Cauchy problem associated to the radially symmetric

spatially homogeneous Boltzmann equation with Maxwellian molecules for r > 2.

This result was then completed by Glangetas and Najeme who established in [7]

the analytic smoothing effect in the case when 1 < r < 2. In [12, 15], the solutions

of the Cauchy problem (1.3) for linearized non-cutoff Boltzmann equation belong

to the symmetric Gelfand-Shilov spaces S
r/2

r/2
(R3) for any positive time and

‖ectH 1
r
g(t)‖L2 ≤ C‖g0‖L2 ,

where

H = −△ + |v|
2

4
.

The Gelfand-Shilov space S νν(R
3) with ν ≥ 1

2
can be identify with

S νν(R
3) =

{
f ∈ C∞(R3);∃τ > 0, ‖eτH

1
2ν

f ‖L2 < +∞
}
.

This space can also be characterized as is the space of smooth functions f ∈
C+∞(R3) satisfying (see Appendix 5):

∃A > 0, C > 0, sup
v∈R3

|vβ∂αv f (v)| ≤ CA|α|+|β|(α!)ν(β!)ν, ∀α, β ∈ N3.

The linear Boltzmann operator L is shown to be diagonal in the basis of L2(R3)

and this property has been used in [14] and [8] to prove that the Cauchy problem

to the non-cutoff spatially homogeneous Boltzmann equation with the small initial

datum g0 ∈ L2(R3) has a global solution, which belongs to the Gelfand-Shilov class

S
r/2

r/2
(R3).

The initial value problem in a space of probability measures defined via the

Fourier transform has been studied in [2] and [17]. Recently, the case of initial

datum in the sense of distribution, which contains the dual space of a Gelfand-

Shilov class for the linear case has been studied in [15].

In this paper, we consider the collision kernel in the Maxwellian molecules case

and the angular function b satisfying the Debye-Yukawa potential (1.2) for some

s > 0. For convenience, we denote

β(θ) = 2πb(cos θ) sin θ. (1.4)

We study the smoothing effect for the Cauchy problem (1.3) associated to the non-

cutoff spatially homogeneous Boltzmann equation with Debye-Yukawa potential

(1.2). The singularity of the collision kernel b endows the linearized Boltzmann

operator L with the logarithmic Gelfand-Shilov regularity property (see Proposi-

tion 2.1). The logarithmic regularity theory was first introduced in [16] on the

hypoellipticity of the infinitely degenerate elliptic operator and was developed in
3



[20],[21] on the logarithmic Sobolev estimates. Recently, for 0 < s < 2, the initial

datum f0 ≥ 0 and
∫

R3

f0(v)(1 + |v|2 + log(1 + f0(v)))dv < +∞,

Morimoto, Ukai, Xu and Yang in [19] show that the weak solution of the Cauchy

problem (1.1) satisfying

sup
t∈[0,T ]

∫

R3

f (t, v)(1 + |v|2 + log(1 + f (t, v)))dv < +∞

enjoys a H+∞(R3) smoothing effect property.

In order to precise the regularity of the solution of the Cauchy problem, we

introduce some functional spaces. The linear operator L is nonnegative ([12, 13,

14]), with the null space

N = span
{√
µ,
√
µv1,

√
µv2,

√
µv3,

√
µ|v|2

}
.

Denote by P the orthoprojection from L2(R3) into N . Then

(Lg, g) = 0⇔ g = Pg

and the operator L + P is a positive self-adjoint operator. We define

D(L) =
⋃

τ>0

Dτ(L)

with

Dτ(L) =

u ∈ C∞(R3),

+∞∑

k=0

τk(k!)−1‖(L + P)
k
2 u‖2

L2 < +∞
 ,

which is a Banach space with the norm

‖u‖2Dτ(L) =

+∞∑

k=0

τk(k!)−1‖(L + P)
k
2 u‖2

L2 .

Analogously, we define

D+(L) =
⋃

τ>0

D+τ (L)

where

D+τ (L) =

u ∈ C∞(R3),

+∞∑

k=0

τk(k!)−1‖(L + P)
k+1

2 u‖2
L2 < +∞



with the norm

‖u‖2
D+τ (L)

=

+∞∑

k=0

τk(k!)−1‖(L + P)
k+1

2 u‖2
L2 .

The distribution spaces (D(L))′, (D+(L))′ are defined as follows

(D(L))′ =
⋃

τ>0

(Dτ(L))′, (D+(L))′ =
⋃

τ>0

(D+τ (L))′

where (Dτ(L))′, (D+τ (L))′ are the dual spaces of Dτ(L) and D+τ (L). Now we begin

to present our result. Firstly, we give the definition of the weak solution of the

Cauchy problem (1.3).
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Definition 1.1. For any g0 ∈ (D(L))′, T > 0, g(t,v) is a weak solution of the

Cauchy problem (1.3) if Pg ≡ Pg0,

g ∈ L∞
(
[0, T ], (D(L))′

) ∩ H1([0, T ],
(
D+(L)

)′)
,

L 1
2 g ∈ L2 (

[0, T ], (D(L))′
)
, (1.5)

and for any φ ∈ C1([0, T ], C∞
0

(R3)
)

we have

∀t ∈ [0, T ], 〈g(t), φ(t)〉 − 〈g0, φ(0)〉

=

∫ t

0

〈g, ∂τφ〉dτ −
∫ t

0

〈g,Lφ〉dτ. (1.6)

In the main theorem, we consider the initial distribution data case, which is given

in the following.

Theorem 1.1. Assume that the Debye-Yukawa potential b( · ) is given in (1.2) with

s > 0 and g0 ∈ (D(L))′. Therefore the Cauchy problem (1.3) admits a unique weak

solution. Moreover there exist t0 > 0 and c0 > 0 such that for all t ≥ t0/c0

‖e−t0 (log(e+H))
2
s

g0‖L2 < +∞,

‖etc0(log(H+e))
2
s

(I − P)g(t)‖L2 ≤ e−
1
4
λ2,0t‖e−t0 (log(e+H))

2
s

(I − P)g0‖L2

whereH = −∆ + |v|
2

4
,

λ2,0 =

∫ π/4

0

β(θ)(1 − sin4 θ − cos4 θ)dθ > 0.

In particular, for all t > t0/c0, the solution g(t) belongs to L2(R3).

Remark 1.1. The regularizing effect g(t) ∈ L2(R3) has usually a positive delay

time. For example, consider some τ0 > 0 and the initial data g0 =
∑

n≥1
1
n
eτ0λn,0φn,0,0.

It is easy to check that g(t) ∈ L2(R3) for t ≥ τ0 but g(t) < L2(R3) for t < τ0.

In order to precise the regularizing effect in the Sobolev spaces, it is convenient

to consider the symmetric weighted Sobolev space Q2τ(R3) introduced by Shubin

[24] with norm

‖u‖Q2τ(R3) =

∥∥∥∥
(
−∆ + |v|

2

4
+ e

)τ
u
∥∥∥∥

L2
.

Theorem 1.2. Regularizing effect for an initial data in L2(R3).

Assume that the Debye-Yukawa potential b( · ) is given in (1.2) with s > 0 and

g0 ∈ L2(R3). Therefore the Cauchy problem (1.3) admits a unique weak solution.

Moreover there exists c0 > 0 such that :

1) Case 0 < s ≤ 2.

∀t > 0,
∥∥∥∥
(
e +H

)c0t
(I − P)g(t)

∥∥∥∥
L2
≤ e−λ2,0t‖(I − P)g0‖L2(R3). (1.7)

This shows that g(t) belongs to the Sobolev space Qct(R3) for any time t > 0.

2) Case 0 < s < 2. there exists a constant cs > 0 such that for any t > 0, one has

∀k ≥ 0, ‖(I − P)g(t)‖Qk ≤ e−λ2,0tecs (1/t)
s

2−s k
2

2−s ‖(I − P)g0‖L2(R3). (1.8)
5



Remark 1.2. Comments on the regularizing effect. When the singularity of the

collision cross section (1.2) for θ near 0 become smoother (that is when the real s

increases), the regularizing effect become weaker, and disappears in the context of

the Sobolev spaces when s > 2 :

- Case 0 < s < 2. The solution g(t) ∈ ∩k≥0Qk(R3) for each positive time.

- Case s = 2. The regularizing effect in Qk(R3) has usually a positive time delay.

For example, consider the initial data g0 =
∑

n≥2
1

n
1
2 log n

ϕn,0,0 where
{
ϕn,l,m(v)

}

constitutes an orthonormal basis of L2(R3), which is given in Section 2. We can

check that there exists tk > 0 such that g(t) < Qk(R3) for 0 ≤ t < tk.

- Case s > 2. There is no regularizing effect in the Sobolev space. Consider any

real numbers 0 < τ < τ′ and g0 =
∑

n≥2
1

n
τ+1

2 log n
ϕn,0,0 where ϕn,0,0 is given in

Section 2. We can check that for t ≥ 0 the solution g(t) stays in the space Qτ(R3),

but never belongs to Qτ
′
(R3). However, there is a very slight regularizing effect

and the Boltzmann equation remains irreversible.

Remark 1.3. We think that the non-linear case is similar to the linear case, but the

proofs are more technical. This work is a first step to study the non-linear case.

The rest of the paper is arranged as follows. In Section 2, we introduce the

spectral analysis of the linear Boltzmann operator and in Section 3 we precise

some properties of the distribution spaces. The proof of the main Theorems 1.1-

1.2 will be presented in Section 4, where we construct a sequence of solutions of

the Cauchy problem (1.3) with initial datum equal to the projection of g0 on an in-

creasing sequence of finite dimensional subspaces, which converges to the solution

of the Cauchy problem. In the appendix, we present some spectral properties of

the functional spaces used in this paper and the proof of some technical lemmas.

2. The preliminary results

We first recall the spectral decomposition of linear Boltzmann operator. In the

cutoff case, that is, when b(cos θ) sin θ ∈ L1([0, π
2
]), it was shown in [27] that

L(ϕn,l,m) = λn,l ϕn,l,m, n, l ∈ N, m ∈ Z, |m| ≤ l

where

λn,l =

∫ π
4

0

β(θ)
(
1 + δn,0δl,0 − (sin θ)2n+lPl(sin θ) − (cos θ)2n+lPl(cos θ)

)
dθ. (2.1)

This diagonalization of the linearized Boltzmann operator with Maxwellian mole-

cules holds as well in the non-cutoff case, (see [1, 3, 6, 12, 13]).

The eigenfunctions are

ϕn,l,m(v) =

(
n!

√
2Γ(n + l + 3/2)

)1/2 (
|v|
√

2

)l

e−
|v|2
4 L

(l+1/2)
n

(
|v|2
2

)
Ym

l

(
v

|v|

)

where Γ( · ) is the standard Gamma function: for any x > 0,

Γ(x) =

∫ +∞

0

tx−1e−xdx.
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The lth-Legendre polynomial Pl and the Laguerre polynomial L
(α)
n of order α, de-

gree n (see [23]) read,

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l, where |x| ≤ 1;

L
(α)
n (x) =

n∑

r=0

(−1)n−r Γ(α + n + 1)

r!(n − r)!Γ(α + n − r + 1)
xn−r.

For any unit vector σ = (cos θ, sin θ cos φ, sin θ sin φ) with θ ∈ [0, π] and φ ∈
[0, 2π], the orthonormal basis of spherical harmonics Ym

l
(σ) is

Ym
l (σ) = Nl,mP

|m|
l

(cos θ)eimφ, |m| ≤ l,

where the normalisation factor is given by

Nl,m =

√
2l + 1

4π
· (l − |m|)!

(l + |m|)!

and P
|m|
l

is the associated Legendre functions of the first kind of order l and degree

|m| with

P
|m|
l

(x) = (1 − x2)
|m|
2

(
d

dx

)|m|
Pl(x).

We recall from Lemma 7.2 in [8] that

̂√µϕn,l,m(ξ) = (−i)l (2π)
3
4

(
1

√
2n!Γ(n + l + 3

2
)

) 1
2
(
|ξ|
√

2

)2n+l

e−
|ξ|2

2 Ym
l

(
ξ

|ξ|

)
.

We can extend the spectral decomposition to the Debye-Yukawa potential case.

The family
(
Ym

l
(σ)

)
l≥0,|m|≤ l

constitutes an orthonormal basis of the space L2(S2, dσ)

with dσ being the surface measure on S2 (see [10], [22]). Noting that
{
ϕn,l,m(v)

}

constitutes an orthonormal basis of L2(R3) composed of eigenvectors of the har-

monic oscillator (see[1], [13])

H(ϕn,l,m) = (2n + l +
3

2
)ϕn,l,m.

As a special case,
{
ϕn,0,0(v)

}
constitutes an orthonormal basis of L2

rad
(R3), the rad-

ially symmetric function space (see [14]). We have for suitable functions g

L(g) =

∞∑

n=0

∞∑

l=0

l∑

m=−l

λn,l gn,l,m ϕn,l,m (2.2)

where gn,l,m = (g, ϕn,l,m)L2(R3) and

H(g) =

∞∑

n=0

∞∑

l=0

l∑

m=−l

(2n + l +
3

2
) gn,l,m ϕn,l,m .

Using this spectral decomposition, for any s > 0, the definitions of
(
log(H + e)

)s
,

ec(log(H+e))s

and ecL are then classical.

Remark 2.1. It is trivial to obtain from (2.1) that λ0,0 = λ1,0 = λ0,1 = 0 and the

others are strictly positive. Thus the null space of the linear Boltzmann operator

L is

N = span
{√
µ,
√
µv1,

√
µv2,

√
µv3,

√
µ|v|2

}
.

7



We have for (n, l) ∈ N2

λn,l = 0 if n + l ≤ 1,

λn,l > 0 otherwise.

We derive the following estimate of λn,l defined in (2.1).

Proposition 2.1 (Spectral estimates of the linearized Boltzmann operator L). Let

collision the kernel b satisfies the Debye-Yukawa potential condition (1.2). Then,

there exists a positive constant c0 such that for any n, l ∈ N, n + l ≥ 2, we have

c0

(
log(2n + l + e)

) 2
s ≤ λn,l ≤

1

c0

(
log(2n + l + e)

) 2
s , (2.3)

where e is the Natural constant.

Proof. From Remark 2.1, for any n, l ∈ N and n+ l ≥ 2 we have λn,l > 0. Therefore

we need only to consider the case 2n + l→ +∞. We have from (1.4) for θ ∈]0, π
4
]

β(θ) ≈ (sin θ)−1(log(sin θ)−1)
2
s
−1.

From (2.1) and putting x = sin θ, λn,l can be decomposed as follows

λn,l =

∫ π
4

0

β(θ)(1 − Pl(sin θ)(sin θ)2n+l − Pl(cos θ)(cos θ)2n+l)dθ

≈
∫ √

2
2

0

(log x−1)
2
s
−1

(
1 − Pl(x) x2n+l − Pl

( √
1 − x2

)
(1 − x2)

2n+l
2

)dx

x

≈
∫ √

2
2

0

(log x−1)
2
s
−1

(
1 − (1 − x2)

2n+l
2

)dx

x

−
∫ √

2
2

0

(log x−1)
2
s
−1 Pl(x) x2n+l dx

x

+

∫ √
2

2

0

(log x−1)
2
s
−1

(
1 − Pl

( √
1 − x2

))
(1 − x2)

2n+l
2

dx

x

=A1 + A2 + A3. (2.4)

We first estimate A1. Setting y = x
√

2n + l, we decompose it in two parts

A1 =

∫ √
2

2

√
2n+l

0

(
log

√
2n + l

y

) 2
s
−1 (

1 −
(
1 − y2

2n + l

) 2n+l
2

)dy

y

=

∫ √
2

2

√
2n+l

1

+

∫ 1

0

= A11 + A12.

The main term is A11. Putting z = log
√

2n+l
y

, we get when 2n + l→ ∞

A11 =

∫ log
√

2n+l

log
√

2

z
2
s
−1

(
1 −

(
1 − e−2z

) 2n+l
2

)
dz

=
(∫ log

√
2n+l

log
√

2

z
2
s
−1 dz

) (
1 + O

(1

2

) 2n+l
2

)

≈ s

2

(
log
√

2n + l
) 2

s .

8



We now check that the other term A12 has a lower order (A2 and A3 will have also

a lower order). We decompose the term A12 as follows:

A12 =

∫ 1

0

(
log
√

2n + l + log
1

y

) 2
s
−1 (

1 −
(
1 − y2

2n + l

) 2n+l
2

)dy

y

=
(
log
√

2n + l
) 2

s
−1

∫ 1

0

g2n+l(y) dy

where

gk(y) =
(
1 +

1

log
√

k
log

1

y

) 2
s
−1 (

1 −
(
1 − y2

k

) k
2
)1

y
.

It is easy to check that, uniformly for y ∈]0, 1] and k ≥ 2, we have

gk(y) = max
(
1,

(
log

1

y

) 2
s
−1)

O(y) and gk(y) −−−−→
k→∞

(
1 − e−

1
2

y2
)1

y
.

From the dominated convergence theorem we get

A12 ≈
(
log
√

2n + l
) 2

s−1
∫ 1

0

(
1 − e−

1
2

y2
)1

y
dy

.

(
log
√

2n + l
) 2

s
−1
,

where we use the fact that
∫ 1

0

(
1 − e−

1
2

y2
)1

y
dy < +∞.

We estimate the second term A2. From the classical inequality |Pl| ≤ 1 on [−1, 1],

|A2| ≤
∫ √

2
2

0

(log x−1)
2
s
−1 |Pl(x)| x2n+l dx

x

≤

√

2

2


2n+l−1 ∫ √

2
2

0

(log x−1)
2
s
−1 dx

≤

√

2

2


2n+l−1 ∫ +∞

√
2

x
2
s
−1e−x dx ≤ Γ(2

s
).

We estimate the third term A3. We divide A3 into two parts for l ≥ 2

A3 =

∫ √
2

2

0

(log x−1)
2
s
−1

(
1 − Pl

( √
1 − x2

))
(1 − x2)

2n+l
2

dx

x

=

∫ √
2

2

1
l

+

∫ 1
l

0

= A31 + A32.

For the first part A31, since |Pl| ≤ 1 on [−1, 1], we can estimate as follows

0 ≤ A31 ≤
∫ √

2
2

1
l

(log x−1)
2
s
−1 dx

x

≤ s

2

(
(log l)

2
s − (log

√
2)

2
s

)
.

9



For the second part A32, setting y = l x, we get

0 ≤ A32 ≤
∫ 1

0

(
log

l

y

) 2
s
−1 (

1 − Pl

(√
1 − y2/l2

)) dy

y
.

By Lemma 2.3 in [15] (for a proof, see lemma 5.1 in the appendix), we have

1 − Pl

(
cos
θ

l

)
= O(θ2)

uniformly for l ≥ 1 and θ ∈ [0, π
2
]. We then deduce that for l ≥ 2

A32 .

∫ 1

0

(
log

l

y

) 2
s−1

y dy

. (log l)
2
s
−1

∫ 1

0

(
1 +

1

log l
log

1

y

) 2
s
−1

y dy

. (log l)
2
s
−1.

It follows from the above estimate of A1, A2, A3 and (2.4)

(log(2n + l + e))
2
s . λn,l = A1 + A2 + A3 . (log(2n + l + e))

2
s .

This concludes the proof of (2.3). �

3. Properties of some distribution spaces

In order to give some more precise descriptions on the regularity of the linea-

rized Boltzmann operator L, we introduce the following Sobolev-type spaces: for

any real numbers τ > 0 and ν > 0,

Eτν(R
3) =

{
u ∈ C∞(R3), ‖eτ (log(e+H))

2
ν

u‖2
L2 < +∞

}
,

which is a Banach space with the norm

‖u‖2
Eτν (R

3)
= ‖eτ (log(e+H))

2
ν

u‖2
L2 .

In the case ν = 2, the space Eτ
2
(R3) is equivalent to the symmetric weighted Sobolev

space Q2τ(R3) with the norm (see (2.1) in [9] or 25.3 of Ch. IV in [24])

‖u‖Q2τ(R3) =

∥∥∥∥
(
e +H

)τ
u

∥∥∥∥
L2
.

In the case 0 < ν < 2 and τ > 0, one can verify that Eτν(R
3) is an intermediate space

between the symmetric weighted Sobolev spaces and the Gelfand-Shilov spaces :

For all ν1 ≥ 1
2
,

S ν1ν1 (R3) ⊂ Eτν(R
3) ⊂

⋂

k≥0

Qk(R3).

Moreover, we have the following property of this space: There exists a constant

C = Cν > 0 such that (see Proposition 5.1)

∀k ≥ 1, ∀τ > 0, ‖u‖Qk(R3) ≤ eC
(

1
τ

) ν
2−ν k

2
2−ν ‖u‖Eτν (R3).

We denote the dual space of the Sobolev-type space Eτν(R
3) by

(
Eτν(R

3)
)′
= E−τν (R3).
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Obviously, for ν > 0 fixed, when τ2 > τ1, one has E
τ2
ν (R3) ⊂ E

τ1
ν (R3); for τ

fixed, when ν2 > ν1 > 0, one has Eτν1(R3) ⊂ Eτν2(R3). Then we have the following

inclusions.

Theorem 3.1. Assume the cross section kernel b of the linearized Boltzmann op-

erator L defined in (1.2) with s > 0. For τ > 0, there exist constants τ2 > τ1 > 0,

such that

Eττ2s (R3) ⊂ Dτ(L) ⊂ Eττ1s (R3).

In particular, when 0 < s ≤ 2, for u ∈ D1(L),

‖u‖Q2τ1 = ‖(e +H)τ1 u‖L2 ≤ ‖eτ1 (log(e+H))
2
s

u‖L2 < +∞. (3.1)

Remark 3.1. By the conjugation property, we have

E−ττ1s (R3) ⊂ (Dτ(L))′ ⊂ E−ττ2s (R3).

Using the spectral decomposition, we give some another expressions of the norm

of the spaces Dτ(L), (Dτ(L))′ and Eτs (R3).

Proposition 3.1. Let us define for n, l ∈ N

λ̃n,l =

{
1 n + l ≤ 1,

λn,l n + l ≥ 2.
(3.2)

(1) For τ > 0 and u ∈ Dτ(L), let (u, ϕn,l,m) be the inner product in L2(R3). Therefore

the sequence {(u, ϕn,l,m)} satisfies

‖u‖2Dτ(L) =

+∞∑

n=0

+∞∑

l=0

∑

|m|≤l

eτ̃λn,l (u, ϕn,l,m)2 < +∞.

(2) For τ > 0 and T ∈ (Dτ(L))′, let 〈T, ϕn,l,m〉 be the inner product in sense of

distribution. Analogously the sequence {〈T, ϕn,l,m〉} satisfies

‖u‖2(Dτ(L))′ =

+∞∑

n=0

+∞∑

l=0

∑

|m|≤l

e−τ̃λn,l 〈T, ϕn,l,m〉2 < +∞.

(3) For τ ∈ R, s > 0, let u ∈ Eτs (R3). Therefore the sequence {〈u, ϕn,l,m〉} satisfies

‖u‖2
Eτν (R

3)
=

+∞∑

n=0

+∞∑

l=0

∑

|m|≤l

e2τ(log(2n+l+ 3
2
+e))

2
s 〈u, ϕn,l,m〉2 < +∞.

Proof. The proof of part (1) is direct: From the spectral decomposition (2.2)

‖u‖2Dτ(L) =

+∞∑

k=0

τk(k!)−1‖(L + P)
k
2 u‖2

L2

=

+∞∑

k=0

τk(k!)−1
+∞∑

n=0

+∞∑

l=0

∑

|m|≤l

λ̃k
n,l(u, ϕn,l,m)2.

Now we prove part (2): From the above characterization of Dτ(L), we find that

ϕn,l,m ∈ Dτ(L). Then for any T ∈ (
Dτ(L)

)′
, 〈T, ϕn,l,m〉 is well-defined. We cons-

truct the following smooth function

uN(v) =
1

CN

∑

2n+l≤N
n≥0,l≥0

∑

|m|≤l

e−τ̃λn,l 〈T, ϕn,l,m〉ϕn,l,m(v),

11



where

CN =

√√√ ∑

2n+l≤N
n≥0,l≥0

∑

|m|≤l

e−τ̃λn,l 〈T, ϕn,l,m〉2.

Applying the result of (1), we find that

‖uN‖Dτ(L) = 1.

From the definition of
(
Dτ(L)

)′
, one can verify

‖T‖(
Dτ(L)

)′ ≥ 〈T, uN〉 =
√√√ ∑

2n+l≤N
n≥0,l≥0

∑

|m|≤l

e−τ̃λn,l 〈T, ϕn,l,m〉2.

Passing N to +∞, we have

‖T‖(
Dτ(L)

)′ ≥
√∑

n≥0

∑

l≥0

∑

|m|≤l

e−τ̃λn,l 〈T, ϕn,l,m〉2. (3.3)

On the other hand, for any u ∈ Dτ(L) with ‖u‖Dτ(L)=1, we define a series

uN =
∑

2n+l≤N
n≥0,l≥0

∑

|m|≤l

(u, ϕn,l,m)ϕn,l,m.

Then uN → u ∈ Dτ(L) as N → +∞ with ‖uN‖Dτ(L) ≤ 1. Therefore,

|〈T, uN〉| = |
∑

2n+l≤N
n≥0,l≥0

∑

|m|≤l

(u, ϕn,l,m)〈T, ϕn,l,m〉|

≤
( ∑

2n+l≤N
n≥0,l≥0

∑

|m|≤l

e−τ̃λn,l〈T, ϕn,l,m〉2
) 1

2 ‖uN‖Dτ(L)

≤
( ∑

2n+l≤N
n≥0,l≥0

∑

|m|≤l

e−τ̃λn,l〈T, ϕn,l,m〉2
) 1

2
.

By continuity,

|〈T, u〉| = lim
N→+∞

|〈T, uN〉|
and we obtain

‖T‖(
Dτ(L)

)′ ≤
(∑

n≥0

∑

l≥0

∑

|m|≤l

e−τ̃λn,l 〈T, ϕn,l,m〉2
)1/2
. (3.4)

Part (2) follows from (3.3) and (3.4).

For the part (3), note that
{
ϕn,l,m(v)

}
constitutes an orthonormal basis of L2(R3)

composed of eigenvectors of the harmonic oscillator H , then

eτ (log(e+H))
2
s

ϕn,l,m = eτ(log(2n+l+ 3
2+e))

2
s
ϕn,l,m.

This ends the proof of Proposition 3.1. �

Remark 3.2. For τ > 0 and u ∈ D+τ (L), let (u, ϕn,l,m) be the inner product in

L2(R3). Therefore the sequence {(u, ϕn,l,m)} satisfies

‖u‖2
D+τ (L)

=

+∞∑

n=0

+∞∑

l=0

∑

|m|≤l

λ̃n,le
τ̃λn,l (u, ϕn,l,m)2 < +∞.
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For τ > 0 and T ∈ (
D+τ (L)

)′
, let 〈T, ϕn,l,m〉 be the inner product in sense of distri-

bution. Analogously the sequence {〈T, ϕn,l,m〉} satisfies

‖u‖2
(D+τ (L))′ =

+∞∑

n=0

+∞∑

l=0

∑

|m|≤l

1

λ̃n,l

e−τ̃λn,l 〈T, ϕn,l,m〉2 < +∞.

We are prepared to prove Theorem 3.1.

Proof of Theorem 3.1: Applying Proposition 2.1, for τ > 0, there exist constant

τ2 > τ1 > 0, such that

+∞∑

n=0

+∞∑

l=0

∑

|m|≤l

e2ττ1(log(2n+l+ 3
2
+e))

2
s

(u,ϕn,l,m)2 ≤
+∞∑

n=0

+∞∑

l=0

∑

|m|≤l

eτ̃λn,l (u, ϕn,l,m)2

≤
+∞∑

n=0

+∞∑

l=0

∑

|m|≤l

e2ττ2(log(2n+l+ 3
2
+e))

2
s

(u, ϕn,l,m)2.

From Proposition 3.1, we have

Eττ2s (R3) ⊂ Dτ(L) ⊂ Eττ1s (R3).

In addition, when 0 < s ≤ 2, for u ∈ D1(L),

e2τ1(log(2n+l+e))
2
s ≥ e2τ1(log(2n+l+ 3

2
+e)) = (2n + l +

3

2
+ e)2τ1 .

Therefore

‖(e +H)τ1 u‖2
L2 =

+∞∑

n=0

+∞∑

l=0

∑

|m|≤l

(2n + l +
3

2
+ e)2τ1 (u, ϕn,l,m)2

≤
+∞∑

n=0

+∞∑

l=0

∑

|m|≤l

e2τ1(log(2n+l+ 3
2
+e))

2
s

(u, ϕn,l,m)2

= ‖u‖2
E
τ1
s

< +∞.

This ends the proof of Theorem 3.1. �

4. Proof of Theorems 1.1-1.2

Now we are prepared to prove Theorem 1.1.

Proof of Theorem 1.1. We proceed to treat the proof by the following four steps.

Step 1. Construction of an auxiliary function gN with initial datum which ap-

proximates g0 ∈ (Dτ(L))′ .
For g0 ∈ (Dτ(L))′, λ̃n,l defined in (3.2), we obtain from Proposition 3.1

+∞∑

n=0

+∞∑

l=0

∑

|m|≤l

e−τ̃λn,l 〈g0, ϕn,l,m〉2 = ‖g0‖2(Dτ(L))′ < +∞. (4.1)

For all n, l ∈ N, m ∈ {−l, · · · , l}, we consider the Cauchy problem associated with

the ODEs {
∂tan,l,m(t) + λn,lan,l,m(t) = 0,

an,l,m(0) = 〈g0, ϕn,l,m〉.
13



Direct calculation shows that an,l,m(t) = e−λn,lt〈g0, ϕn,l,m〉. Let us now fix some

positive integer N ≥ 3 and define the following function gN : [0,+∞[×R3 →
L2(R3) by

gN =
∑

2n+l≤N
n≥0,l≥0

∑

|m|≤l

e−λn,lt〈g0, ϕn,l,m〉ϕn,l,m.

Then gN satisfies 

∂tgN +LgN = 0,

gN(0) =
∑

2n+l≤N
n≥0,l≥0

〈g0, ϕn,l,m〉ϕn,l,m. (4.2)

Step 2. Existence of the solution to the Cauchy problem (1.3).

It is obvious that,

PgN ≡ Pg0.

For N ∈ N big enough and for any P ∈ N+,

∀t > 0, ‖gN+P − gN‖2(Dτ(L))′ =
∑

N+1≤2n+l≤N+P
n≥0,l≥0

∑

|m|≤ l

e−2λn,l te−λn,lτ|〈g0, ϕn,l,m〉|2

≤
∑

N+1≤2n+l≤N+P
n≥0,l≥0

∑

|m|≤ l

e−λn,lτ|〈g0, ϕn,l,m〉|2 → 0.

Let us fix T > 0, N ≥ 3 big enough. Using the estimate in Proposition 2.1, we can

check that
∫ T

0

‖gN+P − gN‖2(D+τ (L))
′dt

=
∑

N+1≤2n+l≤N+P
n≥0,l≥0

∑

|m|≤ l

λ−1
n,l e
−λn,lτ|〈g0, ϕn,l,m〉|2

1

2λn,l

(1 − e−2λn,lT )

.

∑

N+1≤2n+l≤N+P
n≥0,l≥0

∑

|m|≤ l

e−λn,lτ|〈g0, ϕn,l,m〉|2 → 0;

∫ T

0

‖∂tgN+P − ∂tgN‖2(D+τ (L))′
dt

=
∑

N+1≤2n+l≤N+P
n≥0,l≥0

∑

|m|≤ l

e−λn,lτ|〈g0, ϕn,l,m〉|2
λn,l

2λn,l

(1 − e−2λn,lT )

≤1

2

∑

N+1≤2n+l≤N+P
n≥0,l≥0

∑

|m|≤ l

e−λn,lτ|〈g0, ϕn,l,m〉|2 → 0;

∫ T

0

‖L 1
2 gN+P − L

1
2 gN‖2(Dτ(L))′dt

≤1

2

∑

N+1≤2n+l≤N+P
n≥0,l≥0

∑

|m|≤ l

e−λn,lτ|〈g0, ϕn,l,m〉|2 → 0.
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Therefore, for T > 0 fixed,

{gN(t)} is a Cauchy sequence in (Dτ(L))′ , ∀t ∈ [0, T ];

{gN} is a Cauchy sequence in H1([0, T ],
(
D+τ (L)

)′
);

{L 1
2 gN} is a Cauchy sequence in L2([0, T ], (Dτ(L))′).

Then there exists a function g ∈ L∞([0, T ], (Dτ(L))′)
⋂

H1([0, T ],
(
D+τ (L)

)′), Pg ≡
Pg0 and L 1

2 g ∈ L2([0, T ], (Dτ(L))′), such that

∀t > 0, gN(t)→ g(t) in (Dτ(L))′ ,

gN → g in H1([0, T ],
(
D+τ (L)

)′
),

L 1
2 gN → L

1
2 g in L2([0, T ], (Dτ(L))′).

By Sobolev embedding theorem

H1([0, T ],
(
D+τ (L)

)′
) ֒→ C([0, T ],

(
D+τ (L)

)′
),

we have

g ∈ C([0, T ],
(
D+τ (L)

)′
).

Now we prove g is the desired weak solution of Cauchy problem (1.3). For any

test function φ ∈ C1([0, T ],C∞
0

(R3)) and 0 < t < T , recalled from (4.2), we have

〈gN(t), φ(t)〉 − 〈gN(0), φ(0)〉

=

∫ t

0

〈gN(τ), ∂τφ〉dτ −
∫ t

0

〈gN(τ),Lφ(τ)〉dτ.

Passing to the limit as N → +∞, we get

〈g(t), φ(t)〉 − 〈g(0), φ(0)〉

=

∫ t

0

〈g, ∂τφ〉dτ −
∫ t

0

〈g,Lφ〉dτ. (4.3)

Besides, from (4.1), we see that

gN(0) → g(0) in (Dτ(L))′ .

Henceforth, we obtain

〈g(0), φ(0)〉 = 〈g0, φ(0)〉.
Substituting the above result into (4.3), (1.6) follows.

Step 3. Uniqueness of the solution to the Cauchy problem (1.3).

Assume that g̃ is another solution satisfies (1.5) and (1.6). Denote

h(t) = g(t) − g̃(t).

For T > 0, for any φ ∈ C1([0, T ],C∞
0

(R3)) and 0 < t < T , we have h(0) = 0 and

〈h(t), φ(t)〉 =
∫ t

0

〈h, ∂τφ〉dτ −
∫ t

0

〈h,Lφ(τ)〉dτ. (4.4)

We define a smooth function

φ(t) =
∑

2n+l≤N
n≥0,l≥0

e−2τ̃λn,l 〈h(t), ϕn,l,m〉ϕn,l,m.
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Substituted into (4.4) as a test function, we have
∑

2n+l≤N
n≥0,l≥0

e−2τ̃λn,l 〈h(t), ϕn,l,m〉2 ≤ 0.

Passing N → +∞, we have

‖h(t)‖2
(Dτ(L))′ ≤ 0.

Thus h = 0 in L2(R3).

Step 4. Regularity of the solution with the initial data g0 ∈ E
−t0
s (R3).

Using Theorem 3.1, we have

Dt0/τ1 (L) ⊂ E
t0
s (R3) and E

−t0
s (R3) ⊂ (

Dt0/τ1 (L)
)

where τ1 is given by Theorem 3.1. Namely,

‖e−t0 (log(e+H))
2
s

g0‖L2 < +∞.
Recalling that g0 = Pg0 + (I − P)g0, we have

(I − P)gN(t) =
∑

2n+l≤N
n≥0,l≥0

e−λn,lt〈(I − P)g0, ϕn,l,m〉ϕn,l,m.

Then for any T > 0,

(I − P)gN(t)→ g in L∞([0, T ],
(
Dt0/τ1 (L)

)′
).

Moreover, from Proposition 2.1, there exists a constant c > 0 such that for any

t > t0/c

‖ect(log(H+e))
2
s

(I − P)gN‖L2(R3) ≤ e−
1
4
λ2,0t‖(I − P)g0‖E−t0

s (R3)
,

where we have used the following estimate of the eigenvalue (see Part 4.3 of [8])

0 < λ2,0 ≤ λn,l.

By the lower continuity, we have

‖ect(log(H+e))
2
s

(I − P)g‖L2(R3)

≤ lim inf
N→+∞

‖ect(log(H+e))
2
s

(I − P)gN‖L2(R3)

≤ e−
1
4
λ2,0t‖(I − P)g0‖E−t0

s (R3)
. (4.5)

This concludes the proof of Theorem 1.1.

�

We now give the proof of Theorem 1.2

Proof. Consider that g0 ∈ L2(R3). For 0 < s ≤ 2, by using the formula (3.1) in

Theorem 3.1 and the formula (4.5), we obtain,

‖ (H + e)ct (I − P)g‖L2(R3) ≤ e−
1
4
λ2,0t‖(I − P)g0‖L2(R3).

This is the formula (1.7).

For the part 2) of Theorem 1.2, i.e, in the case 0 < s < 2, the formula (1.8)

follows from Proposition 5.1 and formula (4.5). The proof of Theorem 1.2 is com-

pleted. �
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Now we study the regularizing effect of the Boltzmann equation with the intial

data in Sobolev space, which provides a detailed exposition of Remark 1.2.

Recalled that
{
ϕn,l,m(v)

}
n,l∈N,|m|≤l constitutes an orthonormal basis of L2(R3) com-

posed of eigenvectors of the harmonic oscillator (see[1], [13])

H(ϕn,l,m) = (2n + l +
3

2
)ϕn,l,m.

For τ > 0 (see (5.1) in the Appendix),

‖u‖2
Qτ(R3)

= ‖(H + e)
τ
2 u‖2

L2 =

+∞∑

n=0

+∞∑

l=0

∑

|m|≤l

(2n + l +
3

2
+ e)τ(u, ϕn,l,m)2

L2 .

We consider the example in Remark 1.2.

In the case s = 2, the regularizing effect in Qk(R3) has usually a positive time

delay.

Example 4.1. Consider the initial data g0 =
∑

n≥2
1

n
1
2 log n

φn,0,0, then

‖g0‖2L2(R3)
=

+∞∑

n=2

1

n(log n)2
< +∞.

This shows that g0 ∈ L2(R3). The solution of the Cauchy problem (1.3) can be

written as

g(t) =

+∞∑

n=2

e−tλn,0
1

n
1
2 log n

φn,0,0.

By using Proposition 2.1, for s = 2, we have

λn,0 ≈ log(2n + e).

Then

‖g(t)‖2
Qk(R3)

=

+∞∑

n=2

(2n +
3

2
+ e)ke−2tλn,0

1

n(log n)2

≈
+∞∑

n=2

(2n +
3

2
+ e)k 1

n1+2t(log n)2
,

which is convergent when 2t ≥ k, i.e. t ≥ k
2
.

We can check that there exists tk =
k
2

such that g(t) < Qk(R3) for 0 ≤ t < tk.

In the case s > 2. We prove that there is no regularizing effect in the Sobolev

space.

Example 4.2. Consider any real numbers 0 < τ < τ′ and g0 =
∑

n≥2
1

n
τ+1

2 log n
φn,0,0.

Therefore we have

‖g0‖2Qτ(R3)
=

+∞∑

n=2

(2n +
3

2
+ e)τ

1

nτ+1(log n)2

≈
+∞∑

n=2

1

n(log n)2
< +∞.

This means that g0 ∈ Qτ(R3).
17



However, the solution of the Cauchy problem (1.3) can be written as

g(t) =

+∞∑

n=2

e−tλn,0
1

n
τ+1

2 log n
φn,0,0.

It is easy to prove that g(t) ∈ Qτ(R3). Now we prove g(t) < Qτ
′
(R3).

In the case s > 2, by using the Proposition 2.1, we obtain

λn,0 ≈ (log(2n + e))
2
s .

Therefore, there exists a constant c0 > 0 such that

‖g(t)‖2
Qτ
′
(R3)
=

+∞∑

n=2

(2n +
3

2
+ e)τ

′
e−2tλn,0

1

nτ+1(log n)2

≤
+∞∑

n=2

nτ
′−τ

e2tc0(log(2n+e))
2
s n(log n)2

=

+∞∑

n=2

e
τ′−τ

2
log(n)−2tc0 (log(2n+e))

2
s 1

n1− τ′−τ
2 (log n)2

.

Considering the condition that τ′ > τ and s > 2, one can verify that

τ′ − τ
2

log(n) − 2tc0(log(2n + e))
2
s → +∞, as n→ +∞.

Since
+∞∑

n=2

1

n1− τ′−τ
2 (log n)2

= +∞,

we obtain

‖g(t)‖2
Qτ
′
(R3)
= +∞.

We conclude

g(t) < Qτ
′
(R3).

We can check that for t ≥ 0 the solution g(t) stays in the space ∈ Qτ(R3), but never

belongs to Qτ
′
(R3).

5. Appendix

We present in this section some spectral properties of the functional spaces used

in this paper and the proof of lemma 5.1.

The symmetric Gelfand-Shilov space S νν(R
3) can be characterized through the

decomposition into the Hermite basis {Hα}α∈N3 and the harmonic oscillator H =
−△ + |v|

2

4
. For more details, see Theorem 2.1 in the book [9].

f ∈ S νν(R
3)⇔ f ∈ C∞(R3), ∃ τ > 0,

∥∥∥ eτH
1
2ν

f
∥∥∥

L2 < +∞;

⇔ f ∈ L2(R3), ∃ ǫ0 > 0,
∥∥∥∥
(
leǫ0 |α|

1
2ν

( f Hα)L2

)
α∈N3

∥∥∥∥
l2
< +∞;

⇔ ∃C > 0, A > 0,
∥∥∥∥
(
−△ + |v|

2

4

) k
2

f
∥∥∥∥

L2(R3)
≤ A Ck (k!)ν, k ∈ N

where

Hα(v) = Hα1
(v1)Hα2

(v2)Hα3
(v3), α ∈ N3,

18



and for x ∈ R,

Hn(x) =
(−1)n

√
2nn!π

e
x2

2
dn

dxn
(e−x2

) =
1

√
2nn!π

(
x − d

dx

)n
(e−

x2

2 ).

For the harmonic oscillator H = −△ + |v|
2

4
of 3-dimension and s > 0, we have

H k
2 Hα = (λα)

k
2 Hα, λα =

3∑

j=1

(α j +
1

2
), k ∈ N, α ∈ N3.

The symmetric weighted Sobolev space Q2τ(R3) can be also characterized through

the decomposition into the Hermite basis :

f ∈ Q2τ(R3)⇔ f ∈ L2(R3),
∥∥∥∥
(
e +H

)τ
f
∥∥∥∥

L2
< +∞;

⇔ f ∈ L2(R3),
∥∥∥∥
(
|α|τ( f , Hα)L2

)
α∈N3

∥∥∥∥
l2
< +∞.

(5.1)

Concerning the Sobolev-type space Eτν(R
3) for ν > 0 introduced in part 1, we have

the following property :

Proposition 5.1. Let 0 < ν < 2 and τ > 0. There exists a constant C = Cν such

that, for ant f ∈ Eτν(R
3),

∀k ≥ 1,
∥∥∥∥
(
−∆ + |v|

2

4

) k
2

f
∥∥∥∥

L2
≤ eC

(
1
τ

) ν
2−ν k

2
2−ν ‖ f ‖Eτν .

Proof. We expand f in the Hermite basis : noting fα = ( f ,Hα)L2 , we get
∑

α

e2τ (log(e+λα))
2
ν | fα|2 = ‖ f ‖2Eτν .

We rephrase the previous identity as follows
∑

α∈N3

hτ,k(e + λα) (e + λα)
k | fα|2 = ‖ f ‖2Eτν

where

hτ,k(x) =
e2τ (log x)

2
ν

xk
.

It is easy to check that

∀x ≥ 1, hτ,k(x) ≥ e−
2−ν

2

(
ν
4τ

) ν
2−ν k

2
2−ν
. (5.2)

Indeed, using Young’s inequality

xy ≤ 1

p
xp +

1

q
yq, where

1

p
+

1

q
= 1,

with p = 2
2−ν , q = 2

ν
, we obtain

k log x ≤ 2 − ν
2

[( ν
4τ

) ν
2
k
] 2

2−ν
+ 2τ

[
log x

] 2
ν ,

and (5.2) follows immediately. Therefore we deduce that

‖ f ‖2Eτν =
∑

α∈N3

hτ,k(e + λα) (e + λα)
k | fα|2

≥ e−
2−ν

2

(
ν

4τ

) ν
2−ν k

2
2−ν

∑

α∈N3

(e + λα)
k | fα|2

19



and using (5.1) we conclude the proof. �

We now give a proof of Lemma 2.3 in [15].

Lemma 5.1. ([15]) We have

1 − Pl

(
cos
θ

l

)
= O(θ2)

uniformly for l ≥ 1 and θ ∈ [0, π
2
].

Proof. We recall that the Legendre polynomial w(t) = Pl(cos t) satisfies

1

sin t

d

dt

(
sin t

dw

dt

)
+ l (l + 1) w = 0, w(0) = 1, |w| ≤ 1.

Let us define the new function for θ ∈ [0, π
2
]

u(θ) = 1 − Pl

(
cos
θ

l

)
.

The function u is solution of the differential equation

d

dθ

(
sin

(
θ

l

)
du

dθ

)
=

l + 1

l
sin

(
θ

l

)
w = O

(
θ

l

)
.

We integrate on the interval [0, θ] and we get

sin

(
θ

l

)
du

dθ
= O

(
θ2

l

)
.

Therefore
du

dθ
= O(θ).

Since u(0) = 0, another integration finishes the proof of the estimate. �
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