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Abstract— In this contribution, we investigate the mechanism 
governing the Ratchet effect in patterned monolayer graphene, at 
the ballistic nanoscale. Still smaller than currently achievable 
and manifacturable devices, the simulated structures serve to 
exemplify the dependence of charge scattering on the 
arrangement of lattice defects, i.e. clusters of atomic vacancies of 
triangular shape. The ballistic Ratchet effect is seen as 
cumulative multimode scattering of carriers in correspondence of 
the lattice discontinuities. An atomistic model, based on the 
Scattering Matrix method and making use of TB approximation, 
has been applied. The latter, in contrast with continuum models, 
like Dirac or Kubo-Drude derived formulas, is capable of 
describing abrupt discontinuities at sub-micrometric scales, 
where graphene is likely to preserve its outstanding properties. 
We believe that this work is a first step in the direction of 
engineering and design of devices based on the ballistic Ratchet 
effect, like RF and THz detectors. 

Keywords—Graphene, Ratchet effect, ballistic electronics, RF 
and THz detector, antidot lattice. 

I.  INTRODUCTION  

One of the most emblematic phenomena based on ballistic 
transport is the Ratchet effect, originally introduced by R. 
Feynman in 1963 [1]. In general terms, the ratchet effect can 
be seen as a collective motion of particle systems in a 
preferential direction, under external excitation, in presence of 
spatially-asymmetric obstacles or perturbations. A basic 
discussion of the Ratchet effect focuses on possible violation 
of the second law of Thermodynamics, to which several 
explanations follows of why such idea fails. As expectable, an 
external force, or energy supply, is always needed, for the 
Ratchet effect to be sustained. A strong analogy with 
photovoltaic effect, based on crystal asymmetry at a 
microscopic level, can be noticed [2]. 
Important examples of “Ratchet devices” are given by i) 
transport of charge in two-dimensional electron gas (2DEG) at 
surface heterostructures, with nano-patterning of asymmetric 
defects or with space-dependent potential [3], and ii) 
biological molecular transport [4], where the Brownian 
random molecular motion can be exploited to achieve a linear 
displacement, or a directional rotation. In this case, the role 
played by thermal fluctuation in generating force and motion 

is a key enabling mechanism for chemo-mechanical 
transduction by motor proteins.  
In the present work, we develop a theoretic analysis, 
propaedeutic to the optimization of the photogalvanic current 
induced by a high frequency radiation in monolayer graphene 
[5-7], patterned with asymmetric nano-defects. Specifically, 
the latter are given by clusters of atomic vacancies of 
triangular shape. In practice, these could be obtained by 
forming a periodic arrangement of triangular perforations in a 
graphene sheet. The above structure can be referred as a 
graphene antidot lattice, in analogy with standard antidot 
lattices in 2DEG [8,9]. 
We propose a completely ballistic picture of the Ratchet 
effect, where the main contribution to the collective and 
cumulative charge displacement is due to ballistic scattering. 
Numerical simulations are performed in the framework of the 
Scattering Matrix (SM) approach, described elsewhere [10], 
which is conceptually analogous to the non-linear Green’s 
function formalism (NEGF). The main difference is that it 
provides a convenient description of the graphene lattice in 
terms of propagating and evanescent modes, much similar to 
the standard analysis of periodically loaded microwave-
waveguides. 
The SM method may allow simulation of large structures by a 
modular approach, owing to the possibility to easily connect 
the multimodal S-matrices describing smaller parts composing 
the entire structure. 
Nevertheless, the above description is made numerically 
possible by the choice of a sub-micrometric size of the system 
under analysis. In fact, simulation of coherent transport in 
graphene nanostructures become rapidly prohibitive as the 
computational domain increases. To give an idea, a simple 
graphene square of 10x10 nm2 consists of almost 4x103 carbon 
atoms, where the charge wavefunction must be sampled. 
It is remarked that the present ballistic approach relies, for 
consistence with practical devices, on the long ballistic length, 
up to 1µm, observable and achievable in monolayer graphene. 
 

II. SIMULATION OF CHARGE SCATTERING 

Triangular holes are analysed as paired defects in monolayer 
graphene, as depicted in Fig. 1(a). A concept device, acting as 
a RF detector or sensor, may involve periodic replication of 



these defects along the y-direction, in a multi-finger 
configuration, like it is shown in Fig. 1(b).  
The shape of the holes affects the charge scattering and 
changes the charge distribution induced by an external applied 
voltage. The latter is given by a plane-wave impinging on the 
plane of graphene in the normal direction: the electric field E 
is assumed as polarized along the y-axis, in order to promote 
charge displacement in the x-direction, and subsequent 
collision with the holes. 
Owing to their long mean free path, charges scattered in the x-
direction by the triangular defects are likely to reach the edges 
of graphene before the occurrence of other scattering events, 
like collisions with other carriers or impurities. Thus, charges 
are collected to the lateral metal contacts (see Fig. 1), and can 
give rise to a current flow. The spatial asymmetry of defects in 
the x-direction implies a preferred direction for the current 
flow, namely in the positive x-direction due to the triangle 
orientation, regardless of the sign of Ey: this fact can easily 
explain the rising of the electronic ratchet transport. The same 
principle can be used for creation of detectors operating at 
room temperature in the microwave/terahertz radiation range 
[11]. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. a) Triangular vacancy defect in paired configuration. b) 
Interdigital metal structure on antidote graphene lattice with triangular 
holes. 
 
 
Importantly, the SM approach avoids the use of a Dirac-like 
continuum description of charge transport: the presence of 
abrupt discontinuities, i.e. the edges of the holes, implies 

scattering between the two Dirac points of graphene, and 
makes a single “valley” picture potentially not reliable. The 
Dirac approach also assumes the approximation of linear 
bands of bulk graphene: in order to capture effects of the 
atomic structure, including the influence of defect boundaries, 
and to provide a realistic description of the band structure, we 
need to go beyond the simple Dirac fermion picture. 
In a few words, the SM method [10] starts from a particular 
formulation of the Schrödinger Hamiltonian H of graphene 
sheet of finite width (ribbon), arising from the tight-binding 
(TB) approach: 
 

 EHHHH rrll  00  

 
where Hl (Hr) denotes the hopping energy matrix of the 
periodic unit-cell of the graphene ribbon to the previous one 
from the left (right), E is the charge energy, H0 contains the 
atomic self-energies and the self-generated/external potential, 
and ψl, ψ0, ψr, are the unknown eigenstates of three 
consecutive unit-cells, expanded in a set of localized “atomic” 
samples. The above approach makes use of well-definite 
conditions that ensure numerical consistency: all electronic 
states are normalized to carry the same current (from Landauer 
condition [10]), and the excitation section (y=0 and y=L) are 
properly set as transparent, i.e. perfectly absorbing. 
At microwave frequency, and in the low THz range, the time 
scale of the electromagnetic field is much larger than the time 
needed to the charges to reach the discontinuities and to be 
scattered from these to the lateral electrodes. Thus, quasi static 
approximation is largely acceptable. 
In order to understand the ballistic mechanisms for ac 
detection, we consider a suitable situation where a small 
quasi-static voltage is applied across the graphene unit-cell of 
Fig. 1(a), along the y-axis. Our aim is to show that the charge 
injected by the external voltage tends to accumulate in one of 
the two edges (x=0, x=W), depending on the spatial position 
of the holes. We neglect the charge interaction, and consider 
the charge distribution slightly deviated by its equilibrium 
state, as we are looking for the incremental charge induced by 
the small potential perturbation. 
In the present framework, the lateral metal contacts are 
replaced by Dirichlet conditions for the electron 
wavefunctions. More rigorously, absorbing boundaries, 
mediated by the metal-graphene discontinuity, could be 
assumed, but this is largely beyond the purpose of the present 
work. Figure 2 shows an example of simulated distribution |ψ|2 
- namely charge per unit area and per unit energy, after 
Landauer normalization and multiplication by the unit charge 
e – which is obtained injecting charges from top of  the region 
of Fig 1(a), at energy  µc.  
The above implies summation over all the electronic state 
available at the Fermi level, and the sum is normalized to its 
peak value. 
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where i indicate electronic channels. Note, in Fig. 2(a,b), that 
strong charge concentrations are present along the perimeter 
of the hole discontinuities, and in particular in the vertices of 
the triangles. 
The dc voltage across the unit cell, in the y-direction, mimics 
the Ey polarized plane wave impinging on graphene.  
This voltage can varied continuously in the interval from -∆V 
to ∆V, with ∆V=|Ey| ·L and the resulting charge distribution 
can mediated in this interval, in order to reproduce an average 
charge distribution over a period 2π/ω of the electromagnetic 
excitation: 
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where Q is charge for unit area, and the averaging is taken 
over -∆V < v < ∆V. As it is shown in the above equation, only 
contribution of states near the Fermi level is retained.  
An example is shown in Fig. 3. 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
Fig. 2. a) Normalized charge distribution |ψ|2 upon injection of 

electrons from top of  the region of Fig 1(s). Here, µc=0.22 eV, with 
d=3 nm, a=7 nm, h=2 nm, s=9 nm, t=13 nm. b) Top view of surface 
charge density Q, with same parameters as a), but varying x: t=13 nm, 
t=12.5 nm, and t=11.5 nm. 
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Fig. 3. Top view of surface charge density Q, with same 

parameters as Fig. 2, but varying x: a) t=13 nm, b) t=12.5 nm, c) 
t=11.5 nm. 

III. DISCUSSION 

At a small scale, namely few tens of nanometers, the Ratchet 
effect, seen as cumulative scattering and reflection of charges, 
is slightly visible, because the number of electronic channels is 
relatively small, for the typical charge density of undoped 
graphene. Here, a Fermi energy µc of 0.22 eV with respect to 
the Dirac point, has been assumed, corresponding to a density 
of states ns = 2µc/πħ2vF

2. 
Moreover, the size of the hole discontinuities is comparable 
with the wavelength of the majority of the propagating 
(electronic) modes. Thus, electrons see relatively small defects 
and the scattering is described by wave diffraction, instead of 
multiple reflection. This fact makes the charge distribution, 
after perturbation by the incident electromagnetic field, very 
sensitive to the geometry and position of the defects, 
preventing from the possibility to have a clear parametric trend. 
Incidentally, we note that the situation is quite similar to the 
case of three-terminal ballistic junctions, made of three-branch 
graphene nanoribbons (GNRs), that was recently analyzed 
[12], and that reproduces, in fact, a sort of triangular 
asymmetry. As a result, the Y ballistic junctions was shown to 
feature nonlinear and asymmetric transport properties. In 
practice, the central branch of a Y-shaped device, at zero 
voltage, was found to support current flow when the other two 
branches are subjected to equal voltages of opposite sign 
[13,14]. 
As a further improvement of the present analysis, the Dirichlet 
boundary conditions at x=0 and x=W will be replaced by 
“impedance” boundaries, which means charge absorption with 
partial reflection due to the local band distortion at the metal 
transition. This kind of analysis provides, automatically, the 
net dc current between the lateral contacts, which are kept at 
zero dc voltage. 
It is remarked that, even if charge asymmetry induced by 
external field constitutes a significant parameter, it must be 
weighted by the amount of reflection of the charge injected in 
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the unit cell containing the holes. A high reflection coefficient 
means lower charge penetration, and decrease of the mean free 
path, which are likely to reduce the Ratchet effect.  
Authors are currently working on i) the present TB approach, 
and on ii) the development of a full-wave time-domain solver, 
based on the transmission line matrix (TLM) method, aimed at 
modeling the combined electromagnetics-quantum transport in 
the ballistic regime, as in [15]. In the building of ii), a critical 
point arises from the presence of huge “aspect ratio” 
(maximum/minimal geometrical dimensions) in the 3D 
domain. To overcome this problem, a dedicated “subgridding” 
technique is under construction. 
 

IV. CONCLUSION 

In this contribution, we presented a rigorous analysis and 
simulation of charge scattering by non-centrosymmetric 
defects patterned on graphene lattice. Precisely, these defects 
are due to paired holes of triangular shape. The analysis shows 
that charge distribution, subsequent to charge injection, 
strongly depends on the geometry of the defects, in particular 
their spatial position. Numerically, we are dealing with 
multimode (electronic) waveguides: in the ballistic scale, this 
multimodality is believed to be a direct explanation of the 
Ratchet effect, i.e. the raising of a directional dc current after 
excitation by harmonic waves. Current work is being done in 
order to enlarge the computational domain, and make 
simulations suitable for real devices employing the ballistic 
Ratchet effect, like RF detectors. 
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