
Accepted Manuscript

Title: Changes in the starch-protein interface depending on
common wheat grain hardness revealed using Atomic Force
Microscopy

Author: Emna Chichti Matthieu George Jean-Yves Delenne
Valérie Lullien-Pellerin

PII: S0168-9452(15)30012-1
DOI: http://dx.doi.org/doi:10.1016/j.plantsci.2015.07.006
Reference: PSL 9232

To appear in: Plant Science

Received date: 6-5-2015
Revised date: 6-7-2015
Accepted date: 7-7-2015

Please cite this article as: Emna Chichti, Matthieu George, Jean-Yves Delenne,
Valérie Lullien-Pellerin, Changes in the starch-protein interface depending on common
wheat grain hardness revealed using Atomic Force Microscopy, Plant Science
http://dx.doi.org/10.1016/j.plantsci.2015.07.006

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.plantsci.2015.07.006
http://dx.doi.org/10.1016/j.plantsci.2015.07.006


  1 
 

Changes in the starch-protein interface depending on common wheat grain 

hardness revealed using Atomic Force Microscopy 

EmnaChichtia1, Matthieu Georgeb, Jean-Yves Delennea, Valérie Lullien-Pellerina 

 

aINRA, UMR 1208, Ingénierie des Agropolymères et Technologies Emergentes, 2 

Place Viala, 34060 Montpellier Cedex 02, France,chichti@supagro.inra.fr, 

delenne@supagro.inra.fr 

bInstitut Charles Coulomb, UMR 5221, CNRS-UM2, Place Eugène Bataillon, 34095 

Montpellier Cedex, France,mgeorge@univ-montp2.fr 

 

Correspondingauthor: Lullien-Pellerin V. UMR IATE, 2 Place Viala, 34060 

Montpellier Cedex 02, France. Tél : 33 (0) 4 99 61 31 05, Fax : 33 (0) 4 99 61 30 76.  

E-mail : lullien@supagro.inra.fr 

 

 

1Present adress UMR 95 QualiSud, TA B95/16, 73 rue Jean-François Breton, 34398 

Montpellier Cedex 5, France. 

Graphical abstract 



  2 
 

 

 

HIGHLIGHTS 
- Exploresthe starch surface by nano-scratch AFM in the wheat grain 

endosperm  
- Shows differences in mechanical properties related withgrain hardness 
- Relates the differences to distinctpuroindoline b allele with near-isogenic 

lines 
- Demonstrates for the first time an effect of puroindolines in grain mechanics  
- Identifies a potential lubricant interface between starchand gluten in soft 

grains 
 

ABSTRACT 

TheAtomic Force Microscopetip was used to progressivelyabradethe surface of non-

cutstarch granules embedded in the endosperm protein matrix in grain sections from 

wheat near-isogenic lines differing in the puroindoline b geneand thus hardness. In 

the hard near-isogenic wheat lines, starch granulesexhibitedtwo 

distinctprofilescorresponding either toabrasion in the surrounding protein layer or the 

starch granule. An additional profile,only identified in soft lines, revealed a marked 

stop in the abrasionat the protein-starch transitionsimilar to a lipid interface playing a 

lubricant role. Itwas relatedto the presence of both wild-type puroindolines,already 
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suggested to act at the starch-protein interface through their association with polar 

lipids.  

This study revealed, for the first time, in situdifferences in the nano-mechanical 

properties at the starch-protein interfacein the endosperm of wheat grainsdepending 

on the puroindoline allelic status. 

 

Abbreviations: (AFM), atomic force microscopy; (AT),projected frontal abrasion 

area; (ESEM), Environmental Scanning Electron Microscopy; (FN), normal force; 

(FT), tangential force; (H), polymer hardness value; (PIN), puroindoline; (N), number 

of abrasive scans; (nl), number of AFM tip scan lines; (NILs), near isogenic lines; 

(R), tip radius; (V), abraded volume; (VT), tip velocity; (z), abrasion depth; (znorm), 

normalized depth. 

  



  4 
 

 

Keywords: endosperm; nanomechanics; microstructure; puroindoline; T. aestivum 

 

  



  5 
 

1. INTRODUCTION 

The major part of common wheat (TriticumaestivumL.) grains corresponds to the 

starchy endosperm (80-85 % of the dry grain mass) and is composed of cells filled 

with at least two distinct size populations of starch granules, between 8 and 30 m, 

embedded in a protein matrix, mainly composed of storage proteins able to form the 

so-called gluten network[1]. Changes in the interface between the endosperm 

composing polymers are now recognized as the major factor to explain distinct 

hardness wheat classes[2,3]. It was found to be related to differences in the amount 

and allelic form, at the starch granule surface[4], of basic low-molecular weight 

cystein rich proteins carrying a unique tryptophan domain[5], called 

Puroindolinea(PINA) and Puroindolineb(PINB), whose corresponding genes were 

found to be located within the main genetic locus (Ha) controlling hardness in the 

short arm of chromosome 5D[6-8]. Expression of the wild-type alleles Pina-

D1aandPinb-D1a, encoding PINA and PINB respectively,was found to lead to a soft 

mechanical behavior whereas mutation or deletion in one or both of the PINencoding 

genes results in a harder grain texture[9]. In Europe and North America, the most 

common mutation in PINB is encoded by the gene allele Pinb-D1band corresponds 

to a single amino acid change (Gly46Ser),which leads to a hard grain phenotype[10-

12]. 

These differences in grain mechanical resistance has a main impact on the wheat 

grain end-use properties as it plays a role in the energy required for starchy 

endosperm isolation duringprocessing, in the obtained particle sizes and final flour 

yield, as well as in starch granule dissociation from the protein matrix or starch 

granule damage[13-17]. More recently, construction of a numerical model 

mimicking the endosperm granular structure showed that lowering the adhesion 
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strength between starch granules and the protein network leads to a decrease of the 

starch damage as observed in soft grains[18,19].  

If differences in a soft and a hard grain phenotype have been clearly linked to the 

presence of both of the wild-type PIN genes thanks to the use of near-isogenic lines 

(NIL)[20,21]and complementation of null[22]or mutated alleles[23], introduction of 

PIN genesin other cereals, such as durum wheat[24], rice[25]or corn[26] lacking the 

corresponding genes, was moreover found to reduce grain hardness. In addition, 

RNAi-mediated silencing of one of the PIN genes was shown to decrease the 

expression of the others and led to a significant increase of grain hardness[27]. 

However, the mechanismsby which PINs impact on the grain texture and have a role 

in the starch protein interface remain unclear.  

The main hypothesissuggeststhat interactionof PINs with the starch granule surface 

is mediated by polar lipids from the remnant amyloplasts [28]. This hypothesis is 

supported by the differences in polar (phospho- and glyco-) lipid amount found 

associated with starch depending on PIN composition[29-31]and by in 

vitrodemonstration of the tight bonding of PINs withpolar lipids[32], as well as 

possibleinsertion into the lipid bilayer[33,34]. PINs are thus believed to impair 

starch-protein adhesion via their lipid interaction and thus affect grain hardness, but 

evidence of mechanical changes at the starch granule interface was still 

missing.Probing the starch granule interface in the wheat endosperm from near-

isogenic lines differing in hardness thus appears interesting to study to better 

understand the differences in the interactions between the main endosperm polymers.  

As a method to investigate both the local structure and mechanical properties[35,36], 

Atomic Force Microscopy (AFM) appears appropriate to investigate the endosperm 

structure and hardness properties. Indeed it was used to reveal imagingdifferences 
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between hard and soft endosperm structure [37]but no mechanical studies were 

pursued. Recently, using an AFM tip as an abrasive tool to abrade the surface of 

tablets made of starch or the storage protein matrix isolated from wheat grains, 

distinct mechanical properties of the two main endosperm components were 

determined and revealed relatively high respective hardness values of around 2.4 and 

0.6 GPa [38].Therefore,this original AFM method which proceeds by scratching of 

the surface layer-by-layer appeared the most appropriate to both explore the wheat 

endosperm polymer properties in situandinvestigate the starch granule interface with 

the surrounding protein matrix.  
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2. MATERIALS AND METHODS 

 

2.1.Plant material and growth conditions 

NIL of Triticumaestivum L. displaying either a or b allelic forms of Pinb-D1 

encoding the wild-type or mutated (Gly46Ser) PINB protein,respectively,and thus 

differing in grain hardness were described previously[39]. Genetic similarity (> 97 

%) between the NILs was confirmed with the use of Diversity Array Technology 

markers[40]generated by Triticarte Pty.Ltd (www.triticarte.com.au). Grains were 

harvested in summer 2008, cleaned to remove broken kernels andimpurities,  and 

then stored at 4°C before analysis. Grain hardness was evaluated using a Percon 

NIRS apparatus (method 39-70A [41])on randomly chosen grain sub-samples of 

each near-isogenic line and results wererespectively equal to 17 for soft NIL (Pina-

D1a/PinbD1a genotype) and 63 for hard NIL (Pina-D1a/PinbD1b genotype).  

 

2.2.Sample preparation for microscopy 

Wheat grain sections were obtained with a cryotome (Microm HM 520 Cryostat, 

Thermo Scientific, USA). Grains were picked up randomly in the grain population of 

each near-isogenic line and cut at both ends to eliminate the germ and the brush then 

glued on a sample holder using a Frozen Section Medium (Neg-50, Richard-Allan 

Scientific, Thermo Scientific, USA). The grains were fixed from the widest part 

corresponding to the germ and placed into the cryotome at -28°C before sectioning, 

until the glue was frozen (2 min). Sections of 50 μm were removed progressively to 

reach the middle of the grain. Then continuous cutting of the sample surface was 

performed by removing thinner sections of 5 μm. The remaining 500 μm grain 

sections were finally fixed on glass slides, protected with parafilm and kept under 
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controlled temperature and humidity conditions (20°C, 30% relative humidity) 

before microscopy analysis. 

 

2.3. Environmental Scanning Electron Microscopy (ESEM) and AFM 

Microscopy  

ESEM (Fei Quanta 200 FEG, FEI Co, Hillsboro, OR, USA) without sputter coating 

was used for grain section imaging. 

AFM assays were performed as previously described[38]with a Nanoscope V atomic 

force microscope (Bruker instruments, Santa-Barbara, CAUSA), operating in the 

contact mode under controlled conditions of temperature and humidity (20°C, 30% 

relative humidity). Commercial silicontips (Ref. FMV, 2.8N/m, Bruker, Camarillo, 

CA, USA) mounted on a rectangular cantilever with stiffness ranging between 1 and 

5 N/m were chosen to preserve reasonable measurement sensitivity and to exert 

sufficiently large forces to abrade the samples. Before each measurement, the normal 

(FN) and tangential forces (FT) were calibrated and the contacting areas of the tips 

werecharacterized before and after calibration and at the end of AFM measurements, 

as described previously[38]. The contacting areas of the tips were characterized 

through reverse imaging obtained with AFM on a calibrating grid of equally-spaced 

sharp points of apex radius around 10 nm (TGT01, Mikromasch, Inc., Estonia). 

These measurements clearly showed that the AFM tip apex can be well fitted after 

calibration by a sphere from the extremity to 20 nm high, with an average radius for 

the set of tips R = 82 ± 32 nm. This value is significantly above the initial tip radius 

of 10 nm due to wear off occurring during the calibration process and was checked to 

remain stable during abrasion assays. 
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AFM assays were performed on wheat grain sections after selection of a working 

area i.e at the surface of a small starch granule. A first topographic image (5 x 5 μm) 

was acquired at a low applied normal force (FN=100nN) and a scan tip velocity VT = 

10μm/s (512×512 pixels) and was used as the reference of the undamaged surface. 

The abrasion process was then initiated in the central area (L×L=1×1μm) with an 

increase of the applied normal force (FN >200nN) and a decrease of the scan velocity 

VT = 2μm/s (256×256 pixels). Both the trace and retrace FT force maps were 

acquired (respectively scanning from left side to right side of the image and from 

right side to left side) to determine the average force sustained by the sample in the 

direction of displacement. Then, the normal force was lowered back to its initial 

value (100nN) and a second topographic image (5 x 5 μm) was recorded at 

VT=10μm/s before again increasing the normal force to further abrade the material. 

A progressive and controlled abrasion of the sample was ensured by repeating the 

abrasion step at least twenty times with a mean number of abrasion scans N=50, 

depending on the abraded area, interrupted by regular acquisitions of larger 

topographic images. Large topographic images (5x 5 μm) were acquired after each 

scan until five scans were reached and then after each group of five scans. 

Repetitions of the abrasion process were made on different starch granules (at least 

twelve) chosen in the middle of the grain cheek section from randomly selected soft 

or hard NIL samples. The acquired AFM images were visualized and analyzed using 

the Gwyddion 2.26 software (Department of Nanometrology, Czech Metrology 

Institute, Brno, CZ) in order to evaluate the abrasion depth and the friction force 

FT.The depth increment between two successive abrasion steps was obtained by 

subtracting the two corresponding topographic images after careful lateral 

positioning through correlation techniques and sensible leveling of the height to 
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account for instrumental drift. The evolution of abrasion depth was then determined 

by summing all depth increments. More details on the measurement protocol and the 

error estimations can be found in Chichti et al [38]. 

 

2.4.Statistical analysis 

Analysis of variance was performed with the XLSTAT software (2008 version, 

Addinsoft, Paris) using the Tukey test at 5 % probability for significance between 

differences. 
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3. RESULTS 

3.1.Microstructure analysis of the grain endosperm depending on hardness 

Microstructure of the starchy endosperm from cryo-cut near-isogenic wheat grains 

differing inhardness was either observed using ESEM or AFM (Fig. 1). Both types of 

observation highlighted clear differences in grain endosperm microstructure 

according to wheat hardness. Endosperm from soft grains (Pina-D1a-Pinb-D1a 

genotype) was shown to display a loose structure (Fig. 1A) in comparison with hard 

grains (Pina-D1a-Pinb-D1b),which presented amore tightly compacted endosperm 

with microcracks bypassing the starch granules (Fig. 1B). Differences were more 

pronounced using AFM, and at a lower scale (10 versus 50 m), where the 

endosperm from soft grains was found to present more uncut starch granules (Fig. 

1C). Starch granules also appeared less embedded in the protein matrix and even 

dislodged from the protein matrix in comparison with the endosperm structure from 

hard grains where the sectioningentailedcutting of the major part of the large starch 

granules and some of the small ones, depending on their position in the 

endosperm(Fig. 1D). 

 

Figure 1 

 

Therefore, only small starch granuleswhich were observed as undoubtedly uncut in 

AFM topographic images (mean diameter around 5μm),wereselected, as shown in 

Fig. 1E,to explore the starch-protein interface. As revealed in Fig. 1F, the AFM 

topographic image did not allow the identification ofthe polymer nature at the 

surface of the selected starch granule. 
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3.2. Probing of the polymer present at the starch granule surface 

duringendosperm abrasion 

A square of L×L=1x1μm(Fig.1 F) was selected in the middle of each small starch 

granule in order to avoid the curvature and border effect. Its surface was abraded 

using an AFM tip according to the conditions recently described[38]. According to 

these conditions, the abrasion process could be interpreted as a linear scratching test 

to evaluate the resistance of the analysed material. As already described in Chichti et 

al.[38], atribological model was developed, to assess the material hardness which is 

related to the normal applied force FN and the depth of the abraded area z. The 

projected frontal area in contact with the AFM tip, AT, corresponds to the surface of 

the removed material obtained for each scratching line andcan be determined from 

the equation of removed volume, taking into account the total depth z, the length of 

the abraded scan L, the number of abrasion scans N (20<N<70) and nlthe number of 

scan lines in the acquired image (256 lines):  

்ܣ = 
ଶே

= ௭
ଶே

 Eq. 1 

Considering the definition of hardness (ratio between the applied normal force and 

the area under the tip) and assuminga spherical approximation of the tip apex, we get 

that AT is also a function of the applied normal force FN, the tip radius R and the 

hardness H of the abraded material:  

்ܣ = ிಿయ/మ

ଶோ(గு)య/మ Eq. 2 

According to equations 1 and 2, the depth of the scratched area z should increase 

linearly with the scan number N when abrasion occursin a homogeneous material, at 

a given applied force FN and for a determined tip radius R. As AFM assays were 

performed at different applied forces FNand with different AFM tips to explore 

potential differences in polymer hardness and to avoid tip wear, the depth z was 
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normalized (znorm) according to FN and R for comparison between distinct abraded 

areas:  

ݖ = ௭ோ

ிಿయ/మ =  Eq. 3 ܰߙ

Changes in the normalized depth znorm as a function of the abrasive scan numbers N 

was thus relevant to characterize the different polymer layers which can be 

encountered during the progressive abrasion of the heterogeneous endosperm 

microstructure. 

In a homogeneous material, the slope α describing the linear variation between the 

normalized znorm and the number of abrasive scan N could be considered as a direct 

indication of the material hardness H since the dimension of the abraded area L and 

the number of scan line nlwere kept constant in all of themeasurements:    

ߙ = 
(గு)య/మEq. 4 

This slope will be used to identify the nature of the polymers encountered 

duringprogressive abrasion at the starch surface. According to the previously 

determined hardness of the endosperm constitutive polymers[38], reported in Table 

1, values for the curve slope were expected to be equal to 0.012± 0.005nm2/nN3/2 

and 0.09 ± 0.04 nm2/nN3/2 forstarch and protein network, respectively, in our 

working conditions.  

 

Table 1 

 

3.3. AFM abrasion at the starch surface in the endosperm of hard wheat 

grain sections 

Distinct areas selected in apparent uncut starch granulesurfaces were scratched using 

the AFM tip in the endosperm of grains from thehard NILdisplaying the Pina-
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D1a/Pinb-D1b genotype. Evolution of the normalized depth znorm as a function of the 

number of abrasive scans N revealed two distinct types of abrasion profiles 

summarized in Fig. 2 depending on the analysed starch granule.  

In one out of three AFM scratching assays, a constant linear progression of the 

normalized depth according to N was observed consistent with the removal of a 

homogeneous material (Fig. 2A). Considering the curve slope α(α =0.013 

nm2/nN3/2as an example in Fig. 2A),the abraded material canbe considered as starch 

polymerin accordancewithits previously determined hardness value[38].The 

considered abraded area thus appeared to correspond tothe naked starch granule. 

 

Figure 2 

 

Normalized depth according to the number of AFM tip scans at the surface of other 

analysedstarch granules in the endosperm of hard grainswasfound to present non-

linear curvescharacterized by a progressive transition from a linear regime with a 

high slope α (α = 0.05 nm2/nN3/2 as forexample in Fig. 2B), consistent with that 

calculated with protein hardness, to another linear regime with a lower slope (α = 

0.009 nm2/nN3/2) corresponding to the expected slope for starch polymer (Fig. 2B). 

Indeed as the mechanical resistance of protein polymer is lower than starch it was 

more easielyremoved with a lower number of AFM tip scans in comparison with the 

starch polymer. This material heterogeneityrevealed that AFM abrasion in these 

cases occuredat a starch granule covered with a protein layer. Mean thickness of this 

protein layer was estimated to be in the order of a hundred nanometers, ranging from 

48 to 188 nm, depending on the selected starch granule.  
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The hardness H was determined with equation 4 using the slopes α of each linear part 

of the curve for each abraded area and compared,in Fig. 3,to hardness values 

previously determined in similar AFM conditions on tablets made of isolated starch 

and protein polymers[38]. Taking into account the uncertainty of our measurements 

(calculated and represented by bar errors in Fig. 3), hardness values obtained for 

starch and protein from assays with hard wheat grain sections were in good 

agreement with hardness values obtained on isolated biopolymers whatever the 

applied normal force used in the AFM assays. However, in afewcases, determined 

hardness values appeared outside the range of the data corresponding to the extracted 

polymers and were found between those of theprotein matrix and starch.  

 

Figure 3 

 

Comparison of protein and starch hardness mean values and relative errors calculated 

with data obtained fromendosperm samples of hard wheat grains were summarized 

in Table 1 and showed no significantdifferences with the values determined with 

isolated polymers. 

 

3.4. AFM abrasion at the starch surface in the endosperm of soft wheat grain 

sections 

Distinct starch granules were abraded with the AFM scratching method in 

endosperm from soft near-isogenic grains carrying bothwild-typePIN genes Pina-

D1a and Pinb-D1a. Results are expressed as described before and compared with 

those obtained in endosperm from NIL carrying the mutated allele encoding PINB. 

In half of the AFM assays, the obtained curves of normalized depth as a function of 
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the number of abrasion scan presented a linear curve corresponding to purestarch as 

pointed out in Fig. 2A, whereas around a quarter displayed an abrasion profile, 

similar to thatobserved inFig. 2B, consistent with a starch granule covered with a 

protein layer.  

Interestingly, a distinct abrasion profile, not previously observed in the endosperm 

from hard wheat grains,was revealed in four of the abraded areas and reported in Fig. 

4A. In this case, abrasion started withthe removal of a proteinpolymer and ended by 

digging into the starch granule as determined by the corresponding values of 

respective curve slopes . But, a marked transition between the two parts of the 

profile, characterized by a “stop” of the AFM tip abrasion,was observed. Indeed, for 

up to twenty abrasion scans, normalized depth remained fairly constant and thus no 

material removal could bemeasured.  

 

Figure 4 

 

At this non-abrasive step, a significant drop of the lateral force FTwas observed, as 

reported in Fig.4Bby the study of the FT/FNratio as a function of the abrasive scan 

number N. Indeed, at this interface step, the FT/FN ratio was found to be close to the 

friction coefficient while imagingthe sample topography and therefore confirmed the 

absence of abrasion. After a number of AFM tip scans without detectable abrasion, 

an increase in the FT/FN ratio was observed, when abrasion was recovered and the 

starch polymer was beginning to be removed. No significant depth variation and thus 

no measurable volume of removed material were therefore possible at this interface 

step in comparison with those corresponding to protein or starch abrasion (inserts, 

Fig. 4A). However superficial damage of the scratched surface must have occured as 



  18 
 

further abrasion of the endosperm material could be continued.Depending on the 

selected scratching area, the mean thickness of the protein layer covering the starch 

surface was found to range from 7 to 40 nm. 

Hardness values of protein and starch obtained from the distinct scratched 

endosperm surface in soft NIL were also reported in Figure 3 and Table 1 and 

compared to values obtained from hard NIL and for isolated polymers. Results 

confirmed the higher mechanical resistance of wheat starch polymer in comparison 

with the endosperm protein network.Moreover, no significant differences were 

notedfor the polymers in wheat grains whatever their hardness, nor with the extracted 

polymers. 
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4. DISCUSSION 

The origin of the mechanical differences between soft and hard wheat grains was 

generally recognized to be linked to changes in the interactions between starch 

granules and the surrounding protein matrix in the endosperm and to be mediated by 

either the presence of both wild-typePINs or the mutation or deletion of one of 

them[28]. In this study, NILs carrying either the wild-type alleles Pina-D1a/Pinb-

D1a or the mutated version of the gene encoding PINB (Pina-D1a/Pinb-D1b)were 

intentionally chosen to investigate the local differences between hard and soft 

endosperm. 

ESEM, as well as AFM, observation of the starchy endosperm microstructure after 

grain cutting clearly confirmed the looser structure of the soft NIL in comparison 

with the hard, which displayed a more compact microstructure. Indeed, cutting in the 

endosperm from soft grains revealed local spaces in the protein matrix and possible 

sites of dislodged starch granules whereas starch granules in the endosperm from 

hard grains were firmly bound to the matrix and were more often cut, especially the 

large ones. Differences in cohesionbetween starch and the protein matrix were 

already pointed out in cultivated common wheat cultivars[42]andfurther clearly 

related to differences in PIN genotype by others[23,37,43,44]. It was also in 

accordance withthe attributed role of wild-type PINs as non sticking agents and 

correlates well with endosperm modelling which results in more starch damage when 

adhesion between starch granules and the protein matrix increased[18,19]. As a 

consequence only the interface between the non-cut small starch granules and the 

surrounding protein matrix could be explored,in soft and hard NIL grains, using an 

original AFM scratching method,previouslydescribed[38], and found to differenciate 
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between the respective mechanical properties of wheat starch and the protein matrix 

(extracted as gluten). 

Even if the number of AFM experiments on each type of NIL grains was necessarily 

low due to the time of data acquisition, between 12 and 20 independent starch 

granule surfaces were explored from each near-isogenic line, at different locations 

withinthe wheat endosperm and with distinct grains randomly selected. No 

differences between the mechanical properties ofthe two main endosperm polymers 

were measured in situwhatever the grain hardness,in accordance withprevious 

studies[2,38,45], clearly highlighting the importance oflocal investigationsofthe 

starch-protein interface. Indeed,distinct behaviorsat the starch surface were revealed 

between hard and soft NILs using an AFM tip as an abrasion tool. 

In hard wheat grain sections, probed starch granule surfaces were mainly found 

covered with a protein layer of significant thickness (48-188 nm) whereas, in fewer 

cases,the AFM tip directly abraded the naked starch granule. When the starch 

granules were coated with the protein matrix, the abrasionprofile presented a gradual 

transition from the mechanical strength of proteins toward that of starch as abraded 

depth increased. This transition fits well with the traditionalarea-law-of-mixtures or 

volume-law-of-mixture models used to describe the mechanical hardness of a coated 

substrate[46-48]. When the adhesion between the coating and the substrate is strong 

enough, stresses aretherefore transferred from the coating to the substrate and the 

apparent hardness of the coated material is the average hardness of both materials 

weighted by the respective areas/volumes loaded in each of them. The mechanical 

reinforcement of the protein layer as the underneath starch sustains increasing strain 

by the AFM tip seems to fall well inside this frame and appears thus to indicate a 

sufficientadhesion at the protein/starch interface to allow for the stress/strain 
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transfer.This law of mixtures could also explain the relative out of range values of a 

few protein or starch hardness data if obtained too close to the interface.In the 

endosperm from soft wheat grain sections, the surface of starch granules was mainly 

found naked revealing a non-cohesive interface with the protein network. 

Additionally,if in some positions, the starch granule was found to be covered witha 

protein layer,this layerwasthinner (7-40 nm) than that observed in the endosperm 

from hard NIL grains.Moreover, an additional abrasion profilenever observed in hard 

grainsanddisplaying a marked ‘stop’ of the AFM tip abrasion, along with a 

significant drop of the lateral forces, at the interface between starch and the 

surrounding protein matrix was observed. In this last case, the mechanical properties 

of both protein and starch were well defined within the expected hardness values and 

were not affected by the presence of the interface. This behaviorthus appears 

coherent with a lack of adhesion between the protein matrix and the starch granule at 

the interface and thus suggests that the protein network in this casewas not 

adhesively coupledwith the starch granule. Furthermore, the observed stronger 

resistance tothe tip abrasion concomitant with a drop of the lateral friction forces at 

the interface between the endosperm polymers appears to correlate well with the 

lubricating properties observed when exploring a non-puncturedpolar lipid covered 

surfaceusing AFM[49,50].Taking into account the genetic difference between soft 

and hard NILs, theseobserved distinct abrasion patterns at the surface of the starch 

granulecan be related to the PIN nature (wild-type versus mutant of PINB). The 

higher frequency for the observation of a naked starch surface in soft endosperm 

alsoconfirms the lower interaction between starch and the surrounding protein 

network andhigher decohesion of the starch granule with the protein matrix, already 

pointed out by ESEM or AFM imaging. Furthermore, a specific sliding interface was 
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only found in soft grains in one out of four analyzed samples. Taking into account 

the number of samples analyzed with AFM in each near-isogenic lineand considering 

a similar frequencyto encounter such a sliding interface in both types of wheat grain, 

it is possible to estimate that the probability to find a specific mechanical behavior in 

one quarter of the samples from the soft line, but never for the samples from the hard 

line,is in the order of a few per cent. Therefore, even if the sampling appears small to 

perform a complete statistical analysis of the encountered abrasion behavior at the 

starch/protein interface, the observed rheological differences between starch and 

protein interface depending on hardness appear relevant and robust with a level of 

confidence higher than 95 %.Thus, it is the first time that significant mechanical 

differences at the protein-starch granule interface are experimentally evidenced.  

As the peculiar sliding behaviorat the protein-starch interface was not observed in 

each of the explored positions in soft grains, it thus implies that changes in the PIN 

nature only impact in some places and not around the overall granule surface. This 

appears coherent with previous PIN detection at thestarch granule surface by 

immunolabelling[51],which clearly showed non-continuous location at the starch 

granule surface even if precise location and sub-cellular distribution in grains was 

not consensual[28].Unfortunatelly, AFM abrasion could not be coupled with 

immunolocalisation.  

Most importantly, the peculiar abrasion profileonly observed at certain positions at 

the starch granule surface in the endosperm from soft NIL grains revealed a lipid 

interface between the protein matrix and the starch surface displaying a mechanical 

rolelikea lubricant. Taking into account the strong interactions with polar lipids 

pointed out for the wild-type PINs[32-34]and their suggestedmode of action at the 

starch surfacevia polar lipids[9,28], this observation appears particularly relevant. 
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Indeed it is believed that wild-type PINs bind to remnant amyloplast polar lipids at 

the starch surface via their tryptophan-rich domain resulting in a soft mechanical 

behavior of the endosperm. However, the mechanismswerestill not identified.Our 

AFM observation unambiguously revealed possible mechanical differences at the 

starch granule surface mediated by lipids in the soft endosperm. As shown 

previously, a Glycine to Serine mutation at position 46 in PINB, next to the 

tryptophan rich domain,reducesits lipid-binding capacity[52], leadingto a lower 

amount of the deposited PINsat the starch granule surfaceand to a hardness increase 

in comparison with wheat grains containing the wild-type allele[4,53-55]. A higher 

association and stabilization of polar lipids around the starch granule with wild-type 

PINswas previously demonstrated[31] which could explainthe unique AFM abrasion 

profile found in soft NIL grains. However, it is difficult to determine if this unique 

profile observed in soft endosperm results from a higher amount of PINs linked to 

the starch granule in grains via a lipid stabilization or to the higher amount of polar 

lipids found at the starch surface when both wild-type PINs are present[30]. Indeed, 

recent experiments suggested that PINs need lipids for binding to the starch granule 

surface[56]. 

Thus, our AFM experiments highlighted for the first time, differences in mechanical 

properties at the starch granule surface depending on the PIN nature and 

consequently grain hardness. Observed abrasion profiles at the surface of starch 

granules in hard endosperm were in accordance with the suggested close association 

with the surrounding matrix as in the major part of the assays, starch granules were 

found to be covered with a thick protein layer even if cutting grain before AFM 

analysis could also lead to naked starch granules. By contrast, when wild-type PINs 

were present, a naked granule was preferentially found, as a loose interaction with 
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the protein matrix. In some cases, identification of a lubricant interface highlights the 

possible mechanisms underneath the lower adhesion between the main wheat 

endosperm polymers found in soft NIL. A few assays also pointed out starch granule 

surface covered with a thinner protein layer in accordance with the fact that PINs 

were not uniformly distributed and more probably form patches at the starch 

surface[34,51]. However, if our AFM scratching method was found efficient to probe 

in situ polymer interfaces and explore the local mechanical properties, 

complementary studies will be necessary to better define the nature of the 

interactions and to more precisely identify the molecular partners. 
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Figure Captions  

Figure 1: ESEM images of soft endosperm from Pina-D1a/Pinb-D1a NIL (A) or 

hard endosperm from Pina-D1a/Pinb-D1b NIL(B) grain sections. Topographic 

images of the same soft (C) or hard (D) grains but different area obtained with AFM. 

White arrows in Cindicate the dislodged starch granules commonly observed in soft 

endosperm whereas black arrows in D indicate cut starch granules, which occurred 

when hard wheat grains were sectioned with the cryotome. Example of a selected 

AFM abrasion area corresponding to a small starch granule surface is shown in 

E(dotted square) and F (lower scale).The grey levelbar scale shows the relative 

height of the explored area. 

 

Figure 2: Example of normalized depth znorm progression as a function of AFM 

abrasive scan numbers N for two distinct (A, B) abraded areas displaying contrasted 

behavior and observed in endosperm from hard wheat NIL (Pina-D1a/Pinb-D1b 

genotype). Different line styles and colors are used to point out changes in the fitting 

curve slope α corresponding to distinct type of encountered material along 

endosperm abrasion: dashed line for the fitting curve of the softer material (protein) 

and dotted line for the harder material (starch). 

 

Figure 3: Hardness values obtained for the easily abraded protein material (circles) 

and the harder starch material (diamonds) encountered along endosperm abrasion 

from hard (empty symbols) and soft (full symbols) wheat NIL. Already determined 

hardness mean values and relative errors of pure extracted polymers [38], starch and 

gluten, were marked with continuous (mean values) and dotted lines (relative errors) 

respectively. 
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Figure 4:A. Changes in the normalized depth znorm as a function of the abrasive scan 

numbers N for the particular behavior only observed in soft wheat NIL. The distinct 

removed polymers were discriminated through the different fitting curve slopes α 

(dashed line for protein and dotted line for starch) as in Fig. 2. The non-abrasive step 

corresponding to AFM tip slipping is represented by triangles. Picture inserts 

correspond to the difference between AFM images taken before and after several tip 

abrasive scans: from left to right, in the protein matrix (N=5), at the interface (N=27) 

and in starch (N=6). 

B. Changes in the lateral friction force FT related to the normal applied force FN(+) as 

a function of the abrasive scan number N for the particular behavior only observed 

for one part of the explored starch granule surface in soft wheat NIL. Comparison 

with measured FT/FN ratio along AFM imaging of the endosperm topography () 

was reported to point out non-abrasive conditions. 

Figure 1 
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Fig.  4 
 
 

Table 1.Hardness values for protein and starch obtained from soft and hard wheat 

grain sections and comparison with data obtainedfrom tablets made of pure polymers 

using similar AFM abrasion scratching assays [38]. Different letters indicate 

statistically distinct values. 

A 

B 
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 Starch Hardness (MPa) Protein Hardness (MPa) 

Polymer Tablets  2400±600 a 640±170 b 

Hard (Pina-D1a/Pinb-D1b) 2370±600 a 811±200 b 

Soft (Pina-D1a/Pinb-D1a) 2532±300 a 677±150 b 

 
 


