
HAL Id: hal-01237936
https://hal.science/hal-01237936v2

Submitted on 13 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Adaptive and robust active vibration control
Ioan Doré Landau, Tudor-Bogdan Airimitoaie, Abraham Castellanos Silva,

Aurelian Constantinescu

To cite this version:
Ioan Doré Landau, Tudor-Bogdan Airimitoaie, Abraham Castellanos Silva, Aurelian Constantinescu.
Adaptive and robust active vibration control: Methodology and Tests. Oliver Jackson. Springer,
pp.396, 2017, Advances in Industrial Control, Michael J. Grimble; Michael A. Johnson, 978-3-319-
41449-2. �10.1007/978-3-319-41450-8�. �hal-01237936v2�

https://hal.science/hal-01237936v2
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr


I.D. Landau, T.B. Airimitoaie, A. Castellanos-
Silva and A. Constantinescu

Adaptive and Robust Active
Vibration Control

– Methodology and Tests –

June 12, 2024

Springer





Foreword

Ce qui est simple est toujours faux
Ce qui ne l’est pas est inutilisable

Paul Valéry
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Preface

Attenuation of vibration and noise constitutes a growing concern in today’s human
activities. For more than forty-five years, it was realized that passive attenuation of
vibration and noise via dedicated absorbers has limits and the concepts of active
vibration and noise control have emerged. Active vibration and noise control are
strongly related to control methodology even if in the past the control community
was not the driving force in this field. Almost from the beginning, the uncertainties
and changes in the characteristics of the environment (vibrations, noise, system dy-
namics) have prompted the idea of using an adaptive approach in active vibration or
noise control. Addressing some of these issues from a robustness point of view is
a much more recent tendency in the field. Practical experience has shown also the
limits of using only physical models for designing active vibration or noise control
systems bringing to light the need of dynamic model identification directly from
input/output data.

The aim of this book is to approach the design of active vibration control systems
from the perspective of today’s control methodology. In that sense the first objec-
tive is to formulate from the beginning the various design problems encountered
in active vibration control as control problems and search for the most appropriate
control tools to solve them. Experimental validation of the proposed solutions on
relevant test benches is another issue addressed in this book. To make these tech-
niques widely accepted, an appropriate presentation should be given, eliminating
theoretical developments unnecessary for the users (which can be found elsewhere)
and focusing on algorithms presentation and their use. Nevertheless, the proposed
solutions cannot be fully understood and creatively exploited without a clear under-
standing of the basic concepts and methods and so these are given in-depth coverage.

The book is mainly based on the work done in a number of PhD theses prepared
at Gipsa-lab (INPG/UJF/CNRS), Grenoble, France:

• A. Constantinescu “Robust and adaptive control of an active suspension” [59];
• M. Alma “Adaptive rejection of disturbances in active vibration control” [11];
• T.B. Airimitoaie “Robust control and tuning of active vibration control systems”

[4]; and
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• A. Castellanos-Silva “Feedback adaptive compensation for active vibration con-
trol in the presence of plant parameter uncertainties” [47];

as well as on the results of an international experimental benchmark on adaptive
feedback vibration attenuation [146].1

All the methods and algorithms proposed in the book have been thoroughly vali-
dated experimentally on three test benches (designed by Mathieu Noé from Paulstra
- Vibrachoc, Paris) and located at the Gipsa-lab (INPG/UJF/CNRS) in Grenoble,
France.

The idea of writing this book arose when I was asked to present a tutorial on con-
trol tools for active vibration control at the 4ème Colloque francophone “Analyse
Vibratoire Expérimentale”, Blois, France, November 2014 (Chairman: Roger Serra,
INSA Centre Val de Loire). On that occasion, I listed the concepts, methods and
algorithms that have been used to provide solutions for active damping, feedback
and feedforward attenuation of vibration. All these concepts and methods, which
form the basis of the solutions proposed, are taught separately in various control
courses or can be found in various books, so it appeared reasonable to try to bring
them together and present them accessibly for those interested in using modern con-
trol concepts in active vibration control. With this knowledge to hand, the various
solutions proposed for active vibration control can be easily understood and used.
The need for including experimental results in order to allow readers to assess the
potential of the various solutions is obvious.

Three major problems are addressed in the book:

• active damping (for improving the performance of passive absorbers);
• adaptive feedback attenuation of single and multiple tonal vibrations; and
• feedforward and feedback attenuation of broad-band vibrations.

With few exceptions the analytical details have been skipped and reference to the
appropriate journal papers has been made. The focus is on enhancing motivations,
algorithms presentation and experimental evaluations.

Once I had a clear view of how this book should be, I solicited the collaboration
of Tudor-Bogdan Airimitoaie, Abraham Castellanos-Silva and Aurelian Constanti-
nescu in order to realize it.

Website

Complementary information and material for teaching (simulators, algorithms and
data files) can be found on the book website: http://www.landau-adaptivecontrol.org/

1 http://www.gipsa-lab.grenoble-inp.fr/∼ioandore.landau/benchmark adaptive
regulation/

http://www.landau-adaptivecontrol.org/
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/benchmark_adaptive_regulation/
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/benchmark_adaptive_regulation/
tudor
StrikeOut
https://www.gipsa-lab.grenoble-inp.fr/~ioan-dore.landau/adaptivecontrol/



Preface ix

Expected Audience

The book may be considered as the basis of a course for graduate students in me-
chanical, mechatronic, industrial electronic, aerospace and naval engineering.

Part of the book may be used to illustrate the applicability of various graduate
control courses (system identification, adaptive control, robust control).

The book is of interest for practising engineers in the field of active vibration
control wishing to acquire new concepts and techniques well validated in practice.

The book is also of interest for people concerned with active noise control, since
the techniques presented can, to a large extent, be used for active noise control too.
Researchers in the field of active vibration control may also find inspiring material
that opens paths toward new developments.

About the Content

The book is divided into six parts. The introductory part (Chapters 1 and 2) presents
the problems addressed in the book and the test benches used for experimental val-
idation.

The second part is dedicated to the presentation of the control techniques used
effectively in active vibration control. Chapter 3 discusses the discrete-time model
representation used throughout the book. Chapter 4 is dedicated to the presenta-
tion of the parameter adaptation algorithms that will be used throughout the book.
Chapter 5 gives a compact presentation of system-identification techniques focus-
ing on the specific algorithms used in active vibration control. Chapter 6 illustrates
the use of these identification techniques for identifying the dynamic models of the
three test benches already presented in Chapter 2. Chapter 7 reviews basic methods
for the design of digital controllers that have been used in active vibration control.
Chapter 8 provides effective solutions for identification in closed-loop operation al-
lowing the improvement of the dynamic models identified in open-loop operation or
re-tuning of the controller. Chapter 9 addresses the problem of controller order re-
duction because the result of the design is often a high-order controller since on one
hand the models of the system are of high dimension and on the other the robustness
constraints contribute to the increase of the order of the controller.

The third part is dedicated to the problem of active damping (Chapter 10). The
design aspects and the experimental evaluation are discussed in detail.

The fourth part is concerned with the robust and adaptive attenuation of vibra-
tions by feedback. Chapter 11 treats the problem of robust feedback attenuation of
narrow-band (tonal) disturbances subject to limited frequency variations. Chapter 12
introduces the basic algorithm for adaptive attenuation of narrow-band disturbances.
Experimental evaluations on two test benches are presented. Performance compar-
ison of robust and adaptive solutions is provided. Chapter 13 is specifically dedi-
cated to the problem of attenuating multiple unknown and time-varying vibrations.
Two algorithms specifically developed for this problem will be presented and their
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performance and complexity will be compared with those of the basic algorithm
presented in Chapter 12.

In the fifth part of the book we consider feedforward compensation of distur-
bances, which has to be used when the bandwidth of disturbances (vibrations) is
such that the performance/robustness compromise cannot be conveniently satisfied
by feedback alone. Chapter 14 examines the linear design, which has to be done
from data (since the model of the disturbance is necessary). Chapter 15 provides
adaptive solutions for infinite impulse response (IIR) feedforward compensation as
well as experimental results illustrating the performance of such systems in various
situations. Chapter 16 provides adaptive solutions for Youla–Kučera feedforward
compensator configuration. Experimental comparison between the two configura-
tions concludes the chapter.

Part six of the book contains five appendices. Appendix A is dedicated to the gen-
eralized stability margin and the Vinnicombe distance between two transfer func-
tions: two very useful concepts in system identification in closed-loop operation
and controller reduction. Appendix B details the numerically safe implementation
of parameter adaptation algorithms in real-time. Appendix C details the derivation
of an adaptation algorithm used in Chapter 13 for rejection of narrow-band distur-
bances. Appendix D details the derivation of explicit equations for the residual force
or acceleration in the context of adaptive feedforward compensation. These equa-
tions allow the straightforward definition of the appropriate parameter adaptation
algorithm. Finally Appendix E gives details and experimental evaluation of an inte-
gral plus proportional parameter adaptation algorithm (IP-PAA adaptation), which
adds a “proportional” component to the classical “integral” parameter adaptation
algorithms.

Pathways through the Book

For a course on the subject, the Chapters 1 to 9 have to be covered first followed, in
no particular order, by Parts III, IV or V.

For experts in digital, robust and adaptive control, Chapters 3, 4, 5, 7, 8, and 9
can be skipped and again Parts III, IV and V can be read in any order.

An image of the applicability of the results can be easily obtained by reading
Chapter 2 and the sections concerning experimental results in Chapters 10 to 16.

Figure 0.1 gives a view of the interdependence of the various chapters.
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Chapter 1
Introduction to Adaptive and Robust Active
Vibration Control

Abstract The reasons for doing active vibration control are emphasized as well as
the principles of the basic approaches. Feedback and feedforward vibration com-
pensation approaches are discussed from a unified point of view. The high perfor-
mance required in the presence of variability of the vibration characteristics leads
to the use of robust and adaptive designs for active vibration control systems. The
challenges related to these approaches are described.

1.1 Active Vibration Control: Why and How

Vibrations are present almost everywhere and and their presence often causes prob-
lems for the operation of the various systems. Vibrations are disturbances that affect
a system (see also [160, 158]). They have a variety of origins, some examples of
which are: geological disturbances, traffic, mechanical engines, motor operation,
and electrical drives.

High-precision measurements, high-precision drives (like memory disc drives,
Blu-ray, DVD and CD drives), photo and video cameras, and stabilized platforms
require solutions for keeping the effect of these disturbances at a very low level.
In transport systems (ground, water or air) the vibrations can have a destructive
effect and they also affect the comfort of the passengers. Reduction of vibration
effects is mandatory in manufacturing systems and stabilized platforms in which
the tolerances imposed on their various tasks are of a similar magnitude to the effect
of the vibration.

The use of passive vibration absorbers (fluid dampers, elastomers and so on) is a
well known solution but unfortunately not sufficient in many cases for assuring the
desired level of attenuation over the desired frequency range. Semi-active (semi-
passive) dampers, for which the properties of the absorbing material can be changed
allow an improvement of the expected performance in some cases; however, when
high-performance attenuation is needed an active control solution should be consid-
ered.

3
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From a mechanical point of view, one makes a distinction between active vi-
bration isolation and active vibration control (AVC). In active vibration isolation,
an active damper (suspension) is inserted between the source of vibration and the
mass that has to be isolated. In active vibration control a force, which will coun-
teract the effect of the incoming vibrations, is generated through an actuator driven
from the available measurements (force or acceleration) of disturbance. In short, the
compensating force should be of the same magnitude but in opposite phase.

An active hydraulic isolation system is presented in Fig. 1.1. The size of the
main chamber of the elastomer cone located between the source of vibrations and
the chassis is modified by the effect of a piston controlled through a linear motor
(which develops a force). An AVC system is shown in Fig. 1.2. In this example, the
objective is to reduce the vibrations created by the motor at the level of the chassis.
By means of actuators, an opposite vibration force is introduced1 to the chassis with
a shift phase of 180◦.

controller

residual force

primary force (disturbance)

1

2
3

4

machine

support

elastomere cone

inertia chamber

piston

main

chamber

hole

motor

actuator

(piston position)

Fig. 1.1 Active isolation system used to reduce the effect of vibrations on the chassis

Vibrations are usually measured by accelerometers or force sensors. Actuators
are typically: active dampers, inertial motors (working on the same principle as
loudspeakers), piezoelectric actuators.

From a control point of view, active vibration control and active vibration iso-
lation are almost identical problems that can be solved using feedback control or
feedforward disturbance compensation if information on the disturbance is avail-
able.

Another problem, related to active isolation, is the active damping. Despite the
fact that they provide good attenuation over a wide band of frequencies, passive
dampers have a significant resonant peak at a certain frequency in the range of
operation. Adding active damping by feedback will correct this feature. Fig. 1.3

1 In these two examples the actuators are driven by a feedback controller, but in other cases the
actuator can be driven by a feedforward compensator.
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Fig. 1.2 Active vibration control used to reduce the effect of vibrations on the chassis.

illustrates this behaviour by showing the power spectral density (PSD) of the resid-
ual force without and with active damping. One can see that the resonance effect
around 30 Hz has been attenuated with negligible deterioration of the damping per-
formances at other frequencies. Active damping consists in damping the correspond-
ing vibration mode without changing its frequency.2

In active vibration (isolation) control one distinguishes between two “paths”:

• the “primary path” through which the disturbances propagate toward the system;
and

• the “secondary path” through which the compensation effect is applied.

Since from a control point of view there are no differences between active iso-
lation and active vibration control we will use the generic term “Active Vibration
Control” (AVC).

The principles of AVC and active noise control (ANC) are similar. Of course
the range of frequencies and the type of instrumentation involved are different but
the same control techniques can be used; however, the present book will focus on
adaptive and robust active vibration control and the applications will concern this
field.

The books [83, 68] give a compact and clear presentation of the origin and evo-
lution of active vibration control techniques. It should be mentioned that these tech-
niques have often been invented by researchers in the areas of vibration isolation

2 Light mechanical structures are characterized by multiple low damped vibration modes. These
modes have to be damped since on the one hand they can become a source of vibration and on the
other environmental disturbances can lead to inadmissible movements of the structure.
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Fig. 1.3 Power spectral density of the residual force without and with active damping on an active
suspension system.

and signal processing. The book [200] focuses on the dynamic modelling of active
structures from physics equations and develops continuous-time feedback strategies
based on these models.

The interest of the automatic control community in AVC is much more recent (it
started essentially in the nineties). The objective of the present book is to look at the
problem of AVC from the perspective provided by automatic control methodology.
From this perspective, the vibrations that we would like to attenuate strongly (or
eliminate) are generically termed “disturbances”.

Two of the major objectives of automatic control are:

• attenuation (or total rejection) of disturbances by feedback and feedforward ac-
tions; and

• damping of vibration modes.

These two problems are different. Adding damping is related to the assignment
by feedback of desired closed-loop poles while strong attenuation (or total rejec-
tion) of disturbances are related to the introduction of the disturbance model in the
controller (the internal model principle).

In AVC and ANC, disturbances can be characterized by their frequency content
and their location in a specific region in the frequency domain. The disturbances can
be of narrow-band type (simple or multiple) or of broad-band type. Of course, a
combination of both is possible and, in certain cases, what we call broad-band may
be several finite-band disturbances over separated small regions in the frequency
domain; however, the distinction between these two types of disturbances is conve-
nient in order to examine the techniques used for their compensation.

Fundamentally, in active control a compensator system is introduced, which will
generate a “secondary” source. This compensator (acting through the “secondary
path”) will, when conveniently driven, interfere destructively with the disturbance
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coming from the “original” (in general non-accessible) primary source through what
is called the “primary path”. In the control terminology the “secondary path” is the
plant to be controlled in order to reduce, as much as possible, the effect of the
disturbance on the controlled output, which in the case of AVC is the measured
residual acceleration or force. To achieve this, generically a feedback controller will
be used (see Fig. 1.4).

An important concept, which allows one to assess the disturbance attenuation
properties, damping of the vibration modes, stability of the feedback control loop,
and robustness, is the so-called “output sensitivity function” (the transfer function
between the disturbance and the measured output, i.e., between p(t) and y(t) in
Fig. 1.4). There are some fundamental issues when approaching the problem of at-
tenuating the disturbances by feedback. The first is related to the properties of the
famous “Bode integral” on the modulus of the output sensitivity function expressed
in dB, which has value zero if the system is open-loop stable3 (i.e., the sum of the ar-
eas above and under the 0 dB axis taken with their sign is zero). Since the objective
is to strongly attenuate (or even totally reject asymptotically) the disturbance, this
may require significant holes (low values) in the magnitude of the sensitivity func-
tion, which in turn (even with a very careful design) may lead to an unacceptable
“water bed” effect, both in terms of performance (one amplifies at certain frequen-
cies where some disturbance can still be present) as well as in terms of robustness
(the modulus margin may become unacceptable4). Figure 1.5 illustrates the Bode
Integral. As the attenuation is augmented in a certain frequency range, the maxi-
mum of the modulus of the output sensitivity function increases. Therefore there
are inherent limitations in using feedback for active vibration control.5

+

+

-
Residual

force

(disturbance)

Primary path

Secondary pathController

Fig. 1.4 Block diagram of active vibration compensation by feedback.

3 Both the controller and the plant to be controlled are stable.
4 The modulus margin is the minimum distance between the open-loop transfer function hodograph
and the Nyquist point and is equal to the inverse of the maximum of the modulus of the sensitivity
function [135].
5 For example, narrow-band disturbances can be rejected by feedback up to a certain number
while keeping an acceptable profile for the output sensitivity function (at least 3 or 4—see [146]
and Chapter 13). Sufficiently “narrow” finite-band disturbances can also be handled by feedback
alone.
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Fig. 1.5 Modulus of the output sensitivity functions for various attenuations.

A fundamental result in feedback control, which is of great interest for the prob-
lem of vibration attenuation, is the “internal model principle” (IMP), which stipu-
lates that the disturbance will be asymptotically cancelled if, and only if, the con-
troller contains the “model of the disturbance”.

This brings in view the concepts of “plant model” and “disturbance model”. In
order to design the feedback controller properly, knowledge of the “plant model”
and the “disturbance model” is necessary. The control methodology is a “model
based design” known as MBC (model based control).

One should distinguish between a “knowledge plant model” and a “dynamic
plant model”. The “knowledge plant model” is obtained from the law of physics
and mechanics describing the operation of the compensator system. Unfortunately
these models are often not precise enough, since on one hand their precision de-
pends on the perfect knowledge of some physical parameters (which is hard to get)
and on the other hand it is difficult to model all the elements constituting the com-
pensator system. For this reason one uses what is called the “control dynamic plant
model”, i.e., a kind of filter (parametric model) that describes the dynamical rela-
tionship between the variations of the control input and the variations of the output
of the system. This kind of model, necessary for design, can be obtained directly
from an experimental test using the techniques of “System Identification” (this will
be discussed in Chapters 5 and 6).

In most AVC systems the characteristics of the compensator systems remain al-
most unchanged during operation. This means that the associated dynamic con-
trol model remains almost unchanged and therefore the parameters of the identified
model are almost constant.

Nevertheless, for controller design we need the “model of the disturbance” in
addition. A common framework is the assumption that the disturbance is the result
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of white noise or a Dirac impulse passed through the model of the disturbance. The
knowledge of this model together with the knowledge of the model of the secondary
path (compensator) allows the design of an appropriate control strategy. In practice,
in most of the cases the characteristics of these disturbances are unknown or time-
varying. While in some particular cases (with a limited range of variations in the
frequency of the vibrations) a robust design can be considered (see the example
given in Section 11.3 as well as [13, 215, 44]), in most situations, as a consequence
of the high level of attenuation required, an adaptive approach is necessary to obtain
a good tuning with respect to the disturbance characteristics (note that the adaptive
loop can be added on top of a robust controller—see Section 12.2).

When the limitations induced by the Bode integral do not allow the achievement
of the desired performances by feedback (in particular for the case of broad-band
disturbances), one has to consider adding a feedforward compensation, which re-
quires a “source” correlated with the disturbance to be attenuated.6

In a number of applications of AVC and ANC, an image of the disturbances (a
correlated measurement) acting upon the system can be made available. This infor-
mation is very useful for attenuating the disturbances using a feedforward compen-
sation scheme; however, the feedforward compensator filter will depend not only
upon the dynamics of the compensator system (the plant) but also upon the charac-
teristics of the disturbances and of the primary path (the transfer function between
the source and the residual acceleration or force).

1.2 A Conceptual Feedback Framework

Figure 1.6 represents an active noise and vibration control (ANVC) system using
both feedforward and feedback compensators. The system has two inputs and two
outputs. The first input is the disturbance w(t), which is generated by the unknown
disturbance source s(t) passed through a filter with unknown characteristics. The
second input is the control signal, u(t). The first output is the measurement of the
residual acceleration (force, noise) e(t) (also called the performance variable) and
the second output is a signal correlated with the unknown disturbance, y1(t) in
Fig. 1.6. This correlation is a result of the physical characteristics of the system.

As shown in Fig. 1.6, the path that transmits the filtered disturbance, w(t), to
the residual acceleration is called the primary path. The control signal, on the other
hand, is transmitted to the residual acceleration through the secondary path. The
residual acceleration (the performance variable) is formed by addition between the
output of the primary path, denoted x(t), and the output of the secondary path, de-
noted z(t).

In general, ANVC systems also present a positive coupling path (also called the
reverse path) between the control signal u(t) and the measured signal y1(t), which is
shown in Fig. 1.6. This results in an internal positive feedback, that can destabilize

6 The source is located up stream with respect to the location where the residual force (acceleration)
or noise is measured.
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the ANVC system if not taken into account. The objective is that of minimizing the
performance variable, e(t), and stabilizing the system, by computing an appropriate
control, u(t), based on the measurements e(t) and y1(t).

Filter

+

+

+

+

Global primary path

Positive

coupling 

Secondary

path

    Residual

 acceleration

measurementPrimary

path

Feedforward

compensator

Combined control 

signal

Feedback

compensator

-
+

Fig. 1.6 Block diagram representation of the combined feedforward-feedback control problem.

One can see that, in the control system architecture presented in Fig. 1.6, the
control signal u(t) is obtained by the subtraction of the feedback control, u2(t), from
the feedforward control, u1(t). The measurements obtained from the system can be
put into a vector form as y(t) = [y1(t), y2(t)]T = [y1(t), e(t)]T . As a consequence,
the controller also has a vector representation κ = [N, −K]T , where N and K denote
respectively the feedforward and the feedback compensators.

With this notation, the equation relating the measurements to the control signal
is given by

u(t) = u1(t)−u2(t) = N · y1(t)−K · y2(t) = κ
T · y(t). (1.1)

Fig. 1.7 Generalized ANVC system representation.

The feedforward controller denomination attributed to N is motivated by the fact
that y1(t), called the correlated image of the disturbance, is measured upstream of
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the performance variable (see the bench test described in Section 2.3). This also
assumes that it is physically possible to obtain such a measurement. The situations
where this is not possible constitute feedback control problems, while the others
are more generally referred in the literature as hybrid control. A standard feedback
representation in the form of a 2-inputs–2-outputs system as shown in Fig. 1.7 can
also be considered. This representation is very well known in robust and optimal
control (see also [235]).

The equations associated with the feedback system representation are

[
e(t)
y(t)

]
=

[
P11 P12
P21 P22

][
w(t)
u(t)

]
=

 D G
1 M
D G

[w(t)
u(t)

]
, (1.2)

where D, G and M correspond to the models of the primary, secondary and reverse
paths. The control is given by (1.1).

1.3 Active Damping

As indicated previously, active damping concerns augmentation of the damping of
some vibration modes characterizing a mechanical structure (the frequency of these
modes is not changed). Nevertheless, damping of these low frequency vibration
modes will influence the “output sensitivity function” as a consequence of the Bode
integral property. Adding strong damping at a resonance will induce a deteriora-
tion of the attenuation performances in the nearby frequency region. In fact active
damping requires careful shaping of the output sensitivity function in order to bound
the loss of performance at other frequencies by distributing the “water bed” effect
across a wide frequency band (see Fig. 1.3).7 The design of active damping will be
discussed and illustrated in Chapter 10).

1.4 The Robust Regulation Paradigm

In the context of AVC (as well as for ANC) the primary sense of robustness is
the capacity of attenuating disturbances located in a given range of frequencies
but whose frequency characteristics are not exactly known. The characteristics (the
model) of the disturbances are generally unknown and may be time-varying. As a
consequence, their location in the frequency domain will change. It is not possible
to design a robust linear controller that introduces a strong attenuation over a wide
frequency range (as a consequence of the Bode Integral). Therefore, a compromise
is required between the width of the frequency region where the disturbance may

7 The resulting controller may be of high order and this raises the problem of controller order
reduction, which will be discussed in Chapter 9.
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be located and the attenuation that can be achieved. If one absolutely needs a strong
attenuation, the tolerated range of frequency variation will be small. Conversely, if
there is great uncertainty in the location of the disturbances in the frequency domain,
then the attenuation that can be achieved will be small.

The secondary sense of robustness is the capacity of the linear controller to han-
dle small uncertainties on the system model parameters in the vicinity of their nom-
inal values. The system parameter uncertainties will be handled by respecting con-
straints on the modulus of the output and input sensitivity functions.8

The situations where a robust controller solution for AVC provides satisfactory
results in practice, depend upon the compromise between the level of attenuation
required and the range of frequency variations of the disturbances (see Chapter 11
for applications of linear robust control design).

1.5 The Adaptive Regulation Paradigm

Since the characteristics (the models) of the disturbances are generally unknown and
may be time-varying over a wide frequency range, often a single robust linear con-
troller that achieves the desired attenuation cannot be designed. In such situations
adaptive feedback or feedforward compensation has to be used.

+

+

-
Residual

force

(disturbance)

Primary path

Secondary path

Adaptation

algorithm

Controller

Fig. 1.8 Adaptive feedback attenuation of unknown disturbances.

Figure 1.8 illustrates the adaptive attenuation of disturbances by feedback. In
addition to the classical feedback loop an adaptation loop tunes the parameters of
the controller in real time. In order to do so, it uses, as primary information, both

8 The input sensitivity function is the transfer function between the disturbance p(t) and the control
input u(t) (see Fig. 1.4).
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the residual acceleration (force), which is a performance variable, and the control
input.

Figure 1.9 illustrates the adaptive rejection of unknown disturbances by feedfor-
ward compensation. A “well located” transducer can provide a measurement highly
correlated with the unknown disturbance (a good image of the disturbance). This in-
formation is applied to the control input of the secondary path through an adaptive
filter whose parameters are adapted so as to minimize the effect of the disturbance
on the output.

Secondary path

Fig. 1.9 Adaptive feedforward compensation of unknown disturbances.

Adaptive feedforward vibration (or noise) compensation is currently used in AVC
and ANC when an image of the disturbance is available [70].

Nevertheless, at the end of the 1990s it was pointed out that in most of these
systems there is a physical “positive” feedback coupling between the compensator
system and the measurement of the image of the disturbance (vibration or noise)
[117, 98, 99, 264] (see also Section 1.2).9 The inherent internal physical positive
feedback may cause instability of the AVC or ANC systems. As a consequence, the
development of adaptive algorithms for feedforward compensation should take into
account the internal positive feedback.

So at this point one can say that one has two types of disturbances:

• single or multiple narrow-band disturbances; and
• broad (finite)-band disturbances;

and two approaches for doing adaptive disturbance attenuation:

• the adaptive feedback approach (which only requires a measurement of the resid-
ual force or acceleration); and

9 This will be illustrated on the experimental platform that will be presented in Section 2.3.
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• the adaptive feedforward compensation (requiring an additional transducer for
getting a correlated measurement with the disturbance).

In addition, there are two possible modes of operation:

• self-tuning operation (in which the adaptation procedure starts either on demand
or when the performance is unsatisfactory and ends when the new controller is
estimated); and

• adaptive operation (in which the adaptation procedure is performed continuously
and the controller is updated at each sampling).

As indicated earlier, a common framework is the assumption that the disturbance
is the result of white-noise or a Dirac impulse passed through the model of the dis-
turbance. Knowledge of this model allows the design of an appropriate controller.
In general, the structure for such a model of disturbance does not change and can
be assessed from data (using spectral analysis or order estimation techniques); how-
ever, the parameters of the model are unknown and may be time-varying. Therefore
adaptation has to deal with the change in the parameters of the model of the distur-
bance.

The classical adaptive control paradigm deals with the construction of a control
law when the parameters of the plant dynamic model are unknown and time-varying
([144]). Nevertheless, in the present context, the plant dynamic model is almost in-
variant and it can be identified. The objective then is the rejection of disturbances
characterized by unknown and time-varying disturbance models. It seems reason-
able to call this paradigm adaptive regulation. Classical adaptive control focuses on
adaptation of the controller parameters with respect to plant model parameters while
adaptive regulation focuses on adaptation of the controller parameters with respect
to variations in the disturbance model parameters.

In adaptive regulation the plant model is assumed to be known (obtained for ex-
ample by system identification). It is also assumed that the possible small variations
or uncertainties of the plant model can be handled by a robust control design.

Adaptive regulation covers both adaptive feedback compensation and adaptive
feedforward compensation since, on the one hand, adaptation has to deal with the
change in the characteristics of the disturbances and, on the other hand, adaptive
feedforward compensation is still a feedback structure as a consequence both of the
internal positive coupling and of the presence of the adaptation loop, which is driven
by the residual error.

The problem of adaptive regulation as defined above has been previously ad-
dressed in a number of papers ([34, 25, 244, 171, 63, 130, 113, 18, 55, 71, 172])
among others. [140] presents a survey of the various techniques (up to 2010) used
in adaptive feedback regulation as well as a review of a number of applications.

An international benchmark on the attenuation of multiple and unknown time-
varying, narrow-band disturbances by feedback has been organized. The test bench
was the AVC system that will be presented in Section 2.2. The results are summa-
rized in [146] and allow the comparative evaluation of various designs.
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1.6 Concluding Remarks

In order to reduce the impact of vibrations, one has several solutions related to the
demanded performance:

• Passive: use materials with vibration attenuation properties.
• Semi active: change the attenuation properties of the materials used for attenua-

tion.
• Active: use compensation force to counteract vibrations.
• Robust AVC: when the characteristics of the vibrations are almost known and

their domain of variation is small.
• Adaptive AVC: when the characteristics of vibrations are unknown and/or time-

varying over a significant frequency range and high attenuation is required.

Design of robust AVC requires the model of the disturbances (and their domain
of variation) as well as the models of the secondary path (for the feedback and
feedforward approach) and of the primary path (for the feedforward approach).

Design of adaptive active vibration control does not require either the model
of the disturbance or the model of the primary path.

1.7 Notes and Reference

The books [83, 68, 200] offer complementary perspectives to AVC and provide
many practical examples. In particular the modeling aspects starting from basic laws
of physics are enhanced.

Comparative evaluation of various techniques proposed is important. The Euro-
pean Journal of Control, no. 4, 2014 [146] is dedicated to a benchmark on adaptive
attenuation of unknown and time-varying multiple narrow-band disturbances. The
reference [49] should also be considered.

The references [140, 138, 139, 10, 84, 270, 206] survey various aspects of AVC.
Specific references related to the various topics will be provided at the end of the
corresponding chapters.

It is not the objective of this book to provide an exhaustive reference list present-
ing applications of adaptive and robust AVC but a limited list of references covering
applications in a number of fields includes: [68, 83, 140, 174, 231, 232, 233, 55, 35,
110, 161, 96].

The special issue of International Journal of Adaptive Control and Signal Pro-
cessing on adaptive frequency estimation with applications [32] gives a view of
some recent research results in the field. This special issue includes [58, 52, 112,
173, 46, 102, 175, 243].





Chapter 2
The Test Benches

Abstract Three relevant test benches will be used to illustrate the achievable per-
formance using the techniques proposed in this book. Models of these systems have
been obtained by system identification from real-time data. The frequency char-
acteristics for the identified model will be presented. Details on the identification
procedure will be given later (Chapter 5).

2.1 An Active Hydraulic Suspension System Using Feedback
Compensation

The structure of the active hydraulic suspension (active isolation configuration) is
presented in Fig. 2.1. Two photos of the system are presented in Fig. 2.2 (Courtesy
of Hutchinson Research Center, Vibrachoc and GIPSA-LAB, Grenoble). It consists
of the active suspension, a load, a shaker and the components of the control scheme.
The mechanical construction of the load is such that the vibrations produced by the
shaker, fixed to the ground, are transmitted to the upper side of the active suspension.
The active suspension is based on a hydraulic system allowing to reduce the over-
pressure at the frequencies of the vibration modes of the suspension. Its components
are (see Fig 2.1):

• an elastomer cone (1) which marks the main chamber filled up with silicon oil;
• a secondary chamber (2) marked by a flexible membrane;
• a piston (3) attached to a motor (when the piston is fixed, the suspension is pas-

sive);
• an orifice (4) allowing the oil to pass between the two chambers; and
• a force sensor located between the support and the active suspension.

The size of the main chamber of the elastomer cone is modified by the effect of
the piston driven by a linear motor. The controller will act upon the piston (through a
power amplifier) in order to reduce the residual force. The equivalent control scheme

17
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is shown in Fig. 2.3. The system input, u(t) is the position of the piston (see Fig-
ure 2.1), the output y(t) is the residual force measured by a force sensor. The transfer
function between the disturbance force, up, and the residual force y(t) is called pri-
mary path. In our case (for testing purposes), the primary force is generated by a
shaker controlled by a signal given by the computer. The transfer function between
the input of the system, u(t), and the residual force is called secondary path. The
input of the system being a position and the output a force, the secondary path trans-
fer function has a double differentiator behaviour. The sampling frequency used is
fs = 800 Hz.

controller

residual force

primary force (disturbance)

1

2
3

4

machine

support

elastomere cone

inertia chamber

piston

main

chamber

hole

motor

actuator

(piston position)

Fig. 2.1 Active suspension system (scheme).

The control objective is to strongly attenuate (cancel) the effect of unknown nar-
row band disturbances on the output of the system (the residual force).

The system has been considered as a “black box”. A system identification proce-
dure has been used in order to obtain the dynamic model of the system (called also
control model) to be used for control design. The identification procedure will be
described in Section 6.1.

The frequency characteristic of the identified primary path model (open-loop
identification), between the signal up sent to the shaker in order to generate the
disturbance and the residual force y(t), is presented in Fig. 2.4. The first vibration
mode of the primary path model is near 32 Hz. The primary path model has been
only used for simulation purposes.

The frequency characteristic of the identified secondary path model (open-loop
operation), is presented also in Fig. 2.4. There exist several very low damped vibra-
tion modes on the secondary path, the first one being at 31.8 Hz with a damping
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Residual force

measurement

Active

suspension

Primary force

(the shaker)

Fig. 2.2 Active suspension system (left). View of the experimental setting (right) (Courtesy of
Hutchinson Research Center, Vibrachoc and Gipsa-lab, Grenoble, France).
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Fig. 2.3 Block diagram of active vibration control systems.

factor 0.07. The identified model of the secondary path has been used for the design
of the controller.
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Fig. 2.4 Frequency characteristics of the primary and secondary paths.

2.2 An Active Vibration Control System Using Feedback
Compensation Through an Inertial Actuator

The structure of the system is presented in Fig. 2.5. A general view (photo) of the
system including the testing equipment is shown Fig. 2.6. It consists of a passive
damper, an inertial actuator,1 a chassis, a transducer for the residual force, a con-
troller, a power amplifier, a shaker and a load which also transmits the vibration
from the shaker to the chassis. The mechanical construction of the load is such that
the vibrations produced by the shaker, fixed to the ground, are transmitted to the up-
per side, on top of the passive damper. The inertial actuator will create vibrational
forces which can counteract the effect of vibrational disturbances.

The equivalent control scheme is shown in Fig. 2.3. The system input, u(t) is the
position of the mobile part (magnet) of the inertial actuator (see Fig. 2.5), the output
y(t) is the residual force measured by a force sensor. The transfer function between
the disturbance force up, and the residual force y(t) is called primary path. In our
case (for testing purposes), the primary force is generated by a shaker driven by a
signal delivered by the computer. The plant transfer function between the input of
the inertial actuator, u(t), and the residual force is called secondary path.

The complete hardware configuration of the system is shown in Fig. 2.7. The
control objective is to cancel (or at least strongly attenuate) the effect of unknown
narrow-band disturbances on the output of the system (residual force), i.e., to at-
tenuate the vibrations transmitted from the machine to the chassis. The physical
parameters of the system are not available. The system has been considered as a
black box and the corresponding models for control have been identified from data.

1 Inertial actuators use a similar principle as loudspeakers (see [140]).
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Fig. 2.5 Active vibration control using an inertial actuator (scheme).

The details of the identification procedure will be given in Section 6.2. The sampling
frequency is fs = 800 Hz.

Figure 2.8 gives the frequency characteristics of the identified models for the
primary and secondary paths.2 The system itself in the absence of the disturbances
features a number of low damped resonance modes and low damped complex zeros
(anti-resonance).

More details can be found at: http://www.gipsa-lab.grenoble-inp.fr/∼ioandore.
landau/benchmark adaptive regulation/.

2.3 An Active Distributed Flexible Mechanical Structure with
Feedforward-Feedback Compensation

Figure 2.9 shows a distributed flexible mechanical structure equipped for imple-
menting an AVC using feedforward and feedback compensation. Figure 2.10 shows
the details of the complete system including the AVC control scheme. The corre-
sponding control block diagram is shown in Fig. 2.11.

The mechanical structure consists of five metal plates connected by springs. The
uppermost and lowermost ones are rigidly jointed together by four screws. The mid-
dle three plates will be labeled for easier referencing M1, M2 and M3 (see Fig. 2.10).
M1 and M3 are equipped with inertial actuators. The one on M1 serves as distur-
bance generator (inertial actuator I in Fig. 2.10), the one at the bottom serves for
disturbance compensation (inertial actuator II in Fig. 2.10). The correlated measure-
ment with the disturbance (image of the disturbance) is obtained from an accelerom-

2 The primary path model is used only for simulation purposes.

http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/benchmark_adaptive_regulation
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/benchmark_adaptive_regulation
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Fig. 2.6 The active vibration control system using an inertial actuator (photo).
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Fig. 2.7 The active vibration control system using an inertial actuator—hardware configuration.

eter which is positioned on plate M1. Another sensor of the same type is positioned
on plate M3 and serves for measuring the residual acceleration (see Fig. 2.10). The
objective is to minimize the residual acceleration measured on plate M3. This exper-
imental setting allows to experiment both adaptive feedforward compensation (with
or without additional feedback) as well as adaptive feedback disturbance compen-
sation alone (without using the additional measurement upstream).
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Fig. 2.8 Frequency response (magnitude) for the primary and the secondary paths models.
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Fig. 2.9 An active distributed flexible mechanical structure equipped with sensors and actuators
for feedforward-feedback disturbance compensation (photo).

The disturbance is the position of the mobile part of the inertial actuator (see Figs.
2.9 and 2.10) located on top of the structure. The input to the compensator system
is the position of the mobile part of the inertial actuator located on the bottom of the
structure. When the compensator system is active, the actuator acts upon the residual
acceleration, but also upon the measurement of the image of the disturbance through
the reverse path (a positive feedback coupling). The measured quantity ŷ1(t) will be
the sum of the correlated disturbance measurement w(t) obtained in the absence of
the feedforward compensation (see Fig. 2.11(a)) and of the effect of the actuator
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Fig. 2.10 An AVC system using feedforward and feedback compensation for the distributed flexi-
ble mechanical structure (scheme).

used for compensation (positive internal mechanical feedback). This is illustrated in
Fig. 2.12 by the spectral densities of ŷ1(t) in open-loop (w(t)) and when feedforward
compensation is active (the effect of the mechanical feedback is significant).

As from the previous experimental settings, the system is considered as a black
box and the models for control design have been obtained by system identifica-
tion from input/output data. The details of the identification procedure are given in
Section 6.3. The sampling frequency is fs = 800 Hz. The frequency characteristics
of the identified models of the primary, secondary and reverse paths are shown in
Fig. 2.13.

This mechanical structure is representative for a number of situations encoun-
tered in practice and will be used to illustrate the performance of the various algo-
rithms which will be presented in this book.

At this stage it is important to make the following remarks, when the feedforward
filter is absent (open-loop operation):

• very reliable models for the secondary path and the “positive” feedback path can
be identified;

• an estimation of the primary path transfer function can be obtained using the
measured w(t) as input and e(t) as output (the compensator actuator being at
rest);

• the quality of the primary path identified model will depend on the frequency
characteristics of the signal w(t) coming from the environment;

• design of a fixed model based stabilizing feedforward compensator requires the
knowledge of the reverse path model only;

• knowledge of the disturbance characteristics and of the primary, secondary and
reverse paths models is mandatory for the design of an optimal fixed model based
feedforward compensator ([13, 215, 44]);
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Fig. 2.11 Feedforward-feedback AVC—the control scheme: (a) in open-loop and (b) with adaptive
feedforward + fixed feedback compensator.

• adaptation algorithms do not use information neither upon the primary
path whose characteristics may be unknown nor upon the disturbance char-
acteristics which may be unknown and time-varying.

2.4 Concluding Remarks

• The test benches considered allow to evaluate different solutions for active vibra-
tion control and active damping.

• Their structure emphasize the difficulties which may be encountered in practice.
• To obtain the complete dynamical models of these systems necessary for control

design, identification of discrete time models from input/output data has been
used (see Chapter 6).
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Fig. 2.13 Frequency response (magnitude) for the primary, secondary and reverse paths.

2.5 Notes and References

For further details on these test benches see [130, 129, 146, 127]. All the data for
simulating the test bench presented in Section 2.2 is available at http://www.gipsa-
lab.grenoble-inp.fr/∼ioandore.landau/benchmark adaptive regulation/

The book website provides input/output data and models for all three test benches.

http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/benchmark_adaptive_regulation
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/benchmark_adaptive_regulation
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Chapter 3
Active Vibration Control Systems - Model
Representation

Abstract In this chapter the elements and the basic concepts of computer controlled
systems will be presented. The discretization and choice of sampling frequency will
be first examined, followed by a brief review of discrete-time models.

3.1 System Description

3.1.1 Continuous Time Versus Discrete Time Dynamical Models

Before discussing the system description aspects one has to take in account that the
control law will be implemented on a digital computer. To do this there are two basic
options:

• Represent the system in continuous time, compute the control law in continuous
time and then discretize the continuous time control law for implementation.

• Select the sampling frequency, represent the system in discrete time, compute the
control law in discrete time and implement it directly.

Since one deals with mechanical systems, differential equations can be written
to describe the dynamical behaviour of the various parts of the system allowing to
build a “dynamical model” to be used for the design of the active vibration control
system [200, 82].1 There are however several obstacles in using a continuous time
representation of the system.

First of all, since the physical parameters are not precisely known, the model
which can be obtained from the fundamental principles will not be very reliable. In
addition there are parts of the systems for which it is difficult to give a perfect rep-
resentation and to associate the corresponding parameters. For a high performance
control design one needs an accurate dynamical model of the specific system to be

1 Modern control design techniques use “model based control design”.

29
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controlled and therefore one has to consider identifying dynamical models from ex-
perimental input/output data, obtained by what is called an “identification protocol”
(a “black box model” will be obtained).

It turns out that identification techniques are more efficient and much easier to
implement if one considers the identification of discrete time dynamic models.

It is also important to point out that using a continuous time representation, the
objective of the discretization of the designed control law will be to copy as much
as possible the continuous time control and this will require in general a very high
sampling frequency. Further analysis is required in order to be sure that the dis-
cretized control law guarantees the robustness and performance of the system (since
discretization introduces an approximation).

It turns out that if one considers the alternative situation, i.e., to discretize the
input and output of the system at a sampling frequency which is related to its band-
pass, one obtains through system identification a discrete time dynamical model
which can be used to design a discrete time control algorithm.

Using a discrete time representation of the system will require a lower sampling
frequency2 (directly related to the higher frequencies to be controlled) and the con-
trol algorithm to be implemented results directly from the design (no additional
analysis is necessary since the control algorithm has been designed at the sampling
frequency used).

Therefore because discrete time dynamical models allow:

• using a lower sampling frequency;
• using simpler and more efficient identification algorithms;
• getting directly the control algorithm to be implemented on a digital computer

they will be used subsequently for representing active vibration control systems. The
design of the control algorithm will be based on identified discrete time dynamical
models of the system.

3.1.2 Digital Control Systems

In this section, one reviews the basic requirements for the implementation of a
digital control system. For a more detailed discussion of the various aspects see
[135, 125, 20, 81]. Figure 3.1 represents the structure of a digital control system.
In Fig. 3.1, the set:3 Digital to Analog Converter (D/A), Zero order hold (ZOH),4

Continuous time plant, Analog to Digital Converter (A/D) constitutes the discrete
time system to be controlled by a digital controller implemented on the computer
used for control.

2 Numerous examples show that using this approach, the sampling frequency can be reduced with
respect to the previous approach.
3 Temporarily in this section t designates the continuous time and k the normalized sampling time
(k = time

Ts
). Starting from Section 3.1.3 the normalized discrete time will be denoted by t.

4 ZOH keeps constant the signal delivered by the D/A converter between two sampling instants.
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Fig. 3.1 A digital control system.

3.1.2.1 Selection of the Sampling Frequency

A good rule for the selection of the sampling frequency is [135]:

fs = (6 → 25) f CL
B (3.1)

where:

• fs = sampling frequency (in Hz);
• f CL

B = desired bandwidth of the closed-loop system (in Hz).

Of course, the desired closed-loop bandwidth is related to the bandwidth of the
system to be controlled. The formula (3.1) gives enough freedom for the selection
of the sampling frequency.

As a general rule, one tries to select the lower sampling frequency compatible
with the desired performances.

Except in very particular cases, all the discrete-time models will feature a frac-
tional delay. Fractional delays are reflected as zeros in the transfer function of the
discrete-time models (these zeros will be unstable if the fractional delay is larger
that half of the sampling period [135]). For continuous-time systems with a rela-
tive degree higher or equal to 2, high frequency sampling will induce unstable zeros
[20]. The consequence of the presence of unstable zeros in the discrete time models
used for control design, is that control strategies based on cancelling the zeros can
not be used.

3.1.2.2 Anti-aliasing Filters

The theory of discrete-time systems [20, 81] indicates that the maximum frequency
( fmax) of a signal sent to the analog to digital converter should satisfy:

fmax < fs/2 (3.2)

where fs is the sampling frequency and fs/2 is called the Nyquist or Shannon fre-
quency.

Sending frequencies over fs/2 produces distortion of the recovered discrete-time
spectrum called aliasing. Therefore, anti-aliasing filters should always be intro-
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duced in order to remove the undesirable components of the signal. Anti-aliasing
filters are constituted in general as several second order filters in cascade (Bessel,
ITAE, Butterworth type). They should introduce a consequent attenuation of the
signal beyond fs/2 but their bandwidth should be larger than the desired closed-
loop bandwidth. Their design will also depend on the level of undesirable signals at
frequencies beyond fs/2.

The anti-aliasing filters introduce a high frequency dynamics which can in gen-
eral be approximated by an additional small time delay. Since one directly estimates
a discrete-time model from data, their effect is captured by the estimated model.

3.1.3 Discrete-time System Models for Control

The discrete time models will represent the behaviour of the controlled system
from the discrete time control applied to the system through a D/A converter and
a ZOH to the output of the A/D converter which will discretize the measured out-
put. Single-input single-output time invariant systems will be considered. They will
be described by input-output discrete-time models of the form:

y(t) =−
nA

∑
i=1

aiy(t − i)+
nB

∑
i=1

biu(t −d − i) (3.3)

where t denotes the normalized sampling time (i.e., t = time
Ts

, Ts = sampling period),
u(t) is the input, y(t) is the output, d is the integer number of sampling periods
contained in the time delay of the systems, ai and bi are the parameters (coefficients)
of the models.

As such the output of the system at instant t is a weighted average of the past
output over an horizon of nA samples plus a weighted average of past inputs over an
horizon of nB samples (delayed by d samples).

This input-output model (3.3) can be more conveniently represented using a cod-
ing in terms of forward or backward shift operators defined as:

qy(t) = y(t +1); q−1y(t) = y(t −1) (3.4)

Using the notations:

1+
nA

∑
i=1

aiq−i = A(q−1) = 1+q−1A∗(q−1) (3.5)

where

A(q−1) = 1+a1q−1 + · · ·+anAq−nA (3.6)

A∗(q−1) = a1 +a2q−1 + · · ·+anA q−nA+1 (3.7)
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and
nB

∑
i=1

biq−i = B(q−1) = q−1B∗(q−1) (3.8)

where

B(q−1) = b1q−1 +b2q−2 + · · ·+bnB q−nB (3.9)
B∗(q−1) = b1 +b2q−1 + · · ·+bnB q−nB+1. (3.10)

Equation (3.3) can be rewritten as:

A(q−1)y(t) = q−dB(q−1)u(t) = q−d−1B∗(q−1)u(t) (3.11)

or forward in time:
A(q−1)y(t +d) = B(q−1)u(t) (3.12)

as well as:

y(t +1) =−A∗y(t)+q−dB∗u(t) =−A∗y(t)+B∗u(t −d). (3.13)

Observes that (3.13) can also be expressed as:

y(t +1) = θ
T

φ(t) (3.14)

where θ defines the vector of parameters

θ
T = [a1, · · ·anA ,b1, · · ·bnB ] (3.15)

and φ(t) defines the vector of measurements (or the regressor)

φ
T (t) = [−y(t) · · ·− y(t −nA +1),u(t −d) · · ·u(t −d −nB +1)] (3.16)

The form of (3.14) will be used in order to estimate the parameters of a system
model from input-output data. Filtering both left and right sides of (3.11) through a
filter 1/A(q−1) one gets:

y(t) = G(q−1)u(t) (3.17)

where

G(q−1) =
q−dB(q−1)

A(q−1)
(3.18)

is termed the transfer operator.5

Computing the z-transform of (3.3), one gets the pulse transfer function charac-
terizing the input-output model of (3.3)

G(z−1) =
z−dB(z−1)

A(z−1)
(3.19)

5 In many cases, the argument q−1 will be dropped out, to simplify the notations.
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Observe that the transfer function of the input-output model of (3.3) can be for-
mally obtained from the transfer operator by replacing the time operator q by the
complex variable z. Nevertheless, one should be careful since the domain of these
variables is different. Nevertheless, in the linear case with constant parameters one
can use either one and their appropriate signification will result from the context.

Note also that the transfer operator G(q−1) can be defined even if the parameters
of the model (3.3) are time-varying, while the concept of pulse transfer function
does simply not exist in this case.

The order n of the system model6 (3.3), is the dimension of the minimal state
space representation associated to the input-output model (3.3) and in the case of
irreducible transfer function it is equal to:

n = max(nA,nB +d) (3.20)

which corresponds also to the number of the poles of the irreducible transfer func-
tion of the system.

The order of the system is immediately obtained by expressing the transfer oper-
ator (3.18) or the transfer function (3.19) in the forward operator q and respectively
the complex variable z. The passage from H(z−1) to H(z) is obtained multiplying
by zn:

G(z) =
B̄(z)
Ā(z)

=
zr−dB(z−1)

zrA(z−1)
(3.21)

Example:

G(z−1) =
z−3(b1z−1 +b2z−2)

1+a1z−1

r = max(1,5) = 5

G(z) =
b1z+b2

z5 +a1z4

3.2 Concluding Remarks

• Recursive (differences) equations are used to describe discrete-time dynamic
models.

• The delay operator q−1 (q−1y(t) = y(t −1)) is a simple tool to handle recursive
discrete-time equations.

• The input-output relation for a discrete-time model is conveniently described in
the time domain by the pulse transfer operator G(q−1): y(t) = G(q−1)u(t)

• The pulse transfer function of a discrete-time linear system is expressed as func-
tion of the complex variable z = esTs (Ts = sampling period). The pulse transfer

6 The order of the system will be in general estimated from input/output data.
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function can be derived from the pulse transfer operator G(q−1) by replacing q−1

with z−1.
• The asymptotic stability of a discrete-time model is ensured if, and only if, all

pulse transfer function poles (in z) lie inside the unit circle.
• The order of a pulse transfer function of the form

G(z−1) =
z−dB(z−1)

A(z−1)
(3.22)

is n = max(nA,nB +d) where nA and nB are the orders of the polynomials A and
B respectively and d is the integer time delay in terms of sampling periods.

3.3 Notes and References

There are many excellent books on digital control systems. The books [81, 20, 135]
are probably the most suited for the topics of the present book. The book [187]
provides many discrete time models obtained from the discretization of continuous
time models for various physical systems.





Chapter 4
Parameter Adaptation Algorithms

Abstract Parameter adaptation algorithms are the key step for estimating the pa-
rameters of the discrete time dynamic model of the system to be controlled and for
building an adaptive active vibration control system. A coverage of the subject is
provided from the perspective of the user. Stability and convergence issues are ad-
dressed.

4.1 Introduction

Parameter adaptation algorithms (PAA) will play a fundamental role in the imple-
mentation of the various adaptive active vibration control systems. They can be
introduced in various ways. We will consider two problems:

• Recursive parameter estimation in system identification.
• Parameter adaptation of the feedforward filter in adaptive feedforward vibration

compensation.

These two problems will allow to introduce two basic configurations: the series par-
allel (equation error) parameter estimator and the parallel (output error) estimator.

The on-line parameter estimation principle for sampled models is illustrated in
Fig. 4.1.

A discrete time model with adjustable parameters is implemented on the com-
puter. The error ε(t) between the system output at instant t, y(t) and the output
predicted by the model ŷ(t) (called plant-model error or prediction error) is used
by the parameter adaptation algorithm, which, at each sampling instant, will mod-
ify the model parameters in order to minimize this error (in the sense of a certain
criterion).

The key element for implementing the on-line estimation of the plant model pa-
rameters is the Parameter Adaptation Algorithm (PAA) which drives the parameters
of the adjustable prediction model from the data acquired on the system at each
sampling instant. This algorithm has a recursive structure, i.e., the new value of the

37
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Fig. 4.1 Parameter estimation principle.

estimated parameters is equal to the previous value plus a correcting term which
will depend on the most recent measurements.

In general a parameter vector is defined. Its components are the different param-
eters that should be estimated.

The recursive parameter adaptation algorithms have the following structure:
New estimated parameter vector = previous estimated parameter vector + correcting
term. The correcting term has in general the structure of a product: Adaptation gain
× Measurement function × Prediction error function. The resulting structure isNew estimated

parameters
(vector)

=

Previous estimated
parameters
(vector)

+
+

Adaptation
gain

(matrix)

×
Measurement

f unction
(vector)

×
Prediction error

f unction
(scalar)


This structure corresponds to the so-called integral type adaptation algorithms (the
algorithm has memory and therefore maintains the estimated value of the parameters
when the correcting terms become null). The algorithm can be viewed as a discrete-
time integrator fed at each instant by the correcting term. The measurement function
vector is generally called the observation vector. The prediction error function is
generally called the adaptation error.

The adaptation gain plays an important role in the performance of the parameter
adaptation algorithm and it may be constant or time-varying.
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4.2 Structure of the Adjustable Model

4.2.1 Case (a): Recursive Configuration for System Identification -
Equation Error

Consider the discrete-time model of a plant described by:

y(t +1) =−a1y(t)+b1u(t) = θ
T

φ(t) (4.1)

where u(t) is the input, y(t) is the output, both measurable. The unknown parame-
ters a1 and b1 are the unknown parameters of the model. One defines the unknown
parameter vector θ :

θ
T = [a1,b1] (4.2)

and the measurement vector:

φ
T (t) = [−y(t),u(t)] (4.3)

The adjustable prediction model will be described in this case by:

ŷ◦(t +1) = ŷ[(t +1)|θ̂(t)] =−â1(t)y(t)+ b̂1(t)u(t) = θ̂
T (t)φ(t) (4.4)

where ŷ◦(t + 1) is termed the a priori predicted output depending on the values of
the estimated parameters at instant t.

θ̂
T (t) = [â1(t), b̂1(t)] (4.5)

is the estimated parameter vector at instant t.
As it will be shown later, it is very useful to consider also the a posteriori pre-

dicted output computed on the basis of the new estimated parameter vector at t +1,
θ̂(t +1), which will be available somewhere between t +1 and t +2. The a posteri-
ori predicted output will be given by:

ŷ(t +1) =ŷ[(t +1)|θ̂(t +1)] =−â1(t +1)y(t)+ b̂1(t +1)u(t)

=θ̂
T (t +1)φ(t) (4.6)

One defines an a priori prediction error as:

ε
◦(t +1) = y(t +1)− ŷ◦(t +1) (4.7)

and an a posteriori prediction error as:

ε(t +1) = y(t +1)− ŷ(t +1) (4.8)

The objective is to find a recursive parameter adaptation algorithm with memory
which will minimize a certain criterion. The structure of such an algorithm is:
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θ̂(t +1) = θ̂(t)+∆θ̂(t +1) = θ̂(t)+ f [θ̂(t),φ(t),ε◦(t +1)] (4.9)

where the correcting term f [.] is a function of θ̂(t), φ(t), ε◦(t +1).

4.2.2 Case (b): Adaptive Feedforward Compensation - Output
Error

Positive feedback coupling

  Measurement of the

image of the disturbance

Secondary path

    Residual

 acceleration

PAA

Primary path

Parameter adaptation algorithm

-1

Feedforward compensator

+

+

Disturbance

Fig. 4.2 Adaptive feedforward disturbance compensation.

Consider the basic scheme of adaptive feedforward disturbance compensation
shown in Fig. 4.2. Further assume that the secondary path has a transfer function
G = 1 and that there is no internal positive feedback, i.e., M = 0. Figure 4.3(a)
represents this simplified configuration and its equivalent representations are shown
in Figs. 4.3(b) and 4.3(c). This equivalent representation shown in Fig. 4.3(c) is
known as “output error” (N =−D is unknown).

Assume that the equivalent primary path in Fig. 4.3(c) can be represented by the
simple model (considered also in the previous section, 4.1):

y(t +1) =−a1y(t)+b1u(t) = θ
T (t)φ(t) (4.10)

where:
θ

T = [a1,b1]; φ
T (t) = [−y(t),u(t)] (4.11)

Nevertheless, in this case, we do not have access to the output y(t) of the primary
path when the feedforward compensator acts. One has access only to the residual
error (residual acceleration or force) denoted here ε(t). So the predictor considered
in the previous section can not be used. Therefore, since the objective is to drive the
residual error to zero, one can consider as an approximation of y(t) the output of the
predictor itself (which is measurable). The output error adjustable predictor (i.e.,
the feedforward compensator) is described by:
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Fig. 4.3 Equivalent representation of the adaptive feedforward compensation for the case G = 1
and M = 0 ((a) =⇒ (b) =⇒ (c)).

ŷ◦(t +1) =−â1(t)ŷ(t)+ b̂1(t)u(t) = θ̂
T (t)ψ(t) (4.12)

where ŷ◦(t +1) is the a priori output of the predictor, and:

ŷ(t +1) =−â1(t +1)ŷ(t)+ b̂1(t +1)u(t) = θ̂
T (t +1)ψ(t) (4.13)

is the a posteriori output of the predictor. One defines the vectors

θ̂
T (t) = [â1(t), b̂1(t)], ψ

T (t) = [−ŷ(t),u(t)] (4.14)

where θ̂ T (t) is the vector of adjustable parameters and ψT (t) is the observation
vector. Since ŷ(t) should converge asymptotically to y(t), ŷ(t) is an approximation
of the output y(t) which will improve over time.

The a priori prediction error will have the expression:

ε
◦(t +1) = y(t +1)− ŷ◦(t +1) = θ

T
φ(t)− θ̂

T (t)ψ(t) (4.15)

and the a posteriori prediction error will be given by:

ε(t +1) = y(t +1)− ŷ(t +1) = θ
T

φ(t)− θ̂
T (t +1)ψ(t) (4.16)

The difference between the two types of predictors is illustrated in Fig. 4.4. Equation
error predictors and output error predictors are also called series-parallel predictor
and parallel predictor, respectively, in relation with the configurations shown in
Fig. 4.4.
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Fig. 4.4 Comparison between two adjustable predictor structures: (a) Equation Error (Recursive
Least Squares predictor) and (b) Output Error.

4.3 Basic Parameter Adaptation Algorithms

Several approaches can be considered for deriving parameter adaptation algorithms.
We will consider first for pedagogical reasons the gradient technique followed by
the least squares.

Nevertheless, it is the stability approach which will be used later for both synthe-
sis and analysis of PAA.

4.3.1 Basic Gradient Algorithm

The aim of the basic gradient parameter adaptation algorithm is to minimize a
quadratic criterion in terms of the a priori prediction error.

We will consider this approach first for the case of the equation error predictor
(Eqs. (4.1) to (4.9)).

The objective is to find a recursive parameter adaptation algorithm with memory.
The structure of such an algorithm is:

θ̂(t +1) = θ̂(t)+∆θ̂(t +1) = θ̂(t)+ f [θ̂(t),φ(t),ε◦(t +1)] (4.17)
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The correction term f [θ̂(t),φ(t),ε◦(t + 1)] must depend solely on the informa-
tion available at the instant (t + 1) when y(t + 1) is acquired (last measurement
y(t +1), θ̂(t), and a finite amount of information at times t, t −1, t −2, . . . t −n).
The correction term must enable the following criterion to be minimized at each
step:

min
θ̂(t)

J(t +1) = [ε◦(t +1)]2 (4.18)

A solution can be provided by the gradient technique.
If the iso-criterion curves (J = constant) are represented in the plane of the pa-

rameters a1 and b1, concentric closed curves are obtained around the minimum value
of the criterion, which is reduced to the point (a1, b1) corresponding to the parame-
ters of the plant model. As the value of J = const increases, the iso-criterion curves
move further and further away from the minimum. This is illustrated in Fig. 4.5.

iso-criterion curve

(surface)

gradient

sense of

adaptation

Fig. 4.5 Principle of the gradient method.

In order to minimize the value of the criterion, one moves in the opposite di-
rection of the gradient to the corresponding iso-criterion curve. This will lead to a
curve corresponding to J = const, of a lesser value, as is shown in Fig. 4.5. The
corresponding parametric adaptation algorithm will have the form:

θ̂(t +1) = θ̂(t)−F
∂J(t +1)

∂ θ̂(t)
(4.19)
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where F = αI(α > 0) is the matrix adaptation gain (I - unitary diagonal matrix) and
∂J(t +1)/∂ θ̂(t) is the gradient of the criterion given in (4.18) with respect to θ̂(t).
From (4.18) one obtains:

1
2

∂J(t +1)
∂ θ̂(t)

=
∂ε◦(t +1)

∂ θ̂(t)
ε
◦(t +1) (4.20)

But:
ε
◦(t +1) = y(t +1)− ŷ◦(t +1) = y(t +1)− θ̂

T (t)φ(t) (4.21)

and
∂ε◦(t +1)

∂ θ̂(t)
=−φ(t) (4.22)

Introducing (4.22) in (4.20), the parameter adaptation algorithm of (4.19) be-
comes:

θ̂(t +1) = θ̂(t)+Fφ(t)ε◦(t +1) (4.23)

where F is the matrix adaptation gain.
There are two main choices for the adaptation gain:

1. F = αI; α > 0
2. F > 0 (positive definite matrix)1

The resulting algorithm has an integral structure. Therefore it has memory (for
ε0(t +1) = 0, θ̂(t +1) = θ̂(t)).

The geometrical interpretation of the PAA of (4.23) is given in Fig. 4.6 for the
two choices of the adaptation gain.

For F = αI, α > 0, the correction is done in the direction of the observation
vector (which in this case is the measurement vector) or within ±90deg around this
direction when F > 0 (a positive definite matrix may cause a rotation of a vector for
less than 90deg).

The parameter adaptation algorithm given in (4.23) presents instability risks if
a large adaptation gain (respectively a large α) is used. This can be understood
by referring to Fig. 4.5. If the adaptation gain is large near the optimum, one can
move away from this minimum instead of getting closer. A necessary condition for
stability (but not sufficient) is that for an adaptation gain F = αI, α should satisfy:

α <
1

φ T (t)φ(t)
. (4.24)

See [144] for details.

1 A symmetric square matrix F is termed positive definite if xT Fx > 0, ∀ x > 0, x ∈Rn. In addition:
(i) all the terms of the main diagonal are positive, (ii) the determinants of all the principals minors
are positive.
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Fig. 4.6 Geometrical interpretation of the gradient adaptation algorithm.

4.3.2 Improved Gradient Algorithm

4.3.2.1 Equation Error Predictor

In order to assure the stability of the PAA for any value of the adaptation gain α (or
of the eigenvalues of the gain matrix F) in the case of the equation error predictor,
the same gradient approach is used but a different criterion is considered:

min
θ̂(t+1)

J(t +1) = [ε(t +1)]2. (4.25)

The equation:
1
2

∂J(t +1)
∂ θ̂(t +1)

=
∂ε(t +1)
∂ θ̂(t +1)

ε(t +1) (4.26)

is then obtained. From (4.6) and (4.8) it results that:

ε(t +1) = y(t +1)− ŷ(t +1) = y(t +1)− θ̂
T (t +1)φ(t) (4.27)

and, respectively:
∂ε(t +1)
∂ θ̂(t +1)

=−φ(t) (4.28)

Introducing (4.28) in (4.26), the parameter adaptation algorithm of (4.19) be-
comes:

θ̂(t +1) = θ̂(t)+Fφ(t)ε(t +1) (4.29)

This algorithm depends on ε(t + 1), which is a function of θ̂(t + 1). For imple-
menting this algorithm, ε(t + 1) must be expressed as a function of ε◦(t + 1), i.e.,
ε(t +1) = f [θ̂(t),φ(t),ε◦(t +1)].

Equation (4.27) can be rewritten as:



46 4 Parameter Adaptation Algorithms

ε(t +1) = y(t +1)− θ̂
T (t)φ(t)− [(θ̂(t +1)− θ̂(t)]T φ(t) (4.30)

The first two terms of the right hand side correspond to ε◦(t+1), and from (4.29),
one obtains:

θ̂(t +1)− θ̂(t) = Fφ(t)ε(t +1) (4.31)

which enables to rewrite (4.30) as:

ε(t +1) = ε
◦(t +1)−φ

T (t)Fφ(t)ε(t +1) (4.32)

from which the desired relation between ε(t +1) and ε◦(t +1) is obtained:

ε(t +1) =
ε◦(t +1)

1+φ T (t)Fφ(t)
(4.33)

and the algorithm of (4.29) becomes:

θ̂(t +1) = θ̂(t)+
Fφ(t)ε◦(t +1)
1+φ T (t)Fφ(t)

(4.34)

which is a stable algorithm irrespective of the value of the gain matrix F (positive
definite). For a stability analysis see Section 4.4.

The division by 1+φ T (t)Fφ(t) introduces a normalization with respect to F and
φ(t) which reduces the sensitivity of the algorithm with respect to F and φ(t).

4.3.2.2 Output Error Predictor

We will turn now towards the use of the improved gradient algorithm for the out-
put error predictor described by (4.12) and (4.13). To apply the improved gradient
approach to the output error predictor we will need first an expression of the a pos-
teriori prediction error featuring explicitly the difference between the unknown and
the estimated parameter vector.

ε(t +1) = y(t +1)− ŷ(t +1)

=−a1y(t)+b1u(t)− [−â1(t +1)ŷ(t)+ b̂1(t +1)u(t)]±a1ŷ(t)

=−a1ε(t)− [a1 − â1(t +1)]ŷ(t)]+ [b1 − b̂1(t +1)]u(t)

=−a1ε(t)+ [θ − θ̂(t +1)]T ψ(t) (4.35)

Passing the term −a1ε(t) on the left side one gets:

(1+a1q−1)ε(t +1) = [θ − θ̂(t +1)]T ψ(t) (4.36)

Defining:
A(q−1) = 1+a1q−1 (4.37)

one gets:
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ε(t +1) =
1

A(q−1)
[θ − θ̂(t +1)]T ψ(t) (4.38)

The gradient for the improved gradient algorithm is given by (4.26)

1
2

∂J(t +1)
∂ θ̂(t +1)

=
∂ε(t +1)
∂ θ̂(t +1)

ε(t +1) (4.39)

and using (4.38) one gets

∂ε(t +1)
∂ θ̂(t +1)

=− 1
A(q−1)

ψ(t) =−ψ f (t) (4.40)

Then the parameter adaptation algorithm becomes:

θ̂(t +1) = θ̂(t)+Fψ f (t)ε(t +1) (4.41)

The PAA (4.41) as it is cannot be implemented since A(q−1) is unknown. Several
approximations are currently used; however, the conditions assuring the asymptotic
stability of the resulting algorithm have to be established. The various approxima-
tions are detailed below.

1) Output error algorithm (OE)

In this algorithm one simply approximates (1/A(q−1))ψ(t) by ψ(t), i.e,

ψ f (t) = ψ(t) (4.42)

and one gets:
θ̂(t +1) = θ̂(t)+Fψ(t)ε(t +1) (4.43)

2) Output error with filtered observations (FOLOE)

Define a filter L(q−1) and suppose that it is close to A(q−1). Neglecting the non-
commutativity of the time-varying operators, one can re-write the equation of the a
posteriori prediction as:

ε(t +1) =
1

A(q−1)
[θ − θ̂(t +1)]T ψ(t) (4.44)

=
L(q−1)

A(q−1)
[θ − θ̂(t +1)]T ψ f (t) (4.45)

where:
ψ f (t) =

1
L(q−1)

ψ(t) (4.46)

and the gradient of the criterion becomes
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∂ν(t +1)
∂ θ̂(t +1)

=−L(q−1)

A(q−1)
ψ f (t)≃−ψ f (t) (4.47)

which, taking into account the proximity of L and A, will be approximated by
−ψ f (t).

3) Output error with adaptive filtered observations (AFOLOE)

Since during the evolution of the adaptation algorithms the estimations of Â(t,q−1)
will approach A(q−1), one replaces the fixed filter L by

L(t,q−1) = Â(t,q−1) (4.48)

For all these algorithms, the a posteriori prediction error is computed as:

ε(t +1) =
ε◦(t +1)

1+ψT
f (t)Fψ f (t)

(4.49)

4) Output error with fixed compensator (OEFC)

In this algorithm one defines an adaptation error as a filtered prediction error:

ν(t +1) = D(q−1)ε(t +1) (4.50)

where:

D(q−1) = 1+
nD

∑
i=1

diq−i (4.51)

is an asymptotically stable polynomial with nD ≤ nA (nA - degree of the polyno-
mial A) and we would like to minimize a criterion as in (4.25) but for ν(t + 1),
i.e.,

min
θ̂(t+1)

J(t +1) = [ν(t +1)]2 (4.52)

In this case
∂ν(t +1)
∂ θ̂(t +1)

=−D(q−1)

A(q−1)
ψ(t) =−ψ f (t) (4.53)

Provided that D(q−1) and A(q−1) are close2 one can use the following approxi-
mation:

ψ f (t)≃ ψ(t) (4.54)

and the PAA takes the form

θ̂(t +1) = θ̂(t)+Fψ(t)ν(t +1) (4.55)

2 As it will be shown in Section 4.4, this closeness is characterized in terms of the property that
D(z−1)/A(z−1) should be a strictly positive real transfer function.
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To make the algorithm of (4.55) implementable, one has to give a relation between
the a posteriori adaptation error given in (4.50) and the a priori adaptation error
defined as:

ν
◦(t +1) = ε

◦(t +1)+
nD

∑
i=1

diε(t +1− i) (4.56)

Note that the a posteriori prediction errors ε(t),ε(t − 1) · · · are available at t + 1.
Subtracting (4.56) from (4.50), one gets:

ν(t +1)−ν
◦(t +1) =ε(t +1)− ε

◦(t +1)

=−
[
θ̂(t +1)− θ̂(t)

]T
ψ(t) (4.57)

But, from (4.55), one obtains:

θ̂(t +1)− θ̂(t) = Fψ(t)ν(t +1) (4.58)

and (4.57) becomes:

ν(t +1)+(Fψ(t)ν(t +1))T
ψ(t) = ν

◦(t +1) (4.59)

from which one obtains:

ν(t +1) =
ν◦(t +1)

1+ψT (t)Fψ(t)
(4.60)

4.3.3 Recursive Least Squares Algorithm

When using the Improved Gradient Algorithm, ε2(t +1) is minimized at each step
or, to be more precise, one moves in the quickest decreasing direction of the crite-
rion, with a step depending on F . The minimization of ε2(t + 1) at each step does
not necessarily lead to the minimization of:

t

∑
i=1

ε
2(i+1)

on a time horizon, as is illustrated in Fig. 4.7. In fact, in the vicinity of the optimum,
if the gain is not low enough, oscillations may occur around the minimum. On the
other hand, in order to obtain a satisfactory convergence speed at the beginning
when the optimum is far away, a high adaptation gain is preferable. In fact, the
least squares algorithm offers such a variation profile for the adaptation gain. The
same equations as in the gradient algorithm for the equation error configuration are
considered for the plant, the prediction model, and the prediction errors, namely
Eqs. (4.1) to (4.8).

The aim is to find a recursive algorithm of the form of (4.9) which minimizes the
least squares criterion:
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min
θ̂(t)

J(t) =
t

∑
i=1

[y(i)− θ̂
T (t)φ(i−1)]2 (4.61)

The term θ̂(t)T φ(i−1) corresponds to:

θ̂
T (t)φ(i−1) =−â1(t)y(i−1)+ b̂1(t)u(i−1) = ŷ[i | θ̂(t)] (4.62)

Fig. 4.7 Evolution of an
adaptation algorithm of the
gradient type.

Therefore, this is the prediction of the output at instant i (i ≤ t) based on the
parameter estimate at instant t obtained using t measurements.

First, a parameter θ must be estimated at instant t so that it minimizes the sum of
the squares of the differences between the output of the plant and the output of the
prediction model on a horizon of t measurements. The value of θ̂(t), which mini-
mizes the criterion (4.61), is obtained by seeking the value that cancels ∂J(t)/∂ θ̂(t):

∂J(t)
∂ θ̂(t)

=−2
t

∑
i=1

[y(i)− θ̂
T (t)φ(i−1)]φ(i−1) = 0 (4.63)

From (4.63), taking into account that:

[θ̂ T (t)φ(i−1)]φ(i−1) = φ(i−1)φ T (i−1)θ̂(t)

one obtains: [
t

∑
i=1

φ(i−1)]φ T (i−1)

]
θ̂(t) =

t

∑
i=1

y(i)φ(i−1)

and left multiplying by:3 [
t

∑
i=1

φ(i−1)φ T (i−1)

]−1

3 It is assumed that the matrix ∑
t
i=1 φ(i−1)φ T (i−1) is invertible. This corresponds to an excitation

condition.
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one obtains:

θ̂(t) =

[
t

∑
i=1

φ(i−1)φ T (i−1)

]−1 t

∑
i=1

y(i)φ(i−1) = F(t)
t

∑
i=1

y(i)φ(i−1) (4.64)

in which:

F(t)−1 =
t

∑
i=1

φ(i−1)φ T (i−1) (4.65)

This estimation algorithm is not recursive. In order to obtain a recursive algo-
rithm, the estimation of θ̂(t +1) is considered:

θ̂(t +1) =F(t +1)
t+1

∑
i=1

y(i)φ(i−1) (4.66)

F(t +1)−1 =
t+1

∑
i=1

φ(i−1)φ T (i−1) = F(t)−1 +φ(t)φ T (t) (4.67)

We can now express θ̂(t +1) as a function of θ̂(t):

θ̂(t +1) = θ̂(t)+∆θ̂(t +1) (4.68)

From (4.66) one has:

θ̂(t +1) = F(t +1)

[
t

∑
i=1

y(i)φ(i−1)+ y(t +1)φ(t)

]
(4.69)

Taking into account (4.64), (4.69) can be rewritten as:

θ̂(t +1) = F(t +1)[F(t)−1
θ̂(t)+ y(t +1)φ(t)] (4.70)

From (4.67), after post-multiplying both sides by θ̂(t), one gets:

F(t)−1
θ̂(t) = F(t +1)−1

θ̂(t)−φ(t)φ T (t)θ̂(t) (4.71)

and (4.70) becomes:

θ̂(t +1) = F(t +1)
(
F(t +1)−1

θ̂(t)+φ(t)[y(t +1)− θ̂
T (t)φ(t)]

)
(4.72)

Taking into account the expression of ε◦(t +1) given by (4.21), the result is:

θ̂(t +1) = θ̂(t)+F(t +1)φ(t)ε◦(t +1) (4.73)

The adaptation algorithm of (4.73) has a recursive form similar to the basic gradient
algorithm given in (4.23) except that the gain matrix F(t + 1) is now time-varying
since it depends on the measurements (it automatically corrects the gradient direc-
tion and the step length). A recursive formula for F(t +1) remains to be given from
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the recursive formula F−1(t +1) given in (4.67). This is obtained by using the ma-
trix inversion lemma.

Matrix Inversion Lemma: Let F be a (n× n) dimensional nonsingular matrix, R
a (m×m) dimensional nonsingular matrix and H a (n×m) dimensional matrix of
maximum rank, then the following identity holds:

(F−1 +HR−1HT )−1 = F −FH(R+HT FH)−1HT F (4.74)

Proof. By direct multiplication one finds that:

[F −FH(R+HT FH)−1HT F ][F−1 +HR−1HT ] = I

which ends the proof. ⊓⊔

For the case of (4.67), one chooses H = φ(t), R = 1 and one obtains from
Eqs. (4.67) and (4.74):

F(t +1) = F(t)− F(t)φ(t)φ T (t)F(t)
1+φ T (t)F(t)φ(t)

(4.75)

Putting together the different equations, a first formulation of the Recursive Least
Squares (RLS) parameter adaptation algorithm (PAA) is given next:

θ̂(t +1) =θ̂(t)+F(t +1)φ(t)ε◦(t +1) (4.76)

F(t +1) =F(t)− F(t)φ(t)φ T (t)F(t)
1+φ T (t)F(t)φ(t)

(4.77)

ε
◦(t +1) =y(t +1)− θ̂

T (t)φ(t) (4.78)

In practice, the algorithm is started up at t = 0 by choosing:

F(0) =
1
δ

I = (GI)I; 0 < δ ≪ 1 (4.79)

An equivalent form of this algorithm is obtained by introducing the expression
of F(t +1) given by (4.77) in (4.76), where:

θ̂(t +1)− θ̂(t) =F(t +1)φ(t)ε◦(t +1) = F(t)φ(t)
ε◦(t +1)

1+φ T (t)F(t)φ(t)
(4.80)

Nevertheless, from (4.7), (4.8) and (4.80), one obtains:

ε(t +1) = y(t +1)− θ̂
T (t +1)φ(t) = y(t +1)− θ̂(t)φ(t)

−[θ̂(t +1)− θ̂(t)]T φ(t) = ε
◦(t +1)

−φ
T (t)F(t)φ(t)

ε◦(t +1)
1+φ T (t)F(t)φ(t)

=
ε◦(t +1)

1+φ T (t)F(t)φ(t)
(4.81)
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which expresses the relation between the a posteriori prediction error and the a pri-
ori prediction error. Using this relation in (4.80), an equivalent form of the parameter
adaptation algorithm for the recursive least squares is obtained:

θ̂(t +1) =θ̂(t)+F(t)φ(t)ε(t +1) (4.82)

F(t +1)−1 =F(t)−1 +φ(t)φ T (t) (4.83)

F(t +1) =F(t)− F(t)φ(t)φ T (t)F(t)
1+φ T (t)F(t)φ(t)

(4.84)

ε(t +1) =
y(t +1)− θ̂ T (t)φ(t)
1+φ T (t)F(t)φ(t)

(4.85)

The recursive least squares algorithm is an algorithm with a decreasing adaptation
gain. This is clearly seen if the estimation of a single parameter is considered. In
this case, F(t) and φ(t) are scalars, and (4.84) becomes:

F(t +1) =
F(t)

1+φ(t)2F(t)
≤ F(t); φ(t), F(t) ∈ R1

The same conclusion is obtained by observing that F(t +1)−1 is the output of an
integrator which has as input φ(t)φ T (t). Since φ(t)φ T (t)≥ 0, one concludes that if
φ(t)φ T (t)> 0 in the average, then F(t)−1 will tends towards infinity, i.e., F(t) will
tends towards zero.

The recursive least squares algorithm in fact gives less and less weight to the
new prediction errors and thus to the new measurements. Consequently, this type
of variation of the adaptation gain is not suitable for the estimation of time-varying
parameters, and other variation profiles for the adaptation gain must therefore be
considered.

The least squares algorithm presented up to now for θ̂(t) and φ(t) of dimension
2 may be generalized for any dimensions resulting from the description of discrete-
time systems of the form:

y(t) =
q−dB(q−1)

A(q−1)
u(t) (4.86)

where:

A(q−1) = 1+a1q−1 + . . .+anAq−nA (4.87)

B(q−1) = b1q−1 + . . .+bnB q−nB (4.88)

Equation (4.86) can be written in the form:

y(t +1) =−
nA

∑
i=1

aiy(t +1− i)+
nB

∑
i=1

biu(t −d − i+1) = θ
T

φ(t) (4.89)

in which:
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θ
T = [a1, . . . ,anA ,b1, . . . ,bnB ] (4.90)

φ
T (t) = [−y(t), . . . ,−y(t −nA +1),u(t −d), . . . ,u(t −d −nB +1)] (4.91)

The a priori adjustable predictor is given in the general case by:

ŷ◦(t +1) =−
nA

∑
i=1

âi(t)y(t +1− i)+
nB

∑
i=1

b̂1(t)u(t −d − i+1) = θ̂
T (t)φ(t) (4.92)

in which:
θ̂

T (t) = [â1(t), . . . , ânA(t), b̂1(t), . . . , b̂nB(t)] (4.93)

and for the estimation of θ̂(t), the algorithm given in (4.82) through (4.85) is used,
with the appropriate dimension for θ̂(t), φ(t), and F(t).

4.3.4 Choice of the Adaptation Gain

The recursive formula for the inverse of the adaptation gain F (t +1)−1 given by
(4.83) is generalized by introducing two weighting sequences λ1(t) and λ2(t), as
indicated below:

F(t +1)−1 = λ1(t)F(t)−1 +λ2(t)φ(t)φ T (t)

0 < λ1(t)≤ 1 ; 0 ≤ λ2(t)< 2 ; F(0)> 0
(4.94)

Note that λ1(t) and λ2(t) in (4.94) have the opposite effect. λ1(t) < 1 tends to
increase the adaptation gain (the gain inverse decreases); λ2(t) > 0 tends to de-
crease the adaptation gain (the gain inverse increases). For each choice of sequences,
λ1(t) and λ2(t) corresponds a variation profile of the adaptation gain and an inter-
pretation in terms of the error criterion, which is minimized by the PAA. Equa-
tion (4.94) allows to interpret the inverse of the adaptation gain as the output of a
filter λ2/(1−λ1q−1) having as input φ(t)φ T (t) and F(0)−1 as an initial condition.

Using the matrix inversion lemma given by (4.74), one obtains from (4.94):

F(t +1) =
1

λ1(t)

F(t)− F(t)φ(t)φ T (t)F(t)
λ1(t)
λ2(t)

+φ T (t)F(t)φ(t)

 (4.95)

Next, a certain number of choices for λ1(t) and λ2(t) and their interpretations will
be given.

A1. Decreasing (vanishing) gain (basic RLS)

In this case:
λ1(t) = λ1 = 1; λ2(t) = 1 (4.96)
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and F(t +1)−1 is given by (4.83), which leads to a decreasing adaptation gain. The
minimized criterion is that of (4.61). This type of profile is suited to the estimation
of the parameters of stationary systems or for the self-tuning operation of adaptive
controllers or adaptive feedforward compensators.

A2. Constant forgetting factor

In this case:
λ1(t) = λ1; 0 < λ1 < 1; λ2(t) = λ2 = 1 (4.97)

The typical values for λ1 are:

λ1 = 0.95 to 0.99

The criterion to be minimized will be:

J(t) =
t

∑
i=1

λ
(t−i)
1 [y(i)− θ̂

T (t)φ(i−1)]2 (4.98)

The effect of λ1(t)< 1 is to introduce increasingly weaker weighting on the old data
(i < t). This is why λ1 is known as the forgetting factor. The maximum weight is
given to the most recent error.

This type of profile is suited to the estimation of the parameters of slowly time-
varying systems.

Remark: The use of a constant forgetting factor without the monitoring of the
maximum value of F(t) causes problems if the {φ(t)φ T (t)} sequence becomes null
in the average (steady state case) and the adaptation gain will tend towards infin-
ity. In this case:

F(t + i)−1 = (λ1)
iF(t)−1

and
F(t + i) = (λ1)

−iF(t).

For λ1 < 1, limi→∞(λ1)
−i = ∞ and F(t + i) will become asymptotically un-

bounded.

A3. Variable forgetting factor

In this case:
λ2(t) = λ2 = 1 (4.99)

and the forgetting factor λ1(t) is given by:

λ1(t) = λ0λ1(t −1)+1−λ0 ; 0 < λ0 < 1 (4.100)

the typical values being:

λ1(0) = 0.95 to 0.99 ; λ0 = 0.5 to 0.99
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(λ1(t) can be interpreted as the output of a first order filter (1−λ0)/
(
1−λ0q−1

)
with a unitary steady state gain and an initial condition λ1(0)).

Relation (4.100) leads to a forgetting factor that asymptotically tends towards
1(the adaptation gain tends towards a decreasing gain).

This type of profile is recommended for the model identification of stationary
systems, since it avoids a too rapid decrease of the adaptation gain, thus generally
resulting in an acceleration of the convergence (by maintaining a high gain at the
beginning when the estimates are at a great distance from the optimum).

A4. Constant trace

In this case, λ1(t) and λ2(t) are automatically chosen at each step in order to ensure
a constant trace of the gain matrix (constant sum of the diagonal terms):

trF(t +1) = trF(t) = trF(0) = nGI (4.101)

in which n is the number of parameters and GI the initial gain (typical values: GI =
0.01 to 4), the matrix F(0) having the form:

F(0) =

GI 0
. . .

0 GI

 (4.102)

Using this technique, at each step there is a movement in the optimal direction
of the RLS, but the gain is maintained approximately constant. The values of λ1(t)
and λ2(t) are determined from the equation:

trF(t +1) =
1

λ1(t)
tr
[

F(t)− F(t)φ(t)φ T (t)F(t)
α(t)+φ T (t)F(t)φ(t)

]
(4.103)

fixing the ratio α(t) = λ1(t)/λ2(t) ((4.103) is obtained from (4.95)).
This type of profile is suited to the model identification of systems with time-

varying parameters and for adaptive control with non-vanishing adaptation.

A5. Decreasing gain + constant trace

In this case, A1 is switched to A4 when:

trF(t)≤ nG ; G = 0.01 to 4 (4.104)

in which G is chosen in advance. This profile is suited to the model identification of
time variable systems and for adaptive control in the absence of initial information
on the parameters.
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A6. Variable forgetting factor + constant trace

In this case A3 is switched to A4 when:

trF(t)≤ nG (4.105)

The use is the same as for A5.

A7. Constant gain (improved gradient algorithm)

In this case:
λ1(t) = λ1 = 1 ; λ2(t) = λ2 = 0 (4.106)

and thus from (4.95), one obtains:

F(t +1) = F(t) = F(0) (4.107)

The improved gradient adaptation algorithm given by (4.29) or (4.34) is then ob-
tained.

This type of adaptation gain results in performances that are in general inferior
to those provided by the A1, A2, A3, and A4 profiles, but it is simpler to implement.

Choice of the initial gain F(0)

The initial gain F(0) is usually chosen as a diagonal matrix of the form given by
(4.79) and, respectively, (4.102).

In the absence of initial information upon the parameters to be estimated (typical
value of initial estimates = 0), a high initial gain (GI) is chosen.4 A typical value
is GI = 1000 (but higher values can be chosen). If an initial parameter estimation is
available (resulting for example from a previous identification), a low initial gain is
chosen. In general, in this case GI ≤ 0.1. In adaptive regulation schemes in general,
the initial trace of the adaptation gain (n×GI, n = number of parameters) is chosen
larger but of the same order of magnitude as the desired constant trace.

4.3.4.1 Parameter Adaptation Algorithms with Scalar Adaptation Gain

This concerns an extension of PAA with constant adaptation gain of the form F =αI
for α > 1 (see the improved gradient algorithm Section 4.3.2) for the cases where
α(t) = 1/β (t), i.e.,

F(t) = α(t)I =
1

β (t)
I (4.108)

Some PAA’s of this type are mentioned next:
1) Improved Gradient

4 It can be shown that the size of the adaptation gain is related to the parameter error [144].
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β (t) = const = 1/α > 0 =⇒ F(t) = F(0) = αI (4.109)

2) Stochastic Approximation

β (t) = t =⇒ F(t) =
1
t

I (4.110)

This is the simplest PAA with time decreasing adaptation gain (very useful for the
analysis of PAA in the presence of stochastic disturbances).
3) Controlled Adaptation Gain

β (t +1) = λ1(t)β (t)+λ2(t)φ T (t)φ(t)

β (0)> 0 ; 0 < λ1(t)≤ 1 ; 0 ≤ λ2(t)< 2
(4.111)

The principal interest in using these algorithms is a simpler implementation than
those using a matrix adaptation gain updating. Their disadvantage is that their per-
formances are in general lower than those of the PAA using a matrix adaptation
gain.

4.3.5 An Example

The influence of the choice of the adaptation gain profile will be illustrated in the
applications considered in Chapters 12, 13, 15 and 16. The subsequent example will
try just to illustrate the influence of the adaptation gain profile upon the estimation
of unknown but constant parameters in the presence of measurement noise (situation
encountered in system identification). The simulated system is of the form:

G(q−1) =
q−1(b1q−1 +b2q−2)

1+a1q−1 +a2q−2 (4.112)

The file T2.mat (available on the book website) contains 256 input/output data. The
output of the system is disturbed by a measurement noise. The parameters will be es-
timated using an Equation Error Predictor combined with the Parameter Adaptation
Algorithm given in Eqs. (4.76) to (4.78) but using various profiles of the adaptation
gain generated with Eq. (4.94). It is known that using this predictor the estimation
of the parameters will be biased in the presence of noise (there will be an error)
[135],5 however the objective here is just to illustrate the influence of the adaptation
gain upon the evolution of the estimated parameters.

Figure 4.8 shows the evolution of the estimated parameters when using a de-
creasing adaptation gain (A.1) which corresponds to the classical RLS algorithm.
One can see that despite the presence of measurement noise the parameters con-
verge toward constant values. The evolution of the trace of the adaptation gain is

5 In Chapter 5, it will be shown how the predictor should be modified in order to obtain unbiased
estimated parameters.
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Fig. 4.8 Parameters evolution for decreasing adaptation gain algorithm.
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Fig. 4.9 Evolution of the trace of the adaptation gain matrix (vertical zoom within 0 and 0.5).

illustrated in Fig. 4.9. One can also see in this figure the evolution of the trace of
the adaptation gain when using a variable forgetting factor (A3). It keeps a slightly
higher gain transiently which will influence slightly the speed of evolution of the
estimated parameters.

Figure 4.10 shows the evolution of the estimated parameters when using a de-
creasing adaptation gain + constant trace (A.5). Since the adaptation gain never
goes to zero the parameters will not converge toward a constant value in the pres-
ence of noise but the capability of tracking parameters variation is assured. The
evolution of the trace of the adaptation gain in this case is also shown in Fig. 4.9.
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Fig. 4.10 Parameters evolution for decreasing adaptation gain combined with constant trace algo-
rithm.
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Fig. 4.11 Parameters evolution for constant adaptation gain algorithm.

Figure 4.11 shows the evolution of the estimated parameters when using a di-
agonal constant adaptation gain matrix (A.7) which corresponds to the improved
gradient algorithm. One can see that the adaptation transient is longer than for the
decreasing adaptation gain + constant trace and of course the estimated parameters
will not converge toward a constant value.
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4.4 Stability of Parameter Adaptation Algorithms

From the point of view of real-time identification and adaptive control, the param-
eter adaptation algorithms are supposed to operate on a very large number of mea-
surements (t → ∞). Therefore, it is necessary to examine the properties of parameter
adaptation algorithms as t → ∞. Specifically, one should study the conditions which
guarantee:

lim
t→∞

ε(t +1) = 0. (4.113)

This corresponds to the study of the stability of parameter adaptation algorithms.
Conversely, other PAA can be derived starting from the stability condition.

Equivalent feedback representation of the full parameter estimation schemes is
extremely helpful on one hand for deriving stability conditions and on the other
hand for understanding the sense of the stability conditions.

4.4.1 Equivalent Feedback Representation of the Adaptive
Predictors

To illustrate this approach we will consider the output error algorithm. The basic
description of the adjustable output error predictor has been presented in Section 4.3,
Eqs. (4.35) to (4.41).

The objective is now to write an equation for the a posteriori prediction error as
a function of the parameter error. From (4.38) one obtains:

ε(t +1) =− 1
A(q−1)

(
θ̂(t +1)−θ

)T
ψ

T (t) (4.114)

=
1

A(q−1)

(
−ψ

T (t)θ̃(t +1)
)

(4.115)

where:
θ̃(t +1) = θ̂(t +1)−θ (4.116)

This result remains valid even for higher order predictors where a1 is replaced by
A∗(q−1) = a1 +a2q−1 + . . .+anA q−nA . In other words, the a posteriori prediction
error is the output of a linear block characterized by a transfer function 1/A(z−1),
whose input is −ψT (t)θ̃(t +1).

Once the equation for the a posteriori prediction error has been derived, the PAA
synthesis problem can be formulated as a stability problem:
Find a PAA of the form:

θ̂(t +1) =θ̂(t)+ fθ [ψ(t), θ̂(t),ε(t +1)] (4.117)

ε(t +1) = fε [ψ(t), θ̂(t),ε◦(t +1)] (4.118)
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such that limt→∞ ε(t +1) = 0 for all initial conditions ε(0), θ̂(0) (or θ̃(0)).
Note that the structure of (4.117) assures the memory of the PAA (integral form),

but other structures can be considered. The structure of (4.118) assures the causality
of the algorithm.

From (4.117) subtracting θ from both sides, one gets:

θ̃(t +1) = θ̃(t)+ fθ [ψ(t), θ̂(t),ε(t +1)] (4.119)

and multiplying both sides by ψT (t), yields:

ψ
T (t)θ̃(t +1) = ψ

T (t)θ̃(t)+ψ
T (t) fθ [ψ(t), θ̂(t),ε(t +1)] (4.120)

Eqs. (4.115), (4.119), and (4.120) define an equivalent feedback system associated
to the output error predictor as shown in Fig. 4.12.

-

+

+

?

Fig. 4.12 Equivalent feedback system associated to the output error predictor.

The stability of the output predictor estimator is directly related to the stability
of the equivalent non-linear time-varying feedback system shown in Fig. 4.12. The
major complication in the analysis of the stability of this configuration comes from
the presence of a linear transfer function different from 1 (unity) on the feedforward
path. The same analysis in the case of an equation error predictor shows that the
feedforward block will have a transfer function equal to 1.

Therefore, both for taking into account various time-varying profiles for the adap-
tation gain and the possible presence of a transfer function in the feedforward path of
the equivalent system, it is necessary to take a stability approach both for synthesis
and analysis of the adaptation algorithms for various predictor configurations.

4.4.2 A General Structure and Stability of PAA

Two elements are crucial for the analysis of the adaptive schemes:

• the structure of the parameter adaptation algorithm; and
• the structure of the equation governing the generation of the adaptation error.
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One can consider as a general structure for the PAA (integral type):

θ̂(t +1) =θ̂(t)+F(t)Φ(t)ν(t +1) (4.121)

ν(t +1) =
ν◦(t +1)

1+ΦT (t)F(t)Φ(t)
(4.122)

F(t +1)−1 =λ1(t)F(t)−1 +λ2(t)Φ(t)ΦT (t) (4.123)
0 < λ1(t)≤ 1; 0 ≤ λ2(t)< 2

F(0)> 0;F−1(t)> αF−1(0) ; ∞ > α > 0

where θ̂(t) is the adjustable parameter vector, F(t) is the adaptation gain, Φ(t) is the
regressor (observation) vector, ν◦(t+1) is the a priori adaptation error and ν(t+1)
is the a posteriori adaptation error (it is a function of the prediction error). The a
priori adaptation error ν◦(t + 1) depends only on the adjustable parameter vector
θ̂(i) up to and including i = t. ν◦(t + 1) is in fact the prediction of ν(t + 1) based
on these θ̂(i), i.e.:

ν
◦(t +1) = ν(t +1|θ̂(t), θ̂(t −1), . . .)

The adaptation gain matrix F(t) is computed recursively using the matrix inversion
lemma and (4.123) becomes:

F(t +1) =
1

λ1(t)

F(t)− F(t)Φ(t)ΦT (t)F(t)
λ1(t)
λ2(t)

+ΦT (t)F(t)Φ(t)

 (4.124)

The real-time implementation of this algorithm requires to use a numerical robust
updating formula guaranteeing the positive definiteness of the matrix F(t). Such a
solution is provided by the U-D factorization of the matrix F(t). The details are
given in Appendix B.

Associated with the PAA of Eqs. (4.121) to (4.123), one considers the class of
adaptive systems for which the a posteriori adaptation error satisfies an equation of
the form:

ν(t +1) = H(q−1)
[
θ − θ̂(t +1)

]T
Φ(t) (4.125)

where:

H(q−1) =
H1(q−1)

H2(q−1)
(4.126)

with:

Hi(q−1) = 1+q−1H∗
j (q

−1) = 1+
n j

∑
i=1

h j
i q−i ; j = 1,2 (4.127)

and θ is a fixed value of the unknown parameter vector.
The relationship between a priori and a posteriori adaptation errors given in

(4.122), can be alternatively expressed using (4.121) as:
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ν(t +1) =
[
θ̂(t)− θ̂(t +1)

]T
Φ(t)+ν

◦(t +1) (4.128)

From (4.125) and (4.126) one gets:

ν(t +1) =
[
θ − θ̂(t +1)

]T
Φ(t)−H∗

2 (q
−1)ν(t)+

+H∗
1 (q

−1)
[
θ − θ̂(t)

]T
Φ(t −1) (4.129)

Adding and subtracting the term θ̂ T (t)Φ(t) in the right hand side of (4.129), one
gets:

ν(t +1) =
[
θ̂(t)− θ̂(t +1)

]T
Φ(t)+

([
θ − θ̂(t)

]T
Φ(t)+

+H∗
1 (q

−1)
[
θ − θ̂(t)

]T
Φ(t −1)−H∗

2 (q
−1)ν(t)

)
(4.130)

Comparing (4.128) and (4.130), one observes that:

ν
◦(t +1) =

[
θ − θ̂(t)

]T
Φ(t)+H∗

1 (q
−1)
[
θ − θ̂(t)

]T
Φ(t −1)

−H∗
2 (q

−1)ν(t) (4.131)

and it can be clearly seen that ν◦(t +1) depends upon θ̂(i) for i ≤ t.
The PAA of Eqs. (4.121) to (4.123), together with (4.125), defines an equivalent

feedback system with a linear time-invariant feedforward block and a time-varying
and/or nonlinear feedback block (see Fig. 4.13(a)). For constant adaptation gain
(λ2 = 0), the feedback path in Fig. 4.13(a) is passive6; however, for time-varying
adaptation gain (λ2 > 0), one has to consider the equivalent feedback representation
shown in Fig. 4.13(b), where the new equivalent feedback path is passive.

Exploiting the input-output properties of the equivalent feedback and feedfor-
ward block, one has the following general result (see [144] for the proof):

Theorem 4.1. Consider the parameter adaptation algorithm given by Eqs. (4.121)
to (4.123). Assume that the a posteriori adaptation error satisfies (4.125) where φ(t)
is a bounded or unbounded vector sequence, H(z−1) is a rational discrete transfer
function (ratio of monic polynomials) and θ is a constant vector. Then, if:

H ′(z−1) = H(z−1)− λ2

2
(4.132)

is strictly positive real (SPR), where

max
t

[λ2(t)]≤ λ2 < 2, (4.133)

one has for any bounded ν(0), θ̂(0):

6 A passive system is characterized by the fact that the sum of the input/output products over any
time horizon is larger than a finite negative constant.
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Fig. 4.13 Equivalent feedback system associated to the PAA with time-varying gain. a) standard
representation, b) transformed equivalent feedback system.

1) lim
t1→∞

t1

∑
t=0

ν
2(t +1)<C

(
ν(0), θ̂(0)

)
;0 <C < ∞ (4.134)

2) lim
t→∞

ν(t +1) = 0 (4.135)

3) lim
t→∞

[
θ − θ̂(t +1)

]T
Φ(t) = 0 (4.136)

4) lim
t→∞

[
θ̂(t +1)− θ̂(t)

]T
F(t)−1 [

θ̂(t +1)− θ̂(t)
]
= 0 (4.137)

4.4.2.1 Interpretation of the Results

1. A strictly positive real (SPR) transfer function is characterized by the following
basic properties (there are others [144]):

• It is asymptotically stable.
• The real part of the transfer function is positive at all frequencies.

The concept of SPR transfer functions is illustrated for continuous-time systems
in the upper part of the Fig. 4.14 and for the discrete-time systems in the lower
part of Fig. 4.14.

2. limt→∞ ν(t + 1) = 0 can be interpreted as the output of the equivalent linear
block which asymptotically tends to 0.
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Fig. 4.14 Strictly positive
real transfer functions.

3. Since H(z−1) is SPR, it is asymptotically stable as well as its inverse. Therefore,
its input will also tend to zero which, taking into account the notations, leads to
(4.136).

4. (4.137) indicates that the asymptotic variations of the adjustable parameters
tend to zero if F(t)> 0.

5. For constant adaptation gain (λ1 = 1,λ2 = 0) condition (4.132) becomes:

H ′(z−1) = H(z−1) (4.138)

should be strictly positive real (SPR).
6. The explanation of the presence of the term −λ2/2 in (4.132) is related to the

loss of the passivity of the equivalent feedback path when using time-varying
adaptation gain. This requires to consider the transformed equivalent feedback
system shown in Fig. 4.13(b).

Remark: Note that limt→∞ ν(t +1) = 0 does not imply limt→∞ ν◦ (t +1) = 0 since:

ν(t +1) =
ν◦(t +1)

1+ΦT (t)F(t)Φ(t)
.

If Φ(t) is unbounded, then ν(t +1) can be zero with ν◦(t +1) ̸= 0. To conclude
that limt→∞ ν◦(t + 1) = 0, one should show that Φ(t) is bounded (assuming that
F(t) is bounded).
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4.4.3 Output Error Algorithms - Stability Analysis

Applying this theorem to the output error configurations (with constant adaptation
gain) presented in Section 4.3.2.2, will lead to the following stability conditions.

Output error

In this case ν(t+1) = ε(t+1), Φ(t) = ψ(t) and the discrete-time transfer function:

H(z−1) =
1

A(z−1)
(4.139)

should be SPR. This condition may be restrictive in certain situations. In order to
overcome this difficulty, one may consider filtering the a posteriori prediction error
before its use in the PAA or to filter the observation vector (see Section 4.3.2).

Output error with fixed compensator

Using (4.115), ν(t +1) can be expressed as:

ν(t +1) =
D(q−1)

A(q−1)
[θ − θ̂(t +1)]T ψ(t)) (4.140)

and Φ(t) = ψ(t). In this case:

H(z−1) =
D(z−1)

A(z−1)
(4.141)

should be SPR.

Output Error with Filtered Observations

In this case ν(t + 1) = ε(t + 1) and Φ(t) = ψ f (t). The equation of the a posteri-
ori prediction error (neglecting the non-commutativity of time-varying operators) is
given in (4.38)

ε(t +1) =
1

A(q−1)
[θ − θ̂(t +1)]T ψ(t) =

L(q−1)

A(q−1)
[θ − θ̂(t +1)]T ψ f (t) (4.142)

and applying the Theorem 4.1 for stability of PAA one concludes that

H(z−1) =
L(z−1)

A(z−1 (4.143)

should be SPR. An exact algorithm for the output error with filtered observations is
given in [144, Section 5.5.3].
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4.4.3.1 A Swapping Result

The above developments on output error with filtered observations have used the
following relationship:

ν(t +1) =H(q−1)
[
θ − θ̂(t +1)

]T
φ(t) =

[
θ − θ̂(t +1)

]T
φ f (t)+O (4.144)

where
φ f (t) = H(q−1)φ(t) (4.145)

and the error term O is assumed to be negligible. Exact algorithms can be developed
[144] but they are not necessary in practice. Therefore systematically relationship
(4.144) will be used neglecting the error term (swapping error) in order to apply
Theorem 4.1 for the synthesis of stable adaptation algorithms.

4.5 Parametric Convergence

4.5.1 The Problem

As will be shown, the convergence toward zero of the adaptation or prediction error
does not imply in every case that the estimated parameters will converge toward
the true parameters. The objective will be to determine under what conditions the
convergence of the adaptation (prediction) error will imply the convergence toward
the true parameters. We will make the hypothesis that such a value of parameter
vector exists.

In order to illustrate the influence of the excitation signal for the parametric con-
vergence, let us consider the discrete-time system model described by:

y(t +1) =−a1y(t)+b1u(t) (4.146)

and consider an estimated model described by:

ŷ(t +1) =−â1y(t)+ b̂1u(t) (4.147)

in which ŷ(t +1) is the output predicted by the estimation model with the constant
parameters â1, b̂1.

Now assume that u(t) = constant and that the parameters a1,b1, â1, b̂1 verify the
following relation:

b1

1+a1
=

b̂1

1+ â1
(4.148)

i.e., the steady state gains of the system and of the estimated model are equal even if
b̂1 ̸= b1 and â1 ̸= a1. Under the effect of the constant input u(t) = u, the plant output
will be given by:
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y(t +1) = y(t) =
b1

1+a1
u (4.149)

and the output of the estimated prediction model will be given by:

ŷ(t +1) = ŷ(t) =
b̂1

1+ â1
u (4.150)

Nevertheless, taking into account (4.148), it results that:

ε(t +1) = y(t +1)− ŷ(t +1) = 0 (4.151)
for u(t) = constant ; â1 ̸= a1 ; b̂1 ̸= b1

It can thus be concluded from this example that the application of a constant input
does not allow to distinguish these two models, since they both have the same steady
state gain.

If the frequency characteristics of both systems are represented, they will super-
pose each other at zero frequency and the difference between them will appear for
frequencies other than zero since the poles of the two systems are different. Such a
situation is shown in Fig. 4.15.

Fig. 4.15 Gain frequency
characteristics of two systems
with the same steady state
gain.

ω

plant

   model

  G

Figure 4.15 indicates that in order to highlight the difference between the two
models (i.e., between the parameters) a signal u(t) = sinωt (ω ̸= 0) must be applied
instead of signal u(t) = constant.

Let us analyze the phenomenon in more detail. From (4.146) and (4.147), one
obtains:

ε(t +1) =y(t +1)− ŷ(t +1) = (a1 − â1)y(t)+(b1 − b̂1)u(t) = 0 (4.152)

From (4.146), y(t) can be expressed as a function of u(t) using the system transfer
operator:

y(t) =
b1q−1

1+a1q−1 u(t) (4.153)
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Introducing the expression y(t) given by (4.153) in (4.152) and after multiplying
by (1+a1q−1), one obtains:

ε(t +1) =
[
(a1 − â1)b1q−1 +(b1 − b̂1)(1+a1q−1)

]
u(t)

=
[
(b1 − b̂1)+q−1(b1â1 −a1b̂1)

]
u(t) = 0 (4.154)

We are concerned with finding the characteristics of u(t) so that (4.154) implies
zero parametric errors. Denoting:

b1 − b̂1 = α0 ; b1â1 −a1b̂1 = α1 (4.155)

Equation (4.154) is thus written as:

(α0 +α1q−1)u(t) = 0 (4.156)

which is a difference equation having a solution of the discretized exponential type.
Let us take:

u(t) = zt = esTst (4.157)

where Ts is the sampling period. Equation (4.156) is then written:

(α0 + z−1
α1)zt = (zα0 +α1)zt−1 = 0 (4.158)

and it will be verified for z, which is the solution of the characteristic equation:

zα0 +α1 = 0 (4.159)

One obtains:

z =−α1

α0
= eσTs (4.160)

σ = real ; (
α1

α0
< 0)

and the nonperiodic solution:
u(t) = eσTst (4.161)

leads to the verification of (4.156) and (4.154) respectively without b̂1 = b1 and
â1 = a1. Indeed the signal u(t) = constant previously considered, corresponds to
σ = 0, i.e., −α1 = α0; however,

−α1 = α0 =⇒ b1 − b̂1 = a1b̂1 −b1â1 =⇒ b1

1+a1
=

b̂1

1+ â1
. (4.162)

In conclusion, if u(t) = constant, only the steady state gain of the system is correctly
estimated. In order to correctly estimate the system model parameters, u(t) must
thus be found such that ε(t) = 0 implies b̂1 = b1 and â1 = a1. This will be obtained
if u(t) is not a possible solution of (4.156).

Let
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u(t) = e jωTst or e− jωTst (4.163)

For u(t) = e jωTst , (4.156) becomes:(
e jωTsα0 +α1

)
e jωTs(t−1) = 0 (4.164)

Since α0 and α1 are real, e jωTst cannot be a root of the characteristic equation (4.164)
and therefore ε(t +1) = 0 will be obtained only if:

α0 = α1 = 0 =⇒ b̂1 = b1; â1 = a1 (4.165)

It was this type of input that was previously proposed (sinωt = (e jωt − e− jωt)/2 j)
when the frequency characteristics of the two models were examined. A non zero
frequency sinusoid is thus required in order to identify two parameters. The signal
u(t) which in this case is a sinusoid, is a persistently exciting signal of order 2
(allowing to estimate 2 parameters).

This approach for determining the input u(t) allowing satisfactory model param-
eter identification may also be applied to systems of the general form

y(t) =−
nA

∑
i=1

aiy(t − i)+
nB

∑
i=1

biu(t −d − i) (4.166)

for which the total number of parameters to be identified is:

number of parameters = nA +nB.

In this case u(t) can be chosen as a sum of p-sinusoids of different frequencies:

u(t) =−
p

∑
i=1

sin(ωiTet) (4.167)

and the value p, allowing good parameter identification, is given by{
p ≥ nA+nB

2 for nA +nB even
p ≥ nA+nB+1

2 for nA +nB odd
(4.168)

In other words, in order to identify a correct model it is necessary to apply
a frequency rich input. The standard solution in practice is provided by the use
of “pseudo-random binary sequences”. Pseudo-random binary sequences are se-
quences of rectangular pulses, modulated in width, which approximate a discrete-
time white noise and thus have a spectral content rich in frequencies (see Section
5.2).

The above result will be used also for analysing the parameter convergence in
adaptive feedback control schemes used for attenuation of narrow-band disturbances
(see Chapter 12).
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4.6 The LMS Family of Parameter Adaptation Algorithms

The least mean squares (LMS) family of PAA has its origin in the paper of Widrow
and Hoff [253]. This algorithm corresponds to the “basic gradient algorithm” dis-
cussed in Section 4.3.1 particularized for the case of an FIR structure (ai ≡ 0) and
constant diagonal adaptation gain matrix. Starting from this initial algorithm an
impressive number of developments and applications have been done by the sig-
nal processing community concerned with adaptive filtering and by the community
concerned with active noise (vibration) control. Efforts to analyze the behaviour of
the resulting algorithms have been also done. These developments have been made
ignoring till the mid nineties (with some exceptions as for example [106]) the pa-
rameter adaptation algorithms developed by the control community in the context
of system identification and adaptive control.

To make a bridge between the family of LMS algorithms and those developed by
the control community (presented in this book) one has to consider several aspects
which characterize a PAA:

• Structure of the estimated model.
• Type of adaptation error (a priori or a posteriori).
• Type of adaptation gain.
• Generation of the regressor vector.
• Properties of the algorithm (stability in deterministic context, convergence in a

stochastic context).

Most applications in adaptive filtering and adaptive feedforward noise/vibration
compensation are related to the “output error” structure considered in Section 4.3.2.2.
As long as an FIR structure is considered, there is no difference between an “out-
put error” configuration and an “equation error” configuration. The extension of
the LMS approach when an IIR structure is considered lead to an “output error”
configuration. This extension attributed to Feintuch (1976) [75] is called ULMS or
RLMS [68] (the standard LMS for FIR configurations being called XLMS); how-
ever, in the field of adaptive parameter estimation an algorithm for an IIR output
error configuration designed form stability considerations (but which can be inter-
preted also from the improved gradient point of view) has been already proposed in
1971 [118]. It uses the concept of a posteriori adaptation error and constant adapta-
tion gain while in [75] the a priori adaptation error is used. For small adaptation gain
the Feintuch ULMS algorithm can be viewed as an approximation of the algorithm
given in [118]. The algorithm given in [118] has been extended for the case of time-
varying adaptation gain in [119] and compared with other algorithms in [121]. The
asymptotic unbiasedeness in the mean has been shown in [120, 122]. Conditions for
convergence with probability 1 have been established in [164].

The use of the a posteriori prediction (adaptation) error is crucial for the stability
of the adaptation algorithms. Once this option is considered, the stability analy-
sis becomes much easier and conditions upon the the strict real positivity of some
transfer functions in order to guarantee stability come in view.
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Concerning a further comparison between LMS type algorithms and those pre-
sented in this chapter one has to consider two cases:

• scalar constant adaptation gain; and
• matrix time-varying adaptation gain.

In other terms, in addition to the structure (which gives the name to an algorithm)
and the type of adaptation error used one has to specify what type of adaptation gain
is used. Both LMS type algorithms and those given in this chapter can be operated
with this two types of adaptation gain. In developing the output error algorithms
in this chapter, it was pointed from the beginning that “output error” can be used
for adaptive feedforward compensation for the case when the transfer function of
the secondary path (see Chapter 1) is equal to one (or very close), i.e., G = 1 (or
very close). Nevertheless, in practice G ̸= 1 and this complicates the analysis of
the algorithms (in particular stability aspects). This problem is discussed in detail
in Chapter 15. One of the popular solutions adopted in the LMS family of algo-
rithms is to filter the regressor vector by G. This solution generated the FXLMS
algorithm [38, 254] when using an FIR structure and the FULMS algorithm when
an IIR structure is considered [73]. These corresponds in fact to particular cases of
the family of algorithms which will be proposed in Chapter 15 for adaptive feedfor-
ward compensation. The FXLMS and FULMS have a serious drawback in terms of
stability and convergence in the presence of internal positive feedback [250, 127].
Experimental comparison of FULMS with algorithms proposed in the book will
be presented in Chapter 15. Comparison with other related algorithms can also be
found in Section 15.5.

4.7 Concluding Remarks

In this chapter we have presented discrete-time parameter adaptation algorithms
(PAA) and we have examined their properties.

We wish to emphasize the following basic ideas:

1. The PAA has in general the following recursive form (integral adaptation):

θ̂(t +1) = θ̂(t)+F(t)φ(t)ν(t +1)

where θ̂(t) is the adjustable parameter vector. At each step the correcting term
is formed by the product of the adaptation error ν(t +1), the regressor (obser-
vation) vector φ(t) and the adaptation gain matrix F(t). The adaptation error
ν(t +1) is computed from the measurements up to and including t +1 and the
estimated parameters up to t.

2. Several approaches can be used for the derivation of PAA among which we have
considered:

• recursive minimization of a criterion in term of the adaptation error;
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• transformation of an off-line parameter estimation into a recursive parameter
estimation; and

• stability considerations.

Nevertheless, since the resulting system is nonlinear, a stability analysis is
mandatory.

3. An equivalent feedback system (EFR) can be associated with the PAA in the
cases where the adaptation error equation features the parameter error explicitly.
The use of the EFR simplifies drastically the stability analysis (or synthesis) via
the use of the properties of passive systems connected in feedback.

4. For general classes of adaptation error equations and PAA, stability conditions
for the resulting adaptive systems have been given.

5. A variety of choices for the time profile of the adaptation gain are possible. The
choice depends upon the specific application.

4.8 Notes and References

The chapter focused on PAA with an integral structure which is the most used in
practice. Other structure exists ([144]). In particular the integral+proportional PAA
is interesting for active vibration control. Details are given in Appendix E.

The books [88, 167, 123, 144, 20, 16] give an extensive coverage of the discrete
time PAA from the stability point of view in a deterministic environment and from
the convergence point of view in a stochastic environment. The book [68] gives a
presentation of the PAA starting from the LMS algorithm. Development and analy-
sis of LMS can be found in [38, 254] (Filtered-X LMS), [73, 74] (Filtered-U LMS),
[61] (full gradient algorithm) [250, 79].



Chapter 5
Identification of the Active Vibration Control
Systems - The Bases

Abstract In this chapter the basic principles of identification of dynamic systems
from input output data are reviewed. The various steps of the system identification
procedure are emphasized. Algorithms which were successfully used for identifica-
tion of active vibration control systems are presented.

5.1 Introduction

To design an active control one needs the dynamical model of the compensator
systems (from the control to be applied to the measurement of the residual acceler-
ation or force).1 Model identification from experimental data is a well established
methodology [135, 167]. Identification of dynamic systems is an experimental ap-
proach for determining a dynamic model of a system. It includes four steps:

1) Input-output data acquisition under an experimental protocol.
2) Estimation of the model complexity (structure).
3) Estimation of the model parameters.
4) Validation of the identified model (structure of the model and values of the pa-

rameters).

A complete identification operation must comprise the four stages indicated above.
System identification should be viewed as an iterative process as illustrated in
Fig. 5.1 which has as objective to obtain a model which passes the model validation
test and then can be used safely for control design.

The typical input excitation sequence is a PRBS (pseudo random binary se-
quence). The type of model which will be identified is a discrete time parametric
model allowing later to directly design a control algorithm straightforwardly imple-
mentable on a computer. Model validation is the final key point. The estimation of

1 Linear feedback regulator design will require also the model of the disturbance. Linear feedfor-
ward compensator design will require in addition a model of the primary path. Design of adaptive
regulators or of feedforward compensators require only the model of the secondary path.

75



76 5 Identification of the Active Vibration Control Systems - The Bases

the model parameters is done in a noisy environment. It is important to emphasize
that it does not exist one single algorithm that can provide in all the cases a good
model (i.e., which passes the model validation tests). Therefore the appropriate al-
gorithm which allows to obtain a model which passes the validation tests has to be
used.

I/0 Data Acquisition
 under an Experimental Protocol 

Model Complexity Estimation
(or Selection)

Choice of the Noise Model

Parameter Estimation

Model Validation

YesNo
Control
Design

Fig. 5.1 The identification methodology.

ADCDAC+ZOH Plant

+

-

Parameter

Adaptation

Algorithm

Discretized Plant

Model

Parameters

Adjustable

Discrete Time

Model

Fig. 5.2 Principle of model parameters estimation.

In what follows we would like to summarize some of the basic facts in system
identification. For a detailed coverage of the subject see [135, 166].

Figure 5.2 shows the principle of parameter estimation of a discrete time model.
An adjustable model of the discretized plant is built. Its parameters are driven by
a parameter adaptation algorithm such that the prediction error (the difference be-
tween the true output and the predicted output by the model) is minimized in the
sense of a certain criterion.
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Several assumptions are implicitly made when one uses this approach:

• the order of the discrete time model representing the system is known;
• in the absence of noise the adaptation algorithm will drive the prediction error

towards zero;
• in the presence of noise, the estimated parameters will be asymptotically un-

biased2 (i.e., the noise does not influence asymptotically the precision of the
parameter estimation); and

• the input to the system (the testing signal) is such that null prediction error im-
plies null parameter errors (persistent excitation property).

The various steps indicated in Fig. 5.1 try to assure that the parameter estimation
algorithm will provide the good parameter estimates.

5.2 Input-output Data Acquisition and Preprocessing

5.2.1 Input-output Data Acquisition Under an Experimental
Protocol

The experimental protocol should assure persistent excitation for the number of
parameters to be estimatted. It can be shown (see Chapter 4, Section 4.5 and [135])
that for identifying 2n parameters, the excitation signal should contain at least n+1
sinusoids of distinct frequencies. To go beyond this constraints one usually uses
Pseudo Random Binary Sequences (PRBS) since they contain a large number of
sinusoids with energy equally distributed over the frequency domain. In addition
the magnitude of the signal is constant allowing and easy selection with respect to
the magnitude constraints on the plant input.

5.2.2 Pseudo Random Binary Sequences (PRBS)

Pseudo random binary sequences are sequences of rectangular pulses, modulated in
width, that approximate a discrete-time white noise and thus have a spectral content
rich in frequencies. They owe their name pseudo random to the fact that they are
characterized by a sequence length within which the variations in pulse width vary
randomly, but that over a large time horizon, they are periodic, the period being
defined by the length of the sequence. In the practice of system identification, one
generally uses just one complete sequence and we should examine the properties of
such a sequence.

2 The parameter estimation error induced by the measurement noise is called “bias”.
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The PRBS are generated by means of shift registers with feedback (implemented
in hardware or software).3 The maximum length of a sequence is L = 2N −1, where
N is the number of cells of the shift register.

B1   B2 B3 B4 B5

+

   ( summation modulo 2 )

Fig. 5.3 Generation of a PRBS of length 25 −1 = 31 sampling periods.

Figure 5.3 presents the generation of a PRBS of length 31 = 25 −1 obtained by
means of a N = 5-cells shift register. Note that at least one of the N cells of the shift
register should have an initial logic value different from zero (one generally takes
all the initial values of the N cells equal to the logic value 1).

Table 5.1 gives the structure enabling maximum length PRBS to be generated for
different numbers of cells. Note also a very important characteristic element of the
PRBS: the maximum duration of a PRBS impulse is equal to N (number of cells).
This property is to be considered when choosing a PRBS for system identification.4

Table 5.1 Generation of maximum length PRBS

Number of Cells Sequence Length Bits Added
N L = 2N −1 Bi and B j
5 31 3 and 5
6 63 5 and 6
7 127 4 and 7
8 255 2,3,4 and 8
9 511 5 and 9
10 1023 7 and 10

In order to cover the entire frequency spectrum generated by a particular PRBS,
the length of a test must be at least equal to the length of the sequence. In a large
number of cases, the duration of the test L is chosen equal to the length of the se-
quence. Through the use of a frequency divider for the clock frequency of the PRBS,
it is possible to shape the energy distribution in the frequency domain. This is why,
in a large number of practical situations, a submultiple of the sampling frequency is

3 Routines for generating PRBS can be downloaded from the websites: http://www.landau-
adaptivecontrol.org and http://landau-bookic.lag.ensieg.inpg.fr.
4 Functions prbs.m and prbs.c available on the websites http://www.landau-adaptivecontrol.org and
http://landau-bookic.lag.ensieg.inpg.fr allow to generate PRBS of various lengths and magnitudes.

http://www.landau-adaptivecontrol.org
http://www.landau-adaptivecontrol.org
http://landau-bookic.lag.ensieg.inpg.fr
http://www.landau-adaptivecontrol.org
http://landau-bookic.lag.ensieg.inpg.fr
tudor
StrikeOut
https://www.gipsa-lab.grenoble-inp.fr/~ioan-dore.landau/adaptivecontrol/

tudor
StrikeOut
https://www.gipsa-lab.grenoble-inp.fr/~ioan-dore.landau/adaptivecontrol/

tudor
StrikeOut
https://www.gipsa-lab.grenoble-inp.fr/~ioan-dore.landau/identificationandcontrol/

tudor
StrikeOut
https://www.gipsa-lab.grenoble-inp.fr/~ioan-dore.landau/identificationandcontrol/
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chosen as the clock frequency for the PRBS. Note that dividing the clock frequency
of the PRBS will reduce the frequency range corresponding to a constant spectral
density in the high frequencies while augmenting the spectral density in the low
frequencies. In general, this will not affect the quality of identification, either be-
cause in many cases when this solution is considered, the plant to be identified has a
low band pass or because the effect or the reduction of the signal/noise ratio at high
frequencies can be compensated by the use of appropriate identification techniques;
however, it is recommended to choose p ≤ 4 where p is the frequency divider.

Figure 5.4 shows the spectral density of PRBS sequences generated with N = 8
for p = 1,2,3. As one can see, the energy of the spectrum is reduced in the high
frequencies and augmented in the lower frequencies. Furthermore, for p = 3 a hole
occurs at fs/3.
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Fig. 5.4 Spectral density of a PRBS sequence , a) N=8, p=1, b) N=8, p=2, c) N=8, p=3

Until now, we have been concerned only with the choice of the length and clock
frequency of the PRBS; however, the magnitude of the PRBS must also be consid-
ered. Although the magnitude of the PRBS may be very low, it should lead to output
variations larger than the residual noise level. If the signal/noise ratio is too low, the
length of the test must be augmented in order to obtain a satisfactory parameter
estimation.

Note that in a large number of applications, the significant increase in the PRBS
level may be undesirable in view of the nonlinear character of the plants to be identi-
fied (we are concerned with the identification of a linear model around an operating
point).
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5.2.3 Data Preprocessing

The first aspect is that one works with centred data (variations of the real data) so
the first operation is the centering of the input/output data by subtracting their mean
value.

When identifying the compensator system in active vibration control systems one
has to take into account the double differentiator behaviour. This means that a part
of the model is known and we should identify only the unknown part. To do this the
input applied to the real system is filtered by a double discrete time differentiator
filter

(1−q−1)2 = 1−2q−1 +q−2 (5.1)

This new input/output sequence is then centred and used together with the measured
output data for identifying the unknown part of the model. After the unknown part
of the model will be identified, the double differentiator should be included in the
final model (the two transfer operators will be multiplied).

5.3 Model Order Estimation from Data

It is extremely important to be able to estimate the order of the system from in-
put/output data since it is hard from physical reasoning to get a reliable estimation
of the order of the system. To introduce the problem of order estimation from data,
we will start with an example. Assume that the plant model can be described by:

y(t) =−a1y(t −1)+b1u(t −1) (5.2)

and that the data are noise free. The order of this model is n = nA = nB = 1.
Question: Is there any way to test from data if the order assumption is correct?

To do so, construct the following matrix:
y(t)

... y(t −1) u(t −1)

y(t −1)
... y(t −2) u(t −2)

y(t −2)
... y(t −3) u(t −3)

=
[

Y (t)
... R(1)

]
(5.3)

Clearly, if the order of the model given in Eq. (5.2) is correct, the vector Y (t) will
be a linear combination of the columns of R(1) (Y (t) = R(1)θ with θ T = [−a1,b1])
and the rank of the matrix will be 2 (instead of 3). If the plant model is of order
2 or higher, the matrix in (5.3) will be full rank. Of course, this procedure can be
extended for testing the order of a model by testing the rank of the matrix [Y (t),R(n̂)]
where:
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R(n̂) = [Y (t −1),U(t −1),Y (t −2),U(t −2) · · ·Y (t − n̂),U(t − n̂)], (5.4)

Y T (t) = [y(t),y(t −1) · · · ], UT (t) = [u(t),u(t −1) · · · ]. (5.5)

Unfortunately, as a consequence of the presence of noise, this procedure cannot
directly be applied in practice.

A more practical approach results from the observation that the rank test problem
can be approached by the searching of θ̂ which minimizes the following criterion
for an estimated value of the order n̂.

VLS(n̂,N) = min
θ̂

1
N
∥Y (t)−R(n̂)θ̂∥2 (5.6)

where N is the number of samples. But this criterion is nothing else than an equiva-
lent formulation of the least squares [223]. If the conditions for unbiased estimation
using least squares are fulfilled, (5.6) is an efficient way for assessing the order of
the model since VLS(n̂)−VLS(n̂+1)→ 0 when n̂ ≥ n.

In the meantime, the objective of the identification is to estimate lower order
models (parsimony principle) and therefore, it is reasonable to add in the criterion
(5.6) a term which penalizes the complexity of the model. Therefore, the penalized
criterion for order estimation will take the form:

JLS(n̂,N) =VLS(n̂,N)+S(n̂,N) (5.7)

where typically
S(n̂,N) = 2n̂X(N) (5.8)

and VLS represents the non penalized criterion. X(N) in (5.8) is a function that de-
creases with N. For example, in the so called BICLS(n̂,N) criterion, X(N) = logN

N
(other choices are possible—see [166], [223], [67]) and the order n̂ is selected as
the one which minimizes JLS given by (5.7). Unfortunately, the results are unsatis-
factory in practice because in the majority of situations, the conditions for unbiased
parameter estimation using least squares are not fulfilled.

In [66] and [67], it is proposed to replace the matrix R(n̂) by an instrumental
variable matrix Z(n̂) whose elements will not be correlated with the measurement
noise. Such an instrumental matrix Z(n̂) can be obtained by replacing in the matrix
R(n̂), the columns Y (t − 1), Y (t − 2), Y (t − 3) by delayed version of U(t −L− i),
i.e., where L > n:

Z(n̂) = [U(t −L−1),U(t −1),U(t −L−2),U(t −2) · · · ] (5.9)

and therefore, the following criterion is used for the order estimation:

JIV (n̂,N) = min
θ̂

1
N
∥Y (t)−Z(n̂)θ̂∥2 +

2n̂logN
N

(5.10)

and
n̂ = min

n̂
JIV (n̂). (5.11)
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A typical curve of the evolution of the criterion (5.10) as a function of n̂ is shown in
Fig. 5.3.

minimum

complexity

penalty term

error term

(should be unbiased)

Fig. 5.5 Evaluation of the criterion for order estimation.

It is shown in [67] that using this criterion a consistent estimate of the order n̂ is
obtained under mild noise conditions (i.e., limN→∞ Pr(n̂ = n) = 1 where Pr denotes
the probability). Comparisons with other order estimation criteria are also provided
in this reference.

Once an estimated order n̂ is selected, one can apply a similar procedure to esti-
mate n̂A, n̂− d̂, n̂B + d̂, from which n̂A, n̂B and d̂ are obtained.5

5.4 Parameter Estimation Algorithms

The algorithms which will be used for parameter estimation will depend on the
assumptions made on the noise disturbing the measurements, assumptions which
have to be confirmed by the model validation.

It is important to emphasize that no one single plant + noise structure can de-
scribe all the situations encountered in practice. Furthermore, there is no a unique
parameter estimation algorithm that may be used with all possible plant + noise
structures such that the estimated parameters are always unbiased. The most typical
structures for plant + noise are shown in Fig. 5.6.

The various “plant + noise” models shown in Fig. 5.6 can be described by:

y(t) =
q−dB(q−1)

A(q−1)
u(t)+η(t) (5.12)

For structure S1 one has:

5 Routines corresponding to this method in Matlab (estorderiv.m) and Scilab (estorderiv.sci)
can be downloaded from the websites: http://www.landau-adaptivecontrol.org and http://landau-
bookic.lag.ensieg.inpg.fr.

http://www.landau-adaptivecontrol.org
http://landau-bookic.lag.ensieg.inpg.fr
http://landau-bookic.lag.ensieg.inpg.fr
tudor
StrikeOut
https://www.gipsa-lab.grenoble-inp.fr/~ioan-dore.landau/adaptivecontrol/
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+

+

(a) S1: A(q−1)y(t) = q−dB(q−1)u(t)+ e(t)

+

+

(b) S2: A(q−1)y(t) = q−dB(q−1)u(t) +
A(q−1)w(t)

+

+

(c) S3: A(q−1)y(t) = q−dB(q−1)u(t) +
C(q−1)e(t)

+

+

(d) S4: A(q−1)y(t) = q−dB(q−1)u(t) +
(1/C(q−1))e(t)

Fig. 5.6 Structure of the “plant + noise” models.

η(t) =
1

A(q−1)
e(t) (5.13)

where e(t)is a discrete time Gaussian white noise (zero mean and standard deviation
σ ).

For structure S2 one has:
η(t) = w(t) (5.14)

a centred noise of finite power and uncorrelated with the input u(t).
For structure S3 one has:

η(t) =
C(q−1)

A(q−1)
e(t) (5.15)

and for structure S4 one has:

η(t) =
1

C(q−1)A(q−1)
e(t) (5.16)

Based on the experience of the authors in identifying active vibration control
systems one can say that in most of the situations they are represented correctly by
ARMAX models (structure S3). Therefore, most likely, algorithms for estimating
parameters for ARMAX models will provide good results (should be confirmed by
model validation). The simplest and in general most efficient algorithms for iden-
tifying active vibration control systems are the “recursive extended least squares”
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and the “output error with extend predictor model”.6 Details on these two type of
algorithms will be given next. Nevertheless, there is no guarantee that ARMAX rep-
resentation is the good one for all possible configuration which can be encountered
in practice. Therefore one has to be prepared to use also other parameter estima-
tion algorithms if the validation of the identified models using the above mentioned
algorithms fails.7

All the recursive parameter estimation algorithms use the same parameter adap-
tation algorithm:

θ̂(t +1) = θ̂(t)+F(t)Φ(t)ν(t +1) (5.17)
F(t +1)−1 = λ1(t)F(t)−1 +λ2(t)Φ(t)ΦT (t) (5.18)

0 < λ1(t)≤ 1 ; 0 ≤ λ2(t)< 2;F(0)> 0
F−1(t)> αF−1(0) ; 0 < α < ∞

ν(t +1) =
ν◦(t +1)

1+ΦT (t)F(t)Φ(t)
(5.19)

What changes from an identification algorithm to another is:

• the structure of the adjustable predictor;
• how the adaptation error is generated;
• how the regressor vector is generated;
• how the adaptation error is generated; and
• the size of the adjustable parameter vector (the number of parameters).

The various options for the selection of the time profile of the adaptation gain F(t)
in (5.19) have been discussed in Section 4.3.4. For system identification of a linear
time invariant models, a decreasing adaptation gain type algorithm will be used or
an algorithm with variable forgetting factor. We will present next the “recursive
extended least squares” and the “output error with extended predictor”.

5.4.1 Recursive Extended Least Squares (RELS)

This method has been developed in order to identify without bias plant + noise
models of the form (ARMAX model):

A(q−1)y(t) = q−dB(q−1)u(t)+C(q−1)e(t) (5.20)

6 Routines for these algorithms can be downloaded from the websites: http://www.landau-
adaptivecontrol.org and http://landau-bookic.lag.ensieg.inpg.fr.
7 The interactive stand alone software iReg (http://tudor-bogdan.airimitoaie.name/ireg.html) pro-
vides parameter estimations algorithms for all the mentioned “plant + noise” structures as well as
an automated identification procedure covering all the stages of system identification. It has been
extensively used for identification of active vibration control systems.

http://www.landau-adaptivecontrol.org
http://www.landau-adaptivecontrol.org
http://landau-bookic.lag.ensieg.inpg.fr
http://tudor-bogdan.airimitoaie.name/ireg.html
tudor
StrikeOut
https://www.gipsa-lab.grenoble-inp.fr/~ioan-dore.landau/identificationandcontrol/

tudor
StrikeOut
https://www.gipsa-lab.grenoble-inp.fr/~ioan-dore.landau/adaptivecontrol/
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The idea is to simultaneously identify the plant model and the noise model, in order
to obtain a prediction (adaptation) error which is asymptotically white.

The model generating the data can be expressed as:

y(t +1) = −A∗(q−1)y(t)+B∗(q−1)u(t −d)+C∗(q−1)e(t)+ e(t +1)
= θ

T
φ0(t)+ e(t +1) (5.21)

where:

θ
T = [a1 · · ·anA ,b1 · · ·bnB ,c1 · · ·cnC ] (5.22)

φ
T
0 (t) = [−y(t) · · ·− y(t −nA +1),u(t −d) · · ·u(t −d −nB +1),

e(t) · · ·e(t −nc +1)] (5.23)

Assume that the parameters are known and construct a predictor that will give a
white prediction error:

ŷ(t +1) =−A∗(q−1)y(t)+B∗(q−1)u(t −d)+C∗(q−1)e(t) (5.24)

Furthermore, this predictor will minimize E{[y(t +1)− ŷ(t +1)]2} ([135]).
The prediction error, in the case of known parameters, is given by:

ε(t +1) = y(t +1)− ŷ(t +1) = e(t +1) (5.25)

This allows rewriting Eq. (5.24) in the form:

ŷ(t +1) =−A∗(q−1)y(t)+B∗(q−1)u(t −d)+C∗(q−1)ε(t) (5.26)

Subtracting now (5.26) from (5.21), one gets:

ε(t +1) =−C∗(q−1) [ε(t)− e(t)]+ e(t) (5.27)

i.e.,
C(q−1) [ε(t +1)− e(t +1)] = 0 (5.28)

Since C(q−1) is an asymptotically stable polynomial, it results that ε(t + 1) will
become white asymptotically.

The adaptive version of this predictor is as follows. The a priori adjustable pre-
dictor will take the form:

ŷ◦(t +1) =−Â∗(q−1, t)y(t)+ B̂∗(q−1, t)u(t)+Ĉ∗(q−1, t)ε(t) = θ̂
T (t)φ(t) (5.29)

in which:

θ̂
T = [â1(t) · · · ânA(t), b̂1(t) · · · b̂nA(t), ĉ1(t) · · · ĉnA(t)] (5.30)

φ
T (t) = [−y(t) · · ·− y(t −nA +1),u(t −d) · · ·u(t −d −nB +1),

ε(t) · · ·ε(t −nc +1)] (5.31)
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The a posteriori adjustable predictor will be given by:

ŷ(t +1) = θ̂
T (t +1)φ(t) (5.32)

The a posteriori prediction error ε(t) which enters in the observation vector of the
predictor is given by:

ε(t) = y(t)− ŷ(t) (5.33)

(where ŷ(t) is now the a posteriori output of the adjustable predictor) and the a
priori prediction error is given by:

ε
◦(t +1) = y(t +1)− ŷ◦(t +1) (5.34)

The a posteriori prediction equation is obtained subtracting (5.32) from (5.21) and
observing that (5.21) can be alternatively expressed as:

y(t +1) = θ
T

φ(t)−C∗(q−1)ε(t)+C(q−1)e(t) (5.35)

(by adding and subtracting the term ±C∗(q−1)ε(t)). One obtains:

ε(t +1) =−C∗(q−1)ε(t)+
[
θ − θ̂(t +1)

]T
φ(t)+C(q−1)e(t) (5.36)

from which it results that:

ε(t +1) =
1

C(q−1)

[
θ − θ̂(t +1)

]T
φ(t)+ e(t) (5.37)

In the deterministic case C(q−1) = 1, e(t)≡ 0. and it can be seen that (5.37) has the
appropriate format corresponding to Theorem 4.1 given in Chapter 4. One imme-
diately concludes, using the PAA given in (5.17) through (5.19), with Φ(t) = φ(t),
ν(t) = ε(t), and ν◦(t) = ε◦(t) that, in the deterministic case, global asymptotic
stability is assured without any positive real condition. In stochastic environment,
either using ODE or martingales, it can be shown [144] that the convergence is
assured provided that (sufficient condition):

H ′(z−1) =
1

C(z−1)
− λ2

2
(5.38)

is a strictly positive real transfer function for 2 > λ2 ≥ maxt λ2(t).

5.4.2 Output Error with Extended Prediction Model (XOLOE)

This algorithm can be used for identification of plant + noise models of the AR-
MAX form. It has been developed initially with the aim to remove the positive real
condition required by the output error algorithm. It turns out that the XOLOE can
be interpreted as a variant of the ELS. To see this, consider the a priori output of
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the adjustable predictor for ELS (5.29), which can be rewritten as follows by adding
and subtracting the term ±Â∗(q−1, t)ŷ(t):

ŷ◦(t +1) = −Â∗(q−1, t)ŷ(t)+ B̂∗(q−1, t)u(t −d)

+
[
Ĉ∗(q−1, t)ε(t)− Â∗(q−1, t)[y(t)− ŷ(t)]

]
(5.39)

Defining:

Ĥ∗(q−1, t) = Ĉ∗(q−1, t)− Â∗(q−1, t) = ĥ1(t)+q−1ĥ2(t)+ . . .

with:
ĥi(t) = ĉi(t)− âi(t) ; i = 1,2 . . .max(nA,nC)

Eq. (5.39) can be rewritten as:

ŷ◦(t +1) =−Â∗(q−1, t)ŷ(t)+ B̂∗(q−1, t)u(t −d)+ Ĥ∗(q−1, t)ε(t) (5.40)

= θ̂
T (t)φ(t) (5.41)

where now:

θ̂
T (t) =

[
â1(t) . . . ânA , b̂1(t) . . . b̂nB(t), ĥ1(t) . . . ĥnH (t)

]
φ

T (t) = [−ŷ(t), . . . ŷ(t −nA +1),u(t −d) . . .u(t −d −nB +1),
ε(t) . . .ε(t −nC +1)]

Equation (5.40) corresponds to the adjustable predictor for the output error with ex-
tended prediction model. One immediately concludes, using the PAA given in (5.17)
to (5.19), with Φ(t) = φ(t), ν(t) = ε(t), and ν◦(t) = ε◦(t) (defined in Eqs. (5.33)
and (5.34), respectively) that, in the deterministic case, global asymptotic stabil-
ity is assured without any positive real condition. In the stochastic context, one
has the (sufficient) convergence condition: H ′(z−1) = 1

C(z−1)
− λ2

2 should be SPR
(2 > λ2 ≥ maxtλ2(t)) similar to that for ELS.

Despite their similar asymptotic properties, there is a difference in the first nA
components of the vector φ(t). While the RELS algorithm uses the measurements
y(t),y(t −1), . . . directly affected by the noise, the XOLOE algorithm uses the pre-
dicted a posteriori outputs ŷ(t), ŷ(t−1) which depend upon the noise only indirectly
through the PAA. This explains why a better estimation is obtained with XOLOE
than with RELS over short or medium time horizons (it removes the bias more
quickly).

5.5 Validation of the Identified Models

The identification methods considered above (recursive extended least squares and
output error with extended predictor) belongs to the class of methods based on the
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whitening of the residual errors, i.e., the identified ARMAX predictor is an optimal
predictor if the residual error is a white noise. If the residual prediction error is a
white noise sequence, in addition to obtaining unbiased parameter estimates, this
also means that the identified model gives the best prediction for the plant output in
the sense that it minimizes the variance of the prediction error. On the other hand,
since the residual error is white and a white noise is not correlated with any other
variable, then all the correlations between the input and the output of the plant are
represented by the identified model and what remains unmodelled does not depend
on the input.

The principle of the validation method is the following:

• If the plant + noise structure chosen is correct, i.e., representative of reality.
• If an appropriate parameter estimation method for the structure chosen has been

used.
• If the orders of the polynomials A(q−1),B(q−1),C(q−1) and the value of d (de-

lay) have been correctly chosen (the plant model is in the model set).

Then the prediction error ε(t) asymptotically tends toward a white noise, which
implies:

lim
t→∞

E{ε(t)ε(t − i)}= 0; i = 1,2,3 . . . ; −1,−2,−3 . . .

The validation method implements this principle.8 It is made up of several steps:

1) Creation of an I/O file for the identified model (using the same input sequence
as for the system).

2) Creation of a residual prediction error file for the identified model.
3) Whiteness (uncorrelatedness) test on the residual prediction errors sequence.

5.5.1 Whiteness Test

Let {ε(t)} be the centred sequence of the residual prediction errors (centred: mea-
sured value - mean value). One computes:

R(0) =
1
N

N

∑
t=1

ε
2(t) , RN(0) =

R(0)
R(0)

= 1, (5.42)

R(i) =
1
N

N

∑
t=1

ε(t)ε(t − i) , RN(i) =
R(i)
R(0)

, i = 1,2,3, . . .nA, . . . (5.43)

with imax ≥ nA (degree of polynomial A(q−1)), which are estimations of the (nor-
malized) autocorrelations.

8 Routines corresponding to this validation method in Matlab and Scilab can be downloaded from
the websites: http://www.landau-adaptivecontrol.org and http://landau-bookic.lag.ensieg.inpg.fr.

http://www.landau-adaptivecontrol.org
http://landau-bookic.lag.ensieg.inpg.fr
tudor
StrikeOut
https://www.gipsa-lab.grenoble-inp.fr/~ioan-dore.landau/adaptivecontrol/

tudor
StrikeOut
https://www.gipsa-lab.grenoble-inp.fr/~ioan-dore.landau/identificationandcontrol/
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If the residual prediction error sequence is perfectly white (theoretical situation),
and the number of samples is very large (N → ∞), then RN(0) = 1, RN(i) = 0,
i ≥ 1.9

In real situations, however, this is never the case (i.e., RN(i) ̸= 0; i ≥ 1), since
on the one hand, ε(t) contains residual structural errors (order errors, nonlinear
effects, non-Gaussian noises), and on the other hand, the number of samples may be
relatively small in some cases. Also, it should be kept in mind that one always seeks
to identify good simple models (with few parameters).

One considers as a practical validation criterion (extensively tested on applica-
tions):

RN(0) = 1 ; | RN(i) |≤ 2.17√
N

; i ≥ 1 (5.44)

where N is the number of samples.
This test has been defined taking into account the fact that for a white noise

sequence RN(i), i ̸= 0 has an asymptotically Gaussian (normal) distribution with
zero mean and standard deviation:

σ =
1√
N

The confidence interval considered in (5.44) corresponds to a 3% level of signifi-
cance of the hypothesis test for Gaussian distribution.

If RN(i) obeys the Gaussian distribution (0,1/
√

N), there is only a probability of
1.5% that RN(i) is larger than 2.17/

√
N, or that RN(i) is smaller than −2.17/

√
N.

Therefore, if a computed value RN(i) falls outside the range of the confidence inter-
val, the hypothesis ε(t) and ε(t − i) are independent should be rejected, i.e., {ε(t)}
is not a white noise sequence.

The following remarks are important:

• If several identified models have the same complexity (number of parameters),
one chooses the model given by the methods that lead to the smallest |RN(i)|;

• A too good validation criterion indicates that model simplifications may be pos-
sible.

• To a certain extent, taking into account the relative weight of various non-
Gaussian and modelling errors (which increases with the number of samples),
the validation criterion may be slightly tightened for small N and slightly relaxed
for large N. Therefore, for simplicity’s sake, one can consider as a basic practical
numerical value for the validation criterion value:

| RN(i) |≤ 0.15 ; i ≥ 1.

9 Conversely, for Gaussian data, uncorrelation implies independence. In this case, RN(i) = 0, i ≥ 1
implies independence between ε(t),ε(t−1) . . ., i.e., the sequence of residuals {ε(t)} is a Gaussian
white noise.
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Note also that a complete model validation implies, after the validation using the
input/output sequence used for identification, a validation using a plant input/output
sequence other than the one used for identification.

5.6 Concluding Remarks

Basic elements for the identification of discrete-time models for dynamical systems
have been laid down in this chapter. The following facts have to be emphasized:

1. System identification includes four basic steps:

• input/output data acquisition under an experimental protocol;
• estimation or selection of the model complexity;
• estimation of the model parameters; and
• validation of the identified model (structure of the model and values of pa-

rameters).

This procedure has to be repeated (with appropriate changes at each step) if the
validation of the model fails.

2. Recursive or off-line parameter estimation algorithms can be used for identifi-
cation of the plant model parameters.

3. The various recursive parameter estimation algorithms use the same structure
for the PAA. They differ from each other in the following ways:

• structure of the adjustable predictor;
• nature of the components of the observation vector; and
• the way in which the adaptation error is generated.

4. The stochastic noises, which contaminate the measured output, may cause er-
rors in the parameter estimates (bias). For a specific type of noise, appropriate
recursive identification algorithms providing asymptotically unbiased estimates
are available.

5. A unique plant + noise model structure that describes all the situations en-
countered in practice does not exist, nor is there a unique identification method
providing satisfactory parameter estimates (unbiased estimates) in all situations.

5.7 Notes and References

A more detailed discussion of the subject following the same pathway can be found
in [135]. The associated website http://www.gipsa-lab.grenoble-inp.fr/˜ioandore.
landau/identificationandcontrol/ provide matlab and scilab functions for system
identification as well as simulated and real input/output data for training.

For a general coverage of system identification see [166, 223].

http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/


Chapter 6
Identification of the Test Benches in Open-Loop
Operation

Abstract This chapter focuses on the identification of the dynamic models of the
three test benches presented in Chapter 2. The techniques discussed in Chapter 5
are used.

6.1 Identification of the Active Hydraulic Suspension in
Open-Loop Operation

The active suspension has been presented in Section 2.1. It will be used to enhance
damping properties of the passive damper in the frequency region 25 to 50 Hz. In
the same frequency region, active rejection of vibrations will be also considered.
Outside this region, the passive part offers good vibration isolation properties. For
active damping the specifications in the frequency domain will go up to 150 Hz.
Above this frequency, the system should operate almost in open-loop. The sampling
frequency is 800 Hz.

The block diagram for the primary and secondary path is shown in Fig. 6.1, where
u(t) will be the excitation of the secondary path and up the excitation of the primary
path.

The linear time-invariant (LTI) discrete-time model of the secondary path, used
for controller design has the form:

G(z−1) =
z−dB(z−1)

A(z−1)
(6.1)

where

A(z−1) = 1+a1z−1 + . . .+anA z−nA , (6.2)

B(z−1) = b1z−1 + . . .+bnBz−nB , (6.3)

91
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and d is the secondary path pure time delay in number of sampling periods.1

+

+

Primary path

Secondary path

Fig. 6.1 Block diagram of the primary and secondary path.

The linear time-invariant (LTI) discrete-time model of the primary path has the
form:

D(z−1) =
q−dDBD(z−1)

AD(z−1)
(6.4)

The identification of the secondary and primary paths will be presented next. The
model of the secondary path will be used through the book for controller design
while the model of the primary path will be used for simulation only.

6.1.1 Identification of the Secondary Path

6.1.1.1 Data Acquisition

Since the main frequency range for control is between 25 to 50 Hz, a Pseudo Ran-
dom Binary Sequence (PRBS) with a clock frequency divider of 4 has been used
in order to enhance the energy of the input excitation in low frequencies. The risk
of missing some dynamics around 200 Hz is not important since the system will
operate almost in open-loop at frequencies over 150 Hz. The PRBS used has the
following characteristics:

• magnitude = 0.2V;
• number of cells: N = 9 (sequence length: L = 2N −1 = 511);
• frequency divider: p = 4; and
• number of acquired samples: 2048.

Since the secondary path has a double differentiator behaviour (input: position, out-
put: force) as indicated in Section 5.2.3, this will be considered as a “known” part
of the system and the objective will be to identify the “unknown” part only. To do

1 The complex variable z−1 will be used to characterize the system’s behaviour in the frequency
domain and the delay operator q−1 will be used for the time domain analysis.
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this, the input sequence will be filtered by a double discrete-time differentiator (i.e.,
(1−q−1)2) as shown in Fig. 6.2, i.e., B(q−1) = (1−q−1)2 ·B′(q−1).

Fig. 6.2 Including the double differentiator for identification of the secondary path.

Once B′ will be identified, the discrete-time double differentiator will be included
in the final complete model.

The input/output data file data identActiveSusp SecPath.mat is available on the
book website (the input is already filtered through a discrete-time double differen-
tiator).

6.1.1.2 Order Estimation

The algorithm described in Section 5.3, for order estimation and based on the use
of instrumental variables has been used.2 The non penalized criterion VIV (dashed
line) and the complexity penalized criterion JIV (solid line) for the estimation of n
(order of the system) are shown in Fig. 6.3. As it can be seen the minimum of JIV is
not very sharp but however clear. n = 14 has been selected.

Proceeding further to the estimation of the orders of polynomials A, B′, and delay
d, the values obtained are nA = 13, nB′ = 11, d = 3. Looking to the Fig. 6.4 (zoom)
it can be seen that the criterion for the selection of nA gives extremely close results
for nA = 13 and nA = 14. It was found that nA = 14 gives better results in terms of
statistical model validation. For parameter estimation, since the complexity of the
designed controller will depend on nB + d, it was decided to take nB′ = 14, d = 0
(the model with nB′ = 11 and d = 3 gives very close results).

6.1.1.3 Parameter Estimation

Models with order nA = 13, nA = 14 and d = 0 have been identified. As indicated
in Section 5.4 extensive validation tests on this system as well as on other AVC
(see subsequent section) indicates that the ARMAX representation of the “plant +

2 See function estorderiv.m on the book website.
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Fig. 6.3 Estimation of the system order n (active suspension).
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Fig. 6.4 Estimation of the order of polynomial A (nA) (active suspension).

noise” provides the best results. Various methods dedicated to parameter estimation
of ARMAX model have been used (Recursive extended least squares, Output er-
ror with extended prediction model, Recursive maximum likelihood [135]). These
algorithms have been used with a variable forgetting factor

λ1(t) = λ0λ1(t −1)+1−λ0 ; 0 < λ0 < 1, (6.5)

with λ1(0) = 0.97 and λ0 = 0.97. The various obtained models have been validated
and compared in terms of quality of validation.
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6.1.1.4 Model Validation

Models with nA = 14, nB′ = 14, d = 0 and with nA = 13, nB′ = 14, d = 0 ob-
tained with various parameter estimations have been compared using the white-
ness test. The best results have been obtained using estimated models with nA =
14, nB′ = 14, d = 0 and estimating the parameters using Recursive Extended Least
Squares (RELS) or Output Error with Extended Prediction Model (XOLOE). Both
have been used with a variable forgetting factor. Figure 6.5 shows the validation re-
sults for the RELS model and Fig. 6.6 shows the validation results for the XOLOE
model (WRN(i) corresponds to the normalized autocorrelations defined in Chap-
ter 5, Eq. (5.43)).
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Fig. 6.5 Whiteness test for the RELS identified model (active suspension).

Table 6.1 summarize the validation results.

Table 6.1 Summary of the whiteness test validations (active suspension).

Algorithm Error energy Maximum RN(i) RN(i) over limit

RELS 0.0092 0.0647 (i=11) 3
XOLOE 0.0090 0.0540 (i=3) 2

The frequency characteristics of the two models are indistinguishable except at
very low frequencies. Finally the RELS model has been chosen since the RN(i) for
lower values of i are smaller than those of the XOLOE model. The parameters of the
model are given in Table 6.2 and they are stored in the file SecPath activeSusp.mat
available on the book website. Table 6.3 gives the frequency and the damping of the
poles of the secondary path identified model (RELS).
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Fig. 6.6 Whiteness test for the XOLOE identified model (active suspension).

Table 6.2 Parameters of the identified secondary path model (RELS) (active suspension).

Parameter Value Parameter Value Parameter Value Parameter Value

a0 1.0000 a9 0.5008 b0 0.0000 b9 -2.3676
a1 -0.0586 a10 0.2481 b1 0.0251 b10 2.3658
a2 0.4092 a11 -0.4152 b2 0.0647 b11 2.5058
a3 -0.9164 a12 -0.0154 b3 -0.1246 b12 2.8960
a4 -0.5737 a13 -0.3473 b4 -0.4606 b13 -0.5826
a5 -0.5834 a14 -0.0795 b5 2.7988 b14 0.1619
a6 -0.3110 b6 1.2316 b15 -2.5355
a7 0.6052 b7 -3.3935 b16 0.4735
a8 0.6965 b8 -3.0591

Table 6.3 Frequency and damping of the poles of the secondary path identified model (RELS)
(active suspension).

Poles Damping Frequency [Hz]

0.955993+0.000000i 1.000000 5.730231
0.950132−0.242697i 0.077941 31.939243
0.950132+0.242697i 0.077941 31.939243
0.265498−0.920456i 0.033259 164.335890
0.265498+0.920456i 0.033259 164.335890
0.162674−0.753066i 0.188593 176.071865
0.162674+0.753066i 0.188593 176.071865
−0.301786−0.925822i 0.014095 240.144314
−0.301786+0.925822i 0.014095 240.144314
−0.547208−0.798935i 0.014803 276.492803
−0.547208+0.798935i 0.014803 276.492803
−0.869136−0.255155i 0.034615 363.860597
−0.869136+0.255155i 0.034615 363.860597
−0.217701+0.000000i 0.436606 444.616040
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Figure 6.7 gives the poles zero map of the RELS model of the secondary path.
The model of the secondary path is characterized by the presence of several very
low damped complex poles and unstable zeros. The frequency characteristics of the
secondary path is shown in Fig. 6.8.
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Fig. 6.7 Poles-zeros map for the secondary path identified model (RELS) (active suspension).

6.1.2 Identification of the Primary Path

The same identification methodology used for the secondary path has been used
for identifying the model of the primary path. The identification was done between
the excitation of the shaker up and the residual acceleration in the absence of the
compensation action. The estimated orders are: nAp = 12, nBp = 9, dp = 3. The ex-
citation was a PRBS sequence generated with a shift register with N=9 cells and
without frequency divider (p = 1). Like for the secondary path, the existence of the
double differentiator has been taken in account. The best model in terms of vali-
dation has been obtained with RELS algorithm using adaptation gain with variable
forgetting factor (λ1(0) = λ0 = 0.97). The frequency characteristics of the identi-
fied model for the primary path is shown in Fig. 6.8. The model of the primary path
shows a very strong resonance at 31.59 Hz which needs to be damped. There also
other very low damped complex zeros over 160 Hz. The parameters of the model
are given in Table 6.4 and they are available in the file PrimPath activeSusp.mat to
be downloaded from the book website.
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Fig. 6.8 Frequency characteristics of the identified model of the primary and secondary paths
(active suspension).

Table 6.4 Parameters of the identified model of the primary path (active suspension).

Parameter Value Parameter Value Parameter Value Parameter Value

a0 1.0000 a7 0.7709 b0 0.0000 b7 0.1325
a1 -0.3862 a8 0.2417 b1 -0.1016 b8 0.0552
a2 -0.2391 a9 -0.0932 b2 -0.2085
a3 -0.6875 a10 -0.1747 b3 -0.1375
a4 -0.3052 a11 -0.4845 b4 -0.0393
a5 0.4003 a12 0.2735 b5 0.0985
a6 -0.1430 b6 0.1536

6.2 Identification of the AVC System Using Feedback
Compensation through an Inertial Actuator

The AVC system using an inertial actuator has been described in Section 2.2. The
block diagram of the primary and secondary paths is the same as for the active
suspension and is given in Fig. 6.1, where u(t) will be the excitation of the secondary
path and up the excitation of the primary path.

The identification of the primary and secondary paths in open-loop operation will
be presented. The open-loop identification procedure is done in the absence of the
controller and of the disturbance. The primary path is identified only for simulation
purposes. The sampling frequency is 800 Hz.



6.2 Identification of the AVC System Using Feedback Compensation 99

6.2.1 Identification of the Secondary Path

6.2.1.1 Data Acquisition

As persistent excitation signal a PRBS generated with a shift register having N = 10
cells and a frequency divider p = 2 is used. The magnitude used is: 0.085 V. The
input/output data file data identSAAI SecPath.mat is available on the book website.

Since both paths present a double differentiator behaviour, this “known” dynam-
ics do not need to be estimated in the open-loop identification procedure and the
objective is to identify the “unknown” part only. This procedure has been already
used in the previous Section 6.1 and is illustrated in Fig. 6.2. The model of the sys-
tem without the double differentiator will be identified and the double differentiator
will be included in the final complete model.

6.2.1.2 Order Estimation

The estimation of the order of the model for the secondary path is done using the
procedure described in Section 5.3). Assuming that the measurements are affected
by non white noise, one uses for complexity estimation the estororderiv.m3 algo-
rithm which implements the estimation procedure using delayed instrumental vari-
ables.
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Fig. 6.9 Evaluation of the criterion for order estimation of the secondary path (global view) (in-
ertial actuator AVC).

3 Available on the book website.
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Fig. 6.10 Evaluation of the criterion for order estimation of the secondary path (zoom) (inertial
actuator AVC).
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Fig. 6.11 Criterion for estimation of the order of the n−d (inertial actuator AVC).

Figure 6.9 shows the complexity estimation criterion for the order of the sec-
ondary path model n = max{nA,nB +d}. The dashed line represents the VIV crite-
rion as a function of the order n̂ and the solid line represents the complexity penal-
ized criterion JIV . A zoom of the penalized criterion is shown in Fig. 6.10. It can
be observed that the penalized criterion is almost flat between 20 and 23, which
suggests that any one of these values will give a good result.



6.2 Identification of the AVC System Using Feedback Compensation 101

15 16 17 18 19 20 21 22
0

0.005

0.01

0.015

0.02

IV estimation of n
B

+d

Order (n
B’

+d)

V
a
lu

e
 o

f 
th

e
 c

ri
te

ri
o

n

 

 
JIV (n̂B′ + d̂, N)

VIV (n̂B′ + d̂, N)

Fig. 6.12 Criterion for estimation of the order of the order nB +d (inertial actuator AVC).
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Fig. 6.13 Criterion for estimation of the order of the order of nA (inertial actuator AVC).

After validation of the estimated models of various orders obtained for various
n̂ between 20 and 23 and comparing also with the power spectral density (PSD) of
the output, it has been concluded that the best compromise between complexity and
quality of the model for the secondary path is given by order n̂ = 22.

Once the order of the system is estimated, the estimation of n− d,nB + d and
nA follows using the same type of criterion as for the estimation of the order of
the system. The estimated delay of the secondary path is obtained as d̂ = 0 from
Fig. 6.11 since the minimum value of the criterion is obtained for n−d = 22 (with
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n = 22). From the estimation of nB + d in Fig. 6.12, and taking in account that
d = 0 it results that the estimate of the order of the numerator is n̂B′ = 19 (without
the double differentiator). Finally the plant denominator order is estimated from
Fig. 6.13 as n̂A = 18.

6.2.1.3 Parameter Estimation

As for the active suspension, it was found that parameter estimation methods dedi-
cated to ARMAX “model + noise” structure give the best validation results. These
methods include Recursive Extended Least Squares (RELS), Output Error with Ex-
tended Estimation Model (XOLOE) and Recursive Maximum Likelihood (RML)
[135]. These algorithms have been used with a decreasing adaptation gain.

6.2.1.4 Model Validation

The normalized autocorrelations for the methods RELS, XOLOE and RML are
shown respectively in Figs. 6.14, 6.15 and 6.16 for the estimated models of the
secondary path (WRN(i)) corresponds to the normalized autocorrelations defined
in Chapter 5, Eq. (5.43). Table 6.5 gives the maximum normalized autocorrelation
term and the error variance for each of these methods. RELS algorithm gives the
best results for the identification of the secondary path.
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Fig. 6.14 Whiteness test for the RELS identified model of the secondary path (inertial actuator
AVC).

The parameters of the secondary path are given in Table 6.6 and they can be
found in the file SecPath SAAI.mat available on the book website. The frequency
and damping of the poles and zeros for the secondary path are given in Tables 6.7
and 6.8. The poles-zeros map of the secondary path is given in Fig. 6.17. The fre-
quency characteristic of the secondary path is shown in Fig. 6.18. There are several
low damped complex poles and zeros in the open-loop identified model. There are
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Fig. 6.15 Whiteness test for the XOLOE identified model of the secondary path (inertial actuator
AVC).
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Fig. 6.16 Whiteness test for the RML identified model of the secondary path (inertial actuator
AVC).

Table 6.5 Summary of the validation results for RELS, XOLOE and RML (inertial actuator AVC).

Algorithm maxWRN(i) Error variance

RELS 0.059 9.7e-06
XOLOE 0.0642 1.0024e-05
RML 0.1367 7.9383e-06

also very close resonances and anti-resonances. The operational zone is defined be-
tween 50 and 95 Hz.

6.2.2 Identification of the Primary Path

Similar analysis has been done also for the identified model of the primary path.
The orders of the primary path are: n̂ = 14, n̂AD = 13, and n̂B′

D
= 14 with a plant

delay of dD = 0. The parameters of the identified primary path model are given in
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Fig. 6.17 Poles-zeros map of the secondary path model (inertial actuator AVC).

file PrimPath SAAI.mat. The frequency characteristic of the primary path is shown
in Fig. 6.18.

Table 6.6 Identified parameters of the secondary path model (inertial actuator AVC).

Parameter Value Parameter Value Parameter Value Parameter Value

a0 1 a11 -0.6107 b0 0 b11 -0.0179
a1 -1.7074 a12 0.5858 b1 -0.0127 b12 0.0164
a2 1.2791 a13 -0.2963 b2 -0.0876 b13 -0.0425
a3 -0.8861 a14 0.5336 b3 0.0812 b14 0.0031
a4 1.2235 a15 -0.9736 b4 0.0157 b15 0.0089
a5 -1.1388 a16 0.7849 b5 0.0103 b16 0.0166
a6 0.6129 a17 -0.3860 b6 0.0380 b17 0.0717
a7 -0.7381 a18 0.1902 b7 -0.0580 b18 -0.0508
a8 1.0485 b8 -0.0064 b19 -0.0012
a9 -0.3791 b9 0.0195 b20 -0.0093
a10 0.2289 b10 0.0188 b21 -0.0139
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Fig. 6.18 Frequency characteristics of the primary and secondary paths (inertial actuator AVC).

Table 6.7 Poles of the open-loop secondary path identified model (inertial actuator AVC).

Poles Damping Frequency [Hz]

0.8982±0.2008 0.3530 29.9221
0.9280±0.3645 0.0079 47.6491
0.6642±0.7203 0.0247 105.1909
0.5260±0.8050 0.0395 126.4064
0.0623±0.5832 0.3423 198.4441
−0.1229±0.9689 0.0139 216.0790
−0.4533±0.8394 0.0228 263.1134
−0.7524±0.6297 0.0078 311.2826
−0.8965±0.2856 0.0215 360.8163

Table 6.8 Zeros of the open-loop secondary path identified model (inertial actuator AVC).

Zeros Damping Frequency [Hz]

1 0 0
1 0 0

0.9292±0.3559 0.0135 46.5756
0.7097±0.7037 0.0008 99.4567
0.2359±0.9201 0.0389 168.1703
0.1054±0.6063 0.3279 188.5135
−0.1100±1.0087 -0.0087 213.8383
−0.4362±0.8273 0.0325 261.9247
−0.8085±0.5713 0.0040 321.6776
−0.9753±0.1243 0.0056 383.8647

−0.4908 0.2209 410.1361
−7.7152 -0.5452 477.1543
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6.3 Identification of the Active Distributed Flexible Mechanical
Structure using Feedforward-Feedback Compensation

The AVC system using feedforward-feedback compensation has been described in
Section 2.3. In this section, open-loop identification results for the secondary, pos-
itive feedback coupling (reverse) and primary paths will be presented. Note also
that, although for adaptive control it is sufficient to estimate the secondary and re-
verse paths, for simulation and model-based controller design it is also necessary to
identify the primary path.

The primary path is characterized by the asymptotically stable transfer function:

D(z−1) =
BD(z−1)

AD(z−1)
(6.6)

where

BD(z−1) = bD
1 z−1 + . . .+bD

nBD
z−nBD (6.7)

AD(z−1) = 1+aD
1 z−1 + . . .+aD

nAD
z−nAD (6.8)

The unmeasurable value of the output of the primary path (when the compensation
is active) is denoted x(t). The secondary path is characterized by the asymptotically
stable transfer function:

G(z−1) =
BG(z−1)

AG(z−1)
(6.9)

where:

BG(z−1) = bG
1 z−1 + . . .+bG

nBG
z−nBG = z−1B∗

G(z
−1) (6.10)

AG(z−1) = 1+aG
1 z−1 + . . .+aG

nAG
z−nAG (6.11)

The positive feedback coupling (the reverse path) is characterized by the asymptot-
ically stable transfer function:

M(z−1) =
BM(z−1)

AM(z−1)
(6.12)

where:

BM(z−1) = bM
1 z−1 + . . .+bM

nBM
z−nBM = q−1B∗

M(q−1) (6.13)

AM(z−1) = 1+aM
1 z−1 + . . .+aM

nAM
z−nAM (6.14)

The integer delay, if any, is included in the polynomials BX .
The methodology used for parametric system identification is similar to that pre-

sented in the previous sections. The sampling frequency is 800 Hz.
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The identification of the primary, secondary and reverse paths has been done
in the absence of the compensator (see Fig. 2.11). For the secondary and reverse
paths a PRBS excitation signal with a shift register having N = 12 cells (without
frequency divider, p = 1) has been applied4 at the input of the inertial actuator II,
where the control signal û(t) is applied (see Figs. 2.9 and 2.10). For the primary
path, a different PRBS signal with N = 10 and frequency divider p = 4 has been
applied at the input of the inertial actuator I.

For the secondary path, G(q−1), the output is the residual acceleration measure-
ment, e◦(t) in Fig. 2.11(b). The input/output data necessary for the identification is
given in file data identif G.mat and is available on the book website. Given that the
input is the position of the inertial actuator II and that the output is an acceleration,
it can be concluded that a double differentiator exists. As described also in Sec-
tions 6.1 and 6.2, the a priori known properties of the system can be considered by
filtering the input u(t) through a filter that represents the a priori known dynamics.
Then the resulting signal u′′(t) will be used as input for the identification procedure.
At the end, the double differentiator will be included in the model.

The estimated orders of the model for the secondary path (without the double
differentiator) are nBG = 12, nAG = 14. The best results, in terms of validation,
have been obtained with the Recursive Extended Least Square method using de-
creasing adaptation gain. The result of the whiteness test validation is shown in
Fig. 6.19 (WRN(i) corresponds to the normalized autocorrelations defined in Chap-
ter 5, Eq. (5.43)). The parameters of the estimated model are given in Table 6.9 and
are also given in the file SecPathModel.mat available from the book website. The
frequency characteristics of the secondary path is shown in Fig. 6.20, solid line. It
features several very low damped vibration modes and anti resonances, as can be
noticed from Tables 6.10 and 6.11, respectively. As a consequence of the double
differentiator behaviour, a double zero at z = 1 is also present.
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Fig. 6.19 Whiteness test for the RELS identified secondary path model (AVC with feedforward).

4 In previous publications ([127, 137]), models identified with N = 10 and p = 4 have been used.
The differences in the identified models frequency characteristics are negligible.
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Table 6.9 Parameters for the identified model of the secondary path (AVC with feedforward).

Parameter Value Parameter Value Parameter Value Parameter Value

a0 1 a8 0.0212 b0 0 b8 -0.7000
a1 -2.6416 a9 0.0761 b1 -0.1923 b9 0.7212
a2 3.4603 a10 1.0527 b2 0.2225 b10 0.0451
a3 -2.4405 a11 -1.3628 b3 0.4228 b11 -0.4273
a4 1.5221 a12 0.7597 b4 -0.9161 b12 -0.0306
a5 -1.8122 a13 -0.1076 b5 0.4604 b13 0.4383
a6 2.3666 a14 0.0462 b6 0.2332 b14 -0.2270
a7 -1.3779 b7 -0.0502
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Fig. 6.20 Frequency characteristics of the primary, secondary and reverse identified paths (AVC
with feedforward).

Table 6.10 Fequency and damping of the poles of the secondary path identified model (AVC with
feedforward).

Poles Damping Frequency [Hz]

0.9323±0.3443 0.0176 45.0468
0.7850±0.6099 0.0090 84.1065
0.6131±0.7794 0.0093 115.1355
0.3128±0.9443 0.0042 159.2716
0.0097±0.2646 0.6547 258.4384
−0.5680±0.8006 0.0085 278.5733
−0.7640±0.3690 0.0609 343.3584
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Table 6.11 Frequency and damping of the zeroes of the secondary path identified model (AVC
with feedforward).

Zeroes Damping Frequency [Hz]

1 0 0
1 0 0

0.9272±0.3245 0.0528 42.9288
0.6624±0.7295 0.0176 106.1476
0.3105±0.9452 0.0040 159.5853
−0.6275±0.7404 0.0131 289.5403
−0.7728±0.3688 0.0574 343.8781

−1.8425 -0.1910 407.4983

For the reverse path, M(q−1), the output is the signal delivered by the primary
transducer (accelerometer) ŷ1(t). The input/output data necessary for identification
is given in file data identif M.mat and is available on the book website. Similarly to
the secondary path, the input to the reverse path is a position while the output is an
acceleration. It is clear that a double differentiator is present. The model’s complex-
ity has been estimated to be nBM = 11, nAM = 13 (without the double differentiator).
The best results, in terms of validation, have been obtained with the Recursive Ex-
tended Least Square method with decreasing adaptation gain (see Fig. 6.21). The
parameters of the estimated model numerator and denominator are given in the file
ReversePathModel.mat available from the book website. The frequency character-
istic of the reverse path is shown in Fig. 6.20 (dotted line). There are several very
low damped vibration modes and anti resonances as can be seen in Tables 6.12 and
6.13. There are also two zeros on the unit circle corresponding to the double differ-
entiator behaviour. The gain of the reverse path is of the same order of magnitude as
the gain of the secondary path up to 150 Hz, indicating a strong positive feedback
in this frequency zone.
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Fig. 6.21 Whiteness test for the RELS identified reverse path model (AVC with feedforward).
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Table 6.12 Poles of the reverse path identified model (AVC with feedforward).

Poles Damping Frequency [Hz]

0.9287±0.3361 0.0357 44.2370
0.7863±0.6087 0.0086 83.8780
0.6139±0.7784 0.0096 114.9852
0.3112±0.9453 0.0039 159.5034
−0.6093±0.7671 0.0092 285.4759
−0.3781±0.3018 0.2822 327.5534

−0.8967 0.0347 400.2411

Table 6.13 Zeroes of the reverse path identified model (AVC with feedforward).

Zeroes Damping Frequency [Hz]

1 0 0
1 0 0

0.3853 1.0000 121.4376
1.0198±1.5544 -0.5307 148.7535
0.2883±0.9522 0.0040 162.5682
−0.6527±0.7248 0.0108 293.3561

−0.8467 0.0529 400.5609
−0.6375 0.1418 404.0855
−3.6729 -0.3826 432.9424

The primary path is identified between w(t) and e◦(t) in the absence of the com-
pensator (see Fig. 2.11). The signal w(t) is the result of the excitation s(t) (PRBS
designed with N = 10 bits shift register and frequency divider p= 4) passed through
the transfer function W (z−1).

The estimated orders of the primary path model are nBD = 20, nAD = 20. The
best results in terms of validation have been obtained using FOLOE algorithm with
variable forgetting factor with λ1(0) = λ0 = 0.95. The fixed filter used in FOLOE
(L = Â) has been obtained by running first the AFOLOE algorithm with the same
adaptation gain (see Section 4.3.2.2 in this book and also [135, 144] for more details
on the FOLOE and AFOLOE algorithms). The parameters of the identified primary
path model are given in file PrimPathModel.mat available from the book website.
The data file data identif D.mat used to obtain these parameters is also available
on the book website. The frequency characteristic is presented in Fig. 6.20 (dashed
line).

The primary path model is used for simulations, detailed performance evalua-
tion and for the design of linear feedforward compensators (see Chapter 14). Note
that the primary path features a strong resonance at 106 Hz, exactly where the sec-
ondary path has a pair of low damped complex zeros (almost no gain). Therefore,
one cannot expect a good attenuation around this frequency.

For identification purposes, it is also of interest to characterize the spectrum of
the disturbance w(t). Looking at the power spectral density of the signal w(t) in
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Fig. 6.22, it can be observed that it has enough energy in the frequency band from
40 to 275 Hz. This corresponds to the frequency band where also the secondary path
has enough gain. As such, the identified model of the primary path will be relevant
and the compensation signal can effectively influence the residual acceleration.
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Fig. 6.22 Power spectral density of the disturbance w(t) (AVC with feedforward).

6.4 Concluding Remarks

• The methodology discussed in Chapter 5 has been used successfully for identi-
fying the dynamical models of the test benches in open-loop operation.

• The criterion for order estimation has for all three test benches a relatively flat
minimum. This requires a comparative test of models of different orders around
the value corresponding to the minimum of the criterion.

• Based on the identification of several test benches one can say that dynamical
models for AVC can be relevantly represented in most of the cases by ARMAX
models.

• Among the various algorithms available for the ARMAX model structure, it was
found that RELS and XOLOE algorithms provide the best results for the specific
problems considered.
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6.5 Notes and References

The book website provides input/output data and the models for all three test
benches.

The models of the test benches have been used in [130, 133, 127, 146] as well as
in other papers. For the identification of another test bench see [128].



Chapter 7
Digital Control Strategies for Active Vibration
Control - The Bases

Abstract This chapter reviews basic digital control strategies and their application
to active vibration control. The design of polynomial controllers (RS controllers)
is discussed both from performance and robustness perspectives. The importance
of sensitivity functions is enhanced. A number of basic concepts are defined and
explained. A real-time example of an active vibration control (suppression of a tonal
vibration) illustrates the design methodology presented in this chapter.

7.1 The Digital Controller

+

-

Fig. 7.1 Discrete feedback RS controller.

The basic equation for the polynomial digital controller to be used in active vi-
bration control (subsequently called RS controller) is (see Fig. 7.1):

S(q−1)u(t) =−R(q−1)y(t) (7.1)

where u(t) is the plant input, y(t) is the measured plant output, and

S(q−1) = s0 + s1q−1 + . . .+ snS q−nS = s0 +q−1S∗(q−1), (7.2)

R(q−1) = r0 + r1q−1 + . . .+ rnR q−nR , (7.3)

are, respectively, the denominator and numerator of the controller

113
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K(q−1) =
R(q−1)

S(q−1)
. (7.4)

Eq. (7.1) can also be written as:

u(t) =
1
s0

[
−S∗(q−1)u(t −1)−R(q−1)y(t)

]
(7.5)

Note that for a number of control algorithms (like pole placement) s0 = 1 in (7.2).
Consider

G(q−1) =
q−dB(q−1)

A(q−1)
(7.6)

as the pulse transfer operator of the cascade DAC + ZOH + continuous-time system
+ ADC, then the transfer function of the open-loop system is written as

HOL(z−1) = K(z−1)G(z−1) =
B(z−1)R(z−1)

A(z−1)S(z−1)
(7.7)

and the closed-loop transfer function between the reference signal r(t) and the out-
put y(t), using controller (7.4), has the expression

Syr(z−1) =
KG

1+KG
=

B(z−1)R(z−1)

A(z−1)S(z−1)+B(z−1)R(z−1)
=

B(z−1)R(z−1)

P(z−1)
, (7.8)

where

P(z−1) = A(z−1)S(z−1)+ z−d−1B⋆(z−1)R(z−1) (7.9)

= A(z−1)S(z−1)+ z−dB(z−1)R(z−1) (7.10)

is the denominator of the closed-loop transfer function that defines the closed-loop
system poles. Syr is known also as the complementary sensitivity function.

In the presence of disturbances (see Fig. 7.2), there are other important transfer
functions to consider, relating the disturbance to the output and the input of the
plant.

+

+

+
-

+

+ +

+

input

disturbance

output

disturbance noise

Fig. 7.2 Discrete feedback RS controller with input/output disturbances and measurement noise.
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The transfer function between the disturbance p(t) and the output y(t) (output
sensitivity function) is given by

Syp(z−1) =
1

1+KG
=

A(z−1)S(z−1)

P(z−1)
. (7.11)

The transfer function between the disturbance p(t) and the input of the plant u(t)
(input sensitivity function) is given by

Sup(z−1) =− K
1+KG

=−A(z−1)R(z−1)

P(z−1)
. (7.12)

Another important transfer function describes the influence on the output of a
disturbance υ(t) on the plant input. This sensitivity function (input disturbance-
output sensitivity function) is given by

Syυ(z−1) =
G

1+KG
=

B(z−1)S(z−1)

P(z−1)
. (7.13)

The feedback system presented in Fig. 7.2 is asymptotically stable if and only if
all the four sensitivity functions Syr, Syp, Sup, and Syυ are asymptotically stable.

As it will be shown soon, the perfect rejection of disturbances with known char-
acteristics or conversely opening of the loop for certain disturbances will require
the introduction of some fixed pre-specified polynomials in S and R. The general
structure of R and S will be of the form:

S(z−1) = S′(z−1)HS(z−1) (7.14)
R(z−1) = R′(z−1)HR(z−1) (7.15)

where HS(z−1) and HR(z−1) are monic fixed polynomials which are introduced in
the controller for achieving certain performances with respect to disturbances. Using
this parameterization, the closed-loop poles will be given by:

P(z−1) = A(z−1)HS(z−1)S′(z−1)+ z−d−1B⋆(z−1)HR(z−1)R′(z−1) (7.16)

Note that HS(z−1) and HR(z−1) can be interpreted as an “augmentation” of the plant
model (for computation purposes).

The design of the RS controller can be done in the frequency domain using trans-
fer functions (operators).

7.2 Pole Placement

The pole placement strategy is applicable to plant models of the form of equation
(7.6). We will make the following hypothesis upon the plant model of Eq. (7.6):
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H1) No restrictions upon the orders of the polynomials A(z−1), B(z−1) and the
value of the delay d.

H2) The orders nA,nB, the delay d and the coefficients of A(z−1) and B(z−1) are
known.

H3) The zeros of B(z−1) can be inside or outside the unit circle.
H4) A(z−1) and B(z−1) (or AHS and BHR) do not have any common factors.
H5) The zeros of A(z−1) can be inside or outside the unit circle.

The control law is of the form (7.1) and the polynomials R(z−1) and S(z−1) have
the structure of equations (7.14) and (7.15).

The closed-loop behaviour is defined by:

• the desired closed-loop poles;
• the choice of the fixed parts HR(z−1) and HS(z−1).

The desired closed-loop poles are chosen under the form:

P(z−1) = PD(z−1) ·PF(z−1) (7.17)

where PD(z−1) defines the dominant poles and PF(z−1) defines the auxiliary poles.
Often PD(z−1) is chosen to include all the stable poles of the plant in open-loop

with the option of eventually modifying the damping of the complex poles.
The role of PF(z−1) is on one hand to introduce a filtering effect at certain fre-

quencies and on the other hand to improve the robustness of the controller.
With the notations:

nA = degA ; nB = degB

nHS = degHS ; nHR = degHR

and under the hypotheses H1 to H5, (7.16) has a unique solution for S′ and R′, of
minimal degree for:

nP = degP(z−1)≤ nA +nHS +nB +nHR +d −1 (7.18)

nS′ = degS′(z−1) = nB +nHR +d −1 (7.19)
nR′ = degR′(z−1) = nA +nHS −1 (7.20)

with

S′(z−1) = 1+ s′1z−1 + . . .+ s′nS
z−nS (7.21)

R′(z−1) = r′0 + r′1z−1 + . . .+ r′nR
z−nR (7.22)

For a proof see [88, 144]. Various methods for solving this equation are available.1

1 See functions bezoutd.m (Matlab®) or bezoutd.sci (Scilab) on the book website.
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7.2.1 Choice of HR and HS – Examples

Opening the loop

In a number of applications, the measured signal may contain specific frequencies
which should not be attenuated by the regulator. In such cases the system should be
in open-loop at these frequencies.

From (7.12) in the absence of the reference, the input to the plant is given by:

u(t) = Sup(q−1)p(t) =
A(q−1)HR(q−1)R′(q−1)

P(q−1)
p(t) (7.23)

and therefore in order to make the input sensitivity function zero at a given frequency
f one should introduce a pair of undamped zeros in HR(q−1), i.e.:

HR(q−1) = (1+βq−1 +q−2) (7.24)

where
β =−2cos(ωTS) =−2cos(2π

f
fS
)

In many cases it is desired that the controller does not react to signals of frequencies
close to 0.5 fS (where the gain of the system is in general very low). In such cases
one uses:

HR(q−1) = (1+βq−1) (7.25)

where
0 < β ≤ 1

Note that (1+βq−1)2 corresponds to a second order with a damped resonance fre-
quency equal to ωS/2:

ω0
√

1−ζ 2 =
ωS

2
and the corresponding damping ζ is related to β by

β = e
− ζ√

1−ζ 2
π

For β = 1, the system will operate in open-loop at fS/2.
In active vibration control systems the gain of the secondary path at 0 Hz is zero

(double differentiator behaviour). It is therefore not reasonable to send a control
signal at this frequency. The system should operate in open-loop at this frequency.
To achieve this one uses:

HR(q−1) = (1−q−1) (7.26)
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Perfect rejection of an harmonic disturbance.

The disturbance p(t) can be represented as the result of a Dirac function δ (t) passed
through a filter D(q−1) (called the model of the disturbance)

D(q−1)p(t) = δ (t) (7.27)

In the case of an harmonic disturbance, the model is:

(1+αq−1 +q−2)p(t) = δ (t) (7.28)

with
α =−2cos(ωTS) =−2cos(2π

f
fS
) (7.29)

From (7.11) in the absence of a reference one has:

y(t) =
A(q−1)HS(q−1)S′(q−1)

P(q−1)
p(t) (7.30)

The problem can be viewed as choosing HS(q−1) such that the gain of the transfer
function between p(t) and y(t) be zero at this frequency.

To achieve this one should choose:

HS(q−1) = (1+αq−1 +q−2) (7.31)

In this case the expression of y(t) taking into account (7.28), (7.30), and (7.31)
becomes:

y(t) =
A(q−1)S′(q−1)

P(q−1)
δ (t) (7.32)

and it results that asymptotically y(t) tends to zero since P(q−1) is asymptotically
stable. This result is nothing else than the internal model principle which will be
stated next.

7.2.2 Internal Model Principle (IMP)

Suppose that p(t) is a deterministic disturbance, so it can be written as

p(t) =
Np(q−1)

Dp(q−1)
·δ (t), (7.33)

where δ (t) is a Dirac impulse and Np(z−1), Dp(z−1) are coprime polynomials
in z−1, of degrees nNp and nDp , respectively (see also Fig. 7.1). In the case of sta-
tionary disturbances, the roots of Dp(z−1) are on the unit circle. The energy of the
disturbance is essentially represented by Dp. The contribution of the terms of Np is
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weak asymptotically compared to the effect of Dp, so one can neglect the effect of
Np for a steady state analysis of the effect of the disturbance upon the system.

Internal Model Principle: The effect of the disturbance given in (7.33) upon the
output:

y(t) =
A(q−1)S(q−1)

P(q−1)
·

Np(q−1)

Dp(q−1)
·δ (t), (7.34)

where Dp(z−1) is a polynomial with roots on the unit circle and P(z−1) is an asymp-
totically stable polynomial, converges asymptotically towards zero if and only if the
polynomial S(z−1) in the RS controller has the form:

S(z−1) = Dp(z−1)S′(z−1). (7.35)

In other terms, the pre-specified part of S(z−1) should be chosen as HS(z−1) =
Dp(z−1) and the controller is computed using (7.16), where P, Dp, A, B, HR and
d are given.2

The IMC principle says that in order to completely reject a disturbance asymp-
totically (i.e., in steady state), the controller should include the model of the distur-
bance.

7.2.3 Youla–Kučera Parametrization

Using the Youla–Kučera parametrization (Q-parametrization) of all stable con-
trollers ([15, 242]), the controller polynomials R(z−1) and S(z−1) get the form:

R(z−1) = R0(z−1)+A(z−1)Q(z−1) (7.36)
S(z−1) = S0(z−1)− z−dB(z−1)Q(z−1) (7.37)

where (R0,S0) is the so called central controller and Q is the YK or Q filter which
can be a FIR or an IIR filter. Figure 7.3 gives a representation of the Youla–Kučera
parametrization of the R-S controllers. The central controller (R0,S0) can be com-

+

-

-

+

+

+

-

Plant

Model Model

Fig. 7.3 The Youla–Kučera parametrized RS digital controller.

2 Of course it is assumed that Dp and BHR do not have common factors.
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puted by pole placement (but any other design technique can be used). Given the
plant model (A,B,d) and the desired closed-loop poles specified by the roots of
P(z−1) one has to solve:

P(z−1) = A(z−1)S0(z−1)+ z−dB(z−1)R0(z−1) . (7.38)

If Q(z−1) is considered to be a polynomial of the form (FIR filter):

Q(z−1) = q0 +q1z−1 + . . .+qnQ z−nQ . (7.39)

equations (7.36) and (7.37) characterize the set of all stabilizable controllers assign-
ing the closed-loop poles as defined by P(z−1). It can be easily verified by simple
computation, that the poles of the closed-loop remain unchanged; however, the par-
ticular interest of the YK parametrization is the fact that the internal model of the
disturbance can be incorporated in the controller by an appropriate choice of the
filter Q. This filter should be such that the resulting polynomial S has the form
S = S′Dp, i.e.:

S′(z−1)Dp(z−1) = S0(z−1)− z−dB(z−1)Q(z−1) , (7.40)

To compute Q(z−1) in order that the polynomial S(z−1) given by (7.37) incorpo-
rates the internal model of the disturbance (7.33) one has to solve the diophantine
equation:

S′(z−1)Dp(z−1)+ z−dB(z−1)Q(z−1) = S0(z−1) , (7.41)

where Dp(z−1), d, B(z−1) and S0(z−1) are known and S′(z−1) and Q(z−1) are un-
known. Equation (7.41) has a unique solution for S′(z−1) et Q(z−1) with: nS0 ≤
nDp +nB +d −1, nS′ = nB +d −1, nQ = nDp −1. One sees that the order nQ of the
polynomial Q depends upon the structure of the disturbance model.

Consider now the case of a Q filter as ratio of rational polynomials (IIR filter)
with an asymptotically stable denominator:

Q(z−1) =
BQ(z−1)

AQ(z−1)
(7.42)

The YK controller will have the structure:

R(z−1) = AQ(z−1)R0(z−1)+A(z−1)BQ(z−1) (7.43)

S(z−1) = AQ(z−1)S0(z−1)− z−dB(z−1)BQ(z−1) (7.44)

but in this case the poles of the closed-loop will be given by

P(z−1)QIIR = P(z−1)AQ(z−1) (7.45)

In the case of IIR Q filters, the poles of the denominator of Q will appears as ad-
ditional poles of the closed-loop. This parametrization will be discussed in detail
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in Section 7.4 and Section 12.2 together with the preservation of the pre-specified
fixed part of the controller HR and HS.

7.2.4 Robustness Margins

The Nyquist plot of the open-loop transfer function allows one to assess the influ-
ence of the modelling errors and to derive appropriate specifications for the con-
troller design in order to assure the robust stability of the closed-loop system for
certain classes of plant model uncertainties.

The open-loop transfer function corresponding to the use of an RS controller is:

HOL(z−1) =
z−dB(z−1)R(z−1)

A(z−1)S(z−1)
(7.46)

By making z = e jω , where ω is the normalized frequency (ω = ωTs = 2π f/ fs, fs
sampling frequency, Ts sampling period), the Nyquist plot of the open-loop transfer
function HOL(e− jω) can be drawn. In general, one considers for the normalized
frequency ω the domain between 0 and π (i.e., between 0 and 0.5 fs). Note that the
Nyquist plot between π and 2π is symmetric with respect to the real axis of the
Nyquist plot between 0 and π . An example of a Nyquist plot is given in Fig. 7.4.

The vector connecting a point of the Nyquist plot with the origin corresponds to
HOL(e− jω) for a certain normalized frequency. The point [−1, j0] on the diagram
of Fig. 7.4 corresponds to the critical point. From Fig. 7.4, it results that the vector

Fig. 7.4 The Nyquist plot of a
discrete-time transfer function
and the critical point.

H
OL

(e-jω )S      = 1 +
H

OL
yp
-1

critical point

-1

Im H

Re H

ω = 0

ω = π

(e-jω )

connecting the critical point with the Nyquist plot of HOL(e− jω) has the expression:

1+HOL(z−1) =
A(z−1)S(z−1)+ z−dB(z−1)R(z−1)

A(z−1)S(z−1)
= S−1

yp (z
−1) (7.47)
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This vector corresponds to the inverse of the output sensitivity function Syp(z−1)
given by Eq. (7.11) and the zeros of S−1

yp are the poles of the closed-loop system.
In order that the closed-loop system be asymptotically stable, it is necessary that all
the zeros of S−1

yp lie inside the unit circle.
The necessary and sufficient conditions in the frequency domain for the asymp-

totic stability of the closed-loop system are given by the Nyquist criterion. For the
case of open-loop stable systems (in our case this corresponds to A(z−1) = 0 and
S(z−1) = 0 =⇒ |z|< 1), the Nyquist criterion is expressed as:

Stability criterion (open-loop stable systems)

The Nyquist plot of HOL(z−1) traversed in the sense of growing frequencies (from
ω = 0 to ω = π leaves the critical point [−1, j0] on the left.

Using pole placement, the Nyquist criterion will be satisfied for the nominal plant
model because R(z−1) and S(z−1) are computed using Eq. 7.10 for an asymptotically
stable polynomial P(z−1) defining the desired closed-loop poles (P(z−1) = 0 =⇒
|z| < 1). Of course, we are assuming at this stage that the resulting S(z−1) is also
stable.3

The minimal distance between the Nyquist plot of HOL(z−1) and the critical point
will define a stability margin. This minimal distance according to Eq. (7.47) will
depend upon the maximum of the modulus of the output sensitivity function.

This stability margin which we will call subsequently the modulus margin could
be linked to the uncertainties upon the plant model.

The following indicators serve for characterizing the distance between the Nyquist
plot of HOL(z−1) and the critical point [−1, j0] (see Fig. 7.5):

• modulus margin (∆M)
• delay margin (∆τ)
• phase margin (∆φ )
• gain margin (∆G)

Below are the definitions of the modulus margin and delay margin which will be
used in the robust control design (for the definition of the gain and phase margin,
see any classical control text):

Modulus Margin (∆M)

The modulus margin (∆M) is defined as the radius of the circle centred in [−1, j0]
and tangent to the Nyquist plot of HOL(z−1).

From the definition of the vector connecting the critical point [−1, j0] with the
Nyquist plot of HOL(z−1) (see Eq. (7.47)), it results that:

∆M = |1+HOL(e− jω)|min = (|Syp(e− jω)|max)
−1 = (∥Syp∥∞)

−1 (7.48)

3 See [130] for the case of open-loop unstable systems.
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Fig. 7.5 Modulus, gain and
phase margins
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As a consequence, the reduction (or minimization) of |Syp(e− jω)|max will imply the
increase (or maximisation) of the modulus margin ∆M.

In other terms the modulus margin ∆M is equal to the inverse of the maximum
modulus of the output sensitivity function Syp(z−1) (i.e., the inverse of the H∞ norm
of Syp(z−1)). If the modulus of Syp(z−1) is expressed in dB, one has the following
relationship:

|Syp(e− jω)|max(dB) = (∆M)−1(dB) =−∆M(dB) (7.49)

The modulus margin is very important because:

• It defines the maximum admissible value for the modulus of the output sensitivity
function.

• It gives a bound for the characteristics of the nonlinear and time-varying elements
tolerated in the closed-loop system (it corresponds to the circle criterion for the
stability of nonlinear systems) [135].

Delay Margin (∆τ)

For a certain frequency the phase lag introduced by a pure time delay τ is:

∠φ(ω) = ωτ

If the Nyquist plot crosses the unit circle only once, one can therefore convert the
phase margin in a delay margin, i.e., to compute the additional delay which will lead
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to instability. It results that:

∆τ =
∆φ

ωcr
(7.50)

where ωcr is the crossover frequency (where the Nyquist plot intersects the unit
circle) and ∆φ is the phase margin. If the Nyquist plot intersects the unit circle at
several frequencies ω i

cr (see Fig. 7.5), characterized by the associated phase margins
∆φi, the phase margin is defined as:

∆φ = min
i

∆φi (7.51)

and the delay margin is defined by:

∆τ = min
i

∆φi

ω i
cr

(7.52)

Remark: This situation appears systematically for systems with pure time delays or
with multiple vibration modes.

Typical values of the robustness margins for a robust controller design are:

- Modulus margin: ∆M ≥ 0.5(−6dB)[min : 0.4(−8dB)]
- Delay margin: ∆τ ≥ Ts[min : 0.75Ts]

where Ts is the sampling period.
Important remarks:

1. A modulus margin ∆M ≥ 0.5 implies that ∆G ≥ 2(6dB) and ∆φ > 29◦. The
converse is not generally true. Systems with satisfactory gain and phase margins
may have a very small modulus margin.

2. Phase margin can be misleading according to Eq. (7.50). A good phase margin
may lead to a very small tolerated additional delay if ωcr is high.

The modulus margin is an intrinsic measure of the stability margin and will be sub-
sequently used together with the delay margin for the design of robust controllers
(instead of the phase and gain margin).

7.2.5 Model Uncertainties and Robust Stability

Fig. 7.6 illustrates the effect of uncertainties or of the variations of the parame-
ters of the nominal model on the Nyquist plots of the open-loop transfer function.
In general the Nyquist plot corresponding to the nominal model lies inside a tube
corresponding to the possible (or accepted) tolerances of parameter variations (or
uncertainties) of the plant model.

We will consider an open-loop transfer function H ′
OL(z

−1) which differs from
the nominal one. For simplicity one assumes that the nominal transfer function
HOL(z−1) as well as H ′

OL(z
−1) are both stable (the general assumption is that both

have the same number of unstable poles, see [21, 65]).
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Fig. 7.6 Nyquist plot of the
nominal model and perturbed
model.
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In order to assure the stability of the closed-loop system for an open loop transfer
function H ′

OL(z
−1) which differs from the nominal one HOL(z−1), the Nyquist plot

of H ′
OL(z

−1) should leave the critical point [−1, j0] on the left side when traversed
in the sense of the growing frequencies. Looking at Fig. 7.6 one can see that a
sufficient condition for this, is that at each frequency the distance between H ′

OL(z
−1)

and HOL(z−1) be less than the distance between the nominal open-loop transfer
function and the critical point. This is expressed by:

|H ′
OL(z

−1)−HOL(z−1)|< |1+HOL(z−1)|= |S−1
yp (z

−1)|=
∣∣∣∣ P(z−1)

A(z−1)S(z−1)

∣∣∣∣ (7.53)

In other terms, the curve |Syp(e− jω)|−1 in dB (which is obtained by symmetry from
|Syp(e− jω)|) will give at each frequency a sufficient condition for the modulus of the
tolerated discrepancy between the real open-loop transfer function and the nominal
open-loop transfer function in order to guarantee stability.

In general, this tolerance is high in low frequencies and is low at the frequency
(or frequencies) where |Syp(e− jω)| reaches its maximum (= ∆M−1). Therefore low
modulus margin will imply small tolerance to parameter uncertainties in a specified
frequency region.

The relationship (7.53) expresses a robustness condition in terms of the variations
of the open-loop transfer function (controller + plant). It is interesting to express this
in terms of the variations of the plant model. One way to do this, is to observe that
(7.53) can be re-written as:∣∣∣∣B′(z−1)R(z−1)

A′(z−1)S(z−1)
− B(z−1)R(z−1)

A(z−1)S(z−1)

∣∣∣∣ = ∣∣∣∣R(z−1)

S(z−1)

∣∣∣∣ · ∣∣∣∣B′(z−1)

A′(z−1)
− B(z−1)

A(z−1)

∣∣∣∣
<

∣∣∣∣ P(z−1)

A(z−1)S(z−1)

∣∣∣∣ (7.54)
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Multiplying both sides of Eq. (7.54) by | S(z−1)
R(z−1)

| one gets:∣∣∣∣B′(z−1)

A′(z−1)
− B(z−1)

A(z−1)

∣∣∣∣≤ ∣∣∣∣ P(z−1)

A(z−1)R(z−1)
|= |S−1

up (z
−1)

∣∣∣∣ (7.55)

The left hand side of Eq. (7.55) expresses in fact an additive uncertainty for the nom-
inal plant model. The inverse of the modulus of the input sensitivity function will
give a sufficient condition for the tolerated additive variations (or uncertainties) of
the nominal plant model in order to guarantee stability. Large values of the modulus
of the input sensitivity function in certain frequency range will imply low tolerance
to uncertainties in this frequency range. It will also mean that at these frequencies
high activity of the input will result under the effect of disturbances.

7.2.6 Templates for the Sensitivity Functions

Robustness margins and performance specifications in the frequency domain trans-
lates easily in templates for the various sensitivity functions [130, 144]. Figure 7.7
gives the basic template for Syp for assuring the modulus margin constraint (∆M ⩾
0.5) and the delay margin (∆τ ⩾ Ts). The template on the delay margin is an ap-
proximation (for more details see [144]). Violation of the lower or upper template
does not necessarily imply violation of the delay margin (which any way can be
effectively computed).

To this template, performance specification in terms of imposed attenuation and
bound on the “waterbed” effect can be added (see the example in Section 7.3).

Templates on the modulus of the input sensitivity function Sup are also consid-
ered. In particular it is expected that Sup is low outside the frequency band of oper-
ation of the controller. Low values of the modulus of the input sensitivity functions
imply a good robustness with respect to additive model uncertainties. Figure 7.8
gives an example of template on the input sensitivity function. More details can be
found on the example given in Section 7.3

7.2.7 Properties of the Sensitivity Functions

7.2.7.1 Output Sensitivity Function

Using an RS controller, the output sensitivity function is given by:

Syp(z−1) =
A(z−1)S(z−1)

A(z−1)S(z−1)+ z−dB(z−1)R(z−1)
(7.56)

where
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Fig. 7.8 An example of desired template for the input sensitivity function.

R(z−1) = HR(z−1)R′(z−1) (7.57)
S(z−1) = HS(z−1)S′(z−1) (7.58)

and

A(z−1)S(z−1)+ z−dB(z−1)R(z−1) = PD(z−1) ·PF(z−1) = P(z−1) (7.59)

In Eqs. (7.57) and (7.58), HR(z−1) and HS(z−1) correspond to the pre-specified parts
of R(z−1) and S(z−1) respectively. S′(z−1) and R′(z−1) are the solutions of Eq. (7.16)
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where P(z−1) represents the desired closed-loop poles in pole placement control
strategy. The polynomial P(z−1) is factorised in order to emphasize the dominant
poles defined by PD(z−1) and the auxiliary poles defined by PF(z−1).

Property 1

The modulus of the output sensitivity function at a certain frequency gives the am-
plification or the attenuation of the disturbance.

At the frequencies where |Syp(ω)| = 1(0 dB), there is no attenuation nor am-
plification of the disturbance (operation in open-loop). At the frequencies where
|Syp(ω)|< 1(0 dB), the disturbance is attenuated. At the frequencies where |Syp(ω)|>
1(0 dB), the disturbance is amplified.

Property 2 (The Bode Integral)

The closed-loop being asymptotically stable, the integral of the logarithm of the
modulus of the output sensitivity function from 0 to 0.5 fS is equal to 0 for the case
of stable open-loop systems:4

∫ 0.5 fS

0
log |Syp(e− j2π f/ fS)|d f = 0

In other terms, the sum of the areas between the curve of the modulus of the output
sensitivity function and the 0 dB axis taken with their sign is null. As a conse-
quence, the attenuation of disturbances in a certain frequency region implies
necessarily the amplification of disturbances in other frequency regions.

Property 3

The inverse of the maximum of the modulus of the sensitivity function corresponds
to the modulus margin ∆M.

∆M = (|Syp(e− jω)|max)
−1 (7.60)

From the properties 2 and 3, it results that the increase of the attenuation band or
of the attenuation in a certain frequency band will in general imply an increase of
|Syp(e− jω)|max and therefore a decrease of the modulus margin (and therefore less
robustness).

Figure 7.9 shows the output sensitivity function for a closed-loop system, corre-
sponding to a plant model A(z−1) = 1−0.7z−1, B(z−1) = 0.3z−1, d = 2 . The con-

4 See [230] for a proof. In the case of unstable open-loop systems but stable in closed-loop, this
integral is positive.



7.2 Pole Placement 129

0 0.1 0.2 0.3 0.4 0.5
−60

−50

−40

−30

−20

−10

0

10

Frequency [Hz]

M
ag

n
it

u
d

e 
[d

B
]

Syp frequency response

 

 

ζ = 0

ζ = 0.3

Fig. 7.9 Modulus of the output sensitivity functions for a double internal model with 0 and 0.3
damping.

troller has been designed using the pole placement. The desired closed-loop poles
correspond to the discretization of a second order system with natural frequency
ω0 = 0.1 fs rad/s and damping ζ = 0.8. The system being subject to a tonal dis-
turbance located at 0.15 fs or at 0.151 fS, a double internal model corresponding to
these frequencies has been introduced in the controller fixed part HS. In the first case
a damping ζ = 0.3 has been considered leading to an attenuation of 8dB and in the
second case full rejection of the disturbances have been considered using internal
models with ζ = 0 leading to an attenuation over 60 dB.5

One can clearly see that the increase of attenuation in a certain frequency region
implies necessarily a stronger amplification of the disturbances outside the attenua-
tion band. This is a direct consequence of property 2. A similar phenomenon occurs
if for a given attenuation the attenuation band is expanded.

7.2.8 Input Sensitivity Function

The input sensitivity function is extremely important in the design of the linear
controller. The modulus of the input sensitivity function should be low at high fre-
quencies in order to assure a good robustness of the system with respect to additive
unstructured uncertainties located in the high-frequency region.6

5 The structure of the HS is Hs = (1+α1q−1 +α2q−2)(1+α ′
1q−1 +α ′

2q−2).
6 This is indeed true even in adaptive control since the uncertainties in the high frequency region
are not in general handled by the adaptive controller.
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The expression of the input sensitivity function using a RS controller with R and
S given by (7.57) and (7.58) is:

Sup(z−1) =− A(z−1)HR(z−1)R′(z−1)

A(z−1)HS(z−1)S′(z−1)+q−dB(z−1)HR(z−1)R′(z−1)
(7.61)

Property 1
The effect of the output disturbances upon the input is cancelled (i.e., Sup = 0) at
the frequencies where:

A(e− jω)HR(e− jω)R′(e− jω) = 0 (7.62)

At these frequencies Syp = 1 (open-loop operation). The pre-specified values as-
suring Sup = 0 at certain frequencies are of the same form as those used to make
Syp = 1.

Figure 7.10 illustrates the effect upon Sup of a pre-specified HR(z−1) of the form:

HR(z−1) = 1+αz−1 ; 0 < α ≤ 1

For α = 1, one has Sup = 0 at 0.5 fs. Using 0 < α < 1 allows to reduce more or
less the input sensitivity function around 0.5 fs.7 This structure of HR(z−1) is sys-
tematically used for reducing the magnitude of the input sensitivity function in the
high-frequency region.
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Fig. 7.10 Effect of HR(z−1) = 1+αz−1, 0 < α ≤ 1 upon the input sensitivity function for various
values of parameter α .

7 The input sensitivity function correspond to the system considered previously which includes in
the controller an internal model with zero damping located at 0.15 fs.
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Property 2
At the frequencies where:

A(e− jω)HS(e− jω)S′(e− jω) = 0

which corresponds to perfect rejection of the output disturbances (Syp = 0 at these
frequencies), one has: ∣∣Sup(e− jω)

∣∣= ∣∣∣∣A(e− jω)

B(e− jω)

∣∣∣∣ (7.63)

i.e., the modulus of the input sensitivity function is equal to the inverse of the gain
of the plant at this frequency.

This implies that perfect rejection of disturbances (or more generally attenuation
of disturbances) should be done only in the frequency regions where the gain of
the system is large enough. If the gain is too low, |Syp| will be very large at these
frequencies. Therefore the robustness with respect to additive plant model uncer-
tainties will be reduced, and the stress on the actuator will become important [140].
This also indicates that problems will occur if B has complex zeros close to the unit
circle (stable or unstable). At these frequencies, rejection of disturbances should be
avoided.

7.2.9 Shaping the Sensitivity Functions for Active Vibration
Control

Two sensitivity functions are of particular interest in active vibration control:

• Output sensitivity function (the transfer function between the disturbance p(t)
and the output of the system y(t)):

Syp(z−1) =
A(z−1)S(z−1)

P(z−1)
(7.64)

• Input sensitivity function (the transfer function between the disturbance p(t) and
the input of the system u(t)):

Sup(z−1) =−A(z−1)R(z−1)

P(z−1)
(7.65)

In active vibration control they have to be shaped for performance and robust-
ness purposes. The first tool for shaping the sensitivity functions, once the “perfor-
mance” choices have been done (damping of some complex poles, introduction of
the internal model of the disturbance, opening the loop at certain frequencies), is the
introduction of the auxiliary poles.
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The introduction of auxiliary asymptotically stable real poles PF(z−1) will cause
in general a decrease of the modulus of the sensitivity function in the domain of
attenuation of 1/PF(z−1).

From Eqs. (7.56) and (7.59), one can see that the term 1/PD(z−1)PF(z−1) will
introduce a stronger attenuation in the frequency domain than the term 1/PD(z−1) if
the auxiliary poles PF(z−1) are real (aperiodic) and asymptotically stable; however,
since S′(z−1) depends upon the poles through Eq. (7.16), one cannot guarantee this
property for all the values of PF(z−1).

The auxiliary poles are generally chosen as high-frequency real poles under the
form:

PF(z−1) = (1− p1z−1)nF ; 0.05 ≤ p1 ≤ 0.5

where:
nF ≤ np −nD ; np = (degP)max ; nD = degPD

The effect of the introduction of the auxiliary poles is illustrated in Fig.7.11, for the
same system considered previously with a controller including an internal model
with 0 damping at 0.05 fS. One observes that the introduction of 5 auxiliary real
poles located at 0.5 “squeezes” the modulus of the output sensitivity function around
0 dB axis in the high-frequency range.
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Fig. 7.11 Effect of auxiliary poles on the output sensitivity function.

Note that in many applications the introduction of high-frequency auxiliary poles
allows to satisfy the requirements for robustness margins.

Simultaneous introduction of a fixed part HSi and of a pair of auxiliary poles PFi

in the form
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HSi(z
−1)

PFi(z−1)
=

1+β1z−1 +β2z−2

1+α1z−1 +α2z−2 (7.66)

resulting from the discretization of the continuous-time band-stop filter (BSF):

F(s) =
s2 +2ζnumω0s+ω2

0

s2 +2ζdenω0s+ω2
0

(7.67)

using the bilinear transformation8

s =
2
Ts

1− z−1

1+ z−1 (7.68)

introduces an attenuation (a “hole”) at the normalized discretized frequency

ωdisc = 2arctan(
ω0Ts

2
) (7.69)

as a function of the ratio ζnum/ζden < 1. The attenuation at ωdisc is given by

Mt = 20log(
ζnum

ζden
) ; (ζnum < ζden) (7.70)

The effect upon the frequency characteristics of Syp at frequencies f << fdisc and
f >> fdisc is negligible.

Figure 7.12 illustrates the effect of the simultaneous introduction of a fixed part
HS and a pair of poles in P, corresponding to the discretization of a resonant filter
of the form of (7.67). One observes its weak effect on the frequency characteristics
of Syp, far from the resonance frequency of the filter.

This pole-zero filter (Band-stop filter) is essential for an accurate shaping of the
modulus of the sensitivity functions in the various frequency regions in order to sat-
isfy the constraints. It allows to reduce the interaction between the tuning in different
regions.

Design of the Band-Stop Filter HSi/PFi

The computation of the coefficients of HSi and PFi is done in the following way:

Specifications:

• Central normalized frequency fdisc (ωdisc = 2π fdisc)
• Desired attenuation at frequency fdisc : Mt (dB)
• Minimum accepted damping for auxiliary poles

8 The bilinear transformation assures a better approximation of a continuous-time model by a
discrete-time model in the frequency domain than the replacement of differentiation by a differ-
ence, i.e., s = (1− z−1)Ts (see [135]).
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Fig. 7.12 Effects of a resonant filter HSi/PFi on the output sensitivity functions.

PFi : (ζden)min ≥ 0.3

Step I: Design of the continuous-time filter

ω0 =
2
Ts

tan(
ωdisc

2
) 0 ≤ ωdisc ≤ π ζnum = 10Mt/20

ζden

Step II: Design of the discrete-time filter using the bilinear transformation (7.68).
Using (7.68) one gets:

F(z−1) =
az0 +az1z−1 +az2z−2

az0 +az1z−1 +az2z−2 = γ
1+β1z−1 +β2z−2

1+α1z−1 +α2z−2 (7.71)

which will be effectively implemented as 9

F(z−1) =
HS(z−1)

Pi(z−1)
=

1+β1z−1 +β2z−2

1+α1z−1 +α2z−2

where the coefficients are given by10

9 The factor γ has no effect on the final result (coefficients of R and S). It is possible, however, to
implement the filter without normalizing the numerator coefficients.
10 These filters can be computed using the functions filter22.sci (Scilab) and filter22.m (Matlab®)
to be downloaded from the book website.
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bz0 =
4

T 2
s
+4

ζnumω0

Ts
+ω

2
0 ; bz1 = 2ω

2
0 −

8
T 2

s

bz2 =
4

T 2
s
−4

ζnumω0

Ts
+ω

2
0 (7.72)

az0 =
4

T 2
s
+4

ζdenω0

Ts
+ω

2
0 ; az1 = 2ω

2
0 −

8
T 2

s

az2 =
4

T 2
s
−4

ζdenω0

Ts
+ω

2
0

γ =
bz0

az0

β1 =
bz1

bz0
; β2 =

bz2

bz0
(7.73)

α1 =
az1

az0
; α2 =

az2

az0

Remark: for frequencies below 0.17 fs the design can be done with a very good
precision directly in discrete-time. In this case, ω0 =ω0den =ω0num and the damping
of the discrete time filters HSi and PFi is computed as a function of the attenuation
directly using Eq. (7.70).

Remark: while HS is effectively implemented in the controller, PF is only used
indirectly. PF will be introduced in (7.17) and its effect will be reflected in the coef-
ficients of R and S obtained as solutions of Eq. (7.59).

If the S polynomial contains the internal model of a sinusoidal disturbance, i.e.,
S = S′Dp and Dp is a second order polynomial with zero damping and a resonance
frequency ω , the modulus of the output sensitivity function will be zero at this
frequency , which means total rejection of a sinusoidal disturbance. Without any
shaping of the sensitivity function, there will be a “waterbed effect” in the vicinity
of this frequency; however, if the objective is to introduce just a certain amount of
attenuation, we should consider introduction of the “band-stop” filters which have
zeros and poles. The numerator will be implemented in the “S” polynomial while
the poles will be added to the desired closed-loop poles. In this case the waterbed
effect will be less important.

For n narrow-band disturbances, n band-stop filters will be used

SBSF(z−1)

PBSF(z−1)
=

∏
n
i=1 SBSFi(z

−1)

∏
n
i=1 PBSFi(z−1)

. (7.74)

A similar procedure can be used for shaping the input sensitivity function (HS in
Eq. (7.66) is replaced HR).
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7.3 Real Time Example: Narrow-band Disturbance Attenuation
on the Active Vibration Control System Using an Inertial
Actuator

This section illustrates the methodology used for the attenuation of narrow-band
disturbances through an example. The active vibration control system with inertial
actuator described in Section 2.2 will be used as a test bench. An open-loop iden-
tification for this system has been done in Section 6.2. The sampling frequency is
fs = 800 Hz.

One sinusoidal disturbance at 70 Hz is applied to the system. The disturbance
is filtered by the primary path and its effect are measured by the residual force
transducer. The objective is to strongly attenuate the effect of this disturbance on
the residual force. The internal model principle together with the shaping of the
sensitivity functions will be used for the design of a linear robust controller.

The specifications are as follows:

• the controller should eliminate the disturbance at 70 Hz ( at least 40 dB attenua-
tion).

• the maximum allowed amplification of the output sensitivity function is 6 dB
(i.e., the modulus margin will be ∆M ⩾ 0.5).

• a delay margin of at least one sampling period should be achieved.
• the gain of the controller has to be zero at 0 Hz (since the system has a double

differentiator behaviour).
• the gain of the controller should be zero at 0.5 fs where the system has low gain

and uncertainties exist.
• the effect of disturbances on the control input should be attenuated above 100 Hz

in order to improve robustness with respect to unmodeled dynamics (Sup(e jω)<
−40 dB, ∀ω ∈ [100 Hz,400 Hz]).

The steps for the design of the linear controller are:

1. include all (stable) secondary path poles in the closed-loop characteristic poly-
nomial;

2. design the fixed part of the controller denominator in order to cancel the 70 Hz
disturbance (IMP)

HS(q−1) = 1+a1q−1 +q−2, (7.75)

where a1 = −2cos(2π f/ fS), f = 70 Hz. The modulus of the resulting output
sensitivity function is shown in Fig. 7.13 (curve IMP). As one can see the max-
imum of the modulus of the output sensitivity function is larger than 6 dB;

3. open the loop at 0 Hz and at 400 Hz by setting the fixed part of the controller
numerator as

HR = (1+q−1) · (1−q−1) = 1−q−2. (7.76)

The resulting output sensitivity function is shown also in Fig. 7.13 (curve IMP
+ Hr). As it can be seen, it has an unacceptable value around 250 Hz (violation
of the delay margin constraint);
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4. to improve robustness 2 complex conjugate poles have been added to the char-
acteristic polynomial, one at 65 Hz and the second at 75 Hz, both of them with
0.2 damping factor. The resulting output sensitivity function (curve IMP + Hr +
aux. poles) has the desired characteristics; however, as one can see in Fig. 7.14
(curve IMP + Hr + aux. poles), the modulus of the input sensitivity function is
higher than −40 dB between 100 and 400 Hz;

5. add Band-Stop Filters (BSF) on the Sup sensitivity function: one at 160 Hz,
the other at 210 Hz, with -20 and -15 dB attenuation respectively. Both have
0.9 damping factor for the denominator. One can see that this has the desired
effect on the input sensitivity functions and no effects on the output sensitivity
function.

The resulting modulus margin is 0.637 and the resulting delay margin is 2.012 ·
Ts. The final controller satisfies the desired specifications both in terms of perfor-
mance and robustness.
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Fig. 7.13 Output sensitivity functions for the various controllers (grey lines represent the templates
for modulus and delay margins).

Real Time Results

Time domain results in open-loop (yOL(t)) and in closed-loop (yCL(t)) are shown in
Fig. 7.15. A frequency domain analysis has been done and is shown in Figs. 7.16 and
7.17. It can be seen that the controller achieves all the desired specifications. Under
the effect of the controller the residual force is almost at the level of the system’s
noise.
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Fig. 7.14 Input sensitivity functions for the various controllers.
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Fig. 7.15 Time response results for 70 Hz disturbance in open-loop and in closed-loop.

7.4 Pole Placement with Sensitivity Function Shaping by Convex
Optimisation

In [151] it was shown that the problem of shaping the sensitivity functions in the
context of pole placement can be formulated as a convex optimisation problem, and
routines for convex optimisation can be used (available in the toolbox OPTREG11).
We will present this method which will be used in the context of active damping.
This method takes first advantage of the Youla–Kučera parametrization. It is as-
sumed that:

11 To be downloaded from the book website.
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Fig. 7.17 Effective residual attenuation/amplification PSD estimates computed as the difference
between the open-loop PSD and the closed-loop PSD.

• the fixed parts of the controller HR and HS have been defined (in order to achieve
certain performances);

• a “central” stabilizing controller is already designed;
• the templates for the output and input sensitivity functions have been defined (in

order to obtain the required robustness margins and performance specifications).

One considers the Youla–Kučera parmetrization for the controller:

R = HR(R0 +AHSQ) (7.77)
S = HS(S0 − z−dBHRQ) (7.78)
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where the fixed parts of the controller (HR, HS), and (A, B) are polynomials in z−1

(z−dB/A is the nominal model) and Q is a rational transfer function proper and
asymptotically stable.12

The central controller R0/S0 (Q = 0) can be obtained by solving the following
Bezout equation for R0 and S0:

AHSS0 + z−dBHRR0 = PD, (7.79)

where PD is an asymptotically stable polynomial defined by the designer and which
contains the desired dominant poles for the closed-loop system. Expressing Q as a
ratio of proper transfer functions in z−1 such as

Q(z−1) =
BQ(z−1)

AQ(z−1)
(7.80)

one gets:
R
S
=

HR(R0AQ +AHSBQ)

HS(S0AQ − z−dBHRBQ)
. (7.81)

The poles of the closed-loop system will be given by:

P = AS+ z−dBR = PDAQ,

where the zeros of PD are the fixed poles of the closed-loop (defined by the central
controller) and the zeros of AQ are the additional poles which will be introduced
by the optimization procedure. The output and input sensitivity functions can be
written as:

Syp =
AS

AS+ z−dBR
=

AHS

PD

(
S0 −BnomHR

BQ

AQ

)
; (7.82)

Sup =
AHR

PD

(
R0 +AnomHS

BQ

AQ

)
. (7.83)

As shown in the above equations (7.82) and (7.83), the sensitivity functions can

obviously be expressed in the form T1 +T2
β

α
.

Imposing a certain frequency-dependent limit W (template) on the modulus of the
sensitivity functions (attenuation band, modulus margin, delay margin, restrictions
on the input sensitivity function) leads then to a condition of the form∣∣∣∣T1 argz+T2 argz

β ′ argz
α ′ argz

∣∣∣∣≤ |W argz| ∀|z|= 1 (7.84)

Condition (7.84) is equivalent to the condition

12 This particular YK parametrization allows to preserve the fixed parts HR and HS in the resulting
controller given in Eq. (7.4).
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β ′

α ′

∥∥∥∥
∞

< 1 (7.85)

Thus, equation (7.84) implies the existence of α and β such that by setting T̄1 =
W−1T1 and T̄2 =W−1T2 one obtains∣∣W−1T1α +W−1T2β

∣∣≤ Re{α} (7.86)

and this is obviously a convex condition on α and β . Details can be found in [151]
and [210].

For point-wise testing of the conditions a frequency gridding is carried out (e.g.
32 points between f = 0 and f = 0.5 fs).

For the optimization procedures the polynomials AQ et BQ will take the form
(Ritz method):

AQ(xa) = 1+
N

∑
k=1

xakαk ; (7.87)

BQ(xb) = xb0 +
N

∑
k=1

xbkβk, (7.88)

where αk, βk are stable polynomials (affine in xak et xbk) and N is the order of the
parametrization (i.e., the number of points on the sensitivity functions where the
constraints have to be verified). The parameters to be optimized are xak et xbk.

For the discrete time cases αk and βk can be chosen as:

αk = βk =

(
z0 − z−1

1− z0z−1

)k

,

where z0 is the time constant of the parametrization (which can be adjusted).
Using the parametrisation and the constraints indicated above an (RS) controller

with desired properties can be obtained by convex optimization. For more details on
the optimization procedure see [148, 147].

The Matlab® toolbox Optreg provides the appropriate routines for specifying the
constraints and finding the optimal controller. The method will be used in Chapter 10
for active damping.

7.5 Concluding Remarks

• The design of polynomial RS controllers for active vibration control systems has
been discussed in this chapter.

• The design of the controller requires the knowledge of the plant model (the sec-
ondary path in active vibration control).
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• Asymptotic rejection of tonal disturbances can be achieved using the Internal
Model Principle (it requires the knowledge of the frequency of the disturbance).

• The Youla–Kučera parametrization of the controller provides a separation be-
tween disturbance compensation and feedback stabilization.

• Robustness is not an intrinsic property of a control strategy. It results from an
appropriate choice of some control objectives related to the sensitivity functions.

• Two sensitivity functions are of major interest: the output sensitivity function and
the input sensitivity function.

• Modulus margin and delay margin are basic robustness indicators.
• Shaping of the sensitivity functions is a key issue in active vibration control in

order to achieve desired performance and robustness objectives.
• Performance and robustness specifications translate in desired templates for the

sensitivity functions.
• Pole placement combined with tools for shaping the sensitivity functions is an

efficient approach for designing active vibration control systems.
• Shaping of the sensitivity functions can be conveniently achieved by the selection

of the auxiliary poles and the use of band-stop filters.
• Pole placement combined with convex optimization can provide almost an auto-

matic solution to the design problem, once the desired templates for the sensitiv-
ity functions are defined.

7.6 Notes and References

The first issue in the design of AVC systems (assuming that the plant model is
known) is the translation of the performance and robustness specifications in desired
templates for the sensitivity functions. Then any design method which allows to
achieve the desired sensitivity functions can be used, such as: Pole placement [21,
88, 81, 135], Linear Quadratic Control [21, 81, 135], H∞ control [65, 269], CRONE
control ([189, 150, 188]), Generalized Predictive Control [144, 42].

The shaping of the sensitivity function can be converted in a convex optimization
problem [210] and the use of this approach is detailed in [148, 147, 151].

The Bode integral constraint in the context of AVC is discussed in [96, 54].



Chapter 8
Identification in Closed-Loop Operation

Abstract Identification in closed-loop operation offers the possibility to identify
system models for controller re-design leading to improved performance. It also
allows re-tuning of existing controllers without opening the loop. Specific aspects
related to active vibration control systems will be enhanced. Closed-Loop Output
Error (CLOE) method which has already been used in the context of AVC will be
presented. Validation techniques for identification in closed-loop will be reviewed.
A real-time example will illustrate the methodology.

8.1 Introduction

There are two reasons for considering identification in closed-loop operation in the
context of active vibration control systems:

• obtaining improved system models for controller re-design; and
• re-tuning of the controller without opening the loop.

The objective of identification in closed-loop is to obtain a plant model describing
as precisely as possible the behaviour of the real closed-loop system for a given
controller. In other words, the objective of system identification in closed-loop is to
search for a plant model that in feedback with the controller operating on the true
plant will lead to a closed-loop transfer function (sensitivity function) that is as close
as possible to that of the real closed-loop system. If the performance of the closed-
loop system is not satisfactory, it is expected that this model identified in closed-loop
will allow the redesign of the controller in order to improve the performance of the
real-time control system.

It has been shown in [131, 144], as well as in many other references, that identi-
fication in closed-loop, provided that appropriate identification algorithms are used,
leads in general to better models for controller design.

In order to understand the potential of the identification in closed-loop as well as
the difficulties which can be encountered, let us consider the case of the plant model

143
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identification in closed-loop where the external excitation is added to the controller
output (see Fig. 8.1(a)). Figure 8.1(b) shows an equivalent scheme that emphasizes
the transfer function between the external excitation ru and the plant input u, as well
as the effect of the measurement noise upon the plant input. Assume that the external
excitation is a PRBS that has almost constant frequency spectrum from 0 to 0.5 fs.

noise

+

++

+

-
+

Plant

(a)

+

++

+

Sup

Syp

(b)

Fig. 8.1 Identification in closed-loop: a) excitation added to the control output, b) equivalent rep-
resentation.

One observes that the effective plant input corresponds to the external excitation
filtered by the output sensitivity function Syp (see Section 7.1), whose magnitude
has a maximum in the frequency regions close to the critical point [−1, j0] (see
Section 7.2.4). Therefore the frequency spectrum of the effective input applied to
the plant will be enhanced in these frequency regions. As a consequence, the quality
of the identified model in these critical regions for stability and performance will
be improved. Unfortunately, in the meantime, the feedback introduces a correlation
between the measurement noise and the plant input. This leads to an important bias
on the estimated parameters if one would like to identify the plant model with open-
loop techniques.

Therefore, for a good identification in closed-loop operation one needs identifica-
tion methods that take advantage of the “improved” characteristics of the effective
excitation signal applied to the plant input but which are not affected by the noise
in the context of feedback. An efficient solution for this problem is provided by the
“closed-loop output error” method (CLOE) that will be presented next.
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8.2 Closed-Loop Output Error Identification Methods

The Principle

The principle of closed-loop output error identification algorithms is illustrated in
Fig. 8.2. The upper part represents the true closed-loop system and the lower part
represents an adjustable predictor of the closed-loop. This closed-loop predictor
uses a controller identical to the one used on the real time system.

The prediction error between the output of the real time closed-loop system and
the closed-loop predictor (closed-loop output error) is a measure of the difference
between the true plant model and the estimated one. This error can be used to adapt
the estimated plant model such that the closed-loop prediction error is minimized
(in the sense of a certain criterion). In other words, the objective of the identifica-
tion in closed-loop is to find the best plant model which minimizes the prediction
error between the measured output of the true closed-loop system and the predicted
closed-loop output. The use of these methods requires the knowledge of the con-
troller.

As it can be seen from Fig. 8.2, the minimization of the closed-loop prediction
error will minimize the difference between real and estimated sensitivity functions.
For the case of the excitation added to the controller output, the difference between

Syυ =
q−dBS

AS+q−dBR
(8.1)

and

Ŝyυ =
q−dB̂S

ÂS+q−dB̂R
(8.2)

will be minimized, where Â and B̂ are the estimates of the A and B polynomials.1

For the case of the excitation added to the reference, with T = R, the difference
between

Syr =
q−dBR

AS+q−dBR
(8.3)

and

Ŝyr =
q−dB̂R

ÂS+q−dB̂R
(8.4)

will be minimized. Since |Syr − Ŝyr| = |Syp − Ŝyp|, the difference between the true
and the estimated output sensitivity function will also be minimized.

In the context of active vibration control, we will be in general interested to get a
model which allows a better estimation of the output sensitivity function. Therefore,
often, the configuration of Fig. 8.2(b) will be used with T = R.2

1 In this case, Syυ corresponds to the transfer function between ru(t) and y(t).
2 This is equivalent to sending the excitation to the input of the filter R in Fig. 8.2(b).
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(a) Excitation superposed to control output.
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(b) Excitation superposed to the reference.

Fig. 8.2 Closed-loop output error identification method.

The Algorithms

G(q−1) =
q−dB(q−1)

A(q−1)
(8.5)

where:

B(q−1) = b1q−1 + · · ·+bnB q−nB = q−1B∗(q−1) (8.6)
A(q−1) = 1+a1q−1 + · · ·+anAq−nA = 1+q−1A∗(q−1) (8.7)
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The plant is operated in closed-loop with an RST digital controller (without lack
of generality). The output of the plant operating in closed-loop is given by (see
Fig. 8.2(a)):

y(t +1) =−A∗y(t)+B∗u(t −d)+Aη(t +1) = θ
T

ϕ(t)+Aη(t +1) (8.8)

where u(t) is the plant input, y(t) is the plant output, η(t) is the output noise and:

θ
T =[a1 . . . ,anA ,b1 . . . ,bnB ] (8.9)

ϕ
T (t) =[−y(t) . . . ,−y(t −nA +1),u(t −d) . . . ,u(t −nB +1−d)] (8.10)

u(t) =− R
S

y(t)+ ru (8.11)

where ru is the external excitation added to the output of the controller (ru is equal
to T

S r if the external excitation is applied on the reference as in Fig. 8.2(b)).
For a fixed value of the estimated parameters, the predictor of the closed-loop

(the design system) can be expressed as:

ŷ(t +1) =−Â∗ŷ(t)+ B̂∗û(t −d) = θ̂
T

φ(t) (8.12)

where

θ̂
T =[â1 . . . , ânA , b̂1 . . . , b̂nB ] (8.13)

φ
T (t) =[−ŷ(t) . . . ,−ŷ(t −nA +1), û(t −d) . . . , û(t −nB +1−d)] (8.14)

û(t) =− R
S

ŷ(t)+ ru (8.15)

The closed-loop prediction (output) error is defined as:

εCL(t +1) = y(t +1)− ŷ(t +1) (8.16)

It clearly results from Fig. 8.2(a) that for constant values of the estimated parame-
ters, the predictor regressor vector φ(t) depends only upon the external excitation.
Therefore under the assumption that the external excitation (r or ru) and the stochas-
tic noise η are independent, φ(t) and η(t) are not correlated (as well as φ(t) and
εCL(t +1)), the scheme has the structure of an output error prediction.

If known fixed parts should be included in the estimated plant model, the equa-
tion of the predictor for the closed-loop has to be modified in order to preserve the
input/output behaviour. See for details Section 8.2.4 and [135].

For all the methods, the parameter adaptation algorithm (PAA) has the general
form:
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Θ̂(t +1) = Θ̂(t)+F(t)Φ(t)ν(t +1) (8.17)
F(t +1)−1 = λ1(t)F(t)−1 +λ2(t)Φ(t)ΦT (t) (8.18)
0 < λ1(t)≤ 1 ; 0 ≤ λ2(t)< 2 ;
F(0)> 0 ; F(t)−1 > αF−1(0) ; 0 < α < ∞ (8.19)

F(t +1) =
1

λ1(t)

F(t)− F(t)Φ(t)ΦT (t)F(t)
λ1(t)
λ2(t)

+ΦT (t)F(t)Φ(t)

 (8.20)

ν(t +1) =
ν◦(t +1)

1+ΦT (t)F(t)Φ(t)
(8.21)

where ν◦(t + 1) = f1(Θ̂(t),Θ̂(t − 1), . . . ,y(t + 1),ν(t),ν(t − 1), . . .) is the a priori
adaptation error, ν(t +1) = f2(Θ̂(t +1),Θ̂(t), . . . ,y(t +1),ν(t),ν(t −1), . . .) is the
a posteriori adaptation error and Φ(t) is the observation vector.

For each recursive identification algorithm Θ , Φ , and ν◦(t+1) will have specific
expressions. Note that the sequences λ1(t) and λ2(t) allow to define the time profile
of the adaptation gain F(t). For convergence analysis in the stochastic environment,
it is assumed that a PAA with decreasing adaptation gain is used (i.e., λ1(t) ≡ 1,
λ2(t) = λ2 > 0).

The fundamental differences with respect to the open-loop output-error identi-
fication algorithm come from the structure of the adjustable predictor and of the
observation vector.

8.2.1 The Closed-loop Output Error Algorithm

Replacing now the fixed predictor of the closed-loop given in (8.12) by an adjustable
predictor, one gets:

• a priori predicted output:

ŷ◦(t +1) = ŷ(t +1|θ̂(t)) = θ̂
T (t)φ(t); (8.22)

• a posteriori predicted output:

ŷ(t +1) = ŷ(t +1|θ̂(t +1)) = θ̂
T (t +1)φ(t); (8.23)

• a priori prediction error as:

ε
◦
CL(t +1) = y(t +1)− ŷ◦(t +1); (8.24)

• a posteriori prediction error as:

εCL(t +1) = y(t +1)− ŷ(t +1). (8.25)



8.2 Closed-Loop Output Error Identification Methods 149

The equation for the a posteriori prediction error becomes in the deterministic en-
vironment (no noise, see [142] for details):

εCL(t +1) =
S
P
[θ − θ̂(t +1)]T φ(t) (8.26)

The rules given in Chapter 4 suggest a PAA with:

Θ̂(t) = θ̂(t)

Φ(t) = φ(t)

ν
◦(t +1) = ε

◦
CL(t +1)

This is termed the Closed-Loop Output Error (CLOE) algorithm [142, 131, 144].
It can be shown (see[142, 144] that in both deterministic and stochastic environment
the sufficient condition for stability and unbiased asymptotic convergence is:

H ′(z−1) =
S(z−1)

P(z−1)
− λ2

2
(8.27)

should be strictly positive real (where maxt λ2(t)≤ λ2 < 2).
To relax this condition, the following two solutions have been proposed.

8.2.2 Filtered and Adaptive Filtered Closed-Loop Output Error
Algorithms (F-CLOE, AF-CLOE)

Equation (8.26) for θ̂ = constant can also be re-written as:

εCL(t +1) =
S
P
· P̂

S
[θ − θ̂ ]

S
P̂

φ(t) =
P̂
P
[θ − θ̂ ]φ f (t) (8.28)

where:

φ f (t) =
S
P̂

φ(t) (8.29)

P̂ = ÂS+q−dB̂R (8.30)

In Eq. (8.30), P̂ is an estimation of the true closed-loop poles based on an initial
estimation of the plant model (for example using an open-loop experiment). This
formulation leads to the Filtered Closed-Loop Output Error (F-CLOE) algorithm
[144] which uses the same adjustable predictor as CLOE (see Eqs. (8.22) and (8.23))
and the PAA with:



150 8 Identification in Closed-Loop Operation

Θ̂(t) = θ̂(t)

Φ(t) = φ f (t)

ν
◦(t +1) = ε

◦
CL(t +1)

It can be shown that by neglecting the non-commutativity of time-varying operators
(an exact algorithm can however be derived), under the sufficient condition that:

H ′(z−1) =
P̂(z−1)

P(z−1)
− λ2

2
(8.31)

is strictly positive real, both asymptotic stability in deterministic environment and
asymptotic unbiasedness in a stochastic environment is assured [144].

One can further relax the condition of Eq. (8.31) by filtering φ(t) through a time-
varying filter S/P̂(t) where P̂(t) corresponds to the current estimate of the closed-
loop given by: P̂(t) = Â(t)S+ q−dB̂(t)R where Â(t) and B̂(t) are the current esti-
mates of the A and B polynomials (the AF-CLOE algorithm).

8.2.3 Extended Closed-Loop Output Error Algorithm (X-CLOE)

For the case where the noise model is η(t + 1) = C
A e(t + 1), where e(t + 1) is a

zero mean gaussian white noise and C(q−1) = 1+q−1C∗(q−1) is an asymptotically
stable polynomial, an extended output error prediction model can be defined:

ŷ(t +1) = −Â∗ŷ(t)+ B̂∗û(t −d)+ Ĥ∗ εCL(t)
S

= θ̂
T

φ(t)+ Ĥ∗ εCL(t)
S

= θ̂
T
e φe(t) (8.32)

Equation (8.8) for the plant output becomes in this case:

y(t +1) =θ
T

φ(t)+H∗ εCL(t)
S

−C∗
εCL(t)+Ce(t +1) (8.33)

=θ
T
e φe(t)−C∗

εCL(t)+Ce(t +1) (8.34)

where:
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H∗ = h1 +h2q−1 + · · ·+hnH q−nH+1 =C∗S−A∗S−q−dB∗R, (8.35)

H = 1+q−1H∗ = 1+CS−P, (8.36)

θ
T
e = [θ T ,h1, . . . ,hnH ], (8.37)

θ̂
T
e = [θ̂ T , ĥ1, . . . , ĥnH ], (8.38)

φ
T
e (t) = [φ T (t),εCL f (t), . . . ,εCL f (t −nH +1)], (8.39)

εCL f (t) =
1
S

εCL(t). (8.40)

Subtracting (8.32) from (8.34), one obtains the following expression for the
closed-loop prediction error (for details see [141]):

εCL(t +1) =
1
C
[θe − θ̂e]

T
φe(t)+ e(t +1). (8.41)

Equation (8.41) clearly shows that for θ̂e = θe the closed-loop prediction error
tends asymptotically towards e(t +1).

Replacing the fixed predictor (8.32) with an adjustable one, a recursive identifi-
cation algorithm (X-CLOE) can be obtained by using a PAA with:

Θ̂(t) = θ̂e(t)

Φ(t) = φe(t)

ν
◦(t +1) = ε

◦
CL(t +1) = y(t +1)− θ̂

T
e (t)φe(t)

The analysis in the deterministic case (C = 1,e = 0) using the theorem given in
Chapter 4, shows that global asymptotic stability is assured without any positive real
condition (since the a posteriori closed-loop prediction error equation in this case is
εCL = [θe − θ̂e(t +1)]T φe(t)).

Asymptotic unbiased estimates in a stochastic environment can be obtained under
the sufficient condition [141, 144] that:

H ′(z−1) =
1

C(z−1)
− λ2

2
(8.42)

is strictly positive real (where maxt λ2(t)≤ λ2 < 2).

8.2.4 Taking into Account Known Fixed Parts in the Model

In the context of active vibration control systems, like for identification in open-loop
operation, it is wise to take into account that the secondary path has a known double
differentiator behaviour. This will require a modification of the controller used in
the closed-loop predictor. To take into account the double differentiator behaviour
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when external excitation is superposed to the input of the controller (at the input of
the filter R) one should modify the CLOE configuration as shown in Fig. 8.3.3

+

+
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+
Plant
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+
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+

-

Parameter Adaptation

Algorithm

Fig. 8.3 Taking into account the double differentiator behaviour for identification in closed-loop.

8.2.5 Properties of the Estimated Model

It is very important to asses the properties of the estimated model in the frequency
domain. This will allow to know in what frequency region the approximation of
the true plant will be best (it is expected that this should be particularly true in the
critical regions for design). Nevertheless, the properties of the estimated models
will depend on the point where the external excitation is applied. There are several
options. When the excitation is superposed to the output of the controller (like in
Fig. 8.2(a)), the properties of the estimated model in the frequency domain (bias
distribution) result from ([144]):

θ̂
∗ = arg min

θ̂∈D

∫
π

−π

|Syp|2[|G− Ĝ|2|Ŝyp|2φru(ω)+φη(ω)]dω (8.43)

where φru(ω) and φη(ω) are the power spectral densities of the excitation and the
measurement noise, respectively. This expression shows that:

3 The external excitation effect is equivalently obtained by filtering the signal through R and adding
it to the output of the filter R in the upper part of the Fig. 8.3. Using algorithms from the CLID
toolbox, both T and R should be modified according to the Fig. 8.3.
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• The estimation of the plant model parameters is unbiased when G is in the model
set;4

• The bias distribution is not affected by the spectrum of the noise (which is the
case when using the (filtered) open-loop identification methods [144]);

• The approximation of the true model is not only weighted by the sensitivity func-
tion but is further weighted by the estimated output sensitivity function; and

• Quality of the estimated model is enhanced in the critical region for design.5

By contrast the bias distribution in the frequency domain for the open-loop output
error is given by:

θ̂
∗ = arg min

θ̂∈D

∫
π

−π

[|G− Ĝ|2|φru(ω)+φη(ω)]dω (8.44)

As one can see, the basic difference is that in open-loop identification using out-
put error algorithm one has an equal weight for all the frequencies. The comparison
between (8.43) and (8.44), explains why identification in closed-loop may provide
better models for design.

When the external excitation signal is superposed to the input of the controller,
with T = R, the asymptotic bias distribution is given by:

θ̂
∗ = arg min

θ̂∈D

∫
π

−π

|Syp|2[|G− Ĝ|2|Ŝup|2φru(ω)+φη(ω)]dω (8.45)

where Ŝup =−ÂR/P̂ is the estimated input sensitivity function.
For more details see [109, 144].

8.2.6 Validation of Models Identified in Closed-Loop Operation

As in open-loop identification, it is the model validation that will tell us on one hand
if the identified model is acceptable and on the other hand it will allow us to select
the best model among the models provided by various identification methods.

The objective of the model validation in closed-loop operation is to find what
plant model combined with the current controller provides the best prediction of the
behaviour of the closed-loop system. The results of model validation in closed-loop
will depend upon the controller used.

Four validation procedures can be defined:

1. Statistical validation tests on the closed-loop output error (uncorrelation test
between εCL(t +1) and ŷ(t)).

2. Closeness of the computed and identified poles of the closed-loop system.

4 Both true plant model and estimated plant model have the same orders.
5 Recall that the maximum of the output sensitivity function corresponds to the minimum distance
with respect to the Nyquist point.
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3. Closeness of the computed and identified sensitivity functions of the closed-
loop system.

4. Time response validation (comparison of time responses of the real closed-loop
system and of the closed-loop predictor).

Statistical Validation

The statistical validation follows the same principles as for open-loop model iden-
tification; however, in this case one considers the residual prediction error between
the output of the plant operating in closed-loop and the output of the closed-loop
predictor. An uncorrelation test will be used.

Using the schemes shown in Fig. 8.2(b) (or Fig. 8.3) where the predictor is given
by Eqs. (8.12) through (8.15), one computes with the identified values of the param-
eters:

• The cross correlations between the residual closed-loop output error εCL(t + 1)
and the predicted output ŷ(t));

• The covariance of the residual closed-loop output error.

This type of test is motivated on one hand by the fact that uncorrelation between
the predicted output and the residual closed-loop prediction error leads to unbiased
parameter estimates and on the other hand this uncorrelation implies the uncorre-
lation between the closed-loop output error and the external excitation. This means
that the residual prediction error does not contain any information which depends
upon the external excitation and therefore all the correlations between the external
excitation and the output of the closed-loop system are captured by the closed-loop
predictor.

One computes:

Rε(0) =
1
N

N

∑
t=1

ε
2
CL(t) (8.46)

Rŷ(0) =
1
N

N

∑
t=1

ŷ2(t) (8.47)

Rε ŷ(i) =
1
N

N

∑
t=1

εCL(t)ŷ(t − i) i = 1,2, . . . ,nA (8.48)

RNε ŷ(i) =
Rε ŷ(i)

[Rŷ(0) ·Rε(0)]1/2 (8.49)

As a confidence test, one can use the criterion:

|RN(i)| ≤ 2.17√
N
, (8.50)
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where N is the number of data (see also Section 5.5), as well as the practical criterion
|RN(i)| ≤ 0.15.

In many practical situations, one either has a previous plant model identified
in open-loop or several identification algorithms are used on the data collected in
closed-loop. Then a comparative validation has to be done and useful comparison
indicators are provided by Rε(0) and max |RNε ŷ| for each model (however other
comparison criteria can be considered).

Pole Closeness Validation

If the model identified in closed-loop in feedback with the controller used during
identification allows constructing a good predictor for the real system, this implies
that the poles of the closed-loop system and of the closed-loop predictor are close
(assuming that a persistent excitation has been applied for identification). As a con-
sequence, the closeness of the closed-loop predictor poles (which can be computed)
and those of the real closed-loop system (which can be identified by an open-loop
type identification between the external excitation and the output) will give an indi-
cation of the quality of the identified model.

The closeness of the two sets of poles can be judged by a visual examination of
the poles chart but a quantification of the closeness can be done (see next).

Sensitivity Functions Closeness Validation

From the same arguments as above it results that if the identified model is good,
the sensitivity functions of the closed-loop predictor (which can be computed) are
close to the sensitivity functions of the real system (which can be identified by an
open-loop type identification between the external excitation and the output).

To some extent the closeness of the sensitivity functions can be assessed by visual
inspection. Moreover it is possible to quantify rigorously the distance between two
transfer functions by computing the Vinnicombe distance (see Appendix A).

Extensive simulations and a large number of experimental results have shown
that the statistical tests and the poles or sensitivity functions closeness give coherent
results and allow a clear comparison between several models ([131]).

Time Domain Validation

For the validation in the time domain, the time responses of the closed-loop sys-
tem and of the closed-loop predictor are compared. Unfortunately in practice it is
in general not easy to compare accurately several models using this technique. In
fact a good validation by poles or sensitivity functions closeness will imply a good
superposition of the time domain responses while the reciprocal is not always true.
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8.3 A Real Time Example: Identification in Closed-Loop and
Controller Redesign for the Active Control System Using an
Inertial Actuator

A first controller for this system has been designed in Section 7.3 using a plant
model identified in open-loop and it has been tested in real time. The objective in this
section is to illustrate the procedure for identification in closed-loop operation. For
carrying the identification in closed-loop operation the controller designed on the
basis of the open-loop identified model will be used. The identification experiment
is done in the absence of the narrow-band output disturbance.

In this example the objective of the identification in closed-loop will be to heavily
weight the differences between the estimated model and the true model in the fre-
quency regions close to the Nyquist point. This is achieved by adding the excitation
signal to the control signal (see Section 8.2.5).

To take into account the double differentiator behaviour of the secondary path
model, the solution indicated in Fig. 8.3 has been used, i.e., the double differentiator
has been added to the polynomials T (q−1) = S(q−1) and R(q−1).

Before running the identification algorithms, the input and output signals have
been centred. The orders of the model used for identification in closed-loop op-
eration are the same as those of the model identified in open-loop (nB = 23 and
nA = 22). The final order for the secondary path numerator after adding the known
fixed part will be nB = 25.

A parameter adaptation algorithm with decreasing gain has been used for all the
identification methods. The best results in terms of validation have been obtained
using the XCLOE method. The uncorrelation validation test result for the closed-
loop identification is shown in Figure 8.4. It can be seen that the model is valid. The
loss function is 7.7 ·10−5 an it is very small compared to the measured output.
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Fig. 8.4 Uncorrelation test for the model identified in closed-loop operation with XCLOE.



8.3 Real Time Example: Identification in Closed-Loop and Controller Redesign 157

0 100 200 300 400
−60

−50

−40

−30

−20

−10

0

10

Frequency [Hz]

M
ag

n
it

u
d

e 
[d

B
]

Identified models comparison

 

 

Open loop identified model

Closed loop identified model

Fig. 8.5 Comparison between the frequency characteristics of the secondary path models identified
in open-loop and in closed-loop operation.

A comparison with an open-loop identification of the closed-loop has also been
accomplished to validate the model. The open-loop model does not pass the uncor-
relation test on the closed-loop data; the loss function for the open-loop identified
model on the closed-loop data is 1.3 ·10−3 (much higher than for the model identi-
fied in closed-loop). One can conclude already that the model identified in closed-
loop operation is better than the model identified in open-loop operation. A Bode
magnitude comparison between the open-loop identified model from Section 6.2
and the closed-loop identified model in the presence of the controller designed in
Section 7.3 is shown in Fig. 8.5. It can be observed that the two models are very
close in the frequency region of interest (50 to 95 Hz). Note that the differences
between the two transfer functions appear in the frequency region over 150 Hz,
where the magnitude of the input sensitivity function is very low (see Fig. 7.14) and
therefore there will be a little impact on performances.

Further comparison between the two models requires an estimation of the closed-
loop transfer function. The closed-loop between excitation and measurement has
been identified as an input/output model using XOLOE method. The identified
model of the closed-loop passed the whiteness test (i.e., it is a valid model). This
allows to compare the identified closed-loop poles with the calculated closed-loop
poles using the two models identified in open and in closed-loop operation. The pole
closeness between the poles of the identified closed-loop model and the poles com-
puted with the open-loop identified model and with the model identified in closed-
loop are shown in Fig. 8.6. The model identified in closed-loop gives a slightly better
result.

Using the same specifications and controller design steps as described in Sec-
tion 7.3, a new controller has been obtained on the basis of the model identified in
closed-loop operation. The controller has been tested using the same procedure as
before. Time domain results in open-loop and in closed-loop are shown in Fig. 8.7.
Frequency domain analysis has also been done and the results are shown in Figs. 8.8
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Fig. 8.6 Closed-loop poles closeness comparison using the model identified in closed-loop opera-
tion (a) and the open-loop identified model (b).

and 8.9. It can be seen that the controller effectively reduces the disturbance and the
residual force is at the level of the system’s noise. These figures have to be compared
with Figs. 7.15, 7.16, and 7.17.

The global attenuation of the newly designed controller is 49 dB, while for the
first controller it was 48.4 dB. As for the first controller, the maximum amplification
does not exceed the 6 dB limit (dashed line in Figs. 7.17 and 8.9). The disturbance
attenuation is of 62.4 dB for the new controller and 63 dB for the initial one. The
differences are negligible taking also into account that they were obtained on the
basis of a single trial (one realization of a stochastic process).6 One can conclude
that in this particular case, already the quality of the model identified in open-loop
was sufficient to get a good controller. Therefore, the initial controller based on the
open-loop identified model will be used in Section 9.4 to design a reduced order
controller.

8.4 Concluding Remarks

• Plant model identification in closed-loop operation provides efficient tools ei-
ther for improving open-loop identified models or for redesign and re-tuning of
existing controllers.

• The objective of identification in closed-loop operation is to obtain, for a given
controller, a plant model allowing the best description of the behaviour of the
closed-loop system.

• Identification in closed-loop is based on the use of an adaptive predictor for the
closed-loop which is re-parameterized in terms of the plant model to be identi-
fied.

6 It was not possible to conduct a sufficiently large number of measurements for this example.
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Fig. 8.7 Time response results for 70 Hz disturbance in open-loop and in closed-loop with the
redesigned controller.
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Fig. 8.8 PSD of the residual force in open-loop (dashed line) and closed-loop (solid line) for 70 Hz
disturbance using the redesigned controller.

• The estimated parameters minimize asymptotically a criterion in terms of the
closed-loop prediction error.

• As for the case of identification in open-loop, there is no single algorithm which
gives the best results in all the situations.

• Comparative validation of the identified models is crucial for the selection of the
best identified model.
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Fig. 8.9 Effective residual attenuation/amplification PSD estimates computed as the difference
between the open-loop PSD and the closed-loop PSD using the redesigned controller.

• In addition to the statistical validation test, the pole closeness between the true
closed-loop poles (obtained through identification of the closed-loop) and the
computed ones, based on the identified model is a very useful validation tool.

8.5 Notes and References

Plant model identification in closed-loop operation has been considered for a long
time as a very difficult problem. See [223] for a survey.

It is the work done on the topics of “Identification for Control” and “Iterative
Identification and Controller Re-design” which contributed to put the problem of
identification in closed-loop operation in an appropriate context. See [86, 87, 246,
247, 262, 263] for details.

The original reference for the closed-loop output error is [142]. Further details
and comparative evaluations can be found in [131, 109, 143, 144].



Chapter 9
Reduction of the Controller Complexity

Abstract Controller complexity reduction is an issue in many applications. The key
objectives of controller complexity reduction is to obtain a reduced order controller
which preserves the closed-loop properties of the nominal closed-loop system (sta-
bility, robustness, performance). The techniques for controller complexity (order)
reduction which will be presented are based on the estimation in closed-loop of a
reduced order controller. Methods for the validation of the estimated reduced or-
der controllers are also presented. The use of these techniques is illustrated by an
example in robust control design of an active vibration control system.

9.1 Introduction

The complexity (order of the polynomials R and S) of the controllers designed on
the basis of identified models depends upon:

• the complexity of the identified model;
• the performance specifications; and
• the robustness constraints.

The controller will have a minimum complexity equal to that of the plant model
but as a consequence of performance specifications and robustness constraints this
complexity increases (often up to the double of the size of the model, in terms of
number of parameters, and in certain cases even more). In many applications the
necessity of reducing the controller complexity results from constraints on the com-
putational resources in real-time (reduction of the number of additions and multipli-
cations).

Therefore one should ask the question: can we obtain a simpler controller with
almost the same performance and robustness properties as the nominal one (design
based on the plant model)?

Consider the system shown in Fig. 9.1 where the plant model transfer function is
given by:

161
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G(z−1) =
z−dB(z−1)

A(z−1)
(9.1)

and the nominal controller is given by:

K(z−1) =
R(z−1)

S(z−1)
(9.2)

where:

R(z−1) = r0 + r1z−1 + . . .+ rnR z−nR (9.3)
S(z−1) = 1+ s1z−1 + . . .+ snS z−nS = 1+ z−1S∗(z−1) (9.4)

Different sensitivity functions have been defined in Section 7.1 for the system
given in Fig. 9.1.

+

+

+
-

+

+ +

+

input

disturbance

output

disturbance noise

Fig. 9.1 The true closed-loop system.

The system given in Fig.9.1 will be denoted the “true closed-loop system”.
Throughout this chapter, feedback systems which will use either an estimation of
G (denoted Ĝ) or a reduced order estimation of K (denoted K̂) will be considered.
The corresponding sensitivity functions will be denoted as follows:

• Sxy - Sensitivity function of the true closed-loop system (K, G).
• Ŝxy - Sensitivity function of the nominal simulated closed-loop system (nominal

controller K + estimated plant model Ĝ).
• ˆ̂Sxy - Sensitivity function of the simulated closed-loop system using a reduced

order controller (reduced order controller K̂ + estimated plant model Ĝ).

Similar notations are used for P(z−1), P̂(z−1) when using K and Ĝ, ˆ̂P(z−1) when
using K̂ and Ĝ.

The specific objective will be to reduce the orders nR and nS of controller poly-
nomials R and S.

The basic rule for developing procedures for controller complexity reduction is
to search for controllers of reduced orders which preserve as much as possible the
properties of the closed-loop. A direct simplification of the controller transfer func-
tion by traditional techniques (cancellation of poles and zeros which are close, ap-
proximations in the frequency domain, balanced truncation, etc.) without taking into
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account the properties of the closed-loop leads in general to unsatisfactory results
(see [17, 14]).

Two approaches can be considered for the controller complexity reduction:

1. Indirect Approach

This approach is implemented in three steps:

a. Reduction of the complexity of the model used for design, trying to preserve the
essential characteristics of the model in the critical frequency regions for design.

b. Design of the controller on the basis of the reduced model.
c. Test of the resulting controller on the nominal model.

2. Direct Approach

Search for a reduced order approximation of the nominal controller which preserves
the properties of the closed-loop.

The indirect approach has a number of drawbacks:

• Does not guarantee the complexity of the resulting controller (since the robust-
ness specifications will be more severe when using reduced order models).

• The errors resulting from model reduction will propagate in the design of the
controller.

The direct approach seems the most appropriate for the reduction of the controller
complexity since the approximation is done in the last stage of the design and the
resulting performance can be easily evaluated. A combination of the two approaches
is also possible (see Chapter 10), i.e., the resulting controller obtained by the indirect
approach, after it has been tested on the nominal plant model is further reduced
through the direct approach.

9.2 Criteria for Direct Controller Reduction

Two criteria can be considered for direct reduction of the controller complexity:

• Closed-loop input matching (CLIM). In this case one would like that the control
generated in closed-loop by the reduced order controller be as close as possible
to the control generated in closed-loop by the nominal controller.

• Closed-loop output matching (CLOM). In this case one would like that the
closed-loop output obtained with the reduced order controller be as close as pos-
sible to the closed-loop output obtained with the nominal controller.
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Fig. 9.2 Criteria for controller complexity reduction.

These two criteria are illustrated in Fig. 9.2, where the nominal controller is
denoted by K and is given in (9.2) and the reduced controller is denoted by K̂ and is
given by:

K̂(z−1) =
R̂(z−1)

Ŝ(z−1)
(9.5)

where:

R̂(z−1) =r0 + r1z−1 + . . .+ rnR z−nR (9.6)

Ŝ(z−1) =1+ s1z−1 + . . .+ snS z−nS = 1+ z−1Ŝ∗(z−1) (9.7)

The closed-loop input matching is equivalent to minimizing the following norm:

∥Ŝup − ˆ̂Sup∥=
∥∥∥∥ K

1+KĜ
− K̂

1+ K̂Ĝ

∥∥∥∥ (9.8)

where Ŝup is the input sensitivity function of the nominal simulated closed-loop

and ˆ̂Sup is the input sensitivity function when using the reduced order controller.
Therefore the optimal reduced order controller will be given by:

K̂∗ = argmin
K̂

∥Ŝup − ˆ̂Sup∥= argmin
K̂

∥Ŝyp(K − K̂) ˆ̂Syp∥ (9.9)

As it can be seen, the difference between the two controllers is heavily weighted
by the output sensitivity function. The maximum of its modulus corresponds to
the critical region for design. Therefore the reduced order controller will very well
approximate the nominal controller in this critical frequency region for design.

If we now consider preservation of performance in tracking by using the closed-
loop output matching, the reduced order controller should minimize the following
norm:

∥Ŝyr − ˆ̂Syr∥=
∥∥∥∥ KĜ

1+KĜ
− K̂Ĝ

1+ K̂Ĝ

∥∥∥∥ (9.10)
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To preserve the performance for output disturbance rejection, the reduced order con-
troller should minimize:

∥Ŝyp − ˆ̂Syp∥=
∥∥∥∥ 1

1+KĜ
− 1

1+ K̂Ĝ

∥∥∥∥ (9.11)

Fortunately, these two norms are equal and the reduced order controller can be
obtained by using the following expression:

K̂∗ = argmin
K̂

∥Ŝyp − ˆ̂Syp∥= argmin
K̂

∥Ŝyp(K − K̂) ˆ̂Syv∥ (9.12)

Equations (9.9) and (9.12) show that a weighted norm of K − K̂ should be mini-
mized.

For closed-loop input matching (Fig. 9.2(a)) one tries to find a reduced order
controller which will minimize the difference between the input sensitivity function
of the nominal simulated system and the input sensitivity function of the simulated
system using a reduced order controller. This is equivalent to the search for a re-
duced controller which minimizes the error between the two loops (in the sense of
a certain criterion) for a white noise type excitation (like PRBS).

For the tracking of the nominal output (Fig. 9.2(b)) the principle remains the
same except that in this case one tries to minimize the difference between the nomi-
nal complementary sensitivity function (7.8) and the reduced order complementary
sensitivity function computed with K̂ and Ĝ.

It can be seen immediately that in both cases the problem of finding a reduced
order controller can be formulated as an identification in closed-loop (see Chapter 8)
where the plant model is replaced by the reduced order controller to be estimated
and the controller is replaced by the available estimated model of the plant (dual
problem).

The reduction procedures and the validation techniques for reduced order con-
trollers to be presented next are available in the MATLAB® toolbox REDUC® ([3])
(to be downloaded from the book website) or in the stand alone software iReg which
includes a module for controller complexity reduction.1

9.3 Estimation of Reduced Order Controllers by Identification in
Closed-Loop

9.3.1 Closed-Loop Input Matching (CLIM)

The principle of closed-loop input matching approach is illustrated in Fig. 9.3.
The upper part represents the simulated nominal closed-loop system. It is made

up of the nominal controller (K) and the best identified plant model (Ĝ). This model

1 See the website http://tudor-bogdan.airimitoaie.name/ireg.html

http://tudor-bogdan.airimitoaie.name/ireg.html
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Fig. 9.3 Estimation of reduced order controllers by the closed-loop input matching (CLIM)
method. Use of simulated data.

should assure the best closeness behaviour of the true closed-loop system and the
nominal simulated one. Identification of this plant model in closed-loop can be con-
sidered if the nominal controller can be implemented.

The lower part is made up of the estimated reduced order controller (K̂) in feed-
back connection with the plant model (Ĝ) used in the nominal simulated system.
The parameter adaptation algorithm (PAA) will try to find the best reduced order
controller which will minimize the closed-loop input error. The closed-loop input
error is the difference between the plant input generated by the nominal simulated
closed-loop system and the plant input generated by the simulated closed-loop using
the reduced order controller.

The output of the nominal controller is given by:

u(t +1) =−S∗(q−1)u(t)+R(q−1)c(t +1) = θ
T

ψ(t) (9.13)

where

c(t +1) = r(t +1)− y(t +1) (9.14)
y(t +1) = −Â∗y(t)+ B̂∗u(t −d) (9.15)

ψ
T (t) = [−u(t), . . . ,−u(t −nS +1),c(t +1), . . . ,c(t −nR +1)] (9.16)
θ

T = [s1, . . . ,snS ,r0, . . . ,rnR ] (9.17)

To implement and analyse the algorithm, we need respectively the a priori (based
on θ̂(t)) and the a posteriori (based on θ̂(t +1)) predicted outputs of the estimated
reduced order controller (of orders nŜ and nR̂) which are given by (see the lower part
of Fig. 9.3)
a priori:
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û◦(t +1) = û(t +1|θ̂(t)) =−Ŝ∗(t,q−1) û(t)+ R̂(t,q−1) ĉ(t +1)
= θ̂

T (t)φ(t) (9.18)

a posteriori:
û(t +1) = θ̂

T (t +1)φ(t) (9.19)

where

θ̂
T (t) = [ŝ1(t), . . . , ŝnŜ

(t), r̂0(t), . . . , r̂nR̂
(t)] (9.20)

φ
T (t) = [−û(t), . . . ,−û(t −nŜ +1), ĉ(t +1), . . . , ĉ(t −nR̂ +1)] (9.21)

ĉ(t +1) = r(t +1)− ŷ(t +1) = r(t +1)+ Â∗ŷ(t)− B̂∗û(t −d) (9.22)

The closed-loop input error is given by
a priori:

ε
◦
CL(t +1) = u(t +1)− û◦(t +1) (9.23)

a posteriori:
εCL(t +1) = u(t +1)− û(t +1) (9.24)

The equation governing the a posteriori prediction error becomes (see [142, 133]
for details):

εCL(t +1) =
Â
P
[θ − θ̂(t +1)]T φ(t) (9.25)

and the parameter adaptation algorithm will be given by:

θ̂(t +1) = θ̂(t)+F(t)Φ(t)εCL(t +1) (9.26)

F−1(t +1) = λ1(t)F−1(t)+λ2(t)Φ(t)ΦT (t) (9.27)
0 < λ1(t)≤ 1; 0 ≤ λ2(t)< 2; F(0)> 0

εCL(t +1) =
ε◦CL(t +1)

1+ΦT (t)F(t)Φ(t)
=

u(t +1)− û◦(t +1)
1+ΦT (t)F(t)Φ(t)

(9.28)

As we can see from (9.28), the a posteriori closed-loop input error εCL(t+1) can be
expressed in terms of the a priori (measurable) closed-loop input error ε◦CL(t + 1).
Therefore the right hand side of (9.26) will depend only on measurable quantities at
t +1.

Specific algorithms will be obtained by an appropriate choice of the observation
vector Φ(t) as follows:

• CLIM: Φ(t) = φ(t)

• F-CLIM: Φ(t) = Â(q−1)

P̂(q−1)
φ(t)

where
P̂(q−1) = Â(q−1)S(q−1)+q−dB̂(q−1)R(q−1). (9.29)

The introduction of the filtering of φ is motivated by the elimination of a positive
realness sufficient condition for stability and convergence which, in the case of the
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CLIM algorithm, depends on Â/P̂. A detailed analysis of the properties of these
algorithms can be found in [133].

The properties of the estimated controller in the frequency domain results results
from the following expression (bias distribution) [133]:

θ̂
∗ = arg min

θ̂∈D

∫
π

−π

|Ŝyp|2
[
|K − K̂|2| ˆ̂Syp|2φr(ω)+φη(ω)

]
dω (9.30)

where φr(ω) is the excitation spectrum and φη(ω) is the measurement noise spec-
trum (it does not have effect upon the minimization of |K − K̂|).

Estimation of reduced order controllers is also possible by using real time data
(if the prototype of the nominal controller can be implemented on the real system)
[133].

9.3.2 Closed-Loop Output Matching (CLOM)

+
-

-+

+

-

Nominal simulated closed-loop

PAAReduced order controller

Fig. 9.4 Estimation of reduced order controllers by the closed-loop output matching (CLOM)
method. Use of simulated data.

The principle of this method is illustrated in Fig. 9.4. Despite that the point where
the external excitation is applied and the output variable is different with respect to
Fig. 9.2(b), the transfer function between r(t) and u(t) in Fig. 9.4 is the same as the
transfer function between r(t) and y(t) in Fig. 9.2(b). This means that in the absence
of disturbances (it is the case in simulation) u(t) generated by the upper part of the
scheme given in Fig. 9.4 is equal to y(t) generated in Fig. 9.2(b). This allows one to
use for closed-loop output matching the CLIM (or F-CLIM) algorithm. For effective
implementation of the algorithm, the only changes occur in Eqs. (9.13) and (9.18),
where c(t) is replaced by:

x(t) = Ĝ(r(t)−u(t)) (9.31)

and ĉ(t) is replaced by:
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x̂(t) = Ĝ(r(t)− û(t)) (9.32)

One should note that the order of the blocks in the upper part of Fig. 9.4 can be
interchanged (like the upper part of Fig. 9.2(b)) without affecting the operation of
the algorithm.

9.3.3 Taking into Account the Fixed Parts of the Nominal
Controller

It is often required that the reduced order controller contains some of the fixed fil-
ters incorporated in the nominal controller (for example: model of the disturbance,
opening of the loop at 0.5 fS or at other frequency). In order to do this, one first
factorizes the nominal controller under the form K = KF K′, where KF represents
all the fixed parts that one would like to be also incorporated in the reduced order
controller. The reduced order controller is factorized as K̂ = KF K̂′.

One replaces in the CLIM algorithm the input ĉ of the controller K̂ by the input
to the controller K̂′, denoted ĉ′, where ĉ′ is given by:

ĉ′(t) = KF(q−1)ĉ(t) (9.33)

and in Φ(t), ĉ(t) is replaced by ĉ′(t). In the CLOM algorithm one replaces x̂ by x̂′

given by
x̂′(t) = KF(q−1)Ĝ(q−1)(r(t)− û(t)). (9.34)

9.3.3.1 Validation of Reduced Order Controllers

Once a reduced order controller has been estimated, it should be validated before
considering its implementation on the real system.

It is assumed that the nominal controller stabilizes the nominal plant model (used
for controller reduction). One implicitly assumes that the model uncertainties have
been taken into account in the design of the nominal controller. The reduced order
controller should satisfy the following conditions:

• It stabilizes the nominal plant model.
• The reduced sensitivity functions (computed with the reduced order controller)

are close to the nominal sensitivity functions in the critical frequency regions
for performance and robustness. In particular the output and input sensitivity
functions should be examined.

• The generalized stability margin (see Appendix A) of the system using the re-
duced order controller should be close to the generalized stability margin of the
nominal closed-loop. This condition is expressed as

|b(K, Ĝ)−b(K̂Ĝ)|< ε;ε > 0 (9.35)
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where b(K, Ĝ) and b(K̂Ĝ) are the generalized stability margins corresponding
to the nominal controller and to the reduced order controller respectively and
ε is a small positive number. The closeness of the two stability margins allows
maintaining the robustness properties of the initial design.

The proximity of the nominal and reduced sensitivity functions can be judged by vi-
sual examination of their frequency characteristics. There is however the possibility
to make a numerical evaluation of this proximity by computing the Vinnicombe dis-
tance (ν gap) between these transfer functions (see Appendix A). The Vinnicombe
distance allows with one number (between 0 and 1), to make a first evaluation of
the proximity of the reduced and nominal sensitivity functions.

9.4 Real Time Example: Reduction of Controller Complexity

In Section 7.3, a controller based on the open-loop identified model has been de-
signed for the active vibration control system using an inertial actuator (see Sec-
tion 2.2) and tested experimentally. It was shown in Section 8.3 that the controller
designed on the basis of the model identified in open-loop provides similar per-
formance to that of the controller designed on the basis of the model identified in
closed-loop. Therefore in this section the reduction of the complexity of the con-
troller designed on the basis of the model identified in open-loop (which achieves
the specifications) will be considered.

The criterion given in Eq. (9.8) will be considered, which corresponds to CLIM
with external excitation added to the input of the controller. The model of the plant
identified in closed-loop operation has been used. The excitation used was a PRBS
with the following characteristics: N=11 (number of cells) and p=2 (clock frequency
divider). The fixed parts of the controller have been preserved (internal model of the
disturbance, opening the loop at 0.5 fS and at 0 Hz).

Table 9.1 presents a summary of the controller order reduction results for various
values of nR and nS. The first column represents the controller number (the con-
troller with number 00 represents the initial nominal controller). The orders of the
reduced controllers are indicated in columns nR and nS. The next column gives the
Vinnicombe gap (Vg) between the initial controller and the reduced order controller.
Similarly the Vinnicombe gaps for the input and output sensitivity functions are also
given in columns 5 and 6 respectively. A Vg of 0 indicates perfect matching while
a Vg of 1 indicates very important differences between the two transfer functions.
The generalized stability margin (see Appendix A) is given in column 7. For ro-
bustness reasons, it should be close to the value obtained for the nominal controller.
The maximum of the output sensitivity function and the frequency in Hz for which
it is obtained are given in columns 8 and 9 respectively. Finally, the stability of the
closed-loop is indicated in the last column (1 represents a stable closed-loop, 0 -
unstable).
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Only the first 12 reduced order controllers are shown in the table.2 For experi-
mental evaluation, controller 11 has been considered (nR = 19, nS = 22).

Table 9.1 Summary of the controller order reduction results.

No. nR nS Vg( R
S ) Vg(Sup) Vg(Syp) St-margin max(Syp) [fmax] stable

00 29 32 0 0 0 0.3297 3.92 [60.0147] 1

01 29 32 0 0 0 0.3297 3.92 [60.0147] 1

02 28 31 0.001 0.003 0 0.3297 3.92 [60.0147] 1

03 27 30 0.0101 0.0284 0.0031 0.3296 3.8742 [60.0147] 1

04 26 29 0.0095 0.0282 0.0035 0.3306 3.8958 [60.0147] 1

05 25 28 0.0096 0.0327 0.004 0.3286 3.8958 [60.0147] 1

06 24 27 0.0103 1 0.0017 0.3263 3.9329 [60.0147] 1

07 23 26 0.0154 0.0498 0.0041 0.3213 3.9459 [60.0147] 1

08 22 25 0.0153 0.0545 0.0048 0.3232 3.9548 [60.0147] 1

09 21 24 0.0159 0.0514 0.0045 0.3232 3.9406 [60.0147] 1

10 20 23 0.0253 0.0972 0.0109 0.3268 3.9676 [60.0147] 1

11 19 22 0.0604 0.2645 0.0328 0.3089 3.9345 [59.3959] 1

12 18 21 1 1 1 0 3.7477 [59.3959] 0

The output and input sensitivity functions obtained with the nominal and reduced
order controllers are shown in Figs 9.5 and 9.6 respectively. As it can be observed,
the differences are very small within the frequency region of interest (except for the
input sensitivity function at the 50 Hz - but this does not affect nor the robustness
nor the performance). In Fig 9.7 the transfer functions of the two controllers are
shown.

It is important to remind that the comparison of the Bode characteristics of the
two controllers does not guarantees that the reduced order controller stabilizes the
system or that it assures good performances. It is the comparison of the sensitivity
functions and the stability test which gives the right answers.

Finally, the controller has been tested in real time in the presence of a 70 Hz
sinusoidal disturbance. Time domain results in open and in closed-loop operation
are shown in Fig. 9.8. The difference between the two power spectral densities for
open-loop and closed-loop is shown in Fig. 9.9.3

For the reduced order controller the following results have been obtained: 1) the
global attenuation is 48.2 dB (instead of 48.4 dB for the nominal controller), the
disturbance attenuation is 56.4 dB (instead of 62.4 dB but still much more than the

2 These results have been obtained using the software iREG. Similar results are obtained with the
compcon.m function from the toolbox REDUC.
3 Figures 9.8 and 9.9 should be compared with Figs. 7.15 and 7.17.
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Fig. 9.5 Output sensitivity functions for initial and reduced order controllers.
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Fig. 9.6 Input sensitivity functions for initial and reduced order controllers.
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Fig. 9.7 Controller transfer function comparison between initial and reduced order controller.
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Fig. 9.8 Time response results for a 70 Hz sinusoidal disturbance in open and in closed-loop
operation using the reduced order controller.
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Fig. 9.9 Effective residual attenuation/amplification PSD estimates computed as the difference
between the open-loop PSD and the closed-loop PSD (reduced order controller).

required attenuation) and the maximum amplification is 7.5 dB (instead of maxi-
mum 6 dB specified). A small reduction in performance with respect to the initial
non reduced controller is observed but the number of parameters has been reduced
from 62 to 44. These results presented above have been obtained using a single trial.

9.5 Concluding Remarks

• The objective of controller reduction is to find a controller of reduced complexity
such that the characteristics of the closed-loop using the reduced order controller
are as close as possible to the characteristics of the closed-loop using the nominal
controller.

• Two specific objectives have been considered:
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– closed-loop input matching (CLIM); and
– closed-loop output matching (CLOM).

• The CLOM (CLIM) objective corresponds to the estimation of a reduced order
controller such that the error between the output (the control input) of the closed-
loop using the reduced order controller and the output (the control input) of the
closed-loop using the nominal controller be minimized in the sense of a certain
criterion.

• Controller reduction can be viewed as a dual problem with respect to plant model
identification in closed-loop (similar algorithms will be used).

• The reduced order controllers should be validated before their effective use.
• Techniques for validation of the reduced order controllers have been provided in

this chapter.

9.6 Notes and References

The problem of controller reduction is clearly presented in [14, 17]. See also [269].
The basic references for the algorithms discussed in this chapter (analysis and

evaluation), are [60, 132, 133]. A unified view of identification in closed-loop and
controller reduction can be found in [132].
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Chapter 10
Active Damping

Abstract The goal of this chapter is to present the problem of active damping, which
consists in reducing the effect of the resonant peaks of a system (damping resonance
modes) without changing their frequencies. The design aspects of active damping
systems are illustrated in detail by considering the active suspension presented in
Chapter 2. The results of the design are evaluated experimentally.

10.1 Introduction

As indicated in the introduction of the book, Section 1.3, passive dampers despite
that they provide a good attenuation over a wide band of frequencies, they always
have a significant resonance peak at a certain frequency within the frequency range
of operation. To correct this situation an active vibration isolation (control) has to be
considered. The test bench described in Section 2.1, belongs to this category. Such a
system has a primary path through which the disturbances are attenuated in certain
frequency ranges and amplified around the resonance of the system. The secondary
path is expected to correct the behaviour of the primary path in the frequency region
where the primary path shows a significant resonance (amplification of the vibra-
tions in this zone) through the appropriate use of feedback control. The use of the
feedback should attenuate the effect of the resonance of the primary path without
deteriorating the attenuation provided by the primary path at other frequencies. This
means that the “waterbed” effect due to the Bode integral should be carefully man-
aged by shaping the sensitivity functions. Recall also that active damping consists
in damping a resonance mode without changing its frequency.

The methodology of designing active damping systems will be illustrated by con-
sidering the active suspension described in Section 2.1.

The first step of the design consists in defining the control specifications. Roughly
the control objective is illustrated in Fig. 10.1 where the PSD (power spectral den-
sity) of the residual force is represented (thin line). We would like to attenuate the
resonance but it the mean time the tolerated amplification at other frequencies with

177
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Fig. 10.1 Template imposed on the spectral density of the residual force.

respect to the open-loop characteristics should be very low.1 The desired template
for the PSD corresponds to the curve in thick grey line shown in Fig. 10.1. The final
objective of the design will be to find the lowest complexity controller which allows
matching the performance specifications.

Once the performance specifications are formulated, the methodology of design
is illustrated in Fig. 10.2. It comprises a number of steps:

• Open-loop identification of the secondary path (one needs a model of the sec-
ondary path for controller design).

• Design of a robust controller allowing to match the performance specifications
(the design uses the model identified in open-loop operation).

• Implementation and test.
• Identification of the secondary path model in closed-loop operation (an improved

model is expected).
• Redesign (re-tuning) of the controller based on the model identified in closed-

loop operation.
• Implementation and validation of the new controller.
• Controller order reduction preserving the stability and performance of the sys-

tem.
• Implementation and validation of the reduced order controller.

It may happen in practice that one stops after the test of the controller designed
on the basis of the model of the secondary path identified in open-loop operation;
however, once the implementation of the controller is done it is easy to do an identi-
fication in closed-loop and the procedure can go further. The complexity controller

1 As a consequence of the Bode integral, the level of attenuation imposed is related to the level of
tolerated amplification at other frequencies.
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Fig. 10.2 Design methodology.

reduction may not be necessary in some cases if there are no constraints on the
computer power or on the cost of the control.

10.2 Performance Specifications

In active damping the desired performances are specified in the frequency domain.
A template for the expected power spectral density (PSD) of the residual force or
acceleration has to be defined. For the active suspension described in Section 2.1,
the desired template is shown in Fig. 10.1 and the details are given below:
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• for frequencies below 20 Hz, maximum amplification with respect to the open-
loop: 1 db;

• at 20 Hz, 0 dB amplification;
• at 31.25 Hz (the resonance) an attenuation of at least 6.6 dB;
• at 39 Hz, maximum 0 dB amplification;
• between 39 and 150 Hz maximum 3 dB amplification with respect to the open-

loop PSD;
• between 150 and 220 Hz amplification/attenuation below -30 dB with respect to

the value of the open-loop PSD at the resonance; and
• from 220 Hz above, maximum amplification of 1 dB with respect to the open-

loop PSD.

In addition, as for any feedback control systems, robust specifications should be
considered:

• modulus margin ≥−6 dB;
• delay margin ≥ 1.25 ms (one sampling period);
• Sup < 10 dB, between 0 et 35 Hz; Sup < 0 dB, between 40 et 150 Hz; Sup <−20

dB, between 150 et 220 Hz and <−30 dB above 220 Hz; and
• opening the loop at 0.5 fs.

The reduction of the magnitude of Sup is related to the robustness with respect to
additive uncertainties and the fact that the system has low gain in high frequencies
(robustness requires low level control action at the frequencies where the system has
no gain—see Section 7.2). Opening the loop at 0.5 fs will lower drastically the gain
of the controller at high frequencies close to 0.5 fs.

One of the steps in the design procedure is to transform the objectives shown in
Fig. 10.1 and detailed above in specifications for the design of the feedback system.
The active damping can be interpreted as an additional attenuation/amplification of
the disturbance (vibration) acting upon the system. In other terms the difference
between the PSD of the residual force in open-loop operation and the desired PSD
will give the desired attenuation and the tolerated amplification for the feedback loop
around the secondary path. The attenuation/amplification introduced by a feedback
system is characterized by the frequency domain behaviour of the output sensitivity
function Syp. Therefore the difference between the open-loop PSD of the residual
acceleration (force) and the desired PSD will generate a desired template for the
modulus of the output sensitivity function to be achieved. Figure 10.3 shows the
open-loop PSD, the desired PSD when active damping operates and their difference
which constitutes a first template for the desired output sensitivity function.

Nevertheless, this template has to take into account also the robustness con-
straints imposed in terms of modulus margin and delay margin. Modulus margin
imposes a maximum of 6 dB and this maximum decreases in high frequencies as
a consequence of the constraints on the delay margin. Figure 10.4 shows the de-
sired template as well as the adjusted one which takes into account the modulus and
the delay margins. Figure 10.5 shows the template for shaping the input sensitivity
function resulting from the specifications defined earlier (nominal template).



10.3 Controller Design by Shaping the Sensitivity Functions Using Convex Optimization 181

0 50 100 150 200 250 300 350 400
−60

−50

−40

−30

−20

−10

0

10

20

Frequency [Hz]

S
yp

 template

V
rm

s 
[d

B
]

 

 

Open loop PSD

Template (desired PSD)

Desired template for Syp

Fig. 10.3 Desired template for the output sensitivity function Syp (without the robustness con-
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Fig. 10.4 Desired template for the output sensitivity function Syp and adjusted template taking into
account the robustness constraints.

10.3 Controller Design by Shaping the Sensitivity Functions
Using Convex Optimization

The convex optimization procedure for controller design has been presented in Sec-
tion 7.4. Since the objective is also to obtain a low complexity controller, a first step
which was considered in this approach was to use a reduced order secondary path
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model taking into account that according to the control objective, the control will
not have to be effective in high frequencies. One of the most commonly used and
efficient methods for model reduction is balancing. Because in the case of the active
suspension we are interested in specific frequency intervals, the approach consid-
ered for the model reduction is the frequency-weighted balancing method which is
suitable when a certain frequency range is of interest. Given the nominal full-order
model G and the input and output weighting matrices Wi and Wo, the objective is to
find a stable and minimum-phase lower-order model Gr such that the weighted error

∥Wo(G−Gr)Wi∥∞ (10.1)

is as small as possible.
The identified model of the secondary path has been presented in Section 6.1.1.

A reduced order model with nA = 8, nB = 11, d = 0 has been obtained by using the
“balanced truncation” technique in which the low frequencies have been appropri-
ately weighted. The parameters of the reduced order model are given in Table 10.1.
The frequency characteristics of the nominal and reduced order models are shown
in Fig. 10.6.

Nevertheless, once the design is done on the reduced order model, the resulting
controller has to be tested on the full order model before implementation. After a
trial it was found that the basic templates have to be modified in certain frequency
regions in order that the controller designed on the reduced order model matches the
original templates when used with the nominal full order model.

For initializing the optimisation procedure for controller design, a pair of poles
at the resonance frequency f = 31.939 Hz with a damping ξ = 0.8, and a fixed
real pole corresponding to the lowest frequency pole of the system (located at the
intersection of the 5.73 Hz curve with the real axis) have been assigned. The region
of optimisation for the poles has been considered to be a circle with a radius 0.99.
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Table 10.1 Parameters of the reduced order model.
Coeff. A Coeff. B

a0 1.0000 b0 0.0000
a1 -2.1350 b1 0.1650
a2 2.1584 b2 -1.0776
a3 -2.2888 b3 3.6137
a4 2.2041 b4 -8.1978
a5 -1.8433 b5 15.4346
a6 1.4035 b6 -19.4427
a7 -0.2795 b7 14.2604
a8 -0.2057 b8 -10.8390
a9 — b9 11.9027
a10 — b10 -7.2010
a11 — b11 1.3816
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Fig. 10.6 Bode diagram (amplitude and phase) of the open-loop nominal and reduced order mod-
els.

A fixed part in the controller HR = 1+ q−1 is introduced in order to open the loop
at 0.5 fs.

For convenience, the controller designed will be denoted OLBC (Open Loop
Based Controller - controller designed using the open-loop identified model). The
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parameters of the resulting OLBC controller (nR = 27, nS = 30) are given in Ta-
ble 10.2.

Table 10.2 Parameters of the controller based on the reduced order open-loop identified model
(OLBC).

Coeff. R Coeff. S Coeff. R Coeff. S

r0 0.0162 s0 1.0000 r16 0.0071 s16 -0.1070
r1 -0.0515 s1 -5.1406 r17 -0.0111 s17 0.1031
r2 0.0695 s2 11.9134 r18 -0.0068 s18 -0.0384
r3 -0.0255 s3 -15.9616 r19 0.0263 s19 0.1284
r4 -0.0666 s4 12.7194 r20 -0.0198 s20 -0.0601
r5 0.1315 s5 -4.5490 r21 0.0032 s21 -0.0939
r6 -0.1245 s6 -2.0666 r22 -0.0059 s22 0.0027
r7 0.0570 s7 3.1609 r23 0.0188 s23 0.1820
r8 0.0485 s8 0.7437 r24 -0.0180 s24 -0.1586
r9 -0.1405 s9 -6.0665 r25 0.0066 s25 0.0457
r10 0.1456 s10 8.5544 r26 0.0003 s26 -0.0534
r11 -0.0610 s11 -6.8795 r27 -0.0007 s27 0.1081
r12 -0.0242 s12 3.6997 r28 — s28 -0.0901
r13 0.0422 s13 -1.8094 r29 — s29 0.0345
r14 -0.0212 s14 1.0885 r30 — s30 -0.0049
r15 0.0051 s15 -0.4045 — — — —

In Fig. 10.7, the achieved sensitivity functions with the full nominal model are
shown. Clearly the controller allows matching the specifications. The achieved mod-
ulus margin is −2.775 dB and the achieved delay margin is 4.1 Ts (Ts = 1.25 ms).

The performance on the real system is shown in Fig. 10.8. As it can be seen the
specifications are satisfied.

Nevertheless, the full design procedure will be illustrated since in certain cases:

• the results obtained with the controller designed on the basis of the open-loop
model may not necessarily be fully satisfactory; and

• the complexity of the controller has to be reduced.

10.4 Identification in Closed-Loop of the Active Suspension
Using the Controller Designed on the Model Identified in
Open-Loop

The methodology of identification in closed-loop operation has been presented in
Chapter 8. A model with nA = 14, nB = 16 and d = 0 will be identified (same orders
as for the model identified in open-loop operation).

One would like to identify a model which will minimize the error between the
true output sensitivity function and the estimated sensitivity function, taking also
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Fig. 10.7 Achieved sensitivity functions (black) with the OLBC controller and the nominal model.

0 50 100 150 200 250 300 350 400
−60

−50

−40

−30

−20

−10

0

10

Frequency [Hz]

Performance of controller on real system (residual force PSD)

V
rm

s 
[d

B
]

 

 
Open loop
Template
Closed loop

Fig. 10.8 Performance of the OLBC controller on the real system (PSD of the residual force).

into account that the plant model has a double differentiator. To achieve this, the
excitation has been added to the input of the filter R (see Chapter 8 for details).
Within this context, data acquisition was done with the same PRBS sequence as in
open-loop identification (generated by 9-bit shift register and a clock frequency of
fs/4).
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The best identified model in terms of statistical validation was the model identi-
fied with X-CLOE using a time-varying forgetting factor with λ0 = λ1 = 0.95. The
parameters of this model are given in Table 10.3.

Table 10.3 Parameters of the model identified in closed-loop.

Coeff. A Coeff. B Coeff. A Coeff. B

a0 1.0000 b0 0.0000 a9 0.6201 b9 0.2716
a1 -0.3003 b1 -0.1556 a10 -0.1095 b10 1.8255
a2 0.3504 b2 0.1843 a11 0.1593 b11 1.1575
a3 -0.6740 b3 0.5518 a12 -0.1580 b12 1.3638
a4 -0.2478 b4 -1.4001 a13 -0.0957 b13 -0.8958
a5 -0.4929 b5 3.4935 a14 -0.2030 b14 1.6724
a6 -0.3217 b6 -0.3536 a15 — b15 -1.7691
a7 0.6157 b7 -2.7181 a16 — b16 -0.2240
a8 0.1459 b8 -3.0041

It is very important to assess if the model identified in closed-loop is better than
the model identified in open-loop for describing the behaviour of the closed-loop
system using the OLBC controller. Figure 10.9 shows the identified poles of the
closed-loop (using an RELS algorithm for the closed-loop system identification
considered as an input/output map from the excitation to the residual force) and
the computed closed-loop poles using the open-loop identified model (OLID-M)
and the OLBC controller. Figure 10.10 shows the same type of comparison but the
computed closed-loop poles are calculated using the model identified in closed-loop
(CLID-M). Visual comparison shows clearly that the CLID-M model gives a better
description of the real closed-loop system using the OLBC controller (this is obvi-
ous in the low frequency range which defines the main behaviour of the closed-loop
system in terms of performance).

This is also confirmed by the comparison of the real time results with the
simulated results obtained with the OLID-M model and the CLID-M model (see
Fig. 10.11). A small improvement is observed.

10.5 Redesign of the Controller Based on the Model Identified in
Closed-Loop

Similar to the open-loop situation a reduced order model obtained by balanced trun-
cation will be used. This model has the following dimensions: nA = 8, nB = 11,
d = 0. The frequency characteristics of this reduced model and those of the full or-
der model identified in closed-loop are shown in Fig. 10.12.2 It can be observed that

2 The option of identifying in closed-loop a reduced order model instead of a model of nominal
order followed by an order reduction using balanced truncation has provided less good results. For
details see [59].
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Fig. 10.9 Proximity poles validation of the full order open-loop identified model. Identified and
computed closed-loop poles.

the reduced order model approximates very well the frequency characteristics of the
nominal model identified in closed-loop in the low frequency range of interest.

Applying the same design procedure based on convex optimization but now using
the reduced order model obtained from the nominal model identified in closed-loop
a new controller (CLBC - Closed-Loop Based Controller) is obtained whose param-
eters are given in Table 10.4. The sensitivity functions with the nominal CLID-M
model are shown in Fig. 10.13. The robustness margins are: 1) Modulus Margin
=−3.702 dB; 2) Delay Margin = 1.834TS.

Figure 10.14 shows a comparison of the real time results obtained with the OLBC
controller and with the CLBC (controller based on the closed-loop identified model).
The results are very close indicating that already the open-loop identified model was
very good.

10.6 Controller Complexity Reduction

Once the CLBC controller is tested and the performance results are satisfactory (see
Section 10.5), one can pass to the last step of the design methodology presented in
Fig. 10.2 which is the reduction of the complexity of the controller.

The techniques for controller complexity reduction by identification in closed-
loop of the reduced order controller described in Chapter 9 will be used.
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Fig. 10.11 Spectral density of the simulated and real time closed-loop output (zoom).

One aspect which is very important when reducing the complexity of a controller
is that the controller reduction should be done such as to preserve as much as possi-
ble the desirable closed-loop properties. Direct simplification of the controller using
standard techniques (poles-zeros cancellation within a certain radius, balanced re-
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Fig. 10.12 Bode diagram (amplitude and phase) of the nominal model identified in closed-loop
operation and of the corresponding reduced order model.

duction) without taking into account the closed-loop behaviour produces in general
unsatisfactory results [17, 14].

The orders of the nominal CLBC controller to be reduced are nR = 27, nS = 30,
and its coefficients have been presented in Table 10.4. The model which will be used
for the reduction of the controller is the nominal closed-loop identified model CLID-
M (see Section 10.4). The parameters of the model have been given in Table 10.3
(see Section 10.4).

Since in active damping we are concerned with attenuation of the disturbances,
the main objective for controller reduction will be to obtain an output sensitivity
function for the reduced order controller as close as possible to the output sensitivity
function obtained with the nominal order controller. As indicated in Chapter 9 and
[132], in order to achieve this, the CLOM procedure has to be used. The reduction
procedures have been run with simulated data.

A variable forgetting factor with λ1(0) = 0.95 and λ0 = 0.9 (λ1(t) = λ0λ1(t −
1)+1−λ0) has been used in the algorithm for the controller parameters estimation.
The external input was a PRBS generated by a 9-bit shift register with a p = 4
frequency divider (4096 samples). In addition a fixed part HR = 1+ q−1 has been
introduced in the reduced order controllers (R = HRR′) which preserves the opening
of the loop at 0.5 fs.
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Table 10.4 Parameters of the controller based on the model identified in closed-loop operation
(reduced order model) (CLBC).

Coeff. R Coeff. S Coeff. R Coeff. S

r0 0.0195 s0 1.0000 r16 -0.0488 s16 0.8567
r1 -0.0618 s1 -4.5610 r17 0.0446 s17 -0.6306
r2 0.1030 s2 9.4917 r18 -0.0495 s18 0.3005
r3 -0.1238 s3 -12.4447 r19 0.0437 s19 -0.1080
r4 0.1263 s4 12.6103 r20 -0.0255 s20 0.0162
r5 -0.1087 s5 -11.5883 r21 0.0078 s21 0.1348
r6 0.0581 s6 9.8694 r22 0.0055 s22 -0.2960
r7 0.0050 s7 -7.4299 r23 -0.0178 s23 0.3737
r8 -0.0389 s8 5.3112 r24 0.0254 s24 -0.3835
r9 0.0499 s9 -4.0129 r25 -0.0215 s25 0.3633
r10 -0.0648 s10 2.9544 r26 0.0102 s26 -0.3058
r11 0.0727 s11 -2.1480 r27 -0.0022 s27 0.2004
r12 -0.0602 s12 1.9636 r28 — s28 -0.0883
r13 0.0511 s13 -1.9125 r29 — s29 0.0218
r14 -0.0597 s14 1.4914 r30 — s30 -0.0019
r15 0.0616 s15 -1.0471
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Fig. 10.13 Achieved sensitivity functions (black thin line) with the CLBC controller and the nom-
inal model identified in closed-loop operation.

10.6.1 CLOM Algorithm with Simulated Data

Two reduced order controllers have been computed: CLBC-CLOM16 with the or-
ders nR = 14, nS = 16 and CLBC-CLOM5 with the orders nR = 4, nS = 5.

The frequency characteristics of the output and input sensitivity functions (Syp
and Sup) for the nominal controller CLBC and the two reduced order controllers
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Fig. 10.14 Real-time performance of the OLBC and CLBC controllers (detail).

CLBC-CLOM16 and CLBC-CLOM5 are shown in Figs. 10.15 and 10.16, respec-
tively.
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Fig. 10.15 Output sensitivity functions (controller order reduction with CLOM algorithm and sim-
ulated data).

Note that the reduced controller CLBC-CLOM16 corresponds to the complexity
of the pole placement controller with the fixed part HR, while controller CLBC-
CLOM5 has a lower complexity.
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Fig. 10.16 Input sensitivity functions (controller order reduction with CLOM algorithm and sim-
ulated data).

The values of the various ν-gap are summarized in Table 10.5 (the last two rows
give real time results). It can be remarked that the Vinnicombe stability margins

Table 10.5 Comparison of the nominal and reduced order controllers (controller reduction using
CLOM algorithm and simulated data).

Controller CLBC CLBC-CLOM16 CLBC-CLOM5
nR = 27 nR = 14 nR = 4
nS = 30 nS = 16 nS = 5

δν (Kn,Ki) 0 0.6577 0.6511
δν (Sn

up,S
i
up) 0 0.6577 0.6511

δν (Sn
yp,S

i
yp) 0 0.0386 0.1308

b(Ki,G) 0.0303 0.0135 0.0223
δν (CL(Kn),CL(Ki)) 0.2610 0.2963 0.4275

Closed-Loop Error Variance 0.13582 0.14755 0.17405

b(Ki,G) computed with the nominal model CLID-M for the various reduced order
controllers are close to the stability margin obtained with the nominal controller.

The last two rows of Table 10.5 give real time results. Row 6 gives the ν-gap
between the input/output transfer function corresponding to the input sensitivity
function Sup of the true closed-loop system constituted by the nominal designed
controller with the real plant (obtained by system identification between the input
r and the output y) and the input/output transfer function of the simulated closed-
loop system ( ˆ̂Sup) constituted by the various controllers (including the nominal one
and the reduced ones obtained using simulated data) in feedback connection with
the plant model. This quantity is denoted by δν(CL(Kn),CL(Ki)). This is a good
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criterion for the validation of the reduced order controllers in real time. It can be
observed that the CLBC-CLOM16 controller gives results which are very close to
those of the nominal CLBC controller. Row 7 gives the variance of the residual
closed-loop input error between the true system and the simulated one. The results
are coherent to those of row 6, showing that CLBC-CLOM16 gives performance
very close to those of the nominal controller.

10.6.2 Real-time Performance Tests for Nominal and
Reduced-order Controllers

The spectral densities of the residual forces in open-loop and in closed-loop cor-
responding to the nominal controller CLBC and the reduced-order ones obtained
with the CLOM method (CLBC-CLOM16 and CLBC-CLOM5) are presented in
Fig. 10.17.
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Fig. 10.17 Spectral density of the residual forces in open and closed-loop for the nominal and
reduced order controllers (CLOM).

It can be seen that the performance of reduced-order controllers are very close
to that of the nominal controller designed using a reduced model of the closed-loop
identified model. Note also that the reduction in terms of number of parameters is
significant. Very close results have been obtained using the CLIM reduction proce-
dure (see [59, 133]).
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10.7 Design of the Controller by Shaping the Sensitivity
Function with Band-stop Filters

The objective of this section is to provide an alternative design procedure for active
damping which does not require the use of the convex optimization procedure, but
uses only band stop filters which are iteratively introduced in order to shape the sen-
sitivity functions. This method has been introduced in Section 7.2.9. The frequency
and damping of the poles of the open-loop identified model are given in Table 6.3.

All asymptotically stable poles will be included as initial desired closed-loop
poles. Only the pole located at −0.2177 which corresponds in fact to a pair of
damped oscillatory poles near 0.5 fs will not be included. All the poles remain un-
changed in terms of damping, except the complex poles located at 31.939 Hz for
which the damping imposed in closed-loop will be ξ = 0.8 and the complex poles
at 164.34 Hz for which a damping of 0.167 will be chosen. These two damped poles
will help to satisfy the desired template on the output sensitivity function. 16 real
auxiliary poles are assigned at 0.15 (this will not augment the size of the resulting
controller).3

Figure 10.18 (curve “Controller 1”) shows the resulting output sensitivity func-
tion Syp. As it can be seen, it almost satisfies the robustness constraints on the mod-
ulus margin and delay margin (it is inside the basic template for robustness at all
frequencies except around 55 Hz). Nevertheless, when compared to the specifica-
tion for the output sensitivity function in Fig. 10.19 (dotted line), it can be observed
that the desired disturbance attenuation is not satisfied.The input sensitivity function
satisfies the specified template, see Fig. 10.20.

To have zero gain on the input sensitivity function at 0.5 fs, one zero at −1 is
added to the fixed part of the controller numerator by including into HR the first
order polynomial (1+q−1). One more characteristic pole at 0.15 is then added (this
will not increase the order of the controller but avoid to have a pole assigned to 0).
The result can be seen in Figs. 10.19 and 10.20, “Controller 2” curve. One can see
that the template is still violated in several frequency regions.

For shaping the output sensitivity function in the frequency region of the first
attenuation mode around 30 Hz three BSF have been added at 14 Hz, 24 Hz and
38.7 Hz, with attenuation of -2.5, -7, and -5.5 dB respectively. The resulting con-
troller sensitivity functions are shown in Figs. 10.19 and 10.20 (curve “Controller
3”). The result in the region of the first attenuation mode around 30 Hz can be bet-
ter evaluated using Fig. 10.21, where a zoom between 10 and 50 Hz is shown. For
all three BSF, the denominator damping has been chosen equal to 0.5. It can be
observed that “Controller 3” satisfies the imposed template in the lower frequency
region below 30 Hz.

The final design step is to improve the shape of the sensitivity functions at the
other frequencies. Two additional BSF have been added for shaping the output sensi-
tivity function and 5 for shaping the input sensitivity function. In addition, the initial

3 The design using BSF has been done with iReg software which provides a convenient interactive
environment.
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Fig. 10.18 Output sensitivity function for the Controller 1 (with modulus and delay margin tem-
plates).
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Fig. 10.19 Output sensitivity function with the 3 initial controllers.

3 BSF have been slightly modified as each newly added BSF has however a slight
influence at neighboring frequencies. Tables 10.6 and 10.7 summarize the charac-
teristics of the various BSF. A sensitivity functions comparison between “Controller
3” and “Controller 4” is given in Figs. 10.22 (output sensitivity functions) and 10.23
(input sensitivity functions).

Finally, Figs. 10.24 and 10.25 give a comparison of “Controller 4” and the con-
troller designed using convex optimisation (see previous sections). A zoom between
10 and 50 Hz is shown in Fig. 10.26 for comparative evaluation of the obtained
characteristics around the first attenuation region. As it can be seen, both controllers



196 10 Active Damping

0 50 100 150 200 250 300 350 400
−80

−60

−40

−20

0

20

Frequency [Hz]

M
ag

n
it

u
d

e 
[d

B
]

Sup frequency response

 

 
Sup template
Controller 1
Controller 2
Controller 3

Fig. 10.20 Input sensitivity function with the 3 initial controllers.
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Fig. 10.21 Output sensitivity function with the 3 initial controllers (zoom).

satisfy the template in the low frequency region while in the high frequency re-
gion the controller designed by convex optimization slightly exceeds the imposed
template. Concerning their complexity, “Controller 4” designed using BSF filters
has 71 parameters (nR = 34 and nS = 36) while the controller designed by convex
optimisation has 58 parameters (nR = 27 and nS = 30).
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Table 10.6 Band-stop filters for the output sensitivity function.

Controller
Number

Frequency [Hz] Attenuation [dB] Denominator. damp-
ing

1 14 -9.1 0.95
2 23.5 -14.759 0.95
3 41.158 -5.2 0.5
4 69.45 -15.11 0.95
5 132.5 -14.759 0.95

Table 10.7 Band-stop filters for the input sensitivity function.

Controller
Number

Frequency [Hz] Attenuation [dB] Denominator damp-
ing

1 51.5 -16 0.95
2 70.74 -14.052 0.5
3 92.6 -15.1 0.95
4 115.76 -9.1 0.5
5 313.826 -2.733 0.95
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Fig. 10.22 Output sensitivity function comparison between “Controller 3” and “Controller 4”.

10.8 Concluding Remarks

• The design of active damping systems consists in the following major steps:

– Definition of the control performance specifications in the frequency domain.
– Design of the controller ensuring the desired performance.
– Validation of the controller.

• Design of the controller for active damping include several steps:
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Fig. 10.23 Input sensitivity function comparison between “Controller 3” and “Controller 4”.
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Fig. 10.24 Output sensitivity function comparison between the convex optimization controller and
“Controller 4” obtained using iREG.

– Open-loop identification of the secondary path.
– Design of the controller based on the secondary path model identified in open-

loop operation.
– Implementation and validation of the controller.

• If the performance is not satisfactory, the following procedure has to be followed:

– Identification in closed-loop operation of a new model for the secondary path
and validation of the identified model.

– Redesign of the controller on the basis of the model identified in closed-loop.
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Fig. 10.25 Input sensitivity function comparison between the convex optimization controller and
“Controller 4” obtained using iREG.
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Fig. 10.26 Output sensitivity function comparison between the convex optimization controller and
“Controller 4” obtained using iREG (zoom).

– Implementation and validation of the controller designed on the basis of the
model identified in closed-loop operation.

• The effective design of the controller requires the shaping of the sensitivity func-
tions.

• Shaping of the sensitivity functions can be achieved using convex optimization
or band stop filters combined with poles placement.
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• If constraints on the computational load exist, the final step in the design is the
reduction of the controller complexity with the objective of preserving the closed-
loop performance.

• The reduced order controller should be implemented and validated.

10.9 Notes and References

Active damping for disturbance attenuation and control of lightly damped structures
which has different objectives use however similar feedback techniques [111].

Suspension bridges and cable-stayed bridges require active damping to reduce
the effects of various phenomena. Active damping solutions have been proposed in
[43, 200, 2, 1, 37, 22, 205, 204]. Active tendon control of cable-stayed bridges using
hydraulic suspension is considered in [37].

An important issue in active damping is the construction of physical systems
allowing to achieve active damping. Use of piezoelectric devices is a very efficient
approach for many applications. See [204] for a survey and [200] for a detailed
modeling of this type of devices. Applications of piezoelectric devices for active
damping have been reported for: (i) Large space structures [204], (ii) Wafer stepper
in lithography [103] and (iii) Active tendon control of cable structures in space
[202, 203].

Other references related to active damping include [207, 201, 54, 221].
A key issue in active damping is a careful shaping of the sensitivity functions.

Other techniques than those presented in this chapter can be used. H∞ where the
shaping of the sensitivity function is converted in a weighted frequency criterion
minimization can be considered [269, 13]. Linear-Quadratic Control with frequency
weighting can also be considered [236].
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Chapter 11
Robust Controller Design for Feedback
Attenuation of Narrow-Band Disturbances

Abstract This chapter deals with the design of robust linear feedback controllers for
attenuation of narrow-band disturbances. The design is based on the shaping of the
output sensitivity function using the band-stop filters presented in Chapter 7. Two
scenarios are considered. The first one concerns the attenuation of disturbances
with time-varying frequencies within a limited frequency range around a central
frequency. The second scenario considers the attenuation of vibrational interference
caused by several tonal disturbances located very close each other in the frequency
domain. The proposed solutions are validated on an active vibration control system.

11.1 Introduction

To illustrate the design of a robust controller for active vibration control system,
we will consider the case of multiple unknown and time-varying sinusoidal distur-
bances located within two distinct relatively small frequency ranges. To be specific,
two situations will be considered:

1) The case of two time-varying tonal disturbances, located in two distinct fre-
quency regions.

2) The case of four simultaneous tonal disturbances, located two by two in two
distinct frequency regions. In this context a very important problem is to be able
to counteract the very low frequency oscillation which is generated when the
two frequencies are very close (vibrational interference). This phenomenon is
considered for example in [157]. It also occurs often on ships with two thrusters
which can not be perfectly synchronized. A typical image of the phenomenon is
shown in Fig. 11.1.

Since these disturbances are located within two relatively small frequency ranges,
it is possible to consider a linear control design which will shape the output sensi-
tivity function in such a way that a sufficient attenuation is introduced in these two
frequency regions but avoiding significant amplification at other frequencies (both

203
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Fig. 11.1 Vibrational interference of two sinusoidal disturbances.

for performance and robustness reason). This problem in the context of active noise
control has been considered in [45] and the shaping of the output sensitivity function
have been achieved using the convex optimization procedure introduced in [149].1

An H∞ approach can also eventually be used but it will require a quite complicated
procedure for defining the appropriate weighting functions.

In this chapter, it will be shown that the technique of shaping the sensitivity func-
tions using band-stop (notch) filters (see [135] and also Chapter 7) can be efficiently
used to design controllers for robustly attenuating single or multiple narrow-band
disturbances varying within a relatively small frequency range.

Experimental validation of the design on the active vibration control system using
an inertial actuator will conclude the chapter.

11.2 System Description

The linear time invariant (LTI) discrete time model of the secondary path, used for
controller design is

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−d−1B∗(z−1)

A(z−1)
, (11.1)

where

A(z−1) = 1+a1z−1 + · · ·+anAz−nA , (11.2)

B(z−1) = b1z−1 + · · ·+bnB z−nB = z−1B∗, (11.3)

B∗ = b1 + · · ·+bnBz−nB+1, (11.4)

1 See also Section 7.4.
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and d is the plant pure time delay in number of sampling periods2. To illustrate the
methodology, the active vibration control system using an inertial actuator described
in Section 2.2, will be used. The identification of the secondary path model has been
done in Section 6.2. The parameters of the identified model of the secondary path
are given in Table 6.2 (d = 0).

The output of the plant y(t) and the input u(t) may be written as (see Fig. 11.2):

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p(t), (11.5)

S0(q−1) ·u(t) =−R0(q−1) · y(t). (11.6)

+

+

+

-

Plant

Environment

Fig. 11.2 Feedback regulation scheme for rejection of disturbances.

In (11.5), p(t) is the effect of the disturbances on the measured output3 and
R0(z−1), S0(z−1) are polynomials in z−1 having the following expressions:4

S0 = 1+ s0
1z−1 + . . .+ s0

nS
z−nS = S′0 ·HS0 , (11.7)

R0 = r0
0 + r0

1z−1 + . . .+ r0
nR

z−nR = R′
0 ·HR0 , (11.8)

where HS0(z
−1) and HR0(z

−1) represent pre-specified parts of the controller (used
for example to incorporate the internal model of a disturbance or to open the loop at
certain frequencies). S′0(z

−1) and R′
0(z

−1) are the result of the Bezout equation

P0 =
(
A ·HS0

)
·S′0 +

(
z−dB ·HR0

)
·R′

0. (11.9)

In the last equation, P0(z−1) represents the characteristic polynomial, which speci-
fies the desired closed-loop poles of the system.

2 The complex variable z−1 will be used to characterize the system’s behaviour in the frequency
domain and the delay operator q−1 will be used for the time domain analysis.
3 The disturbance passes through a so called primary path and p(t) is its output.
4 The argument (z−1) will be omitted in some of the following equations to make them more
compact.
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The transfer functions between the disturbance p(t) and the output of the system
y(t) and the control input u(t), denoted respectively output sensitivity function and
input sensitivity function, are given by

Syp(z−1) =
A(z−1)S0(z−1)

P0(z−1)
(11.10)

and

Sup(z−1) =−A(z−1)R0(z−1)

P0(z−1)
, (11.11)

It is important to remark that one should only reject disturbances located in fre-
quency regions where the plant model has enough gain. This can be seen by looking
at eq. (11.10) and noticing that perfect rejection at a certain frequency, ω0, is ob-
tained iff Syp(e− jω0) = 0. On the other hand, from (11.9) and (11.11) one can see
that, at ω0:

Sup(e− jω0) =− AR0

0+ e−d jω0 BR0
=− A

e−d jω0B
=

1
G(e− jω0)

. (11.12)

Eq. (11.12) corresponds to the inverse of the gain of the system to be controlled
at the frequency ω0. If the gain of the controlled system is too low, |Sup| will be
large at these frequencies. Therefore, the robustness vs additive plant model uncer-
tainties will be reduced and the stress on the actuator will become important (see
Section 7.2.5 and [135]). The implication of eq. (11.12) is that cancellation (or in
general an important attenuation) of disturbances on the output should be done only
in frequency regions where the system gain is large enough. Eq. (11.12) also im-
plies that serious problems will occur if B(z−1) has complex zeros close to the unit
circle (stable or unstable zeros) at frequencies where an important attenuation of dis-
turbances is required. It is mandatory to avoid attenuation of disturbances at these
frequencies.

11.3 Robust Control Design

In this section, the design of a linear robust digital controller for disturbance atten-
uation is presented.

Before presenting the objectives for robustness and regulation, a few notions
about feedback disturbance attenuation should be reminded. In the case of a feed-
back controlled system, the Bode integral constraint leads to a waterbed effect on
the output sensitivity function (transfer function from disturbance p(t) to output
y(t) in closed-loop, see Section 7.1 and Section 11.2). In other words, forcing the
magnitude of the output sensitivity function at certain frequencies below 0 dB (in
order to attenuate disturbances) has an inverse effect on neighbouring frequencies,
where an amplification will be observed. Recalling from Section 7.2.4 that the min-
imal distance between the Nyquist plot of the open-loop transfer function and the
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critical point −1+0i (also called modulus margin) corresponds to the inverse of the
maximum of the output sensitivity function, it can be concluded that “too much”
attenuation at some frequencies can have a bad effect on the robust stability of the
closed-loop system.

To summarize, the attenuation surfaces should be equal to the amplification sur-
faces with the constraint that the maximum amplification be less or equal to 8 dB
in order to assure a convenient modulus margin. This has to be verified on the op-
erational frequency range. Outside this zone the output sensitivity function is close
to 0 dB since the input sensitivity function is forced to be very low (no gain in the
controller) for robustness reasons and actuator solicitations.

Taking into consideration the secondary path frequency response in Fig. 6.18 and
the fact that disturbances can only be attenuated where the system has enough gain
(see Section 11.2), it has been concluded that only disturbances within the 50 Hz -
95 Hz frequency band (operational frequency range) can be attenuated.

For the design of the linear robust digital controller, the following specifications
are considered:

• up to 4 sine disturbances are supposed to affect the output of the system (known
structure of the disturbance model);

• their frequencies are not known exactly but they are varying within ±2.5 Hz
around 60 Hz and 80 Hz;

• the controller should attenuate the disturbances by a minimum of 14 dB;
• the maximum allowed amplification of the output sensitivity function is 8 dB;
• the effect of disturbances on the control input should be attenuated above 100 Hz

in order to improve robustness with respect to unmodeled dynamics and non-
linear phenomena (Sup(e− jω)<−20dB, ∀ω ∈ [100 Hz,400 Hz]);

• the gain of the controller has to be zero at zero frequency (since the system has a
double differentiation behaviour); and

• the gain of the controller should be zero at 0.5 fs where the system has low gain
and uncertainties exist.

It is shown in [135, Property 7, Section 3.6.1] and in Section 7.2.9 that very
accurate shaping of the output or the input sensitivity function can be obtained by
the use of band-stop filters (BSF). These are IIR notch filters obtained from the
discretization of a continuous-time filter of the form

F(s) =
s2 +2ζnumω0s+ω2

0

s2 +2ζdenω0s+ω2
0

(11.13)

using the bilinear transform s = 2
T s

1−z−1

1+z−1 . The use of BSFs introduces an attenuation

M = 20log
(

ζnum

ζden

)
(11.14)

at the normalized discretized frequency
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ωd = 2 · arctan
(

ω0TS

2

)
. (11.15)

Design details can be found in Section 7.2.9.
Depending on whether the filter is designed for shaping the output or the input

sensitivity function, the numerator of the discretized filter is included in the fixed
part of the controller denominator HS0 or numerator HR0 , respectively. The filter
denominator is always included in the closed-loop characteristic polynomial. As
such, the filter denominator influences the design of the controller indirectly since
S′0 and R′

0 are solutions of the Bezout equation (11.9). They will be used for a fine
shaping of both the output and input sensitivity functions.

The steps for the design of the linear controller are:5

1. Include all (stable) secondary path poles in the closed-loop characteristic poly-
nomial.

2. Open the loop at 0 Hz and at 400 Hz by setting the fixed part of the controller
numerator

HR = (1+q−1) · (1−q−1). (11.16)

3. 3 BSFs on Syp have been used around each of the frequencies where attenua-
tion is desired in order to assure the desired attenuation within ±2.5 Hz (see
Table 11.1 for specifications).

4. 1 BSF has been used on Sup to reduce its magnitude above 100 Hz (see Ta-
ble 11.1 for specifications).

5. To improve robustness, 2 complex conjugate poles have been added to the char-
acteristic polynomial, one at 55 Hz and the second at 95 Hz, both of them with
0.1 damping factor.

Table 11.1 Band-stop filters for output and input sensitivity functions.

Frequency [Hz] Amplification [dB] Damping

Syp

57.5 −17 0.1
59.8 −25 0.5
62 −15 0.1

77.5 −13 0.05
79.8 −20 0.2
82 −12 0.05

Sup 155 −16 0.5

The output and input sensitivity functions with this linear controller can be anal-
ysed in Figs. 11.3 and 11.4, respectively. In Fig. 11.3, it can be observed that the
attenuation of 14 dB and the maximum amplification of 8 dB on Syp are achieved.
This is a trade off between performance and robustness. The specification of −20 dB
attenuation on Sup above 100 Hz is satisfied.

5 The software iREG has been used for the design of this robust digital controller but the same
results can be obtained using functions written in Matlab/Scilab languages (see http://www.gipsa-
lab.grenoble-inp.fr/∼ioandore.landau/identificationandcontrol/).

http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
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Fig. 11.3 Output sensitivity function with the linear controller (upper figure) and zoom in the
50 Hz to 90 Hz frequency interval (lower figure).
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Fig. 11.4 Input sensitivity function with the linear controller.
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11.4 Experimental Results

The performance of the robust design will be illustrated on the test bench presented
in Section 2.2. Comparison with the results obtained with an adaptive attenuation
scheme will be given in Section 12.4.

11.4.1 Two Time-Varying Tonal Disturbances

The results in this subsection are obtained by considering 2 sinusoidal disturbances
with time-varying frequencies on the system output. The time variations of the fre-
quencies are obtained by using 2 independent pseudo random binary sequences
(PRBS). The 2 sinusoidal disturbances vary around 60 and 80 Hz, respectively, re-
maining inside the ±2.5 Hz frequency intervals for which the robust linear controller
introduces 14 dB of attenuation. Figure 11.5 shows the evolution of the frequencies
and the corresponding PRBS generators.
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Fig. 11.5 Pseudo random binary sequences (left figures) and evolution of the frequencies of the
sinusoidal disturbances (right figures).

Note that all subsequent experiments start at 10 seconds. This period has been
introduced in order to give enough time to activate the electronic boards for real
time experimentation. Also, the system operates in open-loop for 5 seconds (from
10 to 15 sec). Finally, 5 seconds before the end of the experiments, the system is
switched back to open-loop and the system input and the disturbances are removed.

To avoid large transients when switching on the controllers, a bumpless transfer
scheme from open to closed-loop has been used (see also [135, Chapter 8]).
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In Fig. 11.6, time domain experimental results are shown for the open-loop and
the closed-loop with the linear controller. The system operates in open-loop without
disturbance during the last 5 seconds, from 35 to 40 sec, so that the residual forces
can be compared to the system noise.

The global attenuation is computed over the last 3 seconds of each closed-loop
experimentation. For the robust linear controller the global attenuation is 25.70 dB.
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Fig. 11.6 Residual force in closed-loop with linear controller. The experiment is started in open-
loop for 5 seconds. Range of frequency variations: ±2.5 Hz.

11.4.2 Attenuation of Vibrational Interference

This subsection deals with the attenuation of vibrational interference (two-mode
sinusoidal vibrations) on the active vibration control systems using an inertial ac-
tuator. It can be shown (see also [157]) that when two sinusoidal disturbances are
close enough, a flapping phenomena appears due to the periodic cancellation of the
two neighbouring sinusoidal disturbances (vibration interference). This phenomena
is shown in Fig. 11.1 where 2 pairs of neighbouring sinusoidal disturbances are
introduced, one pair around 60 Hz (at 59.9 and 60.1 Hz) and the second around
80 Hz (at 79.9 and 80.1 Hz). The same robust linear controller as described earlier
can be used as its attenuation frequency band is large enough to accommodate the
neighbouring disturbances.

Time domain results are shown in Fig. 11.7. The global attenuation for the robust
linear controller is 27.50 dB.

The power spectral density (PSD) estimate for the robust linear controller is given
in Fig. 11.8. The effective attenuation introduced by the controller action can be seen
in Fig. 11.9. It can be observed that the attenuation introduced by the robust linear
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controller in the desired frequency zone is equal to 14 dB which is coherent with the
design done in Section 11.3.
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Fig. 11.7 Residual force in open-loop (upper plot) and in closed-loop with the linear controller
(lower plot). The loop is closed at t=15 sec.

11.5 Concluding Remarks

• When the frequencies of single and multiple tonal disturbances vary within lim-
ited frequency regions a robust linear controller design can be considered.

• The level of achievable attenuation depends upon the width of the uncertainty
region in the frequency domain (as a consequence of the Bode integral).

• Shaping of the sensitivity functions is necessary in order to avoid unacceptable
disturbance amplification in the neighbourhood of the attenuation zones and in
order to assure acceptable values for the modulus margin and the delay margin.

• Pole placement combined with the use of Band-stop Filters (BSF) allow an effi-
cient shaping of the sensitivity functions.
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Fig. 11.8 Power spectral densities of the open-loop and the robust linear controller. Full frequency
range in the upper plot, zoom between 50 and 100 Hz in the lower plot.
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Fig. 11.9 Power spectral densities difference between the closed-loop with the linear controller
and the open-loop.

11.6 Notes and References

Other approaches to the design of robust linear controllers in the context of active
vibration control are mentioned hereafter: H∞ control in [257], H∞ control with
phase and gain policies [267], quantitative robust linear parameter varying (LPV)
control [266]. Classical H∞ and LQR controllers are compared in [19] taking into
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account the amount of power and energy consumed by the control device. LQR,
improved H∞ designs, and µ synthesis are evaluated in [115] for active vibration
control of a flexible beam. Other approaches encountered in AVC systems design
include also: repetitive control [57, 184] and synchrophasing in [62].

The technology for the implementation of the AVC in mechanical structures has
evolved towards using inertial (electro-dynamic) actuators [170]. In many applica-
tion involving collocated actuators and sensors, piezo-electric materials are used
(see [176] and various applications reported in [240, 159, 157]).



Chapter 12
Direct Adaptive Feedback Attenuation of
Narrow-Band Disturbances

Abstract This chapter presents the basic algorithm for direct adaptive feedback at-
tenuation of unknown and time-varying narrow-band disturbances. This algorithm
implements the Internal Model Principle for disturbance attenuation using a Youla–
Kučera parametrization for the controller. The use of a FIR Youla–Kučera filter al-
lows to develop a direct adaptive scheme where the poles of the closed-loop defined
by the central controller remain unchanged. Specific robustness issues for the de-
sign of the central controller are discussed. Experimental results obtained on the
bench tests presented in Chapter 2 will illustrate the performance of the algorithm.
The basic refeerences for this approach are: [130, 140, 144].

12.1 Introduction

One of the basic problems in Active Vibration Control and Active Noise Control
is the strong attenuation of single or multiple unknown and time-varying narrow-
band disturbances1 without measuring them. In this context, an adaptive feedback
approach, termed as adaptive regulation is now generally used. In contrast with the
feedforward compensation approach [255, 28, 82, 68], the feedback approach, does
not require an additional measurement highly correlated with the disturbance. This
is a significant advantage. Feedback approaches avoid also the possible destabilizing
positive feedback coupling between the compensator system and the measurement
of the disturbance which occurs often in feedforward compensation schemes (see
[127] and Section 1.5) and require less parameters to adapt.

A common assumption is that the disturbance is white noise or a Dirac impulse
passed through a filter which characterizes the model of the disturbance.2 To be
more specific, the disturbances considered can be defined as “finite band distur-

1 Called tonal disturbances.
2 Throughout the chapter, it is assumed that the number of narrow-band disturbances is known (it
can be estimated from data if necessary) but not their frequency characteristics.

215
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bances.” This includes single or multiple narrow-band disturbances or sinusoidal
signals. For the purpose of this chapter, the disturbances are considered to be un-
known and time-varying, in other words, their model has time-varying coefficients.
This motivates the use of an adaptive regulation approach since the objective is to
attenuate unknown disturbances without measuring them.

A popular methodology for this regulation problem in the case when the model
of the disturbance is known, is to design a controller that incorporates the model
of the disturbance (internal model principle - IMP). This technique has been in-
troduced in Section 7.2.2 and has its roots described in the paper [80]. Additional
references for the present context are [27, 130, 128]. The main problem, using the
IMP principle, is that complete rejection of the disturbances is attempted (asymp-
totically) and this may have a strong influence upon the sensitivity functions out-
side the frequency band in which attenuation is achieved. As long as rejection of a
single narrow-band disturbance is considered ([130, 128]), the influence upon the
output sensitivity functions does in general not pose problems. Nevertheless, if low
damped complex zeros are located near the disturbance frequency, even in a sin-
gle narrow-band disturbance context, the influence over Syp(z−1) represents a major
challenge [50].

The IMP principle will be combined with a Youla–Kučera parametrization of the
controller (see Section 7.2.3) which will allow to develop a direct adaptive regula-
tion strategy. The parameters of the (Q) Youla–Kučera filter will be directly adapted
in order to cancel the effect of the disturbance.

When multiple narrow-band disturbances are considered, the use of the (IMP)
approach requires a very careful design of the central linear controller in order to
avoid unacceptable water-bed effects (unwanted amplification on the output sensi-
tivity function at certain frequencies). The problem of adaptive attenuation of multi-
ple unknown narrow-band disturbance distributed over a large frequency range will
be discussed in Chapter 13.

12.2 Direct Adaptive Feedback Attenuation of Unknown and
Time-varying Narrow-band Disturbances

12.2.1 Introduction

The objective is to reject asymptotically or strongly attenuate single or multiple
narrow-band disturbances which have unknown or time-varying spikes in the fre-
quency domain. To asymptotically reject the disturbance, the Internal Model Prin-
ciple (IMP) has to be applied. As a consequence, the controller should include a
model of the disturbance. Since the disturbances are unknown, two approaches can
be considered:
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• Indirect adaptive regulation (one has to identify the model of the disturbance and
recompute the controller which will include the estimated model of the distur-
bance).

• Direct adaptive regulation (the controller parameters will be directly adapted).

An important issue is the tuning of the controller as a function of the model of
the disturbance but without affecting the stability of the closed-loop. It turns out that
Youla–Kučera parametrization provides the good parametrization of the controller
for decoupling the stability of the closed-loop from the attenuation problem. It also
provides a disturbance observer. A rapprochement with the DOB control method
[159, 58] can be established.

Indirect adaptive regulation solutions can be also build, however they are much
more complex [130, 140] and their use should be justified (specific performance
requirements). This approach will be discussed in Section 13.4.

+

-

-
+

+

-

Plant

Controller

update

Controller

Fig. 12.1 Direct adaptive regulation scheme for rejection of unknown disturbances.

Figure 12.1 gives the block diagram of the direct adaptive regulation scheme for
attenuation of unknown narrow-band disturbances. q−dB/A defines the model of the
secondary path (called also plant), Q̂ designates the so called YK filter. R0 and S0
defines which is called the central controller. The output of the plant y(t) and the
input u(t) in the absence of the Youla–Kučera filters 3, may be written as (consider
Fig. 12.1 without the filter Q̂):

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p(t), (12.1)

S0(q−1) ·u(t) =−R0(q−1) · y(t). (12.2)

3 The Youla–Kučera parametrization has been presented in Chapter 7.
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In (12.1), p(t) is the effect of the disturbances on the measured output4 and R0(z−1),
S0(z−1) are polynomials in z−1 having the following expressions:5

S0 = 1+ s0
1z−1 + . . .+ s0

nS0
z−nS0 = S′0(z

−1) ·HS0(z
−1), (12.3)

R0 = r0
0 + r0

1z−1 + . . .+ r0
nR0

z−nR0 = R′
0(z

−1) ·HR0(z
−1), (12.4)

where HS0(q
−1) and HR0(q

−1) represent pre-specified parts of the controller (used
for example to incorporate the internal model of a disturbance or to open the loop at
certain frequencies) and S′0(q

−1) and R′
0(q

−1) are computed using Pole Placement
(see Chapter 7). The characteristic polynomial, which specifies the desired closed-
loop poles of the system is given by (see also [135]):6

P0(z−1) = A(z−1)S0(z−1)+ z−dB(z−1)R0(z−1), (12.5)

Introducing the expressions of S0 and R0 given in Eqs. (12.3) and (12.4), R′
0 and S′0

are solutions of:

P0(z−1) = A(z−1)S′0(z
−1)HS0(q

−1)+ z−dB(z−1)R′
0(z

−1)HR0(q
−1), (12.6)

In what follows the Youla–Kučera parametrization ([15, 242]) is used. Nevertheless,
the Youla–Kučera parametrization is not unique. It depends on the right coprime
factorization selected G = ND−1. Four factorization are mostly used [146]:

N = G; D = I. (12.7)

N = z−m; D = Pm with G ≈ z−mP−1
m . (12.8)

N = q−dB; D = A with G = q−d B
A
. (12.9)

N = q−dBF ;D = AF with G = q−d B
A

;F =
FN

FD
, (12.10)

with F and F−1 asymptotically stable. More details can be found in [146]. Subse-
quently the parametrization (12.9) will be used.

Selecting a FIR structure for the Q filter associated to the Youla–Kučera parametriza-
tion, the controller’s polynomials become:

R = R0 +AQHS0HR0 , (12.11)

S = S0 − z−dBQHS0HR0 , (12.12)

4 The disturbance passes through a so called primary path which is not represented in this figure,
and p(t) is its output.
5 The argument (z−1) will be omitted in some of the following equations to make them more
compact.
6 It is assumed that a reliable model identification is achieved and therefore the estimated model is
assumed to be equal to the true model.
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where R0 and S0 define the central controller which verifies the desired specifica-
tions in the absence of the disturbance. The characteristic polynomial of the closed-
loop is still given by (12.6) (can be verified by simple calculations). The output
sensitivity function (the transfer function between the disturbance p(t) and the out-
put of the system y(t)) is

Syp(z−1) =
A(z−1)S(z−1)

P0(z−1)
(12.13)

and the input sensitivity function (the transfer function between the disturbance p(t)
and the control input u(t)) is

Sup(z−1) =−A(z−1)R(z−1)

P0(z−1)
, (12.14)

A key aspect of this methodology is the use of the Internal Model Principle (IMP)
which has been discussed in Chapter 7, Section 7.2.2. It is supposed that p(t) is a
deterministic disturbance given by

p(t) =
Np(q−1)

Dp(q−1)
·δ (t), (12.15)

where δ (t) is a Dirac impulse and Np, Dp are coprime polynomials of degrees nNp

and nDp , respectively.7 In the case of stationary narrow-band disturbances, the roots
of Dp(z−1) are on the unit circle.

Applying the internal model principle (IMP), the pre-specified part of S(z−1)
should incorporate the denominator of the model of the disturbance Dp, i.e.

HS(z−1) = Dp(z−1)HS0(z
−1).

The controller is computed solving

P = ADpHS0S′+ z−dBHR0R′, (12.16)

where P, Dp, A, B, HR0 , HS0 and d are given.8 In the context of the Youla–Kučera
controller parametrization using a FIR Q filter,

Q(z−1) = q0 +q1z−1 + . . .+qnQz−nQ . (12.17)

application of the internal model principle leads to the problem of finding Q such
that:

S = S′0HS0 − z−dBQHS0HR0 = DpHS0S′ (12.18)

7 Throughout the book, nX denotes the degree of the polynomial X .
8 Of course, it is assumed that Dp and B do not have common factors.



220 12 Direct Adaptive Feedback Attenuation of Narrow-Band Disturbances

So in order to compute the corresponding Q polynomial one has to solve the dio-
phantine equation

S′Dp + z−dBHR0Q = S′0, (12.19)

where Dp, d, B, S′0, and HR0 are known and S′ and Q are unknown. Eq. (12.19) has
a unique solution for S′ and Q with: nS′0

≤ nDp +nB +d +nHR0
−1, nS′ = nB +d +

nHR0
− 1, nQ = nDp − 1. One sees that the order nQ of the polynomial Q depends

upon the structure of the disturbance model and not upon the structure of the palnt
model.

The use of the Youla–Kučera parametrization, with Q given in (12.17), is inter-
esting in this case because it allows to maintain the closed-loop poles as given by
the central controller but at the same time it introduces the parameters of the internal
model into the controller.

12.2.2 Direct Adaptive Regulation Using Youla–Kučera
Parametrization

The objective is to find an estimation algorithm which will directly estimate the pa-
rameters of the internal model in the controller in the presence of an unknown dis-
turbance (but of known structure) without modifying the closed-loop poles. Clearly,
the Q-parametrization is a potential option since modifications of the Q polynomial
will not affect the closed-loop poles. In order to build an estimation algorithm it is
necessary to define an error equation which will reflect the difference between the
optimal Q polynomial and its current value. Note also that in the time domain, the
internal model principle can be interpreted as finding Q such that asymptotically
y(t) becomes zero [242]. Using the Q-parametrization, the output of the system in
the presence of a disturbance can be expressed as

y(t) =
A[S0 −q−dBHS0HR0Q]

P
·

Np

Dp
·δ (t) =

S0 −q−dBHS0HR0Q
P

·w(t), (12.20)

where w(t) is given by (see also Fig. 12.1)

w(t) =
ANp

Dp
·δ (t) = A · y(t)−q−dB ·u(t). (12.21)

Taking into consideration that the adaptation of Q is done in order to obtain an
output y(t) which tends asymptotically to zero, one can define ε0(t+1) as the value
of y(t +1) obtained with Q̂(t,q−1) (the estimate of Q at time t, written also Q̂(t))

ε
◦(t +1) =

S0

P
·w(t +1)− Q̂(t)

q−dB∗HS0HR0

P
·w(t). (12.22)
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Similarly, the a posteriori error becomes (using Q̂(t +1)) as:9

ε(t +1) =
S0

P
·w(t +1)− Q̂(t +1)

q−dB∗HS0HR0

P
·w(t). (12.23)

Replacing S0 from the last equation by its expression given in (12.3) and using
(12.19) for S′0, one obtains:

ε(t +1) = [Q− Q̂(t +1)] ·
q−dB∗HS0HR0

P
·w(t)+η(t +1), (12.24)

where

η(t) =
S′DpHS0

P
·w(t) =

S′HS0ANp

P
·δ (t) (12.25)

is a signal which tends asymptotically towards zero since P is an asymptotically
stable polynomial.

Define the estimated polynomial Q̂(t,q−1) = q̂0(t)+ q̂1(t)q−1+ . . .+ q̂nQ(t)q
−nQ

and the associated estimated parameter vector θ̂(t) = [q̂0(t) q̂1(t) . . . q̂nQ(t)]
T . De-

fine the fixed parameter vector corresponding to the optimal value of the polynomial
Q as: θ = [q0 q1 . . . qnQ ]

T .
Denote

w2(t) =
q−dB∗HS0HR0

P
·w(t) (12.26)

and define the following observation vector

φ
T (t) = [w2(t) w2(t −1) . . . w2(t −nQ)]. (12.27)

Eq. (12.24) becomes

ε(t +1) = [θ T − θ̂
T (t +1)] ·φ(t)+ v(t +1). (12.28)

One can remark that ε(t +1) corresponds to an a posteriori adaptation error ([144])
and therefore the basic adaptation algorithm given in Chapter 4 can be used. From
(12.22), one obtains the a priori adaptation error

ε
◦(t +1) = w1(t +1)− θ̂

T (t)φ(t), (12.29)

with

w1(t +1) =
S0(q−1)

P(q−1)
·w(t +1), (12.30)

w(t +1) = A(q−1) · y(t +1)−q−dB∗(q−1) ·u(t), (12.31)

9 In adaptive control and estimation the predicted output at t + 1 can be computed either on the
basis of the previous parameter estimates (a priori, time t) or on the basis of the current parameter
estimates (a posteriori, time t +1).
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where B(q−1)u(t +1) = B∗(q−1)u(t).
The a posteriori adaptation error is obtained from (12.23)

ε(t +1) = w1(t +1)− θ̂
T (t +1)φ(t). (12.32)

For the estimation of the parameters of Q̂(t,q−1) the following PAA (I-PAA) is
used ([144]):

θ̂(t +1) = θ̂(t)+F(t)φ(t)ε(t +1), (12.33)

ε(t +1) =
ε◦(t +1)

1+φ T (t)F(t)φ(t)
, (12.34)

ε
◦(t +1) = w1(t +1)− θ̂

T (t)φ(t), (12.35)

F(t +1) =
1

λ1(t)

F(t)− F(t)φ(t)φ T (t)F(t)
λ1(t)
λ2(t)

+φ T (t)F(t)φ(t)

 , (12.36)

1 ≥ λ1(t)> 0, 0 ≤ λ2(t)< 2, (12.37)

where λ1(t), λ2(t) allow to obtain various profiles for the evolution of the adaptation
gain F(t) (for details see Section 4.3.1 and [144, 135]). Two modes of operation are
considered:

• Adaptive operation (the adaptation is performed continuously and the controller
is updated at each sampling). In this case the adaptation gain never goes to zero;
and

• Self-tuning operation (the adaptation procedure starts either on demand or when
the performance is unsatisfactory). In this case the adaptation gain goes asymp-
totically towards 0.

Stability of the resulting scheme is a consequence of the results given in Chap-
ter 4, Section 4.4.2. Considering (12.28) and neglecting the signal ν(t + 1), which
goes to 0 anyway, one concludes using Theorem 4.1 that ε(t +1) goes to zero with-
out any positive real condition to be satisfied. Furthermore, if the number of sinu-
soidal disturbances is n it can be shown that there is also parameter convergence if
nQ = 2n− 1. For a detailed stability proof under the hypothesis model=plant see
[130] and [144].

The following procedure is applied at each sampling time for adaptive operation:

1. Get the measured output y(t +1) and the applied control u(t) to compute w(t +
1) using (12.31).

2. Compute w1(t +1) and w2(t) using (12.30) and (12.26) with P given by (7.38).
3. Estimate the Q-polynomial using the parameter-adaptation algorithm (12.33) -

(12.36).
4. Compute and apply the control (see Fig. 12.1):

S0(q−1)u(t +1) =−R0(q−1)y(t +1)− Q̂(t +1,q−1)w(t +1) (12.38)
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The explicit expression for the control u(t) is given by:

u(t) =−R0(q−1)y(t)−S∗0(q
−1)u(t −1)−HS0(q

−1)HR0(q
−1)Q(q−1)w(t), (12.39)

12.2.3 Robustness Considerations

To avoid unacceptable high values of the modulus of the output sensitivity function
when internal model principle is used, a robust design for the central controller
should be considered assuming that the model of the disturbance and its domain of
variation in the frequency domain are known. The objective is that for all situations,
acceptable modulus margin (|Syp(e− jω)|−1

max) and delay margin are obtained.
Furthermore, at the frequencies where perfect rejection of the disturbance is

achieved one has Syp(e− jω) = 0 and

∣∣Sup(e− jω)
∣∣= ∣∣∣∣A(e− jω)

B(e− jω)

∣∣∣∣ . (12.40)

Equation (12.40) corresponds to the inverse of the gain of the system to be con-
trolled. The implication of equation (12.40) is that cancellation (or in general an im-
portant attenuation) of disturbances on the output should be done only in frequency
regions where the system gain is large enough. If the gain of the controlled system
is too low, |Sup| will be large at these frequencies. Therefore, the robustness versus
additive plant model uncertainties will be reduced and the stress on the actuator will
become important [140].

Eq. (12.40) also implies that serious problems will occur if B(z−1) has complex
zeros close to the unit circle (stable or unstable zeros) at frequencies where an im-
portant attenuation of disturbances is required. It is mandatory to avoid attenuation
of disturbances at these frequencies and special attention should be given to the be-
haviour of the controller in the regions of attenuation close to these low damped
complex zeros [50, 128].

12.3 Performance Evaluation Indicators for Narrow-band
Disturbance Attenuation

Before presenting the experimental results obtained it is important to clearly de-
fine the performance indices for narrow-band disturbance attenuation and the corre-
sponding measurement methods.
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Tuning capabilities

Tuning capabilities concern evaluation of the performance in steady state operation
after application of the disturbance once the adaptation transient settles. The cor-
responding indicators are evaluated in the presence of a narrow-band disturbances
with constant frequency. Three indicators are considered:

1. Global attenuation (GA): measured in dB and defined by

GA = 20log10
N2Yol

N2Ycl
, (12.41)

where N2Yol and N2Ycl correspond to the square of the truncated 2-norm of the
measured residual force in open-loop and in closed-loop, respectively, evalu-
ated during the last part of the experiment before the disturbance is removed
(between trem −3s and trem in Fig. 12.2 which illustrates the procedure).
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Fig. 12.2 Definitions of the time intervals for global attenuation (GA) and transient evaluation. The
intervals of computation (tapp +2, tapp +5, trem −3, trem) are displayed. (tapp - time of application
of the disturbance, trem - time of removal of the disturbance).

The truncated 2-norm has the following expression

N2T =
m

∑
i=1

y(i)2, (12.42)

where y(i) is a sample of the discrete time signal (residual force or acceleration).
This quantity indicates the energy contained in the measured signal.

2. Disturbance attenuation (DA): measured in dB. It is defined as the difference
between the estimated Power Spectral Density (PSD) of the residual force in
closed-loop and in open-loop at the frequency of the disturbance as shown in
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Fig. 12.3 for the case of two tonal disturbances. Its expression is:

DA = min(PSDcl −PSDol) , (12.43)
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Fig. 12.3 Definition of disturbance attenuation (DA) and Maximum amplification (MA).

3. Maximum amplification (MA): measured in dB, it is defined as the maxi-
mum value of the difference between the estimated PSD of the residual force in
closed-loop and open-loop. It is defined by

MA = max(PSDcl −PSDol) . (12.44)

Note that the inverse of the maximum amplifications gives the modulus margin.
Through these three measurements, it is possible to assess the performance of the

controller in terms of disturbance attenuation (global and disturbance attenuations)
and to analyse the robustness (maximum amplification and modulus margin).

Transient performance:

The transient performance is evaluated for a constant frequency step change.

• Transient time evaluation: It is required that the transient duration, when a distur-
bance is applied, be smaller than a certain value (in what follows one considers
a desired transient duration of 2 sec). A performance index is established for
100% of fulfilment (transient duration equal or less than 2 sec).10 This means

10 Of course the value of 2 sec can be changed, but the principle of measurement remains the same.
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that 2 sec after the application of a disturbance the square of the truncated 2-
norm of the residual force (acceleration) has to be equal to or smaller than 1.21
of the steady state value of the square of the truncated 2-norm of the residual
force. The square of the truncated 2-norm is evaluated over an interval of 3 sec
both for transient and steady state. Taking into account the instant of application
of the disturbance tapp and the instant when the disturbance is removed trem, the
square of the truncated 2-norm is denoted as N2T (v : w) where v and w define
the interval of computation. If the square of the truncated 2-norm of the residual
force (acceleration) is equal or higher than 2.42 of the square of the truncated
2-norm of the residual force then the value of the index is 0%. One defines:

α =
N2T

(
tapp +2 : tapp +5

)
N2T (trem −3 : trem)

=
N2T

(
tapp +2 : tapp +5

)
N2YCL

(12.45)

and the transient duration index ∆Trans is given by:

∆Trans = 100% if α ≤ 1.21 (12.46a)

∆Trans =
2.42−α

1.21
100% if α > 1.21 (12.46b)

∆Trans = 0% if α ≥ 2.42 (12.46c)

12.4 Experimental Results: Adaptive vs. Robust

The experimental results presented in this section are related to the experimental
results presented in Chapter 11 and obtained with a robust controller on the active
vibration control system using an inertial actuator for the case of multiple narrow-
band disturbances located in a limited region of the frequency domain.

12.4.1 Central Controller for Youla–Kučera Parametrization

The design of the central controller used in the Youla–Kučera parametrization is
similar to the design of the robust linear controller described in Chapter 11 with the
exception that the BSFs on Syp have not been used and the resulting free auxiliary
roots to be assigned have been moved from 0 to 0.2. Remark that the order of the
characteristic polynomial is given by nP = nA+nB+nHS +nHR +d−1 which in this
case gives 22+ 25+ 0+ 4+ 0− 1 = 50. Given the roots already specified (28 as
can be concluded from the design of the robust controller excepting roots given by
BSFs for Syp), it follows that 22 roots can be selected. These 22 auxiliary poles at
0.2 have the effect of reducing the magnitude of Sup above 100 Hz. They were not
used in the robust linear design
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12.4.2 Two Single-Mode Vibration Control

The results in this subsection are obtained by considering 2 sinusoidal disturbances
with time-varying frequencies located in two distinct regions of the frequency do-
main. The time variations of the frequencies are obtained by using 2 indepen-
dent pseudo random binary sequences (PRBS). The 2 sinusoidal disturbances vary
around 60 and 80 Hz, respectively, remaining inside the ±2.5 Hz (like for the robust
control design discussed in Chapter 11) or ±5 Hz frequency intervals. See Fig. 11.5
in Chapter 11.

Note that all subsequent experiments (like for the robust controller case) start at
10 sec. This period has been introduced in order to give enough time to activate
the electronic boards for real time experimentation. Also, the system operates in
open-loop for 5 seconds (from 10 to 15 sec). Finally, 5 sec before the end of the
experiments, the system is switched back to open-loop and the system input and
the disturbances are removed (between 35 and 40 sec). To avoid large transients
when switching on the controllers, a bumpless transfer scheme from open to closed-
loop has been used like in the experiments with the robust controller (see also [135,
Chapter 8]).

In Fig. 12.4, time domain experimental results are shown for the open-loop, the
closed-loop with the robust linear controller and for the closed-loop with the adap-
tive controller. As it can be observed, for the adaptive regulator, the residual force is
almost the same level as the system noise.

For adaptive regulation, the I-PAA is used. The matrix F(0) is chosen diagonal
with 0.2 being the value of each diagonal element (trace = 0.8). A constant trace
adaptation algorithm is used with constant trace of 0.8 (see Section 4.3.4 for further
details on the choice of the adaptation gain). The order of the Q polynomial has
been chosen equal to 3 (4 adapted parameters). The evolution of the parameters of
the Q polynomial can be viewed in Fig. 12.5. As it can be observed, the vector of the
estimated Q parameters, θ̂ is initialized at zero. Once the loop is closed, the adaptive
algorithm starts to adjust the parameters in order to reduce the residual force. It can
be seen that the parameters of the Youla–Kučera filter evolve continuously during
the experiments in order to adjust to the changing frequencies of the disturbances.

The global attenuation is computed over the last 3 seconds of each closed-loop
experimentation. For the robust linear controller the global attenuation is 25.70 dB,
while in the adaptive case it is 39.68 dB. A small additional improvement can be
obtained by using the “Integral + Proportional” parameter-adaptation algorithm (IP-
PAA) described in Appendix E.

Finally, experimental results for frequencies variations of ±5 Hz intervals around
60 and 80 Hz are shown in Fig. 12.6. As expected the results provided by the robust
linear controller are not good (we are outside of the domain considered for design).
The last 5 sec without disturbance are also plotted as reference.

Clearly on one hand the use of the adaptive regulator allows to improve the per-
formance of the robust controller even if the domain of variations of the frequency
of the disturbances is the one used for design and on the other hand it allows to



228 12 Direct Adaptive Feedback Attenuation of Narrow-Band Disturbances

10 15 20 25 30 35 40
−0.05

−0.025

0

0.025

0.05
Closed loop output with linear controller

R
es

id
u
al

 f
o
rc

e

10 15 20 25 30 35 40
−0.05

−0.025

0

0.025

0.05
Closed loop output with adaptive controller

Time [sec]

R
es

id
u
al

 f
o
rc

e

Fig. 12.4 Residual force in closed-loop with linear robust controller (upper plot) and with adaptive
controller (lower plot). The experiments are started in open-loop for 5 sec and the disturbances are
removed at t=35 sec. Range of frequency variation: ±2.5 Hz.
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Fig. 12.5 Evolution of the Q-parameters.

expand the domain of variations of the frequencies of the disturbances for which the
attenuation performances are assured.

12.4.3 Vibrational Interference

This subsection deals with the adaptive attenuation of two vibrational interferences
located in two distinct frequency regions. This phenomena is shown in Figure 11.1,
Chapter 11, where 2 pairs of neighboring sinusoidal disturbances are introduced,
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Fig. 12.6 Residual force in closed-loop with linear robust controller (upper plot) and with adaptive
controller (lower plot). The experiments are started in open-loop for 5 seconds. Range of frequency
variation: ±5 Hz.

one pair around 60 Hz (at 59.9 and 60.1 Hz) and the second around 80 Hz (at 79.9
and 80.1 Hz). The results obtained with the adaptive approach will be compared
with those obtained with the robust linear controller designed in Chapter 11.

For adaptive regulation, the I-PAA has been used with an initial diagonal adap-
tation gain matrix F(0) = α · I, with α = 0.2 and I the identity matrix (initial trace
of 0.8), and a decreasing gain followed by constant trace adaptation. The constant
trace is chosen equal to 0.02. The number of parameters for the Q polynomial is
also equal to 4 (order equal to 3). Augmenting the order of the polynomial Q to 7 (8
parameters - two for each sinusoidal disturbance) does not improve the performance
(probably because the frequencies of the pair of sines are too close). Time domain
results are shown in Figs. 12.7 and 12.8. The global attenuation for the robust linear
controller is 27.50 dB and for the adaptive controller is 45.59 dB.

Power spectral densities (PSD) estimates of the two control schemes are given
in Fig. 12.9. It can be observed that the attenuation introduced by the robust linear
controller in the desired frequency zone is equal to 14 dB which is coherent with
the design done in Section 11.3. The adaptive regulator assures a better attenuation
of disturbances and also does not amplify at other frequencies more than the linear
controller.

Adaptation capabilities are tested and the results are compared to the linear ro-
bust controller in Fig. 12.10. In this figure, all 4 sinusoidal disturbances are modified
at 35 seconds by adding 5 Hz to their frequencies. As such the new disturbance fre-
quencies are centred around 65 Hz (64.9 and 65.1 Hz) and 85 Hz (84.9 and 85.1 Hz).
As expected the linear robust controller fails to provide an acceptable attenuation.
The adaptation transient is about 1.5 sec.
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Fig. 12.7 Residual force in closed-loop with linear controller (upper plot) and with adaptive con-
troller (lower plot). The loop is closed at t=15 sec.

10 15 20 25 30 35

�0.1

�0.05

0

0.05

0.1
Adaptive controller parameters

Time [sec]

P
ar

am
et

er
s 

v
al

u
es

Fig. 12.8 Evolution of the Q-parameters.

12.5 Adaptive Attenuation of an Unknown Narrow-band
Disturbance on the Active Hydraulic Suspension

The narrow-band disturbance rejection procedure using the direct adaptive control
scheme proposed in Section 12.2.2 is illustrated in real time for the case of the con-
trol of an active hydraulic suspension (presented in Section 2.1). In this application
the disturbance will be a single time-varying sinusoidal disturbance, so one should
consider nDp = 2 and nQ = nDp −1 = 1.

The identification procedures for the active suspension have been discussed in
Section 6.1 (identification in open-loop operation). The frequency characteristics of
the identified primary path and secondary path models model (open-loop identifica-
tion) are shown in Fig. 6.8. The first vibration mode of the primary path model is
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Fig. 12.9 Power spectral densities of the open-loop, robust linear controller, and adaptive regulator.
Full frequency range in the upper plot, zoom between 50 and 100 Hz in the lower plot.
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Fig. 12.10 Residual force with step frequency changes (+5 Hz) in closed-loop with linear con-
troller (upper plot) and with adaptive controller (lower plot). In both cases, the system is in open-
loop until t=15 sec.

near 32 Hz. The model of the secondary path has the following complexity: nA = 14,
nB = 16, d = 0. The secondary path has several low damped vibration modes. The
first one is at 31.8 Hz with a damping factor 0.07.

The central controller (without the internal model of the disturbance) has been
designed using the pole placement method and the secondary path identified model.
A pair of dominant poles has been fixed at the frequency of the first vibration mode
(31.8 Hz), with a damping ξ = 0.8, and the other poles of the model have been
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considered as auxiliary desired closed-loop poles. In addition a pre-specified part
HR = 1+ q−1 (R = HRR′) which assures the opening of the loop at 0.5 fs has been
introduced and 10 auxiliary poles at 0.7 have been added to the desired closed-loop
poles. The resulting nominal controller has the following complexity: nR = 14, nS =
16 and it satisfies the imposed robustness constraints on the sensitivity functions.11

Only the results in adaptive operation will be presented. For results in self-tuning
operations see [130]. In adaptive operation the PAA works permanently (once the
loop is closed) and the controller is recomputed at each sampling. The adaptation
gain in this case never goes to zero zero.

In order to evaluate the performances in real time, time-varying frequency sinu-
soidal disturbances between 25 and 47 Hz have been used (the first vibration mode
of the primary path is near 32 Hz). Two protocols have been considered:

• Step changes of the frequency of the disturbance
• Continuously time-varying frequency of the disturbance (chirp)

Step changes of the frequency of the disturbance

Start up: the system is started in open-loop. After 5 seconds (4000 samples) a si-
nusoidal disturbance of 32 Hz is applied on the shaker and simultaneously the loop
is closed. After the start up ends, every 15 seconds (8000 samples) sinusoidal dis-
turbances of different frequency are applied (step change in frequency value). The
sequence is as follows: 32, 25, 32, 47, 32 Hz.

The measured residual force obtained in direct adaptive operation is presented
in Figure 12.11. The I-PAA given in Eqs. (12.33) through (12.36) has been used.
An adaptation gain with variable forgetting factor combined with a constant trace
[144] has been used in order to be able to track automatically the changes of the
disturbance characteristics. The low level threshold of the trace has been fixed to
3 ·10−9.

The spectral densities of the measured residual forces obtained in adaptive oper-
ation in open and closed-loop for the 3 different frequencies considered (25 Hz, 32
Hz, 47 Hz) are presented in Fig. 12.12 for the direct adaptation method.

One observes the appearance of two harmonics of the first vibration mode of the
primary path on the spectral density in open-loop when the frequency of the distur-
bance corresponds to the first resonance mode of the system (32 Hz). They appear
in open-loop because of the non-linearities of the system at large signals (there is an
important amplification of the disturbance at the resonance frequency of the system
in ). The harmonics do not appear in closed-loop operation. The attenuations ob-
tained are larger than 50 dB for the 3 different frequencies considered. The values
of the attenuations are summarized in Table 12.1.12

The duration of the adaptation transients is less than 0.25 sec ([130]).

11 Any design method allowing to satisfy these constraints can be used.
12 For results obtained with an indirect adaptive control scheme see [130].
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Fig. 12.11 Time domain results with the direct adaptation method (trace = 3 ·10−9).
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ation).

Table 12.1 Real-time performance of the direct adaptive method.

Method Direct Adaptation
Disturbance Frequency [Hz] 25 32 47

Disturbance Attenuation [dB] 56.18 65.43 53.97

Attenuation of sinusoidal disturbances with continuously time-varying frequency

Consider now that the frequency of the sinusoidal disturbance varies continuously
and let’s use a chirp disturbance signal (linear swept-frequency signal) between 25
and 47 Hz.
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The tests have been done as follows: Start up in closed-loop at t = 0 with the
central controller. Once the loop is closed, the adaptation algorithm works perma-
nently and the controller is updated (direct approach) at each sampling instant. After
5 seconds a sinusoidal disturbance of 25 Hz (constant frequency) is applied on the
shaker. From 10 to 15 seconds a chirp between 25 and 47 Hz is applied. After 15 sec-
onds a 47 Hz (constant frequency) sinusoidal disturbance is applied and the tests are
stopped after 18 seconds. The time-domain results obtained in open and in closed-
loop (direct adaptive control) are presented in Fig. 12.13. One can remark that the
performances obtained are very good.
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Fig. 12.13 Real-time results obtained with the direct adaptive method and a chirp disturbance:
open-loop (upper plot), closed-loop (lower plot).

12.6 Adaptive Attenuation of an Unknown Narrow-band
Disturbance on the Active Vibration Control System Using
an Inertial Actuator

The narrow-band disturbance rejection procedure using the direct adaptive control
scheme proposed in Section 12.2.2 is illustrated in real time on an active vibration
control system using an inertial actuator. The case of one tonal disturbance will be
considered.13

The system has been presented in Section 2.2 and the identification procedure has
been described in Section 6.2. The frequency characteristics of the identified model
of the secondary path has been shown in Figure 6.18. As discussed in Section 12.2.3
attenuation of the disturbances can be done only in the frequency regions where the
system has enough gain. In particular this system will be able to attenuate distur-

13 The case of multiple unknown narrow-band disturbances will be discussed in Chapter 13.
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bances located between 50 and 95 Hz. Note that the borders of the frequency region
considered are very close to some complex low damped zeros (no gain at these fre-
quencies) so this has to be taken in account when designing the central controller
(the input sensitivity function should be low at these frequencies).

12.6.1 Design of the Central Controller

A key issue is the design of the central controller. It should assure that in the pres-
ence of disturbances with known frequency, using the internal model principle, the
specifications are satisfied for all the possible frequencies of the disturbance. Specif-
ically one should obtain a disturbance attenuation (DA) of 40 dB, a global attenua-
tion (GA) of 30 dB and a maximum amplification (MA) with respect to open-loop
operation of less than 6 dB (for more details see Table 13.2 and section 13.2). The
performance of the central controller in this context gives the best achievable per-
formance. Adding the adaptation capabilities will only allow to approach this per-
formance when the frequencies of the disturbances are unknown and time-varying.
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Fig. 12.14 Zoom of the magnitude of the frequency response of the secondary path between 40
and 105 Hz.

The region of operation is between 50 and 95 Hz. As it can be seen from the
zoom of the frequency characteristics of the secondary path shown in Figure 12.14,
the borders of the region of operation are quite close to low damped complex zeros
located at 47.36 Hz and 101.92 Hz.

All the poles of the system have been included as desired closed-loop poles (they
are all stable), but to reduce the effect of the IMP on the borders two auxiliary low
damped auxiliary poles have been introduced at 50 Hz and 90 Hz, with damping
0.0629 and 0.0157 respectively. Figure 12.15 shows the effect of these auxiliary
poles on the shape of the output sensitivity function.
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Fig. 12.15 Output sensitivity function with (solid line) and without (dashed line) auxiliary resonant
poles at 50 and 95 Hz and with an internal model tuned for 50 Hz.
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Fig. 12.16 Input sensitivity function with (solid line) and without (dashed line) BSF filters.

Another objective was to reduce significantly the modulus of the input sensitiv-
ity function outside the region of operation (to improve robustness and reduce noise
amplification). This has been achieved by shaping the input sensitivity function us-
ing band-stop filters (see Section 7.2.9 for details). Three band stop filters located
between 110 and 170 Hz have been used. Their effect upon the input sensitivity
function is shown in Fig. 12.16.

12.6.2 Real Time Results

The I-PAA algorithm given in Eqs. (12.33) to (12.36) has been used with decreasing
adaptation gain and constant trace. The initial trace of the matrix adaptation gain
has been fixed at 2000 (2 parameters to adapt) and the desired constant trace at 2.
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Fig. 12.17 Time response comparison between open-loop and adaptive closed-loop operation (up:
step disturbance application, middle: step frequency changes, bottom: chirp disturbance.

Figure 12.17 shows the time results obtained for a simple step test (i.e., application
of a 75 Hz disturbance) and for step changes in the frequency of the disturbance (the
sequence was: 60, 70, 60, 50, 60 Hz). Lower part of the figure shows the behaviour
in the presence of a chirp disturbance varying between 50 and 95 Hz and from 95 to
50 Hz disturbance.

Figure 12.18 shows the PSD of the residual force in open-loop (dashed line) and
in closed-loop (solid line) for a disturbance located at 75 Hz. Figure 12.19 shows
the resulting attenuation/amplification using adaptive feedback regulation (the dif-
ference between the PSD in open-loop and the PSD with adaptive feedback regula-
tion). Similar results are obtained for the other frequencies.

Table 12.2 gives a summary of the results obtained with the adaptive scheme for
various frequencies of the disturbance. Column 1 gives the global attenuation (GA).
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Fig. 12.18 Power spectral density comparison between open-loop (dashed line) and adaptive
closed-loop (solid line) for a 75 Hz disturbance.
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Fig. 12.19 Attenuation using adaptive closed-loop regulation for a 75 Hz disturbance.

Column 2 gives the attenuation of the tonal disturbance (DA) and Column 3 gives
the maximum amplification in closed-loop with respect to the open-loop operation
and the frequency at which it occurs. Except the border of the domain of opera-
tion, the attenuation of the unknown tonal disturbance is more than 40 dB and the
maximum amplification is below 10.66 dB for all frequencies.

12.7 Other Experimental Results

Experimental results obtained on the active flexible structure described in Section
2.3 for single and multiple unknown narrow-band disturbances can be found in [140,
138]. Results on a different active vibration control using an inertial actuator can be
found in [140]. The use of this type of algorithm for adaptive suppression of main
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Table 12.2 Experimental Results - Simple Step Test (GA - global attenuation, DA - distrubance
attenuation, MA - maximum amplification.

One single tonal disturbance
Frequency GA DA MA

(Hz) (dB) (dB) (dB@Hz)
50 34.60 38.49 9.83@65.63
55 34.54 50.45 9.48@118.75
60 33.34 49.49 8.23@79.69
65 32.78 50.04 9.65@90.63
70 30.54 47.90 9.01@89.06
75 29.53 45.54 8.90@50.00
80 30.28 48.72 8.49@95.31
85 28.47 45.94 10.66@57.81
90 28.02 42.65 8.24@73.44
95 24.63 34.55 9.06@82.81

periodic disturbances in Blu-ray disk drives servomechanisms is presented in [140,
13]. The same type of algorithm has been used for a different type of disturbance
(an exponential) in the context of fed-batch reactor ([244, 245]). This approach has
been used also for active noise control ([25, 26]).

12.8 Concluding Remarks

• The use of the internal model principle allows to provide solutions for suppress-
ing the effect of tonal disturbances upon the output, provided that, either the
model of the disturbance can be estimated or the internal model of the distur-
bance can be directly estimated in the controller.

• The use of the Youla–Kučera parametrization allows to build direct adaptive reg-
ulation schemes (one directly adapt the parameters of the Youla–Kučera filter
included in the controller).

• The number of parameters to adapt depend upon the number of tonal disturbances
to attenuate and not upon the complexity of the model of the system.

• The performance of the direct adaptive regulation using Youla–Kučera parametriza-
tion are better than those of the robust linear controller solutions in terms of per-
formance and expansion of the domain of operation.

12.9 Notes and References

The problem discussed in this chapter belongs to the case of adaptive regulation,
i.e., known plant and unknown disturbance model. The problem of known plant and
unknown disturbance model has been addressed in a number of papers ([34, 25, 26,
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244, 171, 63, 89, 94, 130]) among others. The following approaches considered for
solving this problem may be mentioned:

1. Use of the internal model principle ([80, 105, 27, 242, 244, 25, 26, 89, 94, 245,
130]).

2. Use of an observer for the disturbance ([171, 63, 220, 104]).
3. Use of the “phase-locked” loop structure considered in communication systems

([34, 33]).

The use of the Youla–Kučera parametrization for the problem of disturbance
rejection takes its roots from an idea of Tsypkin [241] who expressed the IMP in the
time domain using the sensitivity functions and the Youla–Kučera parametrization.

An important issue which was addressed is to try to take in account the possible
variation of the plant model by over parametrization of the Youla–Kučera filter. This
has been considered in [244]. The reference [183] provides a stability proof in this
context.

Over parametrization of the Youla–Kučera filter has been also considered in
[100, 101] for improving the robustness of the central controller. A comparative
evaluation of this approach and the design of the central controller using pole place-
ment in the presence of low damped complex zeros can be found in [51] where also
a combination of the two approaches is considered. Note that over parametrization
leads to the increase of the computation load.

Applications of the approach presented in this chapter are reported in [55, 58,
245, 140, 174, 26, 219, 36, 91, 24] using related structures and adaptation algo-
rithms.

Extension to the multivariable case is considered in [77]. Solution for the continu-
ous time formulation are provided in [102]. The rejection of sinusoidal disturbances
in chaotic planar oscillators is discussed in [175].

The case of unknown plant model and known disturbance model is considered
in [229, 268] among other references. The case of unknown plant and disturbance
models is considered in [76].



Chapter 13
Adaptive Attenuation of Multiple Sparse
Unknown and Time-varying Narrow-band
Disturbances

Abstract This chapter considers the possible solutions for adaptive attenuation of
multiple sparse unknown and time-varying narrow-band disturbances. One takes
also into account the possible presence of low damped complex zeros in the vicin-
ity of the attenuation region. The problem of the design of the underlined linear
controller for the known disturbance case is itself a challenging problem and is dis-
cussed first. The adaptive schemes proposed are obtained by extending the linear
solutions to the case of unknown characteristics of the disturbances. Comparative
experimental evaluation of the various solutions on a test bench are given.

13.1 Introduction

In this chapter the focus is on the strong attenuation of multiple sparsely located
unknown and time-varying disturbances. One assumes that the various tonal distur-
bances are distant each other in the frequency domain by a distance in Hz at least
equal to 10% of the frequency of the disturbance and that the frequency of these
disturbances vary over a wide frequency region.

The problem is to assure in this context a certain number of performance indices
like global attenuation, disturbance attenuation at the frequency of the disturbances,
a tolerated maximum amplification (water-bed effect), a good adaptation transient
(see Section 12.3). The most difficult problem is to be sure that in all the configu-
rations the maximum amplification is below a specified value. There is a first fun-
damental problem to solve: one has to be sure that in the known frequency case,
for any combination of disturbances the attenuation and the maximum amplifica-
tion specifications are achieved. The adaptive approach will only try to approach
the performances of a linear controller for the case of known disturbances. So be-
fore discussing the appropriate adaptation schemes one has to consider the design
methods to be used in order to achieve these constraints for the known frequencies
case. This will be discussed in Section 13.2.

241
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13.2 The Linear Control Challenge

In this section the linear control challenge will be presented for the case of rejection
of multiple narrow-band disturbances taking also into account the possible presence
of low damped complex zeros in the vicinity of the border of the operational zone.
Considering that in a linear context all the information is available, the objective is
to set up the best achievable performance for the adaptive case.

Assuming that only one tonal vibration has to be cancelled in a frequency region
far from the presence of low damped complex zeros and that the models of the
plant and of the disturbance are known, the design of a linear regulator is relatively
straightforward, using the internal model principle (see Chapter 7 and Chapter 12).

The problem becomes much more difficult if several tonal vibrations (sinusoidal
disturbances) have to be attenuated simultaneously since the water bed effect may
become significant without a careful shaping of the sensitivity function when using
the internal model principle. Furthermore, if the frequencies of the disturbance may
be close to those of some of very low damped complex zeros of the plant, the use
of the internal model principle should be used with care even in the case of a single
disturbance (see Section 12.5).

This section will examine the various aspects of the design of a linear controller
in the context of multiple tonal vibrations and the presence of low damped complex
zeros. It will review various linear controller strategies.

To be specific these design aspects will be illustrated in the context of the active
vibration control system using an inertial actuator, described in Section 2.2 and
which has been already used for the case of a single tonal disturbance.

In this system the tonal vibrations are located in the range of frequencies between
50 and 95 Hz. The frequency characteristics of the secondary path are given in
Section 6.2.

Assume that a tonal vibration (or a narrow-band disturbance) p(t) is introduced
into the system affecting the output y(t). The effect of this disturbance is centred
at a specific frequency. As mentioned in Subsection 12.2.3, the IMP can be used to
asymptotically reject the effects of a narrow-band disturbance at the system’s output
if the system has enough gain in this region.

It is important also to take into account the fact that the secondary path (the actu-
ator path) has no gain at very low frequencies and very low gain in high frequencies
near 0.5 fs. Therefore the control system has to be designed such that the gain of the
controller be very low (or zero) in these regions (preferably 0 at 0 Hz and 0.5 fs).
Not taking into account these constraints can lead to an undesirable stress on the
actuator.

In order to assess how good the controller is, it is necessary to define some con-
trol objectives that have to be fulfilled. For the remaining of this section, the narrow-
band disturbance is supposed to be known and composed of 3 sinusoidal signals with
55, 70, and 85 Hz frequencies. The control objective is to attenuate each component
of the disturbance by a minimum of 40 dB, while limiting the maximum amplifica-
tion at 9 dB within the frequency region of operation. Furthermore it will be required
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that low values of the modulus of the input sensitivity function be achieved outside
the operation region.

The use of the IMP principle completed with the use of auxiliary real (aperiodic)
poles which have been used in Chapter 11 as a basic design for adaptive attenua-
tion of one unknown disturbance may not work satisfactory for the case of multiple
unknown disturbances even if it may provide good performance in some situations
([140]). Even in the case of a single tonal disturbance, if low damped complex zeros
near the border of the operation region are present, this simple design is not sat-
isfactory. Auxiliary low damped complex poles have to be added. See Chapter 12,
Section 12.6.

One can say in general, that the IMP is doing too much in terms of attenuation of
tonal disturbances which of course can generate in certain case unacceptable water
bed effects. In fact in practice one does not need a full rejection of the disturbance,
but just a certain level of attenuation.

Three linear control strategy for attenuation of multiple narrow-band distur-
bances will be considered

1. Band-stop filters (BSF) centred at the frequencies of the disturbances
2. IMP combined with tuned notch filters
3. IMP with additional fixed resonant poles

The controller design will be done in the context of pole placement. The initial
desired closed-loop poles for the design of the central controller defined by the
characteristic polynomial P0 include all the stable poles of the secondary path model
and the free auxiliary poles are all set at 0.3. The fixed part of the central controller
numerator is chosen as HR(z−1) = (1− z−1) · (1+ z−1) in order to open the loop at
0 Hz and 0.5 fs.

13.2.1 Attenuation of Multiple Narrow-band Disturbances using
Band-stop Filters

The purpose of this method is to allow the possibility of choosing the desired at-
tenuation and bandwidth of attenuation for each of the narrow-band component of
the disturbance. Choosing the level of attenuation and the bandwidth allows to pre-
serve acceptable characteristics of the sensitivity functions outside the attenuation
bands and this is very useful in the case of multiple narrow-band disturbances. This
is the main advantage with respect to classical internal model principle which in
the case of several narrow-band disturbances, as a consequence of complete can-
cellation of the disturbances, may lead to unacceptable values of the modulus of
the output sensitivity function outside the attenuation regions. The controller design
technique uses the shaping of the output sensitivity function in order to impose the
desired attenuation of narrow-band disturbances. This shaping techniques has been
presented in Section 7.2.
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The process output can be written as1

y(t) = G(q−1) ·u(t)+ p(t), (13.1)

where

G(q−1) = q−d B(q−1)

A(q−1)
(13.2)

is called the secondary path of the system.
As specified in the introduction, the hypothesis of constant dynamic character-

istics of the AVC system is considered (similar to [130, 128]). The denominator of
the secondary path model is given by

A(q−1) = 1+a1q−1 + . . .+anA q−nA , (13.3)

the numerator is given by

B(q−1) = b1q−1 + . . .+bnB q−nB = 1+q−1B∗(q−1) (13.4)

and d is the integer delay (number of sampling periods).2

The control signal is given by

u(t) =−R(q−1) · y(t)−S∗(q−1) ·u(t −1), (13.5)

with

S(q−1) = 1+q−1S∗(q−1) = 1+ s1q−1 + . . .+ snS q−nS

= S′(q−1) ·HS(q−1), (13.6)

R(q−1) = r0 + r1q−1 + . . .+ rnRq−nR = R′(q−1) ·HR(q−1), (13.7)

where HS(q−1) and HR(q−1) represent fixed (imposed) parts in the controller and
S′(q−1) and R′(q−1) are computed.

The basic tool is a digital filter SBSFi(z
−1)/PBSFi(z

−1) with the numerator in-
cluded in the controller polynomial S and the denominator as a factor of the desired
closed-loop characteristic polynomial, which will assure the desired attenuation of
a narrow-band disturbance (index i ∈ {1, . . . ,n}).

The BSFs have the following structure

SBSFi(z
−1)

PBSFi(z−1)
=

1+β i
1z−1 +β i

2z−2

1+α i
1z−1 +α i

2z−2 (13.8)

resulting from the discretization of a continuous filter (see also [208, 135])

1 The complex variable z−1 is used to characterize the system’s behaviour in the frequency domain
and the delay operator q−1 will be used for the time domain analysis.
2 As indicated earlier, it is assumed that a reliable model identification is achieved and therefore
the estimated model is assumed to be equal to the true model.
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Fi(s) =
s2 +2ζniωis+ω2

i

s2 +2ζdiωis+ω2
i

(13.9)

using the bilinear transformation. This filter introduces an attenuation of

Mi =−20 · log10

(
ζni

ζdi

)
(13.10)

at the frequency ωi. Positive values of Mi denote attenuations (ζni < ζdi ) and neg-
ative values denote amplifications (ζni > ζdi ). Details on the computation of the
correponding digital BSF have been ginven in Chapter 7.3

Remark: The design parameters for each BSF are the desired attenuation (Mi), the
central frequency of the filter (ωi) and the damping of the denominator (ζdi ). The
denominator damping is used to adjust the frequency bandwidth of the BSF. For very
small values of the frequency bandwidth the influence of the filters on frequencies
other than those defined by ωi is negligible. Therefore, the number of BSFs and
subsequently that of the narrow-band disturbances that can be compensated can be
large.

For n narrow-band disturbances, n BSFs will be used

HBSF(z−1) =
SBSF(z−1)

PBSF(z−1)
=

∏
n
i=1 SBSFi(z

−1)

∏
n
i=1 PBSFi(z−1)

(13.11)

As stated before, the objective is that of shaping the output sensitivity function.
S(z−1) and R(z−1) are obtained as solutions of the Bezout equation

P(z−1) = A(z−1)S(z−1)+ z−dB(z−1)R(z−1), (13.12)

where

S(z−1) = HS(z−1)S′(z−1), R(z−1) = HR1(z
−1)R′(z−1), (13.13)

and P(z−1) is given by

P(z−1) = P0(z−1)PBSF(z−1). (13.14)

In the last equation, PBSF is the product of the denominators of all the BSFs,
(13.11), and P0 defines the initial imposed poles of the closed-loop system in the
absence of the disturbances (allowing also to satisfy robustness constraints). The
fixed part of the controller denominator HS is in turn factorized into

HS(z−1) = SBSF(z−1)HS1(z
−1), (13.15)

where SBSF is the combined numerator of the BSFs, (13.11), and HS1 can be used
if necessary to satisfy other control specifications. HR1 is similar to HS1 allowing to

3 For frequencies bellow 0.17 fS ( fS is the sampling frequency) the design can be done with a very
good precision directly in discrete time ([135]).
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introduce fixed parts in the controller’s numerator if needed (like opening the loop
at certain frequencies). It is easy to see that the output sensitivity function becomes

Syp(z−1) =
A(z−1)S′(z−1)HS1(z

−1)

P0(z−1)

SBSF(z−1)

PBSF(z−1)
(13.16)

and the shaping effect of the BSFs upon the sensitivity functions is obvious. The
unknowns S′ and R′ are solutions of

P(z−1) = P0(z−1)PBSF(z−1) = A(z−1)SBSF(z−1)HS1(z
−1)S′(z−1)+

+ z−dB(z−1)HR1(z
−1)R′(z−1). (13.17)

and can be computed by putting (13.17) into matrix form (see also [135]). The size
of the matrix equation that needs to be solved is given by

nBez = nA +nB +d +nHS1
+nHR1

+2 ·n−1, (13.18)

where nA, nB, and d are respectively the order of the plant’s model denominator,
numerator, and delay (given in (13.3) and (13.4)), nHS1

and nHR1
are the orders

of HS1(z
−1) and HR1(z

−1) respectively and n is the number of narrow-band dis-
turbances. Equation (13.17) has an unique minimal degree solution for S′ and R′,
if nP ≤ nBez, where nP is the order of the pre-specified characteristic polynomial
P(q−1). Also, it can be seen from (13.17) and (13.15) that the minimal orders of S′

and R′ will be:

nS′ = nB +d +nHR1
−1, nR′ = nA +nHS1

+2 ·n−1.

In Fig. 13.1 one can see the improvement obtained using BSF with respect to the
case when IMP with real auxiliary poles is used. The dominant poles are the same
in both cases. The input sensitivity function is tuned before introducing the BSFs.

13.2.2 IMP with Tuned Notch Filters

This approach is based on the idea of considering an optimal attenuation of the
disturbance taking into account both the zeros and poles of the disturbance model.
It is assumed that the model of the disturbance is a notch filter and the disturbance
is represented by:

p(t) =
Dp(ρz−1)

Dp(z−1)
e(t) (13.19)

where e(t) is a zero mean white Gaussian noise sequence and

Dp(z−1) = 1+αz−1 + z−2, (13.20)
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Fig. 13.1 Output sensitivity function for various controller designs: using IMP with auxiliary real
poles (dotted line), using Band-stop Filters (dashed line), and using tuned ρ notch filters (continu-
ous line).

is a polynomial with roots on the unit circle.4

In (13.20), α = −2cos(2πω1Ts), ω1 is the frequency of the disturbance in Hz,
and Ts is the sampling time. Dp(ρz−1)) is given by:

Dp(ρz−1) = 1+ραz−1 +ρ
2z−2, (13.21)

with 0 < ρ < 1. The roots of Dp(ρz−1) are in the same radial line as those of
Dp(z−1) but inside of the unitary circle, and therefore stable [185].

This model is pertinent for representing narrow-band disturbances as shown in
Fig. 13.2, where the frequency characteristics of this model for various values of ρ

are shown.
Using the output sensitivity function, the output of the plant in the presence of

the disturbance can be expressed as

y(t) =
AS′

P0

HS

Paux

Dp(ρq−1)

Dp(q−1)
e(t) (13.22)

or alternatively as

y(t) =
AS′

P0
β (t) (13.23)

where

β (t) =
HS

Paux

Dp(ρq−1)

Dp(q−1)
e(t) (13.24)

4 Its structure in a mirror symmetric form guarantees that the roots are always on the unit circle.
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Fig. 13.2 Magnitude plot frequency responses of a notch filter for various values of the parameter
ρ .

In order to minimize the effect of the disturbance upon y(t), one should minimize
the variance of β (t). One has two tuning devices HS and Paux. Minimization of the
variance of β (t) is equivalent of searching HS and Paux such that β (t) becomes a
white noise [21, 135]. The obvious choices are HS = Dp (which corresponds to the
IMP) and Paux = Dp(ρq−1). Of course this development can be generalized for the
case of multiple narrow-band disturbances. Figure 13.1 illustrates the effect of this
choice upon the output sensitivity function. As it can be seen, the results are similar
to those obtained with BSF.

13.2.3 IMP Design Using Auxiliary Low Damped Complex Poles

The idea is to add a number of fixed auxiliary resonant poles which will act effec-
tively as ρ-filters for few frequencies and as an approximation of the ρ-filters at the
other frequencies. This means that a number of the real auxiliary poles used in the
basic IMP design will be replaced by a number of resonant complex poles. The ba-
sic ad-hoc rule is that the number of these resonant poles is equal to the number of
the low damped complex zeros located near the border of the operation region plus
n−1 (n is the number of tonal disturbances).
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For the case of 3 tonal disturbances located in the operation region 50 to 95
Hz taking also into account the presence of the low damped complex zeros, the
locations and the damping of these auxiliary resonant poles are summarized in Table
13.1. The poles at 50 and 90 Hz are related to the presence in the neighbourhood
of low damped complex zeros. The poles at 60 and 80 Hz are related to the 3 tonal
disturbances to be attenuated. The effect of this design with respect to the basic

Table 13.1 Auxiliary low damped complex poles added to the closed-loop characteristic polyno-
mial.

Closed-loop poles p1,2 p3,4 p5,6 p7,8
Frequency [Hz] 50 60 80 90

Damping 0.1 0.3 0.135 0.1

design using real auxiliary poles is illustrated in Fig. 13.3.
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Fig. 13.3 Output sensitivity function for IMP design with real auxiliary poles and with resonant
auxiliary poles.

13.3 Interlaced Adaptive Regulation Using Youla–Kučera IIR
Parametrization

The adaptive algorithm developed in Chapter 12 uses an FIR structure for the Q-
filter. In this section, a new algorithm is developed, using an IIR structure for the
Q filter in order to implement the linear control strategies using tuned notch filters
(tuned auxiliary resonant poles). The use of this strategy is mainly dedicated to the
case of multiple unknown tonal disturbances.
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As indicated previously, since Dp(ρz−1) will define part of the desired closed-
loop poles, it is reasonable to consider an IIR Youla–Kučera filter of the form
BQ(z−1)/AQ(z−1) with AQ(z−1) = Dp(ρq−1) (which will automatically introduce
Dp(ρq−1) as part of the closed-loop poles). BQ will introduce the internal model of
the disturbance. In this context, the controller polynomials R and S are defined by

R(z−1) = AQ(z−1)R0(z−1)+HR0(z
−1)HS0(z

−1)A(z−1)BQ(z−1), (13.25)

S(z−1) = AQ(z−1)S0(z−1)−HR0(z
−1)HS0(z

−1)z−dB(z−1)BQ(z−1), (13.26)

and the poles of the closed-loop are given by:

P(z−1) = AQ(z−1)P0(z−1). (13.27)

R0(z−1), S0(z−1) are the numerator and denominator of the central controller

R0(z−1) = HR0(z
−1)R′

0(z
−1), (13.28)

S0(z−1) = HS0(z
−1)S′0(z

−1), (13.29)

and the closed-loop poles defined by the central controller are the roots of

P0(z−1) = A(z−1)S0(z−1)HS0(z
−1)+q−dB(z−1)R0(z−1)HR0(z

−1). (13.30)

It can be seen from (13.25) and (13.26) that the new controller polynomials con-
serve the fixed parts of the central controller.

Using the expression of the output sensitivity function (AS/P) the output of the
system can be written as follows

y(t) =
A
[
AQS0 −HR0HS0q−dBBQ

]
P

p(t), (13.31)

y(t) =

[
AQS0 −HR0HS0q−dBBQ

]
P

w(t), (13.32)

where the closed-loop poles are defined by (13.27) and where w(t) is defined as:

w(t) = A(q−1)y(t)−q−dB(q−1)u(t) (13.33)

= A(q−1)p(t) (13.34)

Comparing (13.32) with (12.20) from Chapter 12, one can see that they are similar
except that S0 is replaced by AQS0 and P0 by AQP0. Therefore if AQ is known, the al-
gorithm given in Chapter 12 for the estimation of the Q FIR filter can be used for the
estimation of BQ. In fact this will be done by using an estimation of AQ. A block di-
agram of the interlaced adaptive regulation using the Youla–Kučera parametrization
is shown in Fig. 13.4. The estimation of AQ is discussed next.
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Adaptive Q-IIR

Fig. 13.4 Interlaced adaptive regulation using an IIR YK controller parametrization.

13.3.1 Estimation of AQ

Assuming that plant model = true plant in the frequency range where the narrow-
band disturbances are introduced, it is possible to get an estimation of p(t), named
p̂(t), using the following expression

p̂(t) =
1

A(q−1)
w(t) (13.35)

where w(t) was defined in (13.33). The main idea behind this algorithm is to con-
sider the signal p̂(t) as

p̂(t) =
n

∑
i=1

ci sin(ωit +βi)+η(t), (13.36)

where {ci,ωi,βi} ̸= 0, n is the number of narrow-band disturbances and η is a
noise affecting the measurement. It can be verified that, after two steps of transient(
1−2cos(2πωiTs)q−1 +q−2

)
· ci sin(ωit +βi) = 0 ([55]). Then the objective is to

find the parameter {α}n
i=1 that makes Dp(q−1)p̂(t) = 0.

The previous product can be equivalently written as Dp(q−1)p̂(t +1) = 0 and its
expression is:
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x(t +1) = Dp(q−1)p̂(t +1),

= p̂(t +1)+
n−1

∑
i=n

αi [p̂(t +1− i)+ p̂(t +1−2n+ i)]+ . . .

. . .+αn p̂(t +1−n)+ p̂(t +1−2n). (13.37)

where n is the number of narrow-band disturbances.
Defining the parameter vector as:

θDp = [α1,α2, . . . ,αn]
T , (13.38)

and the observation vector at time t as:

φDp(t) =
[
φ

Dp
1 (t),φ Dp

2 (t), . . . ,φ Dp
n (t)

]T
, (13.39)

where

φ
Dp
j (t) = p̂(t +1− j)+ p̂(t +1−2n+ j), j = 1, . . . ,n−1 (13.40)

φ
Dp
n (t) = p̂(t +1−n). (13.41)

Eq. (13.37) can then be simply represented by

x(t +1) = θ
T
DpφDp(t)+(p̂(t +1)+ p̂(t +1−2n)) . (13.42)

Assuming that an estimation of D̂p(q−1) is available at the instant t, the estimated
product is written as follows

x̂(t +1) =D̂p(q−1)p̂(t +1),

=p̂(t +1)+
n−1

∑
i=n

α̂i [p̂(t +1− i)+ p̂(t +1−2n+ i)]+ . . .

. . .+ α̂n p̂(t +1−n)+ p̂(t +1−2n) (13.43)

=θ̂
T
Dp(t)φDp(t)+(p̂(t +1)+ p̂(t +1−2n)) (13.44)

where θ̂Dp(t) is the estimated parameter vector at time t. Then the a priori prediction
error is given by

ε
◦
Dp(t +1) = x(t +1)− x̂(t +1) =

[
θ

T
Dp − θ̂

T
Dp(t)

]
·φDp(t), (13.45)

and the a posteriori adaptation error using the estimation at t +1

εDp(t +1) =
[
θ

T
Dp − θ̂

T
Dp(t +1)

]
·φDp(t), (13.46)

Equation (13.46) has the standard form of an a posteriori adaptation error [144]
which allows to associate the standard parameter adaptation algorithm (PAA) intro-
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duced in Chapter 4 (Eqs. (4.121) to (4.123)):

θ̂Dp(t +1) = θ̂Dp(t)+
F2(t)φDp(t)ε

◦
Dp
(t +1)

1+φDp(t)T F2(t)φDp(t)
(13.47)

ε
◦
Dp(t +1) = x(t +1)− x̂(t +1) (13.48)

x̂(t +1) = θ̂
T
Dp(t)φDp(t)+(p̂(t +1)+ p̂(t +1−2n)) (13.49)

F2(t +1)−1 = λ1(t)F2(t)−1 −λ2(t)φDp(t)φDp(t)
T (13.50)

0 < λ1(t)≤ 1; 0 ≤ λ2(t)< 2; F2(0)> 0

The PAA defined in (4.121) to (4.123) is used with φ(t) = φDp(t), θ̂(t) = θ̂Dp(t) and
ε◦(t+1) = ε◦Dp

(t+1). For implementation, since the objective is to make x(t+1)→
0, the implementable a priori adaptation error is defined as follows

ε
◦
Dp(t +1) = 0− D̂p(q−1, t)p̂(t +1)

=−θ̂
T
Dp(t)φDp(t)− (p̂(t +1)+ p̂(t −2n+1)) . (13.51)

Additional filtering can be applied on p̂(t) to improve the signal-noise ratio.
Since a frequency range of interest was defined, a bandpass filter can be used on
p̂(t). Once an estimation of Dp is available, AQ = Dp(ρq−1) is immediately gener-
ated. Since the estimated ÂQ will be used for the estimation of the parameters of BQ
one needs to show that: limt→∞ ÂQ(z−1) = AQ(z−1). This is shown in Appendix C.

13.3.2 Estimation of BQ(q−1)

Taking into account (13.12), (13.15), (13.16), and (13.17), it remains to compute
BQ(z−1) such that

S(z−1) = Dp(z−1)HS0(z
−1)S′(z−1). (13.52)

Turning back to (13.26) one obtains

S0AQ = DpHS0S′+ z−dBHR0HS0BQ. (13.53)

and taking into consideration also (13.29) it results

S′0AQ = DpS′+ z−dBHR0BQ. (13.54)

Once an estimation algorithm is developed for polynomial ÂQ(q−1), the next step
is to develop the estimation algorithm for B̂Q(q−1). Assuming that the estimation
ÂQ(t) of AQ(z−1) is available, one can incorporate this polynomial to the adaptation
algorithm defined in Section 12.2.2. Using (13.32) and (13.27) and assuming that
an estimation of B̂Q(q−1) is available at the instant t, the a priori error is defined as
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the output of the closed-loop system written as follows5

ε
◦(t +1) =

S0ÂQ(t)−q−dBHS0HR0 B̂Q(t)
P0ÂQ(t)

w(t +1)

=
S0

P0
w(t +1)−

q−dB∗HS0HR0

P0

B̂Q(t)
ÂQ(t)

w(t) (13.55)

= w1(t +1)− B̂Q(t)
ÂQ(t)

w f (t) (13.56)

where the notations6

w(t +1) = A
Dp(ρ)

Dp
δ (t +1) (13.57)

w1(t +1) =
S0

P0
w(t +1) (13.58)

w f (t) =
q−dB∗HS0HR0

P0
w(t) (13.59)

have been introduced.
Substituting (13.53) in (13.55) one gets:

ε
◦(t +1) =

HS0DpS′

P0AQ
w(t +1)+

q−dB∗HS0HR0

P0

BQ

AQ
w(t)−

−
q−dB∗HS0HR0

P0

B̂Q(t)
ÂQ(t)

w(t) (13.60)

=υ(t +1)+
q−dB∗HS0HR0

P0

[
BQ

AQ
− B̂Q(t)

ÂQ(t)

]
w(t) (13.61)

where

υ(t +1) =
HS0DpS′

P0AQ

ADp(ρ)

Dp
δ (t +1) =

HS0S′A
P0

δ (t +1) (13.62)

tends asymptotically to zero since it is the output of an asymptotically stable filter
whose input is a Dirac pulse.

The equation for the a posteriori error takes the form7

5 The argument (q−1) will be dropped in some of the following equations.
6 For the development of the equation for the adaptation error one assumes that the estimated
parameters have constant values which allows to use the commutativity property of the various
operators.
7 The details of the developments leading to this equation are given in the Appendix C.
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Table 13.2 Comparison of algorithms for the adaptation of the numerator parameters BQ(z−1).

Adaptation error Prediction error Regressor vector Positive real cond. Stability
ν(t +1) ε(t +1) Φ1(t) H ′(z−1)

ε(t +1) Eq. (13.63) φ1(t) 1
AQ

− λ2
2 Global

ÂQε(t +1) Eq. (13.63) φ1(t)
ÂQ
AQ

− λ2
2 Global

ε(t +1) Eq. (13.63) φ
f

1 (t)
ÂQ
AQ

− λ2
2 Global

ε(t +1) Eq. (13.63) φ
f

1 (t)
ÃQ(t)

AQ
− λ2

2
Local

ε(t +1) =
1

AQ

[
θ

T
1 − θ̂

T
1 (t +1)

]
φ1(t)+υ

f (t +1)+υ1(t +1), (13.63)

where

υ
f (t +1) =

1
AQ

υ(t +1)→ 0, since AQ is a.s. (13.64)

υ1(t +1) =
1

AQ

(
A∗

Q − Â∗
Q(t +1)

)(
−û f

Q(t)
)
→ 0, (13.65)

θ1 =
[
bQ

0 , · · · ,b
Q
2n−1

]T
(13.66)

θ̂1(t +1) =
[
b̂Q

0 (t +1), · · · , b̂Q
2n−1(t +1)

]T
(13.67)

φ1(t) =
[
w f (t), · · · ,w f (t +1−2n)

]T
(13.68)

w f (t) =
q−dB∗HS1HR1

P0
w(t) (13.69)

and n is the number of narrow-band disturbances. The convergence towards zero
for the signal υ1(t +1) is assured by the fact that limt→∞ ÂQ(t,z−1) = AQ(z−1) (see
Appendix C). Since υ f (t + 1) and υ1(t + 1) tend towards zero, (13.63) has the
standard form of an adaptation error equation (see Chapter 4 and [144]), and the
following PAA is proposed:

θ̂1(t +1) = θ̂1(t)+F1(t)Φ1(t)ν(t +1) (13.70)

ν(t +1) =
ν◦(t +1)

1+ΦT
1 (t)F1(t)Φ1(t)

(13.71)

F1(t +1)−1 = λ1(t)F1(t)−1 −λ2(t)Φ1(t)ΦT
1 (t) (13.72)

0 < λ1(t)≤1; 0 ≤ λ2(t)< 2; F1(0)> 0 (13.73)

There are several possible choices for the regressor vector Φ1(t) and the adaptation
error ν(t + 1) because there is a strictly positive real condition for stability related
to the presence of the term 1

AQ
in (13.63). For the case where ν(t + 1) = ε(t + 1),

one has ν◦(t +1) = ε◦(t +1), where
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ε
◦(t +1) = w1(t +1)− θ̂

T
1 (t)Φ1(t). (13.74)

For the case where ν(t +1) = ÂQε(t +1):

ν
◦(t +1) = ε

◦(t +1)+
nAQ

∑
i=1

âQ
i ε(t +1− i). (13.75)

These various choices result from the stability analysis given in Appendix C.
They are detailed below and summarized in Table 13.2.

• Φ1(t) = φ1(t). In this case the prediction error ε(t + 1) is chosen as adaptation
error ν(t + 1) and the regressor vector Φ1(t) = φ1(t). Therefore, the stability
condition is: H ′ = 1

AQ
− λ2

2 (maxt λ2(t)≤ λ2 < 2) should be strictly positive real
(SPR).

• ν(t+1)= ÂQε(t+1). The adaptation error is considered as the filtered prediction
error ε(t + 1) through a filter ÂQ. The regressor vector is Φ1(t) = φ1(t) and the

stability condition is modified to: H ′ =
ÂQ
AQ

− λ2
2 (maxt λ2(t)≤ λ2 < 2) should be

SPR where ÂQ is a fixed estimation of AQ.
• Φ1(t) = φ

f
1 (t). Instead of filtering the adaptation error, the observations can be

filtered to relax the stability condition.8 By filtering the observation vector φ1(t)

through 1
ÂQ

and using ν(t+1) = ε(t+1), the stability condition is: H ′ =
ÂQ
AQ

− λ2
2

(maxt λ2(t) ≤ λ2 < 2) should be SPR, where φ
f

1 (t) =
1

ÂQ
φ1(t) (ÂQ is a fixed

estimation of AQ).
• Φ1(t) = φ

f
1 (t) =

1
ÂQ(t)

where ÂQ = ÂQ(t) is the current estimation of AQ. When

filtering through a current estimation ÂQ(t) the condition is similar to the previ-
ous case except that it is only valid locally [144].

It is this last option which is used in [49] and in Section 13.5.
The following procedure is applied at each sampling time for adaptive operation:

1. Get the measured output y(t +1) and the applied control u(t) to compute w(t +
1) using (13.33).

2. Obtain the filtered signal p̂(t +1) from (13.35).
3. Compute the implementable a priori adaptation error with (13.48).
4. Estimate D̂p(q−1) using the PAA and compute at each step ÂQ(q−1).
5. Compute w f (t) with (13.69).
6. Compute w1(t +1) with (13.58).
7. Put the filtered signal w f

2(t) in the observation vector, as in (13.68).
8. Compute the a priori adaptation error defined in (13.74).
9. Estimate the BQ polynomial using the parametric adaptation algorithm (13.70)

- (13.72).

8 Neglecting the non commutativity of the time-varying operators.
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10. Compute and apply the control (see Fig. 13.4):

S0u(t) =−R0y(t +1)−HS0HR0

(
B̂Q(t)w(t +1)− Â∗

QûQ(t)
)
. (13.76)

13.4 Indirect Adaptive Regulation Using Band-stop Filters

In this section an indirect adaptive regulation scheme will be developed for im-
plementing the attenuation of multiple unknown narrow-band disturbances using
band-stop filters centred at the frequencies corresponding to spikes in the spectrum
of the disturbance. The principle of the linear design problem has been discussed in
Section 13.2.1.

The design of the BSF for narrow-band disturbance attenuation is further sim-
plified by considering a Youla–Kučera parametrization of the controller ([242, 41,
130, 235]). By doing this, the dimension of the matrix equation that has to be solved
is reduced significantly and therefore the computation load will be much lower in
the adaptive case.

In order to implement this approach in the presence of unknown narrow-band
disturbances, one needs to estimate in real time the frequencies of the spikes con-
tained in the disturbance. System identification techniques can be used to estimate
the ARMA model of the disturbance ([5, 128]). Unfortunately, to find the frequen-
cies of the spikes from the estimated model of the disturbance requires computation
in real time of the roots of an equation of order 2 ·n, where n is the number of spikes.
Therefore this approach is applicable in the case of one eventually two narrow-band
disturbances [130, 140]. What is needed is an algorithm which can directly esti-
mate the frequencies of the various spikes of the disturbance. Several methods have
been proposed ([237]). The adaptive notch filter (ANF) is particularly interesting
and has been reviewed in a number of articles ([211, 185, 212, 53, 156, 97, 186]).
In this book, the estimation approach presented in [225, 182] will be used. Combin-
ing the frequency estimation procedure and the control design procedure, an indirect
adaptive regulation system for attenuation of multiple unknown and/or time-varying
narrow-band disturbances is obtained.

In the present context, the hypothesis of constant dynamic characteristics of the
AVC system is made (like in [128]). Furthermore, the corresponding control model
is supposed to be accurately identified from input/output data.

13.4.1 Basic Scheme for Indirect Adaptive Regulation

The equation describing the system have been given in Section 13.2. The basic
scheme for indirect adaptive regulation is presented in Fig 13.5. In the context of
unknown and time-varying disturbances, a disturbance observer followed by a dis-
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Fig. 13.5 Basic scheme for indirect adaptive regulation.

turbance model estimation block have to be used in order to obtain information on
the disturbance characteristics needed to update the controller parameters.

With respect to Eq. (13.1), it is supposed that

p(t) =
D(ρq−1)

D(q−1)
δ (t), ρ ∈ (0,1) is a fixed constant, (13.77)

represents the effect of the disturbance on the measured output.9

Under the hypothesis that the plant model parameters are constant and that an
accurate identification experiment can be run, a reliable estimate p̂(t) of the distur-
bance signal can be obtained by using the following disturbance observer

p̂(t +1) =y(t +1)− q−dB∗(q−1)

A(q−1)
u(t)

=
1

A(q−1)

(
A(q−1)y(t +1)−q−dB∗(q−1)u(t)

)
(13.78)

A disturbance model estimation block can then be used to identify the frequen-
cies of the sines in the disturbance. With this information, the control parameters
can directly be updated by using the procedure described in Section 13.2.1. To deal
with time-varying disturbances, the Bezout equation (13.17) has to be solved at
each sampling instant in order to adjust the output sensitivity function. Neverthe-
less, given the size of this equation (see (13.18)), a significant part of the controller
computation time would be consumed to solve this equation. To reduce the com-
plexity of this equation, a solution based on the Youla–Kučera parametrization is
described in the following section.

9 The disturbance passes through a so called “primary path” which is not represented in Fig. 13.5.
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13.4.2 Reducing the Computational Load of the Design by Using
the Youla–Kučera Parametrization

The attenuation of narrow-band disturbances using band-stop filters (BSF) has been
presented in Section 13.2.1 in the context of linear controllers.

In an indirect adaptive regulation scheme, the Diophantine equation (13.17) has
to be solved either at each sampling time (adaptive operation) or each time when a
change in the narrow-band disturbances’ frequencies occurs (self-tuning operation).
The computational complexity of (13.17) is significant (in the perspective of its use
in adaptive regulation). In this section, we show how the computation load of the
design procedure can be reduced by the use of the Youla–Kučera parametrization.

As before, a multiple band-stop filter, (13.11), should be computed based on the
frequencies of the multiple narrow-band disturbance (the problem of frequencies
estimation will be discussed in Section 13.4.3).

Suppose that a nominal controller is available, as in (13.28) and (13.29), that
assures nominal performances for the closed-loop system in the absence of narrow-
band disturbances. This controller satisfies the Bezout equation

P0(z−1) = A(z−1)S0(z−1)+q−zB(z−1)R0(z−1). (13.79)

Since PBSF(z−1) will define part of the desired closed-loop poles, it is reasonable

to consider an IIR Youla–Kučera filter of the form BQ(z−1)

PBSF (z−1)
(which will automat-

ically introduce PBSF(z−1) as part of the closed-loop poles). For this purpose, the
controller polynomials are factorized as

R(z−1) =R0(z−1)PBSF(z−1)+A(z−1)HR0(z
−1)HS0(z

−1)BQ(z−1), (13.80)

S(z−1) =S0(z−1)PBSF(z−1)− z−dB(z−1)HR0(z
−1)HS0(z

−1)BQ(z−1), (13.81)

where BQ(z−1) is an FIR filter that should be computed in order to satisfy

P(z−1) = A(z−1)S(z−1)+ z−dB(z−1)R(z−1), (13.82)

for P(z−1) = P0(z−1)PBSF(z−1), and R0(z−1), S0(z−1) given by (13.28) and (13.29),
respectively. It can be seen from (13.80) and (13.81), using (13.28) and (13.29), that
the new controller polynomials conserve the fixed parts of the nominal controller.

Equation (13.18) gives the size of the matrix equation to be solved if the
Youla–Kučera parametrization is not used. Using the previously introduced YK
parametrization, it will be shown here that a smaller size matrix equation can be
found that allows to compute the BQ(z−1) filter so that the same shaping be in-
troduced on the output sensitivity function (13.16). This occurs if the controller
denominator S(z−1) in (13.81) is the same as the one given in (13.13), i.e.

S(z−1) = SBSF(z−1)HS0(z
−1)S′(z−1), (13.83)

where HS(z−1) has been replaced by (13.15).
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Replacing S(z−1) in the left term with its formula given in (13.81) and rearrang-
ing the terms, one obtains

S0PBSF = SBSF HS0S′+ z−dBHR0HS0BQ. (13.84)

and taking into consideration also (13.29) it results

S′0PBSF = SBSF S′+q−dBHR0BQ, (13.85)

which is similar to (13.54) except that band-stop filters are used instead of notch
filters.

In the last equation, the left side of the equal sign is known and on its right side
only S′(z−1) and BQ(z−1) are unknown. This is also a Bezout equation which can
be solved by finding the solution to a matrix equation of dimension

nBezY K = nB +d +nHR0
+2 ·n−1. (13.86)

As it can be observed, the size of the new Bezout equation is reduced in comparison
to (13.18) by nA + nHS0

. For systems with large dimensions, this has a significant
influence on the computation time. Taking into account that the nominal controller
is an unique and minimal degree solution the Bezout equation (13.79), we find that
the left hand side of (13.85) is a polynomial of degree

nS′0
+2 ·n = 2 ·n+nB +d +nHR0

−1, (13.87)

which is equal to the quantity given in (13.86). Therefore, the solution of the sim-
plified Bezout equation (13.85) is unique and of minimal degree. Furthermore, the
order of the BQ FIR filter is equal to 2 ·n.

Figure 13.6 summarizes the implementation of the Youla–Kučera parametrized
indirect adaptive controller.
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Fig. 13.6 Youla–Kučera schema for indirect adaptive control.
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13.4.3 Frequency Estimation Using Adaptive Notch Filters

In order to use the presented control strategy in the presence on unknown and/or
time-varying narrow-band disturbances, one needs an estimation in real time of the
spikes’ frequencies in the spectrum of the disturbance. Based on this estimation in
real time of the frequencies of the spikes, the band stop filters will be designed in
real time.

In the framework of narrow-band disturbance rejection, it is usually supposed
that the disturbances are in fact sinusoidal signals with variable frequencies. It
is assumed that the number of narrow-band disturbances is known (similar to
[130, 128, 55]). A technique based on ANFs (adaptive notch filters) will be used
to estimate the frequencies of the sinusoidal signals in the disturbance (more details
can be found in [185, 182]).

The general form of an ANF is

H f (z−1) =
A f (z−1)

A f (ρz−1)
, (13.88)

where the polynomial A f (z−1) is such that the zeros of the transfer function H f (z−1)
lie on the unit circle. A necessary condition for a monic polynomial to satisfy this
property is that its coefficients have a mirror symmetric form

A f (z−1) = 1+a f
1z−1 + . . .+a f

nz−n + . . .+a f
1z−2n+1 + z−2n. (13.89)

Another requirement is that the poles of the ANF should be on the same radial
lines as the zeros but slightly closer to the origin of the unit circle. Using filter
denominators of the general form A f (ρz−1) with ρ a positive real number smaller
but close to 1, the poles have the desired property and are in fact located on a circle
of radius ρ ([185]).

The estimation algorithm will be detailed next. It is assumed that the disturbance
signal (or a good estimation) is available.

A cascade construction of second order ANF filters is considered. Their number
is given by the number of narrow-band signals whose frequencies have to be esti-
mated. The main idea behind this algorithm is to consider the signal p̂(t) as having
the form

p̂(t) =
n

∑
i=1

ci sin(ωi · t +βi)+η(t), (13.90)

where η(t) is a noise affecting the measurement and n is the number of narrow-band
signals with different frequencies.

The ANF cascade form will be given by (this is an equivalent representation of
eqs. (13.88) and (13.89))

H f (z−1) =
n

∏
i=1

H i
f (z

−1) =
n

∏
i=1

1+a fiz−1 + z−2

1+ρa fiz−1 +ρ2z−2 . (13.91)
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Next, the estimation of one spike’s frequency is considered, assuming conver-
gence of the other n−1, which can thus be filtered out of the estimated disturbance
signal, p̂(t), by applying

p̂ j(t) =
n

∏
i=1
i̸= j

1+a fiz−1 + z−2

1+ρa fiz−1 +ρ2z−2 p̂(t). (13.92)

The prediction error is obtained from

ε(t) = H f (z−1)p̂(t) (13.93)

and can be computed based on one of the p̂ j(t) to reduce the computation complex-
ity. Each cell can be adapted independently after prefiltering the signal by the others.
Following the Recursive Prediction Error (RPE) technique, the gradient is obtained
as

ψ
j(t) =−∂ε(t)

∂a f j
=

(1−ρ)(1−ρz−2)

1+ρa f j z−1 +ρ2z−2
p̂ j(t). (13.94)

The parameter adaptation algorithm can be summarized as

â f j(t) =â f j(t −1)+α(t −1) ·ψ j(t) · ε(t) (13.95)

α(t) =
α(t −1)

λ +α(t −1)ψ j(t)2 . (13.96)

where â f j are estimations of the true a f j , which are connected to the narrow-band
signals’ frequencies by ω f j = fs ·arccos(− a f j

2 ), where fs is the sampling frequency.

13.4.3.1 Implementation of the Algorithm

The design parameters that need to be provided to the algorithm are: the number
of narrow-band spikes in the disturbance (n), the desired attenuations and damping
of the BSFs, either as unique values (Mi = M, ζdi = ζd , ∀i ∈ {1, . . .n}) or as indi-
vidual values for each of the spikes (Mi and ζdi ), and the central controller (R0, S0)
together with its fixed parts (HR0 , HS0 ) and of course the estimation of the spikes’
frequencies. The control signal is computed by applying the following procedure at
each sampling time:

1. Get the measured output y(t + 1) and the applied control u(t) to compute the
estimated disturbance signal p̂(t +1) as in (13.78).

2. Estimate the disturbances’ frequencies using adaptive notch filters, Eqs. (13.92)-
(13.96).

3. Calculate SBSF(z−1) and PBSF(z−1) as in (13.8) - (13.11).
4. Find Q(z−1) by solving the reduced order Bezout equation (13.85).
5. Compute and apply the control using (13.5) with R and S given respectively by

(13.80) and (13.81) (see also Fig. 13.6):
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S0u(t) =−R0y(t +1)−HS0HR0 (BQ(t)w(t +1)−P∗
BSF uQ(t)) . (13.97)

13.4.4 Stability Analysis of the Indirect Adaptive Scheme

The stability analysis of this scheme can be found in [7].

13.5 Experimental Results: Attenuation of Three Tonal
Disturbances with Variable Frequencies
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Fig. 13.7 Time response of the direct adaptive regulation scheme using a FIR Youla–Kučera filter
for a step change in frequencies (three tonal disturbances).

Samples of the experimental results obtained with the direct adaptive regula-
tion scheme (see Section 13.2.3 and [48]), with the interlaced adaptive regulation
scheme (see Section 13.3) and with the indirect adaptive regulation scheme (see
Section 13.4) on the test bench described in Chapter 2, Section 2.2 are given in this
section. A step change in the frequencies of three tonal disturbances is considered
(with return to the initial values of the frequencies). Figures 13.7, 13.8 and 13.9
show the time responses of the residual force. Figures 13.10, 13.11, and 13.12 show
the difference between the PSD in open-loop and in closed-loop as well as the es-
timated output sensitivity function. Figure 13.13 shows the evolution of the param-
eters of the FIR adaptive Youla–Kučera filter used in the direct adaptive regulation
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Fig. 13.8 Time response of the interlaced adaptive regulation scheme using an IIR Youla–Kučera
filter for a step change in frequencies (three tonal disturbances).
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Fig. 13.9 Time response of the indirect adaptive regulation scheme using BSF filters for a step
change in frequencies (three tonal disturbances).

scheme. Figures 13.14 and 13.15 show the evolution of the estimated parameters
of Dp (used to compute AQ - the denominator of the IIR Youla–Kučera filter) and
of the numerator BQ of the IIR Youla–Kučera filter used in the interlaced adaptive
regulation scheme. Figure 13.16 shows the evolution of the estimated frequencies
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of the three tonal disturbances used to compute the band stop filters in the indirect
adaptive regulation scheme.

For this particular experiment the interlaced adaptive regulation scheme offers
the best compromise disturbance attenuation/maximum amplification. Nevertheless,
a global evaluation requires to compare the experimental results on a number of
situations and this is done in the next section.
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Fig. 13.10 Difference between open-loop and closed-loop PSD of the residual force and the esti-
mated output sensitivity function for the direct adaptive regulation scheme.
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Fig. 13.11 Difference between open-loop and closed-loop PSD of the residual force and the esti-
mated output sensitivity function for the interlaced adaptive regulation scheme.
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Fig. 13.12 Difference between open-loop and closed-loop PSD of the residual force and the esti-
mated output sensitivity function for the indirect adaptive regulation scheme.
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Fig. 13.13 Evolution of the parameters of the FIR Youla–Kučera filter for a step change in fre-
quencies (direct adaptive regulation scheme).

13.6 Experimental Results: Comparative Evaluation of Adaptive
Regulation Schemes for Attenuation of Multiple
Narrow-band Disturbances

13.6.1 Introduction

Three schemes for adaptive attenuation of single and multiples sparsely located un-
known and time-varying narrow-band disturbances have been presented in Chap-
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Fig. 13.14 Evolution of the estimated parameters of the DP polynomial (disturbance model) during
a step change of the disturbance frequencies (interlaced adaptive regulation scheme).
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Fig. 13.15 Evolution of the parameters of the numerator of the IIR Youla–Kučera filter during a
step change of the disturbance frequencies (interlaced adaptive regulation scheme).

ter 12, Section 12.2.2 and in Sections 13.3 and 13.4 of this chapter. They can be
summarized as follows:

1) Direct adaptive regulation using FIR Youla–Kučera parametrization
2) Interlaced adaptive regulation using IIR Youla–Kučera parametrization
3) Indirect adaptive regulation using band-stop filters

The objective is to comparatively evaluate these three approaches in a relevant ex-
perimental environment.

An international benchmark on adaptive regulation of sparse distributed un-
known and time-varying narrow-band disturbances has been organized in 20012-
2013. The summary of the results can be found in [145]. The various contributions
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Fig. 13.16 Evolution of the estimated frequencies of the disturbance during a step change of dis-
turbance frequencies (indirect adaptive regulation scheme).

can be found in [18, 48, 8, 40, 108, 56, 258]. Approaches 1 and 3 have been eval-
uated in this context. The approach 2, which is posterior to the publication of the
benchmark results has been also evaluated in the same context. Detailed results can
be found in [47]. Approaches 1 and 3 provided some of the best results for the
fulfilment of the benchmark specifications (see [145]). Therefore a comparison of
the second approach with the first and third approach is relevant for assessing its
potential.

In what follows a comparison of the three approaches will be made in the context
of the mentioned benchmark. The objective will be to assess their potential using
some of the global indicators used in benchmark evaluation.

In Chapter 12, Section 12.3, some of the basic performance indicators have been
presented. In the benchmark evaluation process, several protocols allowing to test
the performance for various environmental conditions have been defined. Based on
the results obtained for the various protocols, global performance indicator have
been defined and they will be presented in the next section. This will allow later to
present in a compact form the comparison of the real time performance of the three
approaches considered in Chapters 12 and 13. Further details can be found in [47]
and [8, 48].

The basic benchmark specification are summarized in Table 13.3 for the three
levels of difficulty (range of frequencies variations: 50 to 95 Hz):

• Level 1: Rejection of a single time-varying sinusoidal disturbance.
• Level 2: Rejection of two time-varying sinusoidal disturbance.
• Level 3: Rejection of three time-varying sinusoidal disturbances.
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Table 13.3 Control specifications in the frequency domain.

Control specifications Level 1 Level 2 Level 3
Transient duration ≤ 2 sec ≤ 2 sec ≤ 2 sec
Global attenuation ≥ 30 dB ≥ 30 dB ≥ 30 dB

Minimum disturbance attenuation ≥ 40 dB ≥ 40 dB ≥ 40 dB
Maximum amplification ≤ 6 dB ≤ 7 dB ≤ 9 dB

For level 1, the specification of 30 dB is for the range between 50 and 85 Hz, for 90 Hz is 28 dB
and for 95 Hz is 24 dB.

13.6.2 Global Evaluation Criteria

Evaluation of the performances will be done for both simulation and real-time re-
sults. The simulation results will give us information upon the potential of the design
methods under the assumption: design model = true plant model. The real-time re-
sults will tell us in addition what is the robustness of the design with respect to plant
model uncertainties and real noise.

Steady State Performance (Tuning capabilities)

As mentioned earlier, these are the most important performances. Only if a good tun-
ing for the attenuation of the disturbance can be achieved, it makes sense to exam-
ine the transient performance of a given scheme. For the steady state performance,
which is evaluated only for the simple step change in frequencies, the variable k,
with k = 1, . . . ,3, will indicate the level of the benchmark. In several criteria a mean
of certain variables will be considered. The number of distinct experiments, M, is
used to compute the mean. This number depends upon the level of the benchmark
(M = 10 if k = 1, M = 6 if k = 2, and M = 4 if k = 3).

The performances can be evaluated with respect to the benchmark specifications.
The benchmark specifications will be in the form: XXB, where XX will denote
the evaluated variable and B will indicate the benchmark specification. ∆XX will
represent the error with respect to the benchmark specification.

Global Attenuation - GA

The benchmark specification corresponds to GABk = 30 dB, for all the levels and
frequencies, except for 90 Hz and 95 Hz at k = 1, for which GAB1 is 28 dB and
24 dB respectively.

Error:

∆GAi = GABk −GAi if GAi < GABk

∆GAi = 0 if GAi ≥ GABk
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with i = 1, . . . ,M.
Global Attenuation Criterion:

J∆GAk =
1
M

M

∑
j=1

∆GAi (13.98)

Disturbance Attenuation - DA

The benchmark specification corresponds to DAB = 40 dB, for all the levels and
frequencies.

Error:

∆DAi j = DAB−DAi j if DAi j < DAB

∆DAi j = 0 if DAi j ≥ DAB

with i = 1, . . . ,M and j = 1, . . . , jmax, where jmax = k.
Disturbance Attenuation Criterion

J∆DAk =
1

kM

M

∑
i=1

k

∑
j=1

∆DAi j (13.99)

Maximum Amplification - MA

The benchmark specifications depend on the level, and are defined as

MABk = 6dB, if k = 1
MABk = 7dB, if k = 2
MABk = 9dB, if k = 3

Error:

∆MAi = MAi −MABk, if MAi > MABk

∆MAi = 0, if MAi ≤ MABk

with i = 1, . . . ,M.
Maximum Amplification Criterion

J∆MAk =
1
M

M

∑
i=1

∆MAi (13.100)

Global criterion of steady state performance for one level
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JSSk =
1
3
[J∆GAk + J∆DAk + J∆MAk ] (13.101)

Benchmark Satisfaction Index for Steady State Performance

The Benchmark Satisfaction Index is a performance index computed from the av-
erage criteria J∆GAk , J∆DAk and J∆MAk . The Benchmark Satisfaction Index is 100%,
if these quantities are “0” (full satisfaction of the benchmark specifications) and it
is 0% if the corresponding quantities are half of the specifications for GA, and DA
or twice the specifications for MA. The corresponding reference error quantities are
summarized below:

∆GAindex = 15,
∆DAindex = 20,

∆MAindex,1 = 6, if k = 1,
∆MAindex,2 = 7, if k = 2,
∆MAindex,3 = 9, if k = 3.

The computation formulas are

GAindex,k =

(
∆GAindex − J∆GAk

∆GAindex

)
100%

DAindex,k =

(
∆DAindex − J∆DAk

∆DAindex

)
100%

MAindex,k =

(
∆MAindex,k − J∆MAk

∆MAindex,k

)
100%.

Then the Benchmark Satisfaction Index (BSI), is defined as

BSIk =
GAindex,k +DAindex,k +MAindex,k

3
(13.102)

The results for BSIk obtained both in simulation and real-time for each approach
and all the levels are summarized in Tables 13.4 and 13.5 respectively and repre-
sented graphically in figure 13.17. The YK IIR scheme provides the best results in
simulation for all the levels but the indirect approach provides very close results. In
real time it is the YK IIR scheme which gives the best results for level 1 and the YK
FIR which gives the best results for levels 2 and 3. Nevertheless, one has to mention
that the results of the YK FIR scheme are highly dependent on the design of the
central controller

The results obtained in simulation allows the characterization of the performance
of the proposed design under the assumption that design model = true plant model.
Therefore in terms of capabilities of a design method to meet the benchmark spec-
ification the simulation results are fully relevant. It is also important to recall that
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Level 3 of the benchmark is the most important. The difference between the sim-
ulation results and real time results, allows one to characterize the robustness in
performance with respect to uncertainties on the plant and noise models used for
design.

To assess the performance loss passing from simulation to real time results the
Normalized Performance Loss and its global associated index is used. For each level
one defines the Normalized Performance Loss as:

NPLk =

(
BSIksim −BSIkRT

BSIksim

)
100% (13.103)

and the global NPL is given by

NPL =
1
M

M

∑
k=1

NPLk (13.104)

where N = 3.
Table 13.6 gives the normalized performance loss for the three schemes. Fig-

ure 13.18 summarizes in a bar graph these results. The YK IIR scheme assures a
minimum loss for level 1, while the YK FIR scheme assures the minimum loss for
level 2 and 3.

Table 13.4 Benchmark Satisfaction Index for steady state performance (simulation results).

Method
LEVEL 1 LEVEL 2 LEVEL 3

BSI1 BSI2 BSI3

Indirect 98.69% 98.38% 99.44%
FIR 93.30% 97.29% 99.13%
IIR 99.07% 99.84% 100%

Table 13.5 Benchmark Satisfaction Index for steady state performance (real-time results).

Method LEVEL 1 LEVEL 2 LEVEL 3

BSI1 BSI2 BSI3

Indirect 81.11% 88.51% 90.64%
FIR 80.87% 89.56% 97.56%
IIR 89.37% 87.38% 96.39%
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Fig. 13.17 Benchmark Satisfaction Index (BSI) for all levels for simulation and real-time results.

Table 13.6 Normalized Performance Loss.

Method NPL1 NPL2 NLP3 NPL

Indirect 17.81% 10.03% 8.85% 12.23%
FIR 13.32% 7.95% 1.58% 7.62%
IIR 9.79% 12.48% 3.61% 8.63%

Normalized Performance Loss
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Fig. 13.18 Normalized Performance Loss (NPL) for all levels (smaller = better).

Global evaluation of transient performance

For evaluation of the transient performance an indicator has been defined by Eqs. (12.46).
From this indicator, a global criterion can be defined as follows

J∆Transk =
1
M

M

∑
j=1

∆Transi, (13.105)
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where M = 10 if k = 1, M = 6 if k = 2, and M = 4 if k = 3.
Transient performance are summarized in Table 13.7. All the schemes assures

in most of the cases the 100% of the satisfaction index for transient performance,
which means that the adaptation transient duration is less or equal to 2 sec in most
of the cases (except the indirect scheme for level 2 in simulation)

Table 13.7 Benchmark Satisfaction Index for Transient Performance (for simple step test).

Method
Index BSITrans1 BSITrans2 BSITrans3

Sim RT Sim RT Sim RT

Indirect 100% 99.17% 83.33% 100% 100% 100%
FIR 100% 96.45% 100% 95.74% 100% 100%
IIR 100% 99.20% 100% 100% 92.74% 95.23%

Evaluation of the Complexity

For complexity evaluation, the measure of the Task Execution Time (TET) in the
xPC Target environment will be used. This is the time required to perform all the
calculations on the host target PC for each method. Such process has to be done
on each sample time. The more complex is the approach, the bigger is the TET.
One can argue that the TET depends also on the programming of the algorithm.
Nevertheless, this may change the TET by a factor of 2 to 4 but not by an order
of magnitude. The xPC Target MATLAB environment delivers an average of the
TET (AT ET ). It is however interesting to asses the TET specifically associated to
the controller by subtracting from the measured TET in closed-loop operation, the
average TET in open-loop operation.

The following criteria to compare the complexity between all the approaches are
defined.

∆T ETSimple,k = AT ETSimple,k −AT ETOLSimple,k (13.106)

∆T ETStep,k = AT ETStep,k −AT ETOLStep,k (13.107)

∆T ETChirp,k = AT ETChirp,k −AT ETOLChirp,k (13.108)

where k = 1, . . . ,3. The symbols Simple, Step and Chirp10 are associated respec-
tively to Simple Step Test (application of the disturbance), Step Changes in Fre-
quency and Chirp Changes in Frequency. The global ∆T ETk for one level is defined
as the average of the above computed quantities:

∆T ETk =
1
3
(
∆T ETSimple,k +∆T ETStep,k +∆T ETChirp,k

)
(13.109)

10 The chirp will be considered only for complexity evaluation, for other results concerning chirp
disturbance see [146] and [47].
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where k = 1, . . . ,3. Table 13.8 and Fig. 13.19 summarize the results obtained for the
three schemes. All the values are in microseconds. Higher values indicate higher
complexity. The lowest values (lower complexity) are highlighted.

As expected, the YK-FIR algorithm has the smallest complexity. YK-IIR has a
higher complexity than the YK-FIR (This is due to the incorporation of the estima-
tion of AQ(z−1)) but still significantly less complex than the indirect approach using
BSF.

Table 13.8 Task Execution Time.

Method ∆TET

L1 L2 L3

Indirect 254.24 203.83 241.22
FIR 3.26 3.90 5.60
IIR 19.42 31.63 44.95
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Indirect FIR IIR
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Fig. 13.19 The controller average task execution time (∆T ET ).

Tests with a different experimental protocol have been done. The results obtained
are coherent with the tests presented above. Details can be found in [146, 49].

13.7 Concluding Remarks

It is difficult to decide what is the best scheme for adaptive attenuation of multiple
narrow-band disturbances. There are several criteria to be taken into account:

• If an individual attenuation level should be fixed for each spike, the indirect adap-
tive scheme using BSF is the most appropriate since it allows to achieve specific
attenuation for each spike.
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• If the objective is to have a very simple design of the central controller, YK IIR
scheme and the indirect adaptive scheme have to be considered.

• If the objective is to have the simplest scheme requiring the minimum computa-
tion time, clearly the YK FIR has to be chosen.

• If the objective is to make a compromise between the various requirements men-
tioned above, it is the YK IIR adaptive scheme which has to be chosen.

13.8 Notes and References

The reference [146] gives a thorough view of the various solutions for adaptive
attenuation of multiple narrow-band disturbances. The specific references are [18,
40, 108, 258, 56, 8, 48] to which the reference [49] has to be added.



Part V
Feedforward-Feedback Attenuation of

Broad-band Disturbances





Chapter 14
Design of Linear Feedforward Compensation of
Broad-band Disturbances from Data

Abstract Feedback controllers can not be used when strong attenuation over a large
frequency band is required. In such situations the solution is to design feedforward
compensators using a measurement correlated with the disturbance obtained up-
stream from the residual acceleration (or force). Nevertheless, a “positive” feed-
back from control signal to disturbance measurement is introduced that can desta-
bilize the system. Indirect and a direct approaches for the design of linear feedfor-
ward compensators will be presented. The indirect approach uses identified models
for feedforward compensator design while the direct approach estimates directly the
feedforward compensator from data.

14.1 Introduction

Feedforward compensation of disturbances comes in view when the “waterbed” ef-
fect in feedback control can not allow to assure the desired performance. This occurs
systematically if the disturbance has a broad-band character and the attenuation im-
posed is too important. The use of the feedforward compensation requires the use
of an additional transducer which is expected to provide a reliable information upon
the disturbance (w(t) in Fig. 14.1).

If such transducer is available in a specific application, feedforward compensa-
tion of broad-band disturbances can be implemented. It is important to remind (as
indicated in Chapter 1) that feedforward compensation induces an internal coupling
(positive) between the control of the secondary path (the compensator system) and
the measurement of the disturbance. See the test bench described in Section 2.3.

The design of a linear compensator can be viewed (see Fig. 14.1) as finding
a linear compensator such that the lower part of Fig. 14.1 has the same transfer
function as the primary path but with the reverse sign. With the notation of the
figure, we are looking to find N (the compensator) such that:

279
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Positive feedback coupling

Secondary path

Primary path

Feedforward

compensator

+

+

+

+

disturbance

noise

Fig. 14.1 A linear feedforward compensation scheme.

D =− N
(1−NM)

G. (14.1)

This is a pure algebraic problem and requires the assumption:
(Perfect matching condition) There exists a filter N(z−1) of finite dimension such

that:1

D =− N
(1−NM)

G (14.2)

and the characteristic polynomial of the “internal” feedback loop:

P(z−1) = AM(z−1)S(z−1)−BM(z−1)R(z−1) (14.3)

is a Hurwitz polynomial.
This hypothesis means also that D can be equivalently represented by (14.2)

where N is unknown. In practice, one can consider however a less strong require-
ment, i.e., a good fit of the two transfer functions in the frequency region where
the disturbance is significant. This problem can be formulated as an H2 or an H∞

problem.
Assuming that the control design problem is formulated as a perfect matching

objective or as the minimization of a H2 or H∞ criterion, in order to compute N
one needs the models of the primary path, secondary path and reverse path. So
one has to solve first an identification problem. The techniques for identification of
such systems have been described in Chapter 5 and illustrated in Chapter 6 by the
identification of the test bench described in Section 2.3.

Assuming that these models are available and knowing the power spectral dis-
tribution of the disturbance w(t) (by analysing the data captured by the additional
transducer), the computation of the compensator N can be transformed in a fre-
quency weighted error minimization since one would like to have a good fit between
the two transfer functions in the frequency zone where the disturbance is located.

1 In many cases, the argument q−1 or z−1 will be dropped out.
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Therefore, if one has reliable identified models for the primary path, secondary
path reverse path and the power spectral density of the disturbance, one can formu-
late this problem as an H2 or an H∞ problem.

Basically for an H∞ approach one considers

• disturbance-output sensitivity function:

Sew =

(
D+G ·

(
N

1−NM

))
(14.4)

• disturbance-input sensitivity function:

Suw =

(
N

1−NM

)
(14.5)

• noise-input sensitivity function:

Suη =

(
N

1−NM

)
(14.6)

The H∞ control problem is to find a stabilizing feedforward compensator N which
minimizes a scalar γ ([269]) such that:∥∥∥∥∥∥

W1 ·Sνe
W2 ·Sue
W3 ·Suη

∥∥∥∥∥∥
∞

< γ (14.7)

where W1, W2 and W3 are corresponding weighting functions (which can be in-
terpreted as analytic inverses of templates for the sensitivity functions). A similar
formulation can be given for the H2 control problem (see [215]).

The H∞ approach has been applied on the test bench described in Chapter 2, see
[13]. For an H2 approach see [215] where the case of active suppression of vibrations
in flexible structures has been considered.

Another approach can be considered by using an Youla–Kučera parametrization
of the compensator N with a central stabilizing controller (R0 and S0) and a Q IIR
filter as indicated in Fig. 14.2. In this case, using convex optimization one can try to
find Q such that the difference between the transfer function of the primary path and
the one of the compensated system be minimized in a frequency region of interest
where the spectrum of the disturbance is significant (of course H2 and H∞ can also
be used in this configuration as well as the convex optimization procedure).

It is important to point out that in order to design a linear controller using a fre-
quency weighted minimization one needs not only the models of the system but
also the model of the disturbance. To get information about the disturbance and the
system’s models, it is required to have access to the system. In other terms, data
acquisition under a protocol is mandatory for designing a linear feedforward com-
pensator (in order to identify the models and the characteristics of the disturbance).
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Fig. 14.2 Linear feedforward compensation scheme using Youla–Kučera parametrization of the
feedforward compensator.

14.2 Indirect Approach for the Design of the Feedforward
Compensator from Data

Assume that the secondary and the reverse path models have been already identified
using the procedure described in Section 6.3. In order to design the feedforward
compensator, one needs in addition to identify the model of the primary path (D).
The primary path model has to be identified with the available input signal w(t)
which comes from the system (generated by the disturbance) and measuring the
residual force or acceleration which in the absence of the compensator system is
denoted x(t) (it is the output of the primary path in the absence of the compensator
system—see Fig. 14.1). The quality of the primary path identified model depends
upon the richness of the disturbance signal w(t). In fact the identified model will be
relevant only in the frequency regions where w(t) has enough energy.

To summarize:

1. one collects the input/output data (w(t) and x(t));
2. one identifies the primary path model from these data; and
3. one proceeds to the design of the linear feedforward compensator based on the

primary, secondary and reverse path models and the PSD of w(t) (the image of
the disturbance).

The third step is equivalent of finding N̂ in order to minimize e(t) in the sense of a
certain criterion for the given w(t). This approach will be termed “indirect” since it
requires several intermediate steps in order to design the feedforward compensator
from data. As it will be shown in the next section, it is possible to formulate the
estimation of N̂ as the estimation of a reduced order controller.
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14.3 Direct Approach for the Design of the Feedforward
Compensator from Data

The interesting point is that the design of the linear compensator can be viewed as
the estimation of a reduced order controller (see Chapter 9). Given a set of relevant
data collected on the upstream transducer (w(t)) and on the residual accelerometer
or force transducer (x(t)) (in the absence of the compensator system), the problem
can be formulated as estimating a reduced order filter N which minimizes the error
between the measured acceleration (or force) and the predicted acceleration (force)
given by the predictor of the compensation path.

Fig. 14.3 Adaptive feedfor-
ward compensation scheme.

+

+

+

+

PAA
Parameter adaptation algorithm

-1

Fig. 14.4 Equivalent formu-
lation of the estimation of
the linear compensator as an
estimation of the controller in
closed-loop operation.

-

+

+

+

PAA

+

+

In Fig. 14.3, if G=1, this becomes an estimation of a reduced order controller in
closed-loop operation which can be done using the techniques of Chapter 9 (Closed-
Loop Input Matching). In the general case (G ̸= 1) the problem can be reformulated
as in Fig. 14.4 where one takes advantage of the hypothesis of perfect matching and
of the linearity in steady state which allows to revert the order of the various blocks
without changing the global transfer function.
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Fig. 14.5 Rapprochement
between the estimation of
the linear feedforward com-
pensator and the techniques
for reduced order controller
estimation in closed-loop op-
eration.

-

+

+

+

PAA

+

+

Fig. 14.5 makes further connections with the “controller estimation in closed-
loop” techniques. What is added in fact is the filtering of the input through G and the
filtering of the prediction error through V ( allowing to further shape the frequencies
characteristics of the estimated filter).

The optimal feedforward compensator (unknown and of high order) is defined
by:

N(q−1) =
R(q−1)

S(q−1)
(14.8)

where:

R(q−1) =r0 + r1q−1 + ...+ rnR q−nR (14.9)

S(q−1) =1+ s1q−1 + ...+ snS q−nS = 1+q−1S∗(q−1) (14.10)

and
θ

T = [s1, . . .snS ,r0,r1, . . .rnR ] = [θ T
S ,θ

T
R ] (14.11)

is the vector of parameters of the optimal filter N assuring perfect matching.
The reduced order estimation of the optimal feedforward filter is defined by

N̂(q−1) =
R̂(q−1)

Ŝ(q−1)
(14.12)

where:

R̂(q−1) =r̂0 + r̂1q−1 + ...+ r̂nR q−nR (14.13)

Ŝ(q−1) =1+ ŝ1q−1 + ...+ ŝnS q−nS = 1+q−1Ŝ∗(q−1) (14.14)

and

θ̂
T = [ŝ1, . . . ŝnS , r̂0, r̂1, . . . r̂nR ] = [θ̂ T

S , θ̂
T
R ] (14.15)

is the vector of constant estimated parameters of N̂.
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The input-output relationships for the estimated feedforward filter are given by:

û(t +1) =− Ŝ∗(q−1)û(t)+ R̂(q−1)ŷ(t +1) = θ̂
T

φ(t) = [θ̂ T
S , θ̂

T
R ]

[
φû(t)
φŷ(t)

]
(14.16)

where

φ
T (t) =[−û(t), . . .− û(t −nS +1), ŷ(t +1), . . . ŷ(t −nR +1)]

=[φ T
û (t),φ

T
ŷ (t)] (14.17)

Going back to the system in Fig. 14.5, one has

ν(t +1) =V (q−1)
AM(q−1)

P(q−1)
[θ − θ̂ ]T φ(t) (14.18)

where AM is the characteristic polynomial of the “positive” feedback loop.2 Consid-
ering the model of the reverse path

M(q−1) =
BM(q−1)

AM(q−1)
(14.19)

P is given by
P(q−1) = AM(q−1)S(q−1)−BM(q−1)R(q−1). (14.20)

The identification of N̂ can be viewed as an L2 minimization problem which has a
relevant interpretation in the frequency domain.

Using Parseval’s relation, the asymptotic bias distribution of the estimated pa-
rameters in the frequency domain can be obtained starting from the expression of
ν(t) by taking into account that the algorithm minimizes (almost) a criterion of the
form

lim
N→∞

1
N

N

∑
t=1

ν
2(t).

This allows to reformulate the asymptotic behaviour of the estimated compensator
(using the formulas given in Section 9.3.1) as shown next. Taking into account that
the external excitation is filtered by G, and that the prediction error filtered by V ,
the estimated N̂ (characterized by the parameter vector θ̂ given in (14.15)) will have
the following asymptotic behaviour in the frequency domain (taking into account a
perfect matching condition Eq. (14.1), see also Chapter 15):

θ̂
∗ = argmin

θ̂

∫
π

−π

[
|SNM|2|N − N̂|2|SN̂M|2|G|2|V |2φw(ω)

+|V |2φη(ω)
]

dω (14.21)

2 The term AM/P comes from the expression of the prediction error, similar to that obtained in
Section 8.2.1, for the CLOE configuration or in Section 9.3, for the CLIM algorithm, with the
obvious change in notation (S is replaced by AM).
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where φw and φη are the spectral densities of the disturbance w(t) and of the mea-
surement noise and SNM and SN̂M are the output sensitivity functions of the internal
closed-loop for N and N̂, respectively:

SNM =
1

1−NM
, (14.22)

SN̂M =
1

1− N̂M
. (14.23)

From (14.21), one concludes that a good approximation of N will be obtained in
the frequency region where φw is significant and where G and V have a high gain
(usually G should have high gain in the frequency region where φw is significant
in order to counteract the effect of w(t)). The choice of V will clearly influence
the estimated N̂. The quality of the estimated N̂ will be affected also by the output
sensitivity functions of the internal closed-loop N −M.

One can also consider to use the adaptive algorithms which will be developed
later on for the adaptation of N using the basic configurations indicated in Chapter 1
but in a self-tuning regime, i.e., the adaptation gain will tend asymptotically to zero.
Both methods will be demonstrated in the next section.

The use of algorithms for estimation in closed-loop of the controller as indicated
previously or the use of adaptive feedforward algorithms in a self-tuning regime is
a one step design procedure since the intermediate step of identifying the primary
path which is needed for design using H∞, H2 or convex optimization disappears. It
is in fact another way of exploiting the available data.

14.4 Direct Estimation of the Feedforward Compensator and
Real-Time Tests

In this section, it is shown how a linear feedforward controller for the AVC system
described in Section 2.3 can be directly obtained from the data collected in the
absence of the compensator system. The resulting compensator will be tested in
real-time on the test bench.

First, the use of closed-loop input matching algorithms (see Section 9.3) for es-
timating a reduced order feedforward compensator is demonstrated. As explained
in Chapter 9, this problem is similar to the one of closed-loop model identifica-
tion. Then self-tuning operation of an adaptive simulated feedforward compensation
scheme in self tuning operation will be used to obtain the feedforward compensator.

While both approaches use the same data, the operation mode is different. The
algorithms for identification in closed-loop take into account the fact that all data are
available. The simulated adaptive feedforward compensation schemes in self-tuning
regime operates like in real-time, i.e., the algorithms ignore the availability of the
data over the entire time horizon.
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It is supposed that models for the secondary and the reverse paths are available.
Section 6.3 gives details on how these models can be obtained. Measured data on
the real system for w(t) and x(t) will be used instead of the identified model of
the primary path. These data have been obtained using as excitation to the system
a PRBS with shift register of length N = 16 and frequency divider p = 1. Around
82 sec of real time data have been obtained.3

Lets begin with the identification of the feedforward compensator using closed-
loop input matching algorithms (see Section 9.3). The basic scheme is shown in
Fig. 14.6, where the excitation signal is obtained by filtering the measured w(t)
through the estimated model of the secondary path

w f (t) =
B̂G

ÂG
w(t). (14.24)

Lets note that with respect to the Closed-Loop Input Matching algorithm given
in Eqs. (9.26) - (9.28), one has the following changes in notations: ĉ(t) becomes
ŷ f (t) and û(t) becomes û f (t).

The closed-loop input error is defined as the difference between the available
measurement x(t) and û f (t) generated by the closed loop predictor using N̂. Two
algorithms are considered. The first one, corresponds to the basic closed-loop con-
troller identification algorithm with the objective to achieve Closed-Loop Input
Matching (CLIM) and uses directly as regressor vector φ(t) given in (14.17). The
second one, corresponds to the filtered version of the same algorithm, F-CLIM as
given in Section 9.3, where φ(t) is filtered through ÂM/P̂. Real-time results obtained
with the estimated compensators with nR = 9 and nS = 10 (20 parameters) are given
in Fig. 14.7. One obtains an attenuation of -13.5 dB for the CLIM algorithm and
-14.4 dB for the F-CLIM algorithm.

+

+

+

PAA

-

Fig. 14.6 Equivalent formulation for estimation of the feedforward compensator in closed-loop
operation.

3 See file 24-Sep-2015 19h0 data BO prim 82s prim on the book website.
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Fig. 14.7 Power spectral density estimates for closed-loop identified feedforward compensator
with 20 parameters.
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Fig. 14.8 Estimation of the feedforward compensator using a simulated adaptive feedforward com-
pensation scheme in self-tuning regime.

Based on the discussion in Section 14.3, for the self-tuning operation, two
schemes are considered. In the first one, Fig. 14.8, the secondary path is consid-
ered at its true position downstream from the feedforward compensator. M̂(q−1) and
Ĝ(q−1) in Fig. 14.8 represent the identified models for the reverse and secondary
paths respectively. w(t) and x(t) are real time measured signals in the absence of the
controller (open-loop).

The second scheme is represented in Fig. 14.9. The main difference is that the
model of the secondary path (without the inherent one step delay) B̂∗

G/ÂG is intro-
duced upstream from the feedforward compensator N̂ and the one sampling period
delay of the secondary path is left at its usual position between feedforward compen-
sator and measured residual acceleration (or force). The corresponding algorithms
are similar to the ones obtained based on controller order reduction (see Fig. 14.6),
with the exception of the one sampling period delay which appears between the
feedforward compensator and the measurement of the residual acceleration.

The following PAA, derived from the algorithms which will be presented in
Chapter 15, has been used for estimating the parameters of the feedfoward com-
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Fig. 14.9 A modified simu-
lated feedforward compen-
sation scheme in self-tuning
regime for estimation of the
feedforward compensator.

+

+

+

PAA

-1

pensator using a simulated adaptive feedforward compensation scheme:

θ̂(t +1) =θ̂(t)+FI(t)Φ(t)ν(t +1) (14.25a)

ν(t +1) =
ν0(t +1)

1+ΦT (t)FI(t)Φ(t)
(14.25b)

FI(t +1) =FI(t)−
FI(t)Φ(t)ΦT (t)FI(t)
1+ΦT (t)FI(t)Φ(t)

, FI(0)> 0 (14.25c)

where

θ̂
T (t) =

[
ŝ1(t), ... ŝnS(t), r̂0(t) ... r̂nR(t)

]
=
[
θ̂

T
S (t), θ̂

T
R (t)

]
(14.26)

is the vector of estimated parameters of N̂. This algorithm is characterized by a
decreasing adaptation gain which allows to obtain asymptotically a fixed value of
the estimated parameters.

One defines φ(t) as the observation vector given by

φ
T (t) = [−û(t), . . . − û(t −nS +1), ŷ(t +1), . . . ŷ(t −nR +1)]

=
[
φ

T
û (t), φ

T
ŷ (t)

]
, (14.27)

for the scheme presented in Fig.14.8 and by

φ
T (t) =

[
−û f (t), . . . − û f (t −nS +1), ŷ f (t +1), . . . ŷ f (t −nR +1)

]
=
[
φ

T
û f
(t), φ

T
ŷ f
(t)
]
, (14.28)

for the one in Fig. 14.9.
Φ(t) is obtained by filtering φ(t) in order to satisfy a certain stability condition,

which will be detailed in Chapter 15. Two types of filtering can be considered. The
first type, labelled FUPLR (for Filtered-U Pseudo Linear Regression), uses only
filtering by the estimated model of the secondary path. For the scheme in Fig. 14.8
this is achieved by filtering φ(t) through L(q−1) = Ĝ(q−1), while for the scheme
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given in Fig.14.9 the filtering is done through4 L(q−1) = z−1. The stability condition
is that

AMG
PĜ

− 1
2

(14.29)

should be SPR for the scheme given in Fig. 14.8 and

AM

P
− 1

2
(14.30)

should be SPR for the scheme given in Fig. 14.9.
Feedforward compenstors with orders nR = 9, nS = 10 (20 parameters) have been

estimated. Experimental results are shown in Figs. 14.10 and 14.11 (black contin-
uous lines). The global attenuation results are similar, −13.6 dB using the scheme
given in Fig. 14.8 and −13.32 dB using the configuration given in Fig. 14.9.
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Fig. 14.10 Power spectral density estimates for closed-loop identified feedforward controller using
the scheme given in Fig. 14.8 (G downstream).

The second type, labelled FUSBA (Filtered-U Stability Based Algorithm) corre-
sponds to a filter chosen in order to satisfy a certain positive real condition (resulting
from a stability analysis). In order to achieve this, one filters φ(t) by L(q−1) = ÂMĜ

P̂
,

for the scheme given in Fig. 14.8, and by L(q−1) = z−1ÂM
P̂

, for the scheme given in
Fig. 14.9 (see also Chapters 9 and 15), where ÂM is the denominator of the estimated
reverse path model and P̂ is the estimated characteristic polynomial of the internal
positive feedback loop given by P̂ = ÂMS − B̂MR. In this case, the conditions of
(14.29) and (14.30) become

AMGP̂
PÂMĜ

− 1
2

(14.31)

4 Note that the FUPLR filtering considered for the scheme in Fig. 14.8 is an exact algorithm for
the configuration given in Fig. 14.4 which is equivalent to the configuration in Fig. 14.9.
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Fig. 14.11 Power spectral density estimates for closed-loop identified feedforward controller using
the scheme given in Fig. 14.9 (G upstream).

should be SPR for the scheme given in Fig. 14.8 and

AMP̂
PÂM

− 1
2

(14.32)

should be SPR for the scheme given in Fig. 14.9. These conditions are much easier
to satisfy if the estimated models of the system are good. Experimental results given
in Figs. 14.10 and 14.11 (dashed lines) for the FUSBA algorithms show an improved
performance. The global attenuation obtained is of −14.46 dB for the scheme given
in Fig. 14.8 and −15.08 dB for the configuration given in Fig. 14.9. The results are
very close to those obtained using CLIM algorithm for estimation of reduced order
controllers (see Fig. 14.7).

From the above experimental results, it is clear that the stability based algorithm
FUSBA is more efficient than the FUPLR algorithm; however, an initial run with
FUPLR is necessary before using FUSBA in order to estimate the filter used in
FUSBA.

Although the best compensator have been obtained with the simulated adaptive
feedforward compensation scheme in self-tuning regime (Fig. 14.9), they are very
close to the results obtained with the estimation in closed-loop of the reduced order
controllers (Fig. 14.7). So both schemes can be used for direct estimation of a lin-
ear feedfroward compensator from data collected in the absence of the feedforward
compensation.

Note also that in [13] a reduced order H∞ feedforward compensator with 40
parameters (instead of 20 parameters in this chapter) designed on the basis on an
identified primary path model (indirect approach) was shown to provide a global
attenuation of 14.7 dB, when operating with real data on the same system.
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14.5 Concluding Remark

• The classical approach to the design of the feedforward compensator requires
the knowledge of the model of the primary path and of the disturbance model in
addition to the models of the secondary path and of the reverse path.

• Identification of a reliable model for the primary path rely on the frequency con-
tent of the available disturbance measurement.

• The indirect approach for designing the feedforward compensator includes :

– Identification of the primary path.
– Design of the feedforward compensator based on the knowledge of the pri-

mary, secondary and reverse path models and the PSD of the disturbance.

• The design of the linear feedforward compensator can be viewed as a special type
of estimation in closed-loop of a reduced-order controller and therefore one can
directly obtain a feedforward compensator from collected data (measurement of
the disturbance and of the residual acceleration or force).

• The major advantage of using a direct feedforward compensator identification
approach for designing a linear compensator is that it short cuts the problem
of identifying a reliable model for the primary path (quality of the model will
depend on the frequency characteristics of the disturbance) and the problem of
defining the appropriate weighting functions for design.

14.6 Notes and References

Linear feedforward designs based on LQG/H2 methods are proposed in [78, 31, 64,
180, 215]. Robust linear feedforward compensator based on H∞ theory are presented
in [78, 13, 23, 44, 107, 193, 198, 265, 257]. Mixed H2/H∞ techniques are used in
[163, 209] and minimax LQG solutions in [193, 192, 191]. In [79], also a cautious
Wiener filter is developed (see also [224]). Note that classical LQG/H2 does not pro-
vide guaranteed robustness margins, while the classical H∞ method is a worst-case
design approach that does not necessarily provide good performance. The solutions
mentioned previously present various mixed designs that try to efficiently combine
the advantages of each method. Note that all these approaches assume the availabil-
ity of the model of the primary path and of the disturbance in addition to the models
of the secondary path and of the reverse path.

In [257] an interesting application of AVC to load reduction on the blades of a
smart rotors using H∞ feedback and fixed structure feedforward control is proposed.
Note also the use of both feedback and feedforward controllers. Other examples of
mixed controllers can be found in: [169, 214, 168, 226, 251, 153, 218]. An applica-
tion to smart rotors vibration attenuation can be found in [184, 62].



Chapter 15
Adaptive Feedforward Compensation of
Disturbances

Abstract Adaptive feedforward compensation algorithms for the attenuation of
broad-band disturbances are developed in this chapter. The proposed algorithms
take into account the “positive” feedback coupling which appears in active vibra-
tion control systems using feedforward compensation. One considers also the case
when a fixed feedback controller is present. The algorithms are evaluated in real
time on the active flexible mechanical structure actuated by an inertial actuator
which has been presented in Chapter 2.

15.1 Introduction

In a number of applications areas an image (a correlated measurement) of the dis-
turbances acting upon the system can be made available. This information is very
useful in active vibration control (AVC) and active noise control (ANC) for attenu-
ating the disturbances using a feedforward compensation scheme (when the use of
feedback is limited as a consequence of the Bode integral). Nevertheless, the feed-
forward compensator will depend not only upon the dynamics of the plant but also
upon the characteristics of the disturbances. Since the characteristics (the model) of
the disturbances are generally unknown and may be time-varying, adaptive feedfor-
ward compensation has to be considered. As indicated in Chapter 1, this solution
has been proposed many years ago. Probably the first references are [38, 254, 255].

Adaptive feedforward broad-band vibration (or noise) compensation is currently
used in ANC and AVC when an image of the disturbance is available [69, 70, 99,
264, 116, 117]. Nevertheless, at the end of the nineties it was pointed out that in
most of these systems there is a physical “positive” feedback coupling between the
compensator system and the measurement of the image of the disturbance (vibration
or noise) [117, 98, 99, 264]. This is a very important issue and in Chapter 2 it has
been shown on the considered test bench (Fig. 2.12) that effectively this internal
positive feedback is significant and therefore can not be ignored.

293
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The corresponding block diagrams in open-loop operation and with the compen-
sator system are shown in Fig. 15.1. The signal w(t) is the image of the disturbance
measured when the compensator system is not used (open-loop). The signal ŷ(t)
denotes the effective output provided by the measurement device when the com-
pensator system is active and which will serve as input to the adaptive feedforward
compensator N̂. The output of this filter denoted by û(t) is applied to the actuator
through an amplifier. The transfer function G (the secondary path) characterizes the
dynamics from the output of the filter N̂ to the residual acceleration measurement
(amplifier + actuator + dynamics of the mechanical system). Subsequently we will
call the transfer function between w(t) and the measurement of the residual acceler-
ation (force) the “primary path”.

Global primary path

    Residual

 acceleration

measurement

Primary path

   Measurement of the

image of the disturbance

(a)

Global primary path

Positive feedback coupling

   Measurement of the

image of the disturbance

Secondary path

    Residual

 acceleration

PAA

Primary path

Parameter adaptation algorithm

-1

Feedforward compensator+

+

+

+

(b)

Fig. 15.1 Feedforward AVC: in open-loop (a) and with adaptive feedforward compensator (b).

The coupling between the output of the feedforward compensator and the mea-
surement ŷ(t) through the compensator actuator is denoted by M. As indicated in
Fig. 15.1, this coupling is a “positive” feedback. The positive feedback may desta-
bilize the system.1 The system is no longer a pure feedforward compensator.

1 Different solutions for reducing the effect of this internal positive feedback are reviewed in [116,
117].
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In many cases, this unwanted coupling raises problems in practice and makes
the analysis of adaptive (estimation) algorithms more difficult. The problem is to
estimate and adapt the parameters of the feedforward compensator in the presence
of this internal positive feedback.

There is also another reason why one should go towards using an adaptive ap-
proach. The linear design requires the availability of a reliable model for the primary
path (if H∞, H2, or other model based design techniques are used). Nevertheless, the
signal w(t) which is an upward measure of the disturbance does not necessarily have
the appropriate PSD for correctly identifying the model of the primary path over a
large frequency range. In other terms the model which will be used for design will
depend upon the characteristics of w(t). Therefore changes in the characteristics of
the disturbance will affect also the model of the primary path used for design.2

It is important to make the following remarks, when the feedforward compen-
sator is absent (open-loop operation):

1. One can identify very reliable models for the secondary path and the “positive”
feedback path by applying appropriate excitation on the actuator (for example
a PRBS).

2. One can get an estimation of the primary path transfer function from the spec-
tral densities of w(t) and e◦(t) when the compensator system is at rest (in this
case e◦(t) = x(t)), but the quality of this model depends upon the spectral char-
acteristics of w(t).

It is also important to note that the estimation of the feedforward compensator
in Fig. 15.1, as indicated in Chapter 14, can be interpreted as an identification-
in-closed-loop operation or as an estimation in closed-loop of a (reduced-order)
controller [133]. Therefore, to a certain extent, the methods given in Chapter 8 and
9 as well as Chapter 14 are an inspiration source for solving this problem in real
time.

The objective in this chapter, is to develop recursive algorithms for on-line esti-
mation and adaptation of the parameters of the feedforward compensator N (which
will be denoted N̂) for broad-band disturbances w(t) (or s(t)) with unknown and
variable spectral characteristics and in the presence of possible variations of the pri-
mary path model (D). The resulting algorithms, while minimizing the residual error
(acceleration or force in AVC, noise in ANC), should assure the stability of the in-
ternal positive feedback loop created by the mechanical or acoustical coupling. Like
for adaptive regulation (see Chapter 12) the adaptive operation and the self-tuning
operation of the system should be considered.

In Section 15.2, the system representation and the feedforward filter structure will
be given. The algorithms for adaptive feedforward compensation will be developed
in Section 15.3 and analyzed in Section 15.4. Section 15.5 will present real-time
results obtained on an AVC system. A modified adaptive algorithm using residual
error filtering is presented in Section 15.6. Finally, in Section 15.7, algorithms for
adaptive feedforward compensation in the presence of a fixed feedback controller

2 Design of adaptive AVC does not require either the model of the disturbance or the model of the
primary path.
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are presented and experimental results are given in Section 15.8. The results of this
chapter are also applicable to ANC systems.

15.2 Basic Equations and Notations

The objective is to estimate (and to adapt) the parameters of the feedforward com-
pensator N(q−1) such that the measured residual error (acceleration or force in AVC,
noise in ANC) be minimized in the sense of a certain criterion. The description of
the various blocks will be made with respect to Fig. 15.1 (see also Section 6.3).

The primary path is characterized by the asymptotically stable transfer operator:3

D(q−1) =
BD(q−1)

AD(q−1)
(15.1)

where4

BD(q−1) = bD
1 q−1 + . . .+bD

nBD
q−nBD (15.2)

AD(q−1) = 1+aD
1 q−1 + . . .+aD

nAD
q−nAD (15.3)

The unmeasurable value of the output of the primary path (when the compensation
is active) is denoted x(t). The secondary path is characterized by the asymptotically
stable transfer operator:

G(q−1) =
BG(q−1)

AG(q−1)
(15.4)

where:

BG(q−1) = bG
1 q−1 + . . .+bG

nBG
q−nBG = q−1B∗

G(q
−1) (15.5)

AG(q−1) = 1+aG
1 q−1 + . . .+aG

nAG
q−nAG (15.6)

The positive feedback coupling is characterized by the asymptotically stable transfer
operator:

M(q−1) =
BM(q−1)

AM(q−1)
(15.7)

where:

BM(q−1) = bM
1 q−1 + . . .+bM

nBM
q−nBM = q−1B∗

M(q−1) (15.8)

AM(q−1) = 1+aM
1 q−1 + . . .+aM

nAM
q−nAM (15.9)

3 The complex variable z−1 will be used for characterizing the system’s behaviour in the frequency
domain and the delay operator q−1 will be used for describing the system’s behaviour in the time
domain.
4 The following notation for polynomials is used: A(q−1) = a0 +∑

nA
i=1 aiq−i = a0 +q−1A∗(q−1).
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Both BG and BM have a one step discretization delay. The identified models of the
secondary path and of the positive feedback coupling will be denoted Ĝ and M̂,
respectively.

The optimal feedforward filter (unknown) is defined by :

N(q−1) =
R(q−1)

S(q−1)
(15.10)

where:

R(q−1) = r0 + r1q−1 + . . .+ rnR q−nR (15.11)
S(q−1) = 1+S1q−1 + . . .+SnS q−nS = 1+q−1S∗(q−1) (15.12)

The estimated compensator is denoted by N̂(q−1) or N̂(θ̂ ,q−1) when it is a linear
filter with constant coefficients or N̂(t,q−1) during estimation (adaptation) of its
parameters.

The input of the feedforward compensator is denoted by ŷ(t) and it corre-
sponds to the sum of the measurement provided by the primary transducer (force
or acceleration transducer in AVC or a microphone in ANC) and of the output
of the positive feedback path. In the absence of the compensation loop (open-
loop operation) ŷ(t) = w(t). The a posteriori output of the feedforward compen-
sator (which is the control signal applied to the secondary path) is denoted by
û(t + 1) = û(t + 1|θ̂(t + 1)). The input-output relationship for the estimated feed-
forward compensator is given by the equation of the a priori output:

û◦(t +1) = û(t +1|θ̂(t)) =−Ŝ∗(t,q−1)û(t)+ R̂(t,q−1)ŷ(t +1)

= θ̂
T (t)φ(t) = [θ̂ T

S (t), θ̂
T
R (t)]

[
φû(t)
φŷ(t)

]
(15.13)

where

θ̂
T (t) = [ŝ1(t), . . . ŝnS(t), r̂0(t), . . . r̂nR(t)] = [θ̂ T

S (t), θ̂
T
R (t)] (15.14)

φ
T (t) = [−û(t),−û(t −nS +1), ŷ(t +1), . . . ŷ(t −nR +1)]

= [φ T
û (t),φ

T
ŷ (t)] (15.15)

and û(t), û(t − 1), ... are the a posteriori outputs of the feedforward compensator
generated by :

û(t +1) = û(t +1|θ̂(t +1)) = θ̂
T (t +1)φ(t) (15.16)

while ŷ(t +1), ŷ(t), . . . are the measurements provided by the primary transducer.5

The a priori output of the secondary path will be denoted ẑ◦(t +1).

ẑ◦(t +1) = ẑ(t +1|θ̂(t)) =
B∗

G(q
−1)

AG(q−1)
û(t) (15.17)

5 ŷ(t +1) is available before adaptation of parameters starts at t +1.
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The a posteriori unmeasurable value of the output of the secondary path is denoted
by:

ẑ(t +1) = ẑ(t +1|θ̂(t +1)) (15.18)

The measured primary signal (called also reference) satisfies the following equation:

ŷ(t +1) = w(t +1)+
B∗

M(q−1)

AM(q−1)
û(t). (15.19)

The measured residual error satisfies the following equation:

e◦(t +1) = x(t +1)+ ẑ◦(t +1). (15.20)

The a priori adaptation error is defined as

ν
◦(t +1) =−e◦(t +1) =−x(t +1)− ẑ◦(t +1). (15.21)

The a posteriori adaptation (residual) error (which is computed) will be given by:

ν(t +1) = ν(t +1|θ̂(t +1)) =−x(t +1)− ẑ(t +1). (15.22)

When using an estimated filter N̂ with constant parameters: û◦(t) = û(t), ẑ◦(t) = ẑ(t)
and ν◦(t) = ν(t).

15.3 Development of the Algorithms

The algorithms for adaptive feedforward compensation will be developed under the
following hypotheses:

H1) The signal w(t) is bounded, i.e.,

|w(t)| ≤ α ∀t (0 ≤ α ≤ ∞) (15.23)

or

lim
N→∞

N

∑
t=1

w2(t)≤ Nε
2 +Kr (15.24)

0 ≤ ε
2 < ∞ 0 < Kr < ∞

(which is equivalently to say that s(t) is bounded and W (q−1) in Fig. 15.1 is
asymptotically stable).

H2) (Perfect matching condition) There exists a filter N(q−1) of finite dimension
such that:6

6 In many cases, the argument q−1 or z−1 will be dropped out.
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N
(1−NM)

G =−D (15.25)

and the characteristic polynomial of the “internal” feedback loop:

P(z−1) = AM(z−1)S(z−1)−BM(z−1)R(z−1) (15.26)

is a Hurwitz polynomial.
H3) The effect of the measurement noise upon the measured residual error is ne-

glected (deterministic context).

Once the algorithms will be developed under these hypotheses, H2 and H3 can
be removed and the algorithms can be analyzed in this modified context [127].

The key point in the development of the algorithms is to establish a relation be-
tween the errors on the estimation of the parameters of the feedforward compensator
and the adaptation error (the measured residual acceleration or force with minus
sign). Under hypotheses H1, H2, and H3, for the system described by Eqs. (15.1) to
(15.22) using a feedforward compensator N̂ with constant parameters, one has:

ν(t +1) =
AM(q−1)G(q−1)

P(q−1)
[θ − θ̂ ]T φ(t) (15.27)

where
θ

T = [s1, . . .snS ,r0,r1, . . .rnR ] = [θ T
S ,θ

T
R ] (15.28)

is the vector of parameters of the optimal filter N assuring perfect matching,

θ̂
T = [ŝ1, . . . ŝnS , r̂0, . . . r̂nR ] = [θ̂ T

S , θ̂
T
R ] (15.29)

is the vector of constant estimated parameters of N̂,

φ
T (t) = [−û(t), . . .− û(t −nS +1), ŷ(t +1), . . . ŷ(t −nR +1)]

= [φ T
û (t),φ

T
ŷ (t)] (15.30)

and ŷ(t +1) is given by

ŷ(t +1) = w(t +1)+
B∗

M(q−1)

AM(q−1)
û(t) (15.31)

The derivation of the expression (15.27) is given in Appendix D.1.
When θ̂ will be replaced with a time-varying estimation, (15.27) will take the

form of the basic Eq. (4.125) shown in Chapter 4 and the basic adaptation algorithm
given in Eqs. (4.121) to (4.123) can be used; however, a positive real (sufficient)
condition will be imposed on AMG/P to assure stability. Therefore, filtering has
to be introduced. One considers filtering the vector φ(t) through an asymptotically
stable filter L(q−1) = BL/AL. Equation (15.27) for θ̂ = constant becomes:

ν(t +1) =
AM(q−1)G(q−1)

P(q−1)L(q−1)
[θ − θ̂ ]T φ f (t) (15.32)
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with:
φ f (t) = L(q−1)φ(t) (15.33)

Equation (15.32) will be used to develop the adaptation algorithms neglecting the
non-commutativity of the operators when θ̂ is time-varying (however, an exact al-
gorithm can be derived in such cases—following the methodology given in [144,
Section 5.5.3]).

Replacing the fixed estimated parameters by the current estimated parameters,
(15.32) becomes the equation of the a posteriori adaptation error ν(t +1) (which is
computed):

ν(t +1) =
AM(q−1)G(q−1)

P(q−1)L(q−1)
[θ − θ̂(t +1)]T φ f (t) (15.34)

Equation (15.34) has the standard form for an a posteriori adaptation error given in
Section 4.3, which immediately suggests to use the following PAA:

θ̂(t +1) = θ̂(t)+F(t)Φ(t)ν(t +1) ; (15.35)

ν(t +1) =
ν◦(t +1)

1+ΦT (t)F(t)Φ(t)
; (15.36)

F(t +1) =
1

λ1(t)

F(t)− F(t)Φ(t)ΦT (t)F(t)
λ1(t)
λ2(t)

+ΦT (t)F(t)Φ(t)

 (15.37)

1 ≥ λ1(t)> 0 ; 0 ≤ λ2(t)< 2;F(0)> 0 (15.38)
Φ(t) = φ f (t) (15.39)

where λ1(t) and λ2(t) allow to obtain various profiles for the adaptation gain F(t)
(seeSection 4.3.4, and Section 15.5) in order to operate in adaptive regime (the
trace of the adaptation gain matrix has a strictly positive inferior minimum value)
or in self-tuning regime (decreasing gain adaptation, the trace of the adaptation gain
matrix goes to zero).

Three choices for the filter L will be considered, leading to three different algo-
rithms:

Algorithm I: L = G
Algorithm II (FUPLR): L = Ĝ
Algorithm III (FUSBA):

L =
ÂM

P̂
Ĝ (15.40)

where:
P̂ = ÂM Ŝ− B̂MR̂ (15.41)

is an estimation of the characteristic polynomial of the internal feedback loop com-
puted on the basis of available estimates of the parameters of the filter N̂.7

7 In the field of adaptive feedforward compensation names are associated to various adaptation
algorithms. Algorithm II uses the same filtering of the regressor as FULMS algorithm but with
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Algorithm I is a “theoretical” algorithm since in practice the true model G is not
available.8 So FUPLR can be viewed as an approximation of Algorithm I. FUSBA
can be used after a short initialization horizon using FUPLR.

The following procedure is applied at each sampling time for adaptive operation:

1. Get the measured image of the disturbance ŷ(t + 1) and the measured residual
error e◦(t +1).

2. Compute φ(t) and φ f (t) using (15.30) and (15.33).
3. Estimate the parameter vector θ̂(t + 1) using the parametric adaptation algo-

rithm (15.35) to (15.39).
4. Compute the control (using (15.16)) and apply it:

û(t +1) =−Ŝ∗(t +1,q−1)û(t)+ R̂(t +1,q−1)ŷ(t +1). (15.42)

15.4 Analysis of the Algorithms

A detailed analysis of the algorithm can be found in [127]. In what follows we will
recall the main properties and their implications.

15.4.1 The Perfect Matching Case

Stability of the algorithms

For Algorithms I, II and III, the equation for the a posteriori adaptation error has
the form:

ν(t +1) = H(q−1)[θ − θ̂(t +1)]T Φ(t) (15.43)

where

H(q−1) =
AM(q−1)G(q−1)

P(q−1)L(q−1)
, Φ = φ f . (15.44)

Neglecting the non-commutativity of time-varying operators, one can straightfor-
wardly use Theorem 4.1. Therefore the sufficient stability condition for any initial
conditions θ̂(0), ν◦(0), F(0) is that

H ′(z−1) = H(z−1)− λ2

2
,max

t
[λ2(t)]≤ λ2 < 2 (15.45)

is a strictly positive real (SPR) transfer function.

a matrix adaptation gain which lead to a structure called “pseudo linear regression” [167]. So
Algorithm II can be termed FUPLR. Algorithm III is obtained from a stability point of view and it
can be termed FUSBA (stability based algorithm).
8 See Appendix D, Section D.2 for further details.
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It is interesting to remark that for Algorithm III (FUSBA) taking into account
(15.40), the stability condition is that:

AM

ÂM

P̂
P

G
Ĝ
− λ2

2
(15.46)

should be an SPR transfer function.
Remark 1: This condition can be re-written for λ2 = 1 as ( [167]):∣∣∣∣∣

(
AM

ÂM
· P̂

P
· G

Ĝ

)−1

−1

∣∣∣∣∣< 1 (15.47)

for all ω . This roughly means that it always holds provided that the estimates of AM ,
P, and G are close to the true values (i.e., H(e− jω) in this case is close to a unit
transfer function).

Remark 2: For constant adaptation gain λ2(t)≡ 0, the strict positive realness on
H ′(z−1) implies at all the frequencies

−90◦ < ∠
AM(e− jω)G(e− jω)

P0(e− jω)
−∠

ÂM(e− jω)Ĝ(e− jω)

P̂0(e− jω)
< 90◦.

Therefore the interpretation of the SPR stability condition on the transfer function
H ′ is that the angle between the direction of adaptation and the direction of the
inverse of the true gradient (not computable) should be less than 90◦. For time-
varying adaptation gains the condition is sharper since in this case Re{H(e− jω)}
should be larger than λ2

2 at all frequencies.
Remark 3: The poles of the internal positive closed-loop will be asymptotically

inside the unit circle if the SPR condition is satisfied; however, transiently they may
be outside the unit circle. It is possible to force these poles to remain inside of the
unit circle during transient using adaptive algorithms with projection (see [144]);
however, the SPR condition remains the same.

Effect of the measurement noise

There are two sources of measurement noise, one acting on the primary transducer
which gives an image of the disturbance and the second acting on the measurement
of the residual error (force, acceleration).

For the primary transducer the effect of the measurement noise is negligible since
the signal to noise ratio is very high. The situation is different for the residual error
where the effect of the noise can not be neglected. The analysis carried on in [127]
using the averaging method ([144]) allows to conclude that under the same positive
real condition that for deterministic stability, using a decreasing adaptation gain
(self-tuning regime) one has:

Prob{ lim
t→∞

θ̂(t) ∈ DC}= 1
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where,
DC = {θ̂ : Φ

T (t, θ̂)(θ − θ̂) = 0}.

If, furthermore,
Φ

T (t, θ̂)(θ − θ̂) = 0

has a unique solution (richness condition), the condition that H ′(z−1) be strictly
positive real implies that:

Prob{ lim
t→∞

θ̂(t) = θ}= 1.

15.4.2 The Case of Non-Perfect Matching

If N̂(t,q−1) does not have the appropriate dimension there is no chance to satisfy
the perfect matching condition. Two questions are of interest in this case:

1. What are the additional hypotheses assuring the stability of the adaptation algo-
rithm in this situation?

2. What are the approximation properties in the frequency domain for the reduced
order compensator estimated asymptotically by the adaptation algorithm?

Boundedness of the residual error

It has been shown in [127] that the residual error will remain bounded provided that:

1. There exists a reduced order filter N̂ characterized by the unknown polynomials
Ŝ (of order nŜ) and R̂ (of order nR̂), for which the closed-loop formed by N̂ and
M is asymptotically stable, i.e., AM Ŝ−BMR̂ is a Hurwitz polynomial.

2. The output of the optimal filter satisfying the matching condition can be ex-
pressed as:

û(t +1) =−Ŝ∗(q−1)û(t)+ R̂(q−1)ŷ(t +1)+υ(t +1) (15.48)

where υ(t +1) is a norm bounded signal.

The first hypothesis simply says that the internal positive feedback loop can be sta-
bilized by a feedforward compensator of the size used.

Eq. (15.48) can be interpreted as a decomposition of the optimal filter into two
parallel blocks, one is the reduced order filter and the other block with output υ(t)
corresponds to the neglected dynamics (input additive uncertainty). The bounded-
ness of υ(t) requires that the neglected dynamics in the feedforward compensator
be stable.
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Bias distribution

The distribution of the matching error in the frequency domain (generically called
“bias”) is an important information upon the expected performances in the case of
non perfect matching. Using Parseval’s relation, the asymptotic bias distribution of
the matching error can be obtained starting from the expression of ν(t) by taking
into account that the algorithm minimizes (almost) a criterion of the form9

lim
N→∞

1
N

N

∑
t=1

ν
2(t).

For details see [144].
The bias distribution (for Algorithm III) will be given by:

θ̂
∗ = argmin

θ̂

∫
π

−π

[∣∣∣∣D(e− jω)− N̂(e− jω)G(e− jω)

1− N̂(e− jω)M(e− jω)

∣∣∣∣2 φw(ω)

+φη(ω)]dω, (15.49)

where φw and φη are the spectral densities of the disturbance w(t) and of the mea-
surement noise, respectively. Taking into account (15.25), one obtains

θ̂
∗ = argmin

θ̂

∫
π

−π

[
|SNM|2|N − N̂|2|SN̂M|2|G|2φw(ω)+φη(ω)

]
dω, (15.50)

where SNM and SN̂M are the output sensitivity functions of the internal closed-loop
for N and respectively N̂:

SNM =
1

1−NM
; SN̂M =

1
1− N̂M

.

From (15.49) and (15.50), one concludes that a good approximation of N will be
obtained in the frequency region where φw is significant and where G has a high gain
(usually G should have high gain in the frequency region where φw is significant
in order to counteract the effect of w(t)); however, the quality of the estimated N̂
will be affected also by the output sensitivity functions of the internal closed-loop
N−M. With a decreasing adaptation gain, the measurement noise will not influence
the asymptotic estimate of N.

9 The results are valid for the asymptotic behaviour obtained when using a decreasing adaptation
gain.
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15.4.3 Relaxing the Positive Real Condition

Averaging approach

For the FUPLR algorithm, it is possible to relax the strictly positive real (SPR)
condition taking into account that:

1. The disturbance (input to the system) is a broad-band signal.10

2. Most of the adaptation algorithms work with a low adaptation gain.

Under these two assumptions, the behaviour of the algorithm can be well described
by the “averaging theory” developed in [16] and [167] (see also [144, Section 4.2]).
When using the averaging approach, the basic assumption of a slow adaptation holds
for small adaptation gains (constant and scalar in [16] with λ2(t) = 0,λ1(t) = 1;
asymptotically decreasing matrix gain in [167] with lim

t→∞
λ1(t) = 1,λ2(t) = λ2 > 0).

In the context of averaging, the basic condition for stability is that:

lim
N→∞

1
N

N

∑
t=1

Φ(t) H ′(q−1)ΦT (t) =
1
2

∫
π

−π

Φ(e jω)[H ′(e jω)

+ H ′(e− jω)]ΦT (e− jω)dω > 0 (15.51)

be a positive definite matrix (Φ(e jω) is the Fourier transform of the regressor vector
Φ(t)).

One can view (15.51) as the weighted energy of the observation vector Φ . Of
course the SPR sufficient condition upon H ′(z−1) (see 15.45) allows to satisfy this;
however, in the averaging context it is only needed that (15.51) be true. This allows
that H ′ be non positive real in a limited frequency band. Expression (15.51) can be
re-written as follows:∫

π

−π

Φ(e jω)[H ′+H ′∗]ΦT (e− jω)dω =

r

∑
i=1

∫
αi+∆i

αi

Φ(e jω)[H ′+H ′∗]ΦT (e− jω)dω −

p

∑
j=1

∫
β j+∆ j

β j

Φ(e jω)[H̄ ′+ H̄ ′∗]ΦT (e− jω)dω > 0 (15.52)

where H ′ is strictly positive real in the frequency intervals [αi,αi+∆i] and H̄ ′ =−H ′

is positive real in the frequencies intervals [β j,β j +∆ j] (H ′∗ denotes the complex
conjugate of H ′). The conclusion is that H ′ does not need to be SPR. It is enough
that the “positive” weighted energy exceeds the “negative” weighted energy. This
explains why the algorithm FUPLR using low adaptation gains will work in practice
in most of the cases even if the performance will be affected (particularly in the
frequency regions where the SPR condition is violated). It is however important to

10 The fact that the disturbance is a broad-band signal will imply that one has persistence of exci-
tation.
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remark that if the disturbance is a single sinusoid (which violates the hypothesis of
broad-band disturbance) located in the frequency region where H ′ is not SPR, the
algorithm may diverge (see [16, 167]).

Without doubt, the best approach for relaxing the SPR conditions, is to use al-
gorithm FUSBA (see (15.40)) instead of FUPLR. This is motivated by (15.46) and
(15.47). As it will be shown in the next section this algorithm gives the best results
both in simulations and on real-time experiments.

Use of “Integral + Proportional” parameter adaptation algorithm

This approach is discussed in Appendix E.

15.5 Adaptive Attenuation of Broad-band Disturbances -
Experimental Results

The active distributed flexible structure presented in Section 2.3, will be considered
for experimental validation of the algorithms proposed. The structure of the system
is described in Fig. 2.10. For a view of the system see Fig. 2.9.

The incoming disturbance is the position of the mobile part of the inertial actuator
on top of the structure (see Fig. 2.10).11 The residual acceleration e(t) and the input
to the feedforward compensator ŷ(t) are measured by accelerometers. The control
input is the position of the mobile part of the inertial actuator located on the bottom
of the structure.

15.5.1 Broad-band Disturbance Rejection Using Matrix
Adaptation Gain

The performance of the system for rejecting broad-band disturbances will be il-
lustrated using the adaptive feedforward compensation scheme. The adaptive filter
structure for most of the experiments has been nR = 9, nS = 10 (total of 20 parame-
ters) and this complexity does not allow to verify the “perfect matching condition”
(not enough parameters). The influence of the number of parameters upon the per-
formance of the system has been also investigated (up to 40 parameters).

A PRBS excitation on the global primary path will be considered as the distur-
bance. The corresponding spectral densities of w(t) in open-loop and of ŷ(t) when
feedforward compensation is active are shown in Fig. 15.2. The effect of the me-
chanical feedback coupling is significant.

Two modes of operation can be considered, depending on the particular choices
taken in (15.39):

11 The inertial actuator is driven by an external source.
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Fig. 15.2 Spectral densities of the image of the disturbance in open-loop w(t) and with the feed-
forward compensation scheme ŷ(t) (experimental).

• For adaptive operation, Algorithms II and III have been used with decreasing
adaptation gain (λ1(t) = 1, λ2(t) = 1) combined with a constant trace adaptation
gain. When the trace of the adaptation matrix is bellow a given value, the constant
trace gain updating modifies the values of λ1(t) and λ2(t) so that the trace of F
is kept constant. The corresponding formula is:

trF(t +1) =
1

λ1(t)
tr
[

F(t)− F(t)Φ(t)Φ(t)T F(t)
α +Φ(t)T F(t)Φ(t)

]
= trF(t) (15.53)

This assures the evolution of the PAA in the optimal direction but the adaptation
step size does not go to zero, therefore maintaining adaptation capabilities for
possible changes in disturbance or variations of the primary path model. For
details see [135, 144].

• In self-tuning operation, a decreasing adaptation gain F(t) is used and the adapta-
tion step size goes to zero. Then, if a degradation of the performance is observed,
as a consequence of a change of the disturbance characteristics, the PAA is re-
started.

The parametric adaptation algorithms have been implemented using the UD fac-
torization [144] (see Appendix B).12 The experiments have been carried out by first
applying the disturbance and then starting the adaptive feedforward compensation
after 50 sec. Time domain results obtained in open-loop and with adaptive feedfor-
ward compensation using Algorithms II (FUPLR) and III (FUBSA) on the AVC sys-
tem are shown in Fig. 15.3 and Fig. 15.4, respectively. The filter for the Algorithm

12 An array implementation as in [178] can be also considered.
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III has been computed based on the parameter estimates obtained with Algorithm II
at t=3600 sec (almost same results are obtained if the initialization horizon is of the
order of 200 sec). The initial trace of the matrix adaptation gain for 20 parameters
was 10 and the constant trace has been fixed at 0.2.

As it can be seen, the transient duration for Algorithm II (FUPLR) is approxi-
mately 75 sec, while for Algorithm III (FUBSA) is approximately 12 sec.
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Fig. 15.3 Real time results obtained with Algorithm II (FUPLR) using matrix adaptation gain.
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Fig. 15.4 Real time results obtained with Alagorithm III (FUSBA) using matrix adaptation gain.
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Table 15.1 Performance of Algorithms II (FUPLR) and III (FUSBA).

Open-loop var. Closed-loop var. Global att. [dB]
Algo. II (FUPLR) 0.0354 0.0058 15.68
Algo. III (FUSBA) 0.0354 0.0054 16.23

Time domain comparison between Algorithms II and III can be found in Ta-
ble 15.1, where the two algorithms are compared in terms of closed-loop variances
and global attenuation. Also the open-loop variance is given as reference value. It
can be seen that the performance of Algorithm III (FUSBA) is better than perfor-
mance of Algorithm II (FUPLR).
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gain and constant trace=0.2 (initial trace is 10)

Fig. 15.5 Evolution of the trace of the matrix adaptation gain for Algorithm III (experimental).

Figure 15.5 shows the time evolution of the trace of the adaptation gain matrix.
As it can be seen after 2.5 sec the trace of the matrix gain remain constant assuring
the real time adaptation capabilities. Figure 15.6 shows the power spectral densities
of the residual acceleration measured on the AVC in open-loop (without compen-
sator) and using adaptive feedforward compensation (the measurements are made
between 175 and 200 sec—the adaptation transient is finished well before 175 sec).
The corresponding global attenuations are also given. Algorithm III (FUSBA) per-
forms slightly better than Algorithm II (FUPLR).

The H∞ design ([13]) provides less good performance than Algorithm II (FU-
PLR) and III (FUSBA) with matrix adaptation gain (Fig. 15.6) despite that it has a
double number of parameters (40 instead of 20). In addition, the H∞ compensator
does not have adaptation capabilities as it will be shown in Section 15.5.1.1.

To better understand the differences between Algorithm II (FUPLR) and Algo-
rithm III (FUSBA), in Fig. 15.7 the Bode diagram of the estimated AM/P transfer
function is shown. Assuming that Ĝ = G, using Algorithm II with constant adap-
tation gain, AM

P should be SPR. It can be seen that AM/P it is not strictly positive
real (phase outside of the interval [−90, +90] degrees) in the frequency intervals
[42, 48], [55, 72], and [110, 115] Hz (while for the Algorithm III with constant
adaptation gain the estimated transfer function which should be SPR is equal to 1).
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Fig. 15.6 Power spectral densities of the residual acceleration in open-loop, with adaptive feed-
forward compensation (20 parameters), and with H∞ controller (40 parameters) (Disturbance =
PRBS).
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Fig. 15.7 Bode diagram of the estimated transfer function AM/P.

The influence of the number of parameters upon the performance of the system
is summarized in Table 15.2 for the case of Algorithm III. The global attenuation is
slightly improved when the number of parameters of the compensator is augmented
over 20 (the PSD are almost the same).
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Table 15.2 Influence of the number of parameters upon the global attenuation.

Number of parameters 20 32 40
Global attenuation (dB) 16.23 16.49 16.89

15.5.1.1 Testing adaptation capabilities when disturbance characteristics
change

Adaptation capabilities with respect to the characteristic of the disturbance is a key
issue. This has been tested by adding a sinusoidal disturbance at 1500 sec (adapta-
tion Algorithm III (FUSBA) with constant trace set at 1). Figure 15.8 shows the time
domain results in the case when the adaptation is stopped prior to the application of
the additional sinusoidal disturbance (upper diagram) and when the adaptation is
active (lower diagram). The duration of the transient is approximately 25 sec.

Figure 15.9 shows the evolution of the parameters when the sinusoidal distur-
bance is applied. The power spectral densities when adaptation is stopped prior to
the application of the sinusoidal disturbance, when adaptation is active, and when
the H∞ compensator (not designed for this supplementary disturbance) is used are
shown in Fig. 15.10. One can remark a strong attenuation of the sinusoidal distur-
bance (larger than 35 dB) without affecting other frequencies when the adaptation
is active (similar results are obtained with Algorithm II). The H∞ compensator [13]
does a very little attenuation of the sinusoidal disturbance (2.6 dB). It does not have
“adaptation capabilities”. The linear compensators considered in Chapter 14 will
not be able to cope with the new disturbance. Other results can be found in [144].

15.5.2 Broad-band Disturbance Rejection Using Scalar Adaptation
Gain

Table 15.3 gives a summary of the proposed algorithms with matrix adaption gain
(column 1) and with scalar adaptation gain (column 2). Column 3 gives the al-
gorithms of Jacobson–Johnson ([99]) and column 4 gives the FULMS algorithm
([73]).

The algorithm of Jacobson–Johnson (column 3) was unstable even for very low
adaptation gain. The explanation is clear. It does not use filtering at least by Ĝ and
since G is not positive real (in particular in the frequency zone where most of the
energy of the disturbance is concentrated) the instability is not surprising.

To make a fair comparison of the algorithms given in column 2 and 4 of Ta-
ble 15.3, the same adaptation gain has been used. Since the FULMS is very sensi-
tive to the value of the adaptation gain (becomes easily unstable and the transients
are very bad) a value of 0.001 has been chosen for the scalar adaptation gain (for a
higher value FULMS is unstable).
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Fig. 15.8 Real time results for rejection of an additional sinusoidal disturbance. Upper diagram:
adaptation stopped prior application of the disturbance. Lower diagram: adaptation is active.
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Fig. 15.9 Evolution of the compensator parameters when a sinusoidal disturbance is added using
the FUSBA algorithm (experimental).

The FULMS algorithm and the Algorithm II from column 2 use the same filtering
of the regressor. The difference comes from the fact that the FULMS uses the a
priori adaptation error while the Algorithm II of column 2 uses the a posteriori
value of the adaptation error. The difference between these two algorithms can be
also interpreted in terms of adaptation gains. The FULMS uses an unnormalized
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Fig. 15.10 Power spectral densities of the residual acceleration when an additional sinusoidal dis-
turbance is added (Disturbance = PRBS + sinusoid).

adaptation gain γ while Algorithm II, column 2, uses a normalized13 adaptation
gain γ/(1+ γΦT (t)Φ(t)).

Figure 15.11 shows the adaptation transient for the FULMS algorithm. The max-
imum value is unacceptable in practice (one can not tolerate an overshoot over
50% of the uncompensated residual acceleration). Figure 15.12 shows the adap-
tation transient for the scalar version of the Algorithm III. It is surprisingly good.
Almost same transient behaviour is obtained with the scalar version of Algorithm
II. Figures 15.13 and 15.14 show the evolution of the parameters for the FULMS
algorithm and the scalar version of Algorithm III respectively. One can see jumps in
the evolution of the parameters for the FULMS algorithms and instabilities occurs
on a long run. For the Algorithm III evolution of the parameters is smooth and no
instabilities occur in a long run (12 hours).

The performances in the frequency domain are summarized in Fig. 15.15 where
the power spectral densities and the global attenuation provided by the algorithms
with scalar adaptation gain are shown.

15.5.2.1 Testing adaptation capabilities when disturbance characteristics
change

Adaptation capabilities with respect to the characteristic of the disturbance have
been tested by adding a sinusoidal disturbance like for the case of matrix adapta-
tion gain. The FULMS has been destabilized by the application of the sinusoidal

13 The scalar adaptation gain algorithms presented in this book can be denoted NFULMS (normal-
ized FULMS) for Algorithm II and SFUSBA (scalar FUSBA) for Algorithm III.
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Fig. 15.11 Real time results obtained with FULMS algorithm.
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Fig. 15.12 Real time results obtained with Algorithm III using scalar adaptation gain.
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Fig. 15.13 Evolution of the feedforward compensator parameters (experimental)—Algorithm
FULMS.
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Fig. 15.14 Evolution of the feedforward compensator parameters (experimental)—Algorithm III
using scalar adaptation gain.
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Fig. 15.15 Power spectral densities of the residual acceleration in open-loop and with adaptive
feedforward compensation using scalar adaptation gain (Disturbance = PRBS).
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Fig. 15.16 Power spectral densities of the residual acceleration using scalar adaptation gain when
a sinusoidal disturbance is added (Disturbance = PRBS + sinusoid) (experimental).
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Ĝ
=

SP
R

co
nd

iti
on

λ
=

λ
2

ap
pl

y



318 15 Adaptive Feedforward Compensation of Disturbances

disturbance. Fig. 15.16 shows the PSD of the residual acceleration when the adapta-
tion is stopped before the sinusoidal disturbance is applied and when the adaptation
is active. The performance of the adaptation Algorithm III with scalar gain is less
good than in the case of matrix adaptation gain (see Fig. 15.10). The sinusoidal
disturbance is attenuated in the scalar case by 20 dB while the attenuation is over
35 dB with a matrix adaptation gain. In addition the performance is degraded in the
frequency region 170-270 Hz which does not occur when using a matrix adaptation
gain.

15.6 Adaptive Feedforward Compensation with Filtering of the
Residual Error

Another solution to fulfill the strictly positive real condition (popular in adaptive
control [144]) is to introduce a filter on the residual error in order to generate the
adaptation error. Some of the references considering the use of the filter on the
adaptation error are [152, 178, 177, 227, 228]. As it will be shown, the filtering
of the residual error will affect its power spectral density. There are a number of
situations where shaping the residual error in the frequency domain is very useful.

Recall from Section 15.2 that the measured residual acceleration (or force) satis-
fies the following equation

e◦(t +1) = x(t +1)+ ẑ◦(t +1). (15.54)

Then the filtered a priori adaptation error is defined as

ν
◦(t +1) = ν(t +1|θ̂(t))

= ε
◦(t +1)+

n1

∑
i=1

υ
B
i ε(t +1− i)−

n2

∑
i=1

υ
A
i ν

◦(t +1− i), (15.55)

where
ε
◦(t +1) =−e◦(t +1) =−x(t +1)− ẑ◦(t +1) (15.56)

and
ε(t +1) =−e(t +1) =−x(t +1)− ẑ(t +1) (15.57)

are also called, respectively, the a priori and the a posteriori unfiltered adaptation
errors.

The coefficients υX
i , X ∈ {B, A}, are the coefficients of an IIR filter, with all

poles and zeros inside the unit circle, acting on the adaptation error

V (q−1) =
BV (q−1)

AV (q−1)
, (15.58)

where
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XV (q−1) = 1+q−1X∗
V (q

−1) = 1+
n j

∑
i=1

υ
X
i q−i, X ∈ {B, A}. (15.59)

The filtered a posteriori unmeasurable (but computable) adaptation error is given
by

ν(t +1) =ν(t +1|θ̂(t +1)) (15.60)

=ε(t +1)+
n1

∑
i=1

υ
B
i ε(t +1− i)−

n2

∑
i=1

υ
A
i ν(t +1− i), (15.61)

with ε(t +1) given in (15.57).
The PAA given in eqs. (15.35) through (15.39) is transformed as follows14

θ̂(t +1) = θ̂(t)+F(t)Φ(t)ν(t +1) ; (15.62)

ε(t +1) =
ε◦(t +1)

1+ΦT (t)F(t)Φ(t)
; (15.63)

ν(t +1) = ε(t +1)+
n1

∑
i=1

υ
B
i ε(t +1− i)−

n2

∑
i=1

υ
A
i ν(t +1− i), (15.64)

F(t +1) =
1

λ1(t)

F(t)− F(t)Φ(t)ΦT (t)F(t)
λ1(t)
λ2(t)

+ΦT (t)F(t)Φ(t)

 (15.65)

1 ≥ λ1(t)> 0 ; 0 ≤ λ2(t)< 2;F(0)> 0 (15.66)
Φ(t) = φ f (t) = Lφ(t) (15.67)

Eq. (15.27) becomes

ν(t +1) =
AM(q−1)G(q−1)V (q−1)

P(q−1)L(q−1)
[θ − θ̂ ]T φ f (t) (15.68)

For the stability of the system the selection of L and V should be done such that
AM(q−1)G(q−1)V (q−1)

P(q−1)L(q−1)
be SPR (for λ2 = 0). Nevertheless, in practice one uses Algo-

rithms II (FUPLR) or III (FUSBA) and V is added mainly for shaping the PSD of
the residual error in the frequency domain. The new algorithms are termed FUePLR
and FUeSBA respectively, to denote the filtering of the residual error in addition to
the filtering of the observation vector.

Using FUSBA presented in Section 15.3 with the prediction error filtered by
V (q−1), the estimated N̂ feedforward compensator will minimize the following cri-
terion in the frequency domain (taking into account (15.25)):

θ̂
∗= argmin

θ̂

∫
π

−π

[|SNM|2|N−N̂|2|SN̂M|2|G|2|V |2φw(ω)+|V |2φη(ω)]dω (15.69)

14 This algorithm can be termed FUeSBA since both the input and the error are filtered.
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where φw and φη are the spectral densities of the disturbance w(t) and of the mea-
surement noise and SNM and SN̂M are the output sensitivity functions of the internal
closed-loop for N and respectively N̂: SNM = 1

1−NM , SN̂M = 1
1−N̂M

.
Comparison of (15.69) with (15.50) allows to conclude that V will further shape

the power spectral density of the residual error.
A number of experimental tests have been done to compare the adaptation capa-

bility of the algorithms with residual error filtering in addition to observation vector
filtering. As broad-band disturbance, a PRBS generated by a 15 bits register and fil-
tered through a Butterworth band-pass filter between 20 and 380 Hz has been used.
A sinusoidal signal has been added at 250 Hz.

The residual error filter has been chosen as V (q−1) = 1−0.9q−1. Using an adap-
tive feedforward compensator with 20 parameters (nR = 9, nS = 10) the global at-
tenuation achieved is 15.8 dB with FUPLR algorithm and 16.24 dB with FUePLR
algorithm.

15.7 Adaptive Feedforward + Fixed Feedback Compensation of
Broad-band Disturbances

As already mentioned throughout the book, feedforward compensation has to be
considered when the performance/robustness compromise can not be achieved by
feedback only. Nevertheless, nothing prevents the use of (adaptive) feedforward
compensation on top of a feedback controller. Defining jointly the control objective
of the feedback controller and feedforward compensation is a problem dependent
issue. One can assign to the feedback controller an active damping task and the
feedforward compensation will enhance the performances. Alternatively, one can
design a stabilizing controller which attenuates certain type of disturbances under
robustness constraints and the performance of the system will be enhanced by the
feedforward compensation. The combination of feedback and feedforward compen-
sation is often termed “hybrid” compensation.

Figure 15.17 gives the block diagram of such a system. The transfer operators
characterizing the primary path (D), the secondary path (G) and the reverse path
(M) have been defined in Section 15.2, Eqs. (15.1), (15.4), and (15.7), as well as the
optimal feedforward compensator N and the estimated feedforward compensator N̂.
The vector of the estimated feedforward parameters has been defined in (15.29).

The fixed feedback RS controller K, computed on the basis of the model Ĝ which
stabilize the system an attenuate disturbances on the output e(t), is characterized by
the asymptotically stable transfer function

K(q−1) =
BK(q−1)

AK(q−1)
, (15.70)

where
BK(q−1) = bK

0 +bK
1 q−1 + ...+bK

nBK
q−nBK , (15.71)
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Fig. 15.17 Feedforward-feedback AVC—the control scheme: (a) in open-loop and (b) with adap-
tive feedforward + fixed feedback compensator.

AK(q−1) = 1+aK
1 q−1 + ...+aK

nAK
q−nAK . (15.72)

The input of the feedforward compensator (called also reference) is denoted by
ŷ1(t). The output of the feedforward compensator is denoted by û1(t +1) = û1(t +
1|θ̂(t + 1)) (a posteriori output). The measured input applied to the feedforward
compensator can be written as

ŷ1(t +1) = w(t +1)+
B∗

M(q−1)

AM(q−1)
û(t), (15.73)

where
û = û1(t)−u2(t), (15.74)

û1(t) and u2(t) are the outputs given by the adaptive feedforward and the fixed feed-
back compensator, respectively. û is the effective input sent to the control actuator.

The a priori output of the estimated feedforward compensator is given by
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û◦1(t +1) = û1(t +1|θ̂(t)) =−Ŝ∗(t,q−1)û1(t)+ R̂(t,q−1)ŷ1(t +1)

= θ̂
T (t)φ(t) =

[
θ̂

T
S (t), θ̂

T
R (t)

][φû1(t)
φŷ1(t)

]
(15.75)

where θ̂(t) has been given in (15.29) and

φ
T (t) = [−û1(t), . . .− û1(t −nS +1), ŷ1(t +1), . . . ŷ1(t −nR +1)]

= [φ T
û1
(t), φ

T
ŷ1
(t)] (15.76)

The input to the feedback (fixed) compensator is given by the performance vari-
able, therefore y2(t) = e(t). Its output will be u2(t) = K(q−1)y2(t). The unmea-
surable value of the output of the primary path (when the compensation is active)
is denoted x(t). The a priori output of the secondary path is denoted ẑ◦(t + 1) =
ẑ(t +1|θ̂(t)) while its input is û(t). One has

ẑ◦(t +1) =
B∗

G(q
−1)

AG(q−1)
û(t) =

B∗
G(q

−1)

AG(q−1)
û(t|θ̂(t)). (15.77)

The measured residual acceleration (or force) satisfies the following equation

e◦(t +1) = x(t +1)+ ẑ◦(t +1). (15.78)

The a priori and a posteriori adaptation error are defined as

ν
◦(t +1) = ν(t +1|θ̂(t)) =−e◦(t +1) (15.79)

and

ν(t +1) = ν(t +1|θ̂(t +1)) =−e(t +1) =−x(t +1)− ẑ(t +1) (15.80)

where the a posteriori value of the output of the secondary path ẑ(t + 1) (dummy
variable) is given by

ẑ(t +1) = ẑ(t +1|θ̂(t +1)) =
B∗

G(q
−1)

AG(q−1)
û(t|θ̂(t +1)). (15.81)

For compensators with constant parameters ν◦(t) = ν(t), e◦(t) = e(t), ẑ◦(t) = ẑ(t),
û◦(t) = û(t).

15.7.1 Development of the Algorithms

The algorithms for adaptive feedforward compensation in presence of feedback con-
troller will be developed under the same hypotheses as in Section 15.3 except hy-
pothesis H2 which is replaced by [12]:
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H2’) (Perfect matching condition) There exists a filter N(q−1) of finite dimension
such that

N(z−1)

1−N(z−1)M(z−1)
G(z−1) =−D(z−1) (15.82)

and the characteristic polynomials:

• of the “internal” positive coupling loop

P(z−1) = AM(z−1)S(z−1)−BM(z−1)R(z−1), (15.83)

• of the closed-loop (G-K)

Pcl(z−1) = AG(z−1)AK(z−1)+BG(z−1)BK(z−1), (15.84)

• and of the coupled feedforward-feedback loop

Pf b− f f = AMS[AGAK +BGBK ]−BMRAKAG (15.85)

are Hurwitz polynomials.

Like for the previous feedforward compensation configurations, the key point
in the development of the algorithm is to establish a relation between the error in
the estimation of the parameters of the feedforward compensator and the measured
residual acceleration or force. Under the hypotheses H1, H3 and the new hypothesis
H2’, for the system described in Section 15.2 using a feedforward compensator N̂
with constant parameters and a feedback controller K, the equation of the adaptation
error (the measured residual acceleration or force with minus sign) for constant
estimated parameters is given by [12]:

ν(t +1) =
AMAGAKG

Pf b− f f
[θ − θ̂ ]T φ(t) (15.86)

where
θ

T = [s1, . . .snS ,r0,r1, . . .rnR ] = [θ T
S ,θ

T
R ] (15.87)

is the vector of parameters of the optimal filter N assuring perfect matching,

θ̂
T = [ŝ1, . . . ŝnS , r̂0, . . . r̂nR ] = [θ̂ T

S , θ̂
T
R ] (15.88)

is the vector of constant estimated parameters of N̂,

φ
T (t) = [−û1(t), . . .− û1(t −nS +1), ŷ1(t +1), . . . ŷ1(t −nR +1)]

= [φ T
û1
(t), φ

T
ŷ1
(t)] (15.89)

and ŷ1(t +1) is given by (15.73).
The derivation of the expression (15.86) is given in Appendix D.
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Of course this expression can be particularized for the case without internal pos-
itive coupling (BM = 0 and AM = 1) and for the case of the absence of feedback
(K = 0). Details are given in [12].

Filtering the vector φ(t) through an asymptotically stable filter L(q−1) = BL
AL

,
Eq. (15.86) for θ̂ = constant becomes:

ν(t +1) =
AMAGAKG

Pf b− f f L
[θ − θ̂ ]T φ f (t) (15.90)

φ f (t) = L(q−1)φ(t). (15.91)

Equation (15.90) has been used to develop the adaptation algorithms neglecting
the non-commutativity of the operators when θ̂ is time-varying (however an exact
algorithm can be derived in such cases—see [144]).

Replacing the fixed estimated parameters by the current estimated parameters,
equation (15.90) becomes the equation of the a posteriori residual (adaptation) error
ν(t +1) (which is computed):

ν(t +1|θ̂(t +1)) =
AMAGAK

Pf b− f f L
G[θ − θ̂(t +1)]T φ f (t). (15.92)

Equation (15.92) has the standard form for an a posteriori adaptation error ([144]),
which immediately suggests to use the same parametric adaptation algorithm given
in equations (15.35) through (15.39). The stability of the algorithm has been ana-
lyzed in [12] and the main results are recalled next.

15.7.2 Analysis of the Algorithms

Stability of the algorithms

The equation for the a posteriori adaptation error has the form

ν(t +1) = H(q−1)[θ − θ̂(t +1)]T Φ(t) (15.93)

where:
H(q−1) =

AMAGAK

Pf b− f f L
G, Φ = φ f . (15.94)

Neglecting the non-commutativity of time-varying operators, one can straightfor-
wardly use Theorem 4.1. Therefore the sufficient stability condition for any initial
conditions θ̂(0), ν◦(0), F(0) is that

H ′(z−1) = H(z−1)− λ2

2
,max

t
[λ2(t)]≤ λ2 < 2 (15.95)

be an SPR transfer function.
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Various choices can be considered for the filter L(q−1) in order to satisfy the
positive real condition (see [127, 12]). It is important to remark that the positive
real condition is strongly influenced by the presence of the feedback controller and
its design. The best performances are in general obtained by taking L(q−1) as an
estimation of AMAGAK

Pf b− f f
G (see (15.94)).

Relaxation of the positive real condition by averaging arguments is discussed
in [127] (same procedure and conclusions as in Section 15.4) and by adding pro-
portional adaptation in [6]. Filtering of the residual error can also be considered
for satisfying the positive real condition, but this will modify the criterion which is
minimized ([177, 6]).

Analysis of the algorithms when hypotheses H2’ and H3 are violated can be
found in [127]. The conclusions of this analysis is similar those given in Sec-
tion 15.4.

15.8 Adaptive Feedforward + Fixed Feedback Attenuation of
Broad-band Disturbances—Experimental Results

A summary of various results obtained on the system described in Section 2.3 will
be presented next. The adaptive feedforward compensator structure for all the exper-
iments has been nR = 9, nS = 10 (total of 20 parameters) and this complexity does
not allow to verify the “perfect matching condition” (which requires more than 40
parameters). A feedback RS controller has been also introduced to test the potential
improvement in performance.

Table 15.4 summarizes the global attenuation results for various configurations.
Clearly, the hybrid adaptive feedforward - fixed feedback scheme brings a signifi-
cant improvement in performance with respect to adaptive feedforward compensa-
tion alone. This can be seen on the power spectral densities shown in Fig. 15.18.15 A
pseudo-random binary sequence (PRBS) excitation on the global primary path has
been considered as the disturbance.

Table 15.4 Global attenuations for various configurations.

Feedback Feedforward Adaptive Feedforward Feedback
only only Feedforward (H∞) & Adaptive

(H∞) only & Feedback Feedforward
Att. [dB] -14.40 -14.70 -16.23 -18.42 -20.53

It is important to point out that the design of a linear feedforward + feedback
requires not only the perfect knowledge of the disturbance characteristics but also
of the model of the primary path, while an adaptive approach does not require these
informations. To illustrate the adaptation capabilities of the algorithms presented,

15 For the adaptive schemes the PSD is evaluated after the adaptation transient has settled.
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Fig. 15.18 Power spectral densities of the residual acceleration for various control configurations
(Disturbance = PRBS).

a sinusoidal disturbance of 150 Hz has been added to the PRBS disturbance. Fig-
ure 15.19 shows the power spectral densities in open-loop, when using an adaptive
feedforward compensation algorithm and when the H∞ feedforward compensator
which is not designed for this additional disturbance is used. One can remark that
the hybrid adaptive feedforward-feedback scheme introduces a strong attenuation
of the sinusoidal disturbance (larger than 30 dB) without affecting other frequencies
(compare with Fig. 15.18) while the model based H∞ feedforward compensator +
feedback controller has not been able to attenuate the sinusoidal disturbance.

15.9 Concluding Remarks

• If a measurement correlated with the disturbance is available an adaptive feed-
forward compensation scheme can be built.

• This approach is currently used for active vibration control and active noise con-
trol when broad-band disturbances should be attenuated.

• It is important to emphasize the existence of an inherent positive feedback cou-
pling between the actuator and the measure of the image of the disturbance which
has a strong impact on the stability of the adaptive feedforward compensation
system.

• Stable adaptation algorithms preserving the stability of the inner positive feed-
back loop has been developed.

• To assure the stability of the adaptive feedforward compensation schemes, the
regressor vector should be appropriately filtered.

• Parameter adaptation algorithms with matrix adaptation gain and scalar adapta-
tion gain can be used.
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Fig. 15.19 Power spectral densities when an additional sinusoidal disturbance is added (Distur-
bance = PRBS + sinusoid).

• Adaptive feedforward compensation can be used on top a feedback loop.

15.10 Notes and References

The first attempts in the literature of adaptive feedforward active vibration and noise
compensation have been done neglecting the positive feedback coupling. Most of
the initial work was centred around the use of the Least Mean Squares (LMS) gra-
dient search algorithm introduced in [253, 252] (see also Chapter 4)). Applications
of LMS type algorithm in active control can be found in [30, 234, 259, 190, 9, 72].
Further references include [92, 217, 78].

A powerful approach for stability analysis of adaptive feedforward compensation
algorithms is the hyperstability theory ([194, 196, 195, 197] which prompted out
the importance of the strict positive realness of some transfer functions in order to
assure stability. The initial framework for studying adaptive systems using hypersta-
bility was established in [134, 123, 124] and a complete theoretical analysis can be
found in [144]. Application of this approach in the context of adaptive feedforward
compensation is considered in [178, 127, 136, 137]. Related problems are discussed
in [239, 152, 181, 222].

Improved numerical efficiency for adaptation algorithms is discussed in [178,
177] (limited to the case without positive feedback coupling). FIR adaptive feedfor-
ward compensators using orthonormal basis functions are discussed in [39, 260].
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In [179], a mixed adaptive feedback with GPC feedforward controller using on-
line identification of the system is applied to acoustic noise control, structural vibra-
tion control, and optical jitter control.

There has been also an important development in materials used for AVC
systems. Among them, piezoelectric sensors and actuator are widely used for
structural vibration cancellation (see book [176] and some of the applications in
[240, 213, 162, 155, 114]).

Numerous applications of AVC concern hard disk drives or DVD/CDD [251,
190]. Also force tracking with feedforward motion estimation for beating heart
surgery is presented in [261].

Various AVC problems in passenger vehicles are discussed in [271, 85, 154].
In the field of aerial vehicles some interesting applications are [256, 199]. Vibra-
tion control on flexible structures is discussed in [249, 90]. Multichannel adaptive
algorithms have extensivelly been used in adaptive optics applications [95, 216].



Chapter 16
Youla–Kučera Parametrized Adaptive
Feedforward Compensators

Abstract In this chapter one considers a Youla–Kučera parametrization of the feed-
forward compensator in the context of the “positive” feedback coupling which ap-
pears in active vibration control systems. The central Youla–Kučera controller will
stabilize the internal “positive” feedback loop and an infinite (or finite) impulse re-
sponse adaptive Youla–Kučera filter will be used to optimize the performance. The
algorithms are evaluated in real time on the active flexible mechanical structure
actuated by an inertial actuator which has been presented in Chapter 2.

16.1 Introduction

Since most of the adaptive feedforward vibration (or noise) compensation systems
feature an internal “positive feedback” coupling between the compensator system
and the correlated disturbance measurement which serves as reference, one may
think building a stabilizing controller for this internal loop to which an additional
filter will be added with the objective to enhance the disturbance attenuation capa-
bilities while preserving the stabilization properties of the controller.

In order to achieve this, instead of a standard IIR feedforward compensator, one
can use an Youla–Kučera parametrization of the adaptive feedforward compensator.
The central compensator will assure the stability of the internal positive feedback
loop and its performance are enhanced in real-time by the direct adaptation of the
parameters of the Youla–Kučera Q-filter.

A block diagram of such adaptive feedforward compensator is shown in Fig. 16.1.
FIR and IIR Q-filters can be used. Details of the specific algorithms can be found in
[136, 137]. Comparisons between IIR, FIR YK and IIR YK adaptive feedforward
have been done. The main conclusions are:

• For the same level of performance IIR YK requires the lower number of ad-
justable parameters.

329
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Fig. 16.1 Adaptive feedforward disturbance compensation using Youla–Kučera parametrization.

• IIR YK and FIR YK allow easily the incorporation of an initial stabilizing con-
troller of any dimension while for IIR feedforward compensator this is more
difficult.

These facts justify the use of this approach for adaptive feedforward compensation
in the presence of an internal positive feedback.

16.2 Basic Equations and Notations

The block diagrams associated with an AVC system when an IIR (Infinite Impulse
Response) Youla–Kučera compensator is active is shown in Fig. 16.1. The transfer
operators of the various paths of the AVC system have been given in Section 15.2.

The optimal IIR feedforward compensator which will minimize the residual ac-
celeration can be written, using the Youla–Kučera parametrization, as

N(q−1) =
R(q−1)

S(q−1)
=

AQ(q−1)R0(q−1)−BQ(q−1)AM(q−1)

AQ(q−1)S0(q−1)−BQ(q−1)BM(q−1)
(16.1)

where the optimal polynomial Q(q−1) has an IIR structure

Q(q−1) =
BQ(q−1)

AQ(q−1)
=

bQ
0 +bQ

1 q−1 + . . .+bQ
nBQ

q−nBQ

1+aQ
1 q−1 + . . .+aQ

nAQ
q−nAQ

(16.2)
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and R0(q−1), S0(q−1) = 1+ q−1S∗0(q
−1) are the polynomials of the central (stabi-

lizing) filter and AM(q−1), BM(q−1) are given in (15.7).
The estimated QIIR filter is denoted by Q̂(q−1) or Q̂(θ̂ ,q−1) when it is a lin-

ear filter with constant coefficients or Q̂(t,q−1) during estimation (adaptation). The
vector of parameters of the optimal QIIR filter assuring perfect matching will be
denoted by

θ
T = [bQ

0 , . . .b
Q
nBQ

,aQ
1 , . . .a

Q
nAQ

] = [θ T
BQ
,θ T

AQ
]. (16.3)

The vector of parameters for the estimated Q̂IIR filter

Q̂(q−1) =
B̂Q(q−1)

ÂQ(q−1)
=

b̂Q
0 + b̂Q

1 q−1 + . . .+ b̂Q
nBQ

q−nBQ

1+ âQ
1 q−1 + . . .+ âQ

nAQ
q−nAQ

(16.4)

is denoted by
θ̂

T = [b̂Q
0 , . . . , b̂

Q
nBQ

, âQ
1 , . . . , â

Q
nAQ

] = [θ̂ T
BQ
, θ̂ T

AQ
]. (16.5)

The input of the feedforward compensator (called also reference) is denoted by
ŷ(t). In the absence of the compensation loop (open-loop operation) ŷ(t) = w(t). In
the presence of the compensation this signal is the sum of w(t and of the output of
the reverse path M. The output of the feedforward compensator (which is the control
signal applied to the secondary path) is denoted by û(t +1) = û(t +1/θ̂(t +1)) (a
posteriori output).1

The a priori output of the estimated feedforward compensator using an YKIIR
parametrization for the case of time-varying parameter estimates is given by (using
(16.1))

û◦(t +1) = û(t +1/θ̂(t)) =−Ŝ∗(t,q−1)û(t)+ R̂(t,q−1)ŷ(t +1)

=−(ÂQ(t,q−1)S0)
∗û(t)+ ÂQ(t,q−1)R0ŷ(t +1)

+ B̂Q(t,q−1)(B∗
M û(t)−AM ŷ(t +1)) , (16.6)

The a posteriori output is given by:

û(t +1) =−(ÂQ(t +1,q−1)S0)
∗û(t)+ ÂQ(t +1,q−1)R0ŷ(t +1)

+ B̂Q(t +1,q−1)(B∗
M û(t)−AM ŷ(t +1)) . (16.7)

It should be observed that Eqs. (16.1), (16.2), (16.6) and (16.7) can be eas-
ily particularized for the case of a FIR Youla–Kučera parametrization by taking
ÂQ(t,q−1)≡ 1.

The measured input of the feedforward compensator can also be written as

1 In adaptive control and estimation the predicted output at t+1 can be computed either on the basis
of the previous parameter estimates (a priori) or on the basis of the current parameter estimates (a
posteriori).
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ŷ(t +1) = w(t +1)+
B∗

M(q−1)

AM(q−1)
û(t). (16.8)

The unmeasurable value of the output of the primary path (when the compen-
sation is active) is denoted x(t). The a priori output of the secondary path will be
denoted ẑ◦(t +1) = ẑ(t +1|θ̂(t)) while its input is û(t). One has

ẑ◦(t +1) =
B∗

G(q
−1)

AG(q−1)
û(t) =

B∗
G(q

−1)

AG(q−1)
û(t|θ̂(t)), (16.9)

where θ̂(t) is the vector of estimated parameters given in (16.5). The measured
residual acceleration (or force) satisfies the following equation

e◦(t +1) = x(t +1)+ ẑ◦(t +1). (16.10)

The a priori adaptation error is defined as

ν
◦(t +1) = ν(t +1|θ̂(t)) =−e◦(t +1) =−x(t +1)− ẑ◦(t +1). (16.11)

The a posteriori unmeasurable (but computable) adaptation error is given by

ν(t +1) = ν(t +1|θ̂(t +1)) =−e(t +1) =−x(t +1)− ẑ(t +1). (16.12)

where the a posteriori value of the output of the secondary path ẑ(t + 1) (dummy
variable) is given by

ẑ(t +1) = ẑ(t +1|θ̂(t +1)) =
B∗

G(q
−1)

AG(q−1)
û(t|θ̂(t +1)). (16.13)

For compensators with constant parameters ν◦(t) = ν(t), e◦(t) = e(t), ẑ◦(t) = ẑ(t),
û◦(t) = û(t).

The objective is to develop stable recursive algorithms for adaptation of the pa-
rameters of the Q filter such that the measured residual error (acceleration or force
in AVC, noise in ANC) be minimized in the sense of a certain criterion. This has
to be done for broad-band disturbances w(t) (or s(t)) with unknown and variable
spectral characteristics and an unknown primary path model.

16.3 Development of the Algorithms

The algorithm for adaptive feedforward YKIIR compensators will be developed un-
der the same hypotheses as in Section 15.3 except H2 which is modified as:
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H2”) (Perfect matching condition) There exists a value of the Q parameters such
that2

G ·AM(R0AQ −AMBQ)

AQ(AMS0 −BMR0)
=−D (16.14)

and there exists a central feedforward compensator N0 (R0, S0) which stabi-
lizes the inner positive feedback loop formed by N0 and M and the character-
istic polynomial of the closed-loop

P0(z−1) = AM(z−1)S0(z−1)−BM(z−1)R0(z−1) (16.15)

is a Hurwitz polynomial.

Like for the standard IIR feedfroward compensator, the algorithm will be devel-
oped under these hypotheses. Afterwards, hypotheses H2” and H3 can be removed
and the algorithm can be analysed in this modified context.

A first step in the development of the algorithms is to establish for a fixed esti-
mated compensator a relation between the error on the Q-parameters (with respect
to the optimal values) and the adaptation error ν .

Under the hypotheses H1 and H3 from Chapter 15 for the system described by
Eqs. (15.1) to (15.9) and the new hypothesis H2” for the system described by (16.1)
to (16.13) using an estimated IIR Youla–Kučera parameterized feedforward com-
pensator with constant parameters one has:

ν(t +1|θ̂) = AM(q−1)G(q−1)

AQ(q−1)P0(q−1)
[θ − θ̂ ]T φ(t), (16.16)

with φ(t) given by:

φ
T (t) = [α(t +1),α(t), . . . ,α(t −nBQ +1),

−β (t),−β (t −1), . . . ,−β (t −nAQ)]. (16.17)

where:

α(t +1) =BM û(t +1)−AM ŷ(t +1) = B∗
M û(t)−AM ŷ(t +1) (16.18a)

β (t) =S0û(t)−R0ŷ(t). (16.18b)

The derivation of expression (16.16) is given in Appendix D.
Throughout the remainder of this section and the next one, unless stated differ-

ently, the Youla–Kučera parametrization having a QIIR filter will be discussed. It
should be observed that, in most of the cases, results for QFIR polynomials can be
obtained by imposing AQ(q−1) = 1 and ÂQ(q−1) = 1.

As it will be shown later on (like for the IIR feedforward compensator), it is
convenient for assuring the stability of the system to filter the observation vector

2 The parenthesis (q−1) or (z−1) will be omitted in some of the following equations to make them
more compact.
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φ(t). Filtering the vector φ(t) through an asymptotically stable filter L(q−1) = BL
AL

,
Eq. (16.16) for θ̂ = constant becomes

ν(t +1|θ̂) = AM(q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
[θ − θ̂ ]T φ f (t) (16.19)

with

φ f (t) = L(q−1)φ(t) = [α f (t +1), . . .α f (t −nBQ +1),

β f (t),β f (t −1), . . .β f (t −nAQ)] (16.20)

where α f (t +1) = L(q−1)α(t +1) and β f (t) = L(q−1)β (t).
Equation (16.19) will be used to develop the adaptation algorithms. When the

parameters of Q̂ evolve over time and neglecting the non-commutativity of the time-
varying operators (16.19) transforms into3

ν(t +1|θ̂(t +1)) =
AM(q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
[θ − θ̂(t +1)]T φ f (t). (16.21)

Equation (16.21) has the standard form for an a posteriori adaptation error given
in Chapter 3 ([144]), which immediately suggests to use the following PAA:

θ̂(t +1) = θ̂(t)+F(t)Φ(t)ν(t +1) ; (16.22)

ν(t +1) =
ν◦(t +1)

1+ΦT (t)F(t)Φ(t)
; (16.23)

F(t +1) =
1

λ1(t)

F(t)− F(t)Φ(t)ΦT (t)F(t)
λ1(t)
λ2(t)

+ΦT (t)F(t)Φ(t)

 (16.24)

1 ≥ λ1(t)> 0;0 ≤ λ2(t)< 2;F(0)> 0 (16.25)
Φ(t) = φ f (t), (16.26)

where λ1(t) and λ2(t) allow to obtain various profiles for the adaptation gain F(t)
(see Section 4.3.4) in order to operate in adaptive regime (the trace of the adapta-
tion gain matrix has a strictly positive inferior minimum value) or self-tuning regime
(decreasing gain adaptation, the trace of the adaptation gain matrix goes asymptot-
ically to zero). By taking λ2(t) ≡ 0 and λ1(t) ≡ 1, one gets a constant adaptation
gain matrix and choosing F = γI, γ > 0 one gets a scalar adaptation gain.

Several choices for the filter L will be considered, leading to different algo-
rithms:4

Algorithm I: L = G

3 Nevertheless, exact algorithms can be developed taking into account the non-commutativity of
the time-varying operators—see [144].
4 One can not use in practice Algorithm I as the true model of the secondary path is not known.
Instead one can use Algorithm II with an estimation of the secondary path model.
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Algorithm IIa (FUPLR): L = Ĝ
Algorithm IIb: L = ÂM

P̂0
Ĝ with

P̂0 = ÂMS0 − B̂MR0 (16.27)

Algorithm III (FUSBA):

L =
ÂM

P̂
Ĝ (16.28)

with
P̂ = ÂQ(ÂMS0 − B̂MR0) = ÂQP̂0, (16.29)

where ÂQ is an estimation of the denominator of the ideal QIIR filter computed on
the basis of available estimates of the parameters of the filter Q̂. For the Algorithm
III several options for updating ÂQ can be considered:

• Run Algorithm IIa or IIb for a certain time to get an estimate of ÂQ
• Run a simulation (using the identified models)
• Update ÂQ at each sampling instant or from time to time using Algorithm III

(after a short initialization horizon using Algorithm IIa or IIb)

When using a YKFIR structure ÂQ ≡ 1 and the implementation of Algorithm III
is much simpler since P̂ = P̂0 is constant and known once the central controller is
designed.

The following procedure is applied at each sampling time for adaptive or self-
tuning operation:

1. Get the measured image of the disturbance ŷ(t+1), the measured residual error
e◦(t +1) and compute ν◦(t +1) =−e◦(t +1).

2. Compute φ(t) and φ f (t) using (16.17) and (16.20).
3. Estimate the parameter vector θ̂(t + 1) using the parametric adaptation algo-

rithm (16.22) through (16.26).
4. Compute (using (16.7)) and apply the control:

û(t +1) =−(ÂQ(t +1,q−1)S0)
∗û(t)+ ÂQ(t +1,q−1)R0ŷ(t +1)

+ B̂Q(t +1,q−1)(B∗
M û(t)−AM ŷ(t +1)) . (16.30)

16.4 Analysis of the Algorithms

16.4.1 The Perfect Matching Case

Stability of the algorithms

For Algorithms I, IIa, IIb and III, the equation for the a posteriori adaptation error
has the form:
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ν(t +1) = H(q−1)[θ − θ̂(t +1)]T Φ(t), (16.31)

where

H(q−1) =
AM(q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
, Φ = φ f . (16.32)

Equation (16.31) has the standard form considered in Chapter 4 and therefore ne-
glecting the non-commutativity of time-varying operators, one can conclude that the
system is asymptotically stable for all initial conditions θ̂(0), ν◦(0), F(0), provided
that

H ′(z−1) = H(z−1)− λ2

2
,max

t
[λ2(t)]≤ λ2 < 2 (16.33)

is a SPR transfer function.
This result can be particularized for the case of FIR Youla–Kučera adaptive com-

pensators by taking in account that in this case AQ = 1 in (16.32).
Remark 1: Using Algorithm III and taking into account (16.28), the stability

condition for λ2 = 1 can be transformed into ([167, 165]):∣∣∣∣∣
(

AM

ÂM
· ÂQ

AQ
· P̂0

P0
· G

Ĝ

)−1

−1

∣∣∣∣∣< 1 (16.34)

for all ω . This roughly means that it always holds provided that the estimates of AM ,
AQ, P0, and G are close to the true values (i.e., H(e− jω) in this case is close to a unit
transfer function).

Effect of the measurement noise

The situation is similar to that encountered for the standard IIR adaptive feedfor-
ward compensator and the results are similar. The parameters of the estimated feed-
forward compensator will converge to the same value as for the case without noise.

16.4.2 The Case of Non-Perfect Matching

If Q̂(t,q−1) does not have the appropriate dimension there is no chance to satisfy
the perfect matching condition. Two questions are of interest in this case:

1. The boundedness of the residual error.
2. The bias distribution in the frequency domain.

for the first point the answer is the same as for the IIR adaptive feedforward com-
pensator (see Chapter 15), i.e., that the residual error will be bounded under similar
conditions given in Section 15.4.2.
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Bias distribution

Following the same pathway as in Section 15.4.2 and using (16.14), the bias distri-
bution (for Algorithm III) will be given by

θ̂
∗ = argmin

θ̂

∫
π

−π

[∣∣∣∣D(e− jω)+
N̂(e− jω)G(e− jω)

1− N̂(e− jω)M(e− jω)

∣∣∣∣2 φw(ω)+φη(ω)

]
dω

(16.35)
where φw and φη are the spectral densities of the disturbance w(t) and of the mea-
surement noise. Taking into account equation (16.14), one obtains

θ̂
∗ = argmin

θ̂

∫
π

−π

[∣∣∣∣GA2
M

P0

∣∣∣∣2 ∣∣∣∣BQ

AQ
− B̂Q

ÂQ

∣∣∣∣2 φw(ω)+φη(ω)

]
dω. (16.36)

From (16.36) one concludes that a good approximation of the Q filter will be
obtained in the frequency region where φw is significant and where G has a high gain
(usually G should have high gain in the frequency region where φw is significant in
order to counteract the effect of w(t)). Nevertheless, the quality of the estimated Q̂

filter will be affected also by the transfer function GA2
M

P0
.

16.4.3 Relaxing the Positive Real Condition

Like for the IIR adaptive feedforward compensator the strictly positive real condi-
tion for stability (and convergence) can be relaxed if relatively small adaptation
gains are used (slow adaptation). The algorithms will work in general provided
that the weighted energy associated to the observation vector is in average positive,
which allows in fact that the SPR condition be violated in some limited frequency
regions. See analysis given in Section 15.4.3.

It was observed that despite satisfaction of condition (15.52) which will assure
the stability of the system, attenuation is not very good in the frequency regions
where the positive real condition (16.33) is violated.

Without doubt, the best approach for relaxing the SPR conditions is to use Al-
gorithm III (given in (16.28)) instead of Algorithm IIa or IIb. This is motivated by
(16.34). As it will be shown experimentally, this algorithm gives the best results.

16.4.4 Summary of the Algorithms

Table 16.1 summarizes the structure of the algorithms and the stability and con-
vergence conditions for the algorithms presented in Chapters 15 and 16 with matrix
and scalar adaptation gain for IIR Youla–Kučera feedforward compensators, for FIR
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Youla–Kučera feedforward compensators and for IIR adaptive feedforward com-
pensators. The original references for these algorithms are [126, 127, 137]. These
algorithms take also into account the internal positive feedback.

It was not possible to give in Table 16.1 all the options for the adaptation gain.
Nevertheless, basic characteristics for adaptive operation (non vanishing adaptation
gain) and self-tuning operation (vanishing adaptation gain) have been provided.5

The parametric adaptation algorithms can be implemented using the UD factor-
ization (see Appendix B) [144].6

16.5 Experimental Results

The same active distributed flexible mechanical structure as in Chapter 15 has been
used for experimental validation. Identification of the system has been detailed in
Chapter 6.

16.5.1 The Central Controllers and Comparison Objectives

Two central controllers have been used to test IIRYK adaptive feedforward compen-
sators. The first (PP) has been designed using a pole placement method tuned for the
case of positive feedback systems. Its main objective is to stabilize the internal posi-
tive feedback loop. The end result was a controller of orders nR0 = 15 and nS0 = 17.
The second (H∞) is a reduced order H∞ controller with nR0 = 19 and nS0 = 20 from
[13].7 For the design of the H∞ controller, the knowledge of the primary path and of
the PSD of the disturbance is mandatory (which is not necessary for the design of
PP controller).

The H∞ controller assures a global attenuation of 14.70 dB while the PP con-
troller achieves only 4.61 dB.

16.5.2 Broad-band Disturbance Rejection Using Matrix
Adaptation Gain

Broad-band disturbance rejection capabilities using the two Youla–Kučera parametriza-
tions with IIR and FIR filters described in column 2 and 3 of Table 16.1 are evaluated
in this subsection. A comparison with the algorithm given in column 4 is made (see

5 Convergence analysis in a stochastic environment can be applied only for vanishing adaptation
gains.
6 An array implementation as in [178] can be also considered.
7 The orders of the initial H∞ controller were: nRH∞

= 70 and nSH∞
= 70.



16.5 Experimental Results 339

Ta
bl

e
16

.1
C

om
pa

ri
so

n
of

al
go

ri
th

m
s

fo
ra

da
pt

iv
e

fe
ed

fo
rw

ar
d

co
m

pe
ns

at
io

n
in

AV
C

w
ith

m
ec

ha
ni

ca
lc

ou
pl

in
g.

Y
K

II
R

Y
K

FI
R

II
R

Y
K

II
R

Y
K

FI
R

II
R

(F
U

SB
A

)
(C

ha
pt

er
16

)
(C

h.
16

,[
13

6]
)

(C
ha

pt
er

15
,[

12
7]

)
M

at
ri

x
ad

ap
ta

tio
n

ga
in

Sc
al

ar
ad

ap
ta

tio
n

ga
in

θ̂
(t
+

1)
=

θ̂
(t
)
+

F
(t
)ψ

(t
)

ν
◦ (

t+
1)

1+
ψ

T
(t
)F

(t
)ψ

(t
)

θ̂
(t
)
+

γ
(t
)ψ

(t
)

ν
◦ (

t+
1)

1+
γ
(t
)ψ

T
(t
)ψ

(t
)

A
da

pt
.g

ai
n

F
(t
+

1)
−

1
=

λ
1(

t)
F
(t
)
+

λ
2(

t)
ψ
(t
)ψ

T
(t
)

γ
(t
)
>

0
0
≤

λ
1(

t)
<

1,
0
≤

λ
2(

t)
<

2,
F
(0
)
>

0
A

da
pt

iv
e

D
ec

r.
ga

in
an

d
co

ns
t.

tr
ac

e
γ
(t
)
=

γ
=

co
ns

t

Se
lf

tu
ni

ng
λ

2
=

co
ns

t.
,

lim t→
∞

λ
1(

t)
=

1
∞ ∑ t=

1
γ
(t
)
=

∞
,

lim t→
∞

γ
(t
)
=

0

θ̂
(t
)
=

[b̂
Q 0
,.
..
,â
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Ŝ
−

B
M

R̂
A

Q
(A

M
S 0

−
B

M
R

0)
A

M
S 0

−
B

M
R

0
A

M
Ŝ
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also [127]). For most of the experiments, the complexity of the IIRYK filter was
nBQ = 3 and nAQ = 8, therefore having 12 parameters in the adaptation algorithm
according to Eq. (16.2). For the FIRYK parametrization, an adaptive filter of order
nBQ = 31 and nAQ = 0 (32 parameters) has been used. These values do not allow to
verify the “perfect matching condition”.

Two modes of operation can be considered: adaptive operation and self-tuning
operation.

For reason of space only the experimental results in adaptive operation will be
presented. Algorithms IIa and III have been used with decreasing adaptation gain
(λ1(t) = 1, λ2(t) = 1) combined with a constant trace adaptation gain. For IIRYK
the adaptation has been done starting with an initial gain of 0.02 (initial trace =
initial gain × number of adjustable parameters, thus 0.24) and using a constant
trace of 0.02. For FIRYK an initial gain of 0.05 (initial trace 0.05× 32 = 1.6) and
constant trace 0.1 have been used.
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Fig. 16.2 Real time residual acceleration obtained with the IIR Youla–Kučera parametrization
(nBQ = 3, nAQ = 8) using Algorithm IIa with matrix adaptation gain and the H∞ central controller.

The experiments have been carried out by first applying the disturbance and then
starting the adaptive feedforward compensation after 50 sec. If not otherwise spec-
ified, the results which will be presented have been obtained with the H∞ central
controller. In the case of the IIRYK parametrization using Algorithm III, the filter-
ing of the regressor is done adaptively. The last stable estimation of AQ(q−1) is used
in (16.29).

Time domain results using IIRYK with Algorithms IIa and III are shown in
Figs. 16.2 and 16.3 respectively. It can be seen that Algorithm III provides better
performance than Algorithm IIa and this can be explained by a better approxima-
tion of the positive real condition (see discussion in subsection 16.4.3). Figure 16.4
shows the evolution of the residual acceleration with the FIRYK adaptive compen-
sator using Algorithm III ([126]).

The power spectral density of the residual acceleration (after adaptation transient
is finished) for the considered algorithms are given in Fig. 16.5. The final attenuation
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Fig. 16.3 Real time residual acceleration obtained with the IIR Youla–Kučera parametrization
(nBQ = 3, nAQ = 8) using Algorithm III with matrix adaptation gain and the H∞ central controller.

0 50 100 150 200
−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Plant output using broad−band disturbance and FIRYK (H

∞

) param. after 50 sec

Time [sec]

R
es

id
u
al

 a
cc

el
er

at
io

n
 [

V
]

Fig. 16.4 Real time results obtained with the FIR Youla–Kučera parametrization (nQ = 31) using
Algorithm III with matrix adaptation gain and the H∞ central controller.

provided by IIRYK using Algorithm III (16.21 dB) is better than that provided by
IIRYK using Algorithm IIa (13.37 dB) and slightly better than that provided by us-
ing FIRYK with Algorithm III (16.17 dB) which uses significantly more adjustable
parameters (32 instead of 12). Nevertheless, the adaptation transient is slightly more
rapid for FIRYK.

An evaluation of the influence of the number of parameters upon the global atten-
uation for each algorithm is shown in Table 16.2. Each line gives global attenuation
results for a certain algorithm (IIR/FIRYK/IIRYK). The central controller is also
specified for the case of Youla–Kučera parametrized filters. The values for global
attenuation are given in dB. The column headers give the number of coefficients.

One can say that a reduction of the number of adjustable parameters by a fac-
tor of (at least) 2 is obtained in the case of IIRYK/H∞ with respect to FIRYK/H∞

and IIR adaptive feedforward compensators for approximately the same level of
performance (compare IIRYK/H∞ with 8 parameters with the FIRYK/H∞ with 16
parameters and the IIRYK/H∞ with 16 parameters with the FIRYK/H∞ with 32 pa-
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Fig. 16.5 Power spectral densities of the residual acceleration in open-loop, with IIRYK (nBQ = 3,
nAQ = 8) and with FIRYK (nQ = 31) using the H∞ central controller (experimental).

Table 16.2 Influence of the number of the parameters upon the global attenuation.

Total no. param. 0 8 16 32 40
IIR (db) - 16.49 16.89

FIRYK/H∞ (db) 14.70 15.40 15.60 16.52 16.03
FIRYK/PP (db) 4.61 14.69 15.89 15.7 15.33
IIRYK/H∞ (db) 14.70 16.53 16.47
IIRYK/PP (db) 4.61 15.53 16.21

rameters and with the IIR with 32 parameters). It can be noticed that the IIRYK/H∞

is less sensitive than FIRYK/H∞ with respect to the performances of the model based
central controller.

To verify the adaptive capabilities of the two parametrizations (FIRYK and
IIRYK) with respect to changes in the characteristics of the disturbance, a narrow-
band disturbance has been added after 1400 seconds of experimentation. This has
been realized by using a sinusoidal signal of 150 Hz. Power spectral density esti-
mates are shown in Fig. 16.6 for the IIRYK parametrization and in Fig. 16.7 for the
FIRYK parametrization. Better results are obtained with the IIRYK parametrization
and they are comparable with those obtained for IIR adaptive feedforward compen-
sators (see Chapter 15, Fig. 15.10).
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Fig. 16.6 Power spectral densities of the residual acceleration when an additional sinusoidal dis-
turbance is added (Disturbance = PRBS + sinusoid) and the IIRYK parametrization is used.
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Fig. 16.7 Power spectral densities of the residual acceleration when an additional sinusoidal dis-
turbance is added (Disturbance = PRBS + sinusoid) and the FIRYK parametrization is used.

16.5.3 Broad-band Disturbance Rejection Using Scalar Adaptation
Gain

The scalar adaptation gain algorithms given in Table 16.1, columns 5 and 6 have
also been tested on the AVC system.
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Fig. 16.8 Real-time residual acceleration obtained with the IIR Youla–Kučera parametrization
(nBQ = 3, nAQ = 8) using Algorithm III with scalar adaptation gain and the H∞ central controller.
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Fig. 16.9 Real-time residual acceleration obtained with the FIR Youla–Kučera parametrization
(nQ = 31) using Algorithm III with scalar adaptation gain and the H∞ central controller.

In the adaptation regime, a constant adaptation gain of 0.001 has been used for
both parametrizations, as in [127] (see also Table 16.1). This corresponds to a con-
stant trace of 0.012 for the IIRYK and 0.032 for the FIRYK (taking into account
the number of adapted parameters). Figure 16.8 shows the adaptation transient for
the scalar version of the IIRYK parametrization using Algorithm III. Surprisingly,
the performances are close to those obtained with a matrix adaptation gain (a simi-
lar observation has been made in [127, Fig. 14]). Figure 16.9 shows the adaptation
transient for the FIRYK parametrization using a scalar adaptation gain. It can be
seen that the transient performances are slightly better for the IIRYK.

In terms of global attenuation, an IIRYK feedforward compensator with 12 pa-
rameters (nBQ = 3,nAQ = 8) gives a global attenuation of 16.45 dB and a FIRYK
feedforward compensator with 32 parameters (nQ = 31) achieves a global attenua-
tion of 15.92 dB. This significant reduction in the number of adjustable parameters
for the same level of performance when using IIRYK feedforward compensators,
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holds also if one compare IIRYK feedforward compensators with IIR feedforward
compensators (with scalar adaptation gain). See Chapter 15 and [127, 137].

16.6 Comparison of the Algorithms

The number of adjustable parameters

The main advantage of the IIRYK adaptive feedforward compensators compared
with FIRYK adaptive compensators is that they require a significantly lower number
of adjustable parameters for a given level of performance (a reduction by a factor of
2 in the application presented). This is without doubt a major practical advantage in
terms of implementation complexity. A slight reduction of the number of adjustable
parameters is also obtained with respect to IIR adaptive feedforward compensators.

The poles of the internal positive closed-loop

For IIR adaptive feedforward compensators provided that the SPR condition for
stability is satisfied, the poles of the internal “positive” loop will be asymptotically
stable but they can be very close to the unit circle. For FIRYK, the poles of the inter-
nal positive feedback loop are assigned by the central stabilizing controller and they
remain unchanged under the effect of adaptation. For IIRYK, part of the poles of the
internal positive feedback loop are assigned by the central stabilizing controller but
there are additional poles corresponding to ÂQ. These poles will be asymptotically
inside the unit circle if the positive real condition for stability is satisfied but they
can be very close to the unit circle (at least theoretically). Nevertheless, if one likes
to impose that these poles lie inside a circle of a certain radius, this can be easily
achieved by using parameter adaptation algorithms with “projections” ([88, 144]).

Implementation of the filter for Algorithm III

For IIRYK adaptive compensators, one has to run first Algorithm IIa or IIb over a
short time horizon in order to get an estimate of ÂQ for implementing the appro-
priate filter. A similar procedure has to be used also for IIR adaptive compensators
(see Chapter 15 and [127]). For the IIRYK structure, the filter can be continuously
improved by updating at each step the estimation of ÂQ in the filter. Such a proce-
dure is more difficult to apply to the IIR structure since the estimated closed-loop
poles have to be computed at each step based on current estimates of the feedfor-
ward compensator’s parameters and the knowledge of the reverse path M(q−1). For
FIRYK this initialization procedure is not necessary since the poles of the internal
positive feedback loop remain unchanged under the effect of adaptation and a good
estimation is provided by the knowledge of the central stabilizing compensator and
of the model of the reverse path.
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Initial model based design compensator

Since the system as well as the initial characteristics of the disturbance can be identi-
fied, a model based design of an initial feedforward compensator can be done. For a
FIRYK or an IIRYK adaptive feedforward compensator, any model based designed
compensator can be used as the central controller (no matter what is its dimension).
Its performances will be enhanced by the adaptation of the Q-parameters. Never-
theless, for IIR adaptive feedforward compensators the initial model based designed
compensator should have the same structure (number of parameters) as the adaptive
structure.

Influence of the initial stabilizing controller

The performances of IIRYK adaptive compensator are less sensitive than those of
FIRYK adaptive compensator with respect to the performances of the initial model
based stabilizing controller.

16.7 Concluding Remarks

• Use of the Youla–Kučera parametrization for adaptive feedforward compensation
in the presence of the internal positive feedback is justified by the separation of
the stabilization of the internal positive feedback loop from the optimization of
the feedforward compensator parameters.

• IIR or FIR Youla–Kučera structures can be used for the feedforward compen-
sator.

• IIR Youla–Kučera compensator structure leads to the minimal number of ad-
justable parameters with respect to FIR Youla–Kučera feedforward compensator
and IIR feedforward compensator.

• Youla–Kučera structure for the feedforward compensator allows to use a central
controller of any order independently of the number of adjustable parameters.

16.8 Notes and References

The basis of the Youla–Kučera parametrization is discussed in [15]. Linear feed-
forward compensators using Youla–Kučera parametrization are presented in [235].
Youla–Kučera based adaptive feedforward compensator using orthonormal basis
functions is considered in [264]. The orthonormal basis function are presented in
[93].
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Appendix A
Generalized Stability Margin and Normalized
Distance Between Two Transfer Functions

A.1 Generalized Stability Margin

In Section 7.2.4, the modulus margin has been introduced. It corresponds to the
minimum distance between the Nyquist plot of the open-loop transfer function and
the critical point [−1, j0]. The modulus margin has the expression

∆M =

(∣∣Syp
(
e− jω)∣∣

max
ω

)−1

= ∥Syp
(
e− jω)∥−1

∞ , ∀ 0 ≤ ω ≤ π fs (A.1)

Stability of the closed-loop system requires that all the sensitivity functions be
asymptotically stable. Furthermore it was shown in Section 7.2.5 that the uncertain-
ties tolerated on the plant model depend upon the sensitivity functions. More specif-
ically, the admissible uncertainties will be smaller as the maximum of the modulus
of the various sensitivity functions grows.

One can ask if it is not possible to give a global characterization of the stabil-
ity margin of a closed-loop system and its robustness, taking simultaneously into
account all the four sensitivity functions. This problem can be viewed as the gener-
alization of the modulus margin.

Denoting the controller by

K =
R(z−1)

S(z−1)
(A.2)

and the transfer function of the plant model by

G =
z−dB(z−1)

A(z−1)
(A.3)

one defines for the closed-loop system (K, G) the matrix of sensitivity functions
(z = e jω)

T ( jω) =

∣∣∣∣ Syr(e− jω) Syv(e− jω)
−Sup(e− jω) Syp(e− jω)

∣∣∣∣ (A.4)
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where Syr, Syυ , Sup, and Syp represent

• the complementary sensitivity function

Syr(z−1) =
KG

1+KG
=

z−dB(z−1)R(z−1)

P(z−1)
,

• the output sensitivity function with respect to an input disturbance

Syυ(z−1) =
G

1+KG
=

z−dB(z−1)S(z−1)

P(z−1)
;

• the output sensitivity function

Syp(z−1) =
1

1+KG
=

A(z−1)S(z−1)

P(z−1)
;

• the input sensitivity function

Sup(z−1) =− K
1+KG

=−A(z−1)R(z−1)

P(z−1)
;

where
P(z−1) = A(z−1)S(z−1)+ z−dB(z−1)R(z−1). (A.5)

defines the poles of the closed-loop.
Similarly to the modulus margin, one defines the generalized stability margin as

b(K,G) =


(∣∣T (e− jω)

∣∣
max

ω

)−1

= ∥T (e− jω)∥−1
∞ if (K,G) is stable

0 if (K,G) is unstable
(A.6)

where: ∣∣T (e− jω)
∣∣
max

ω

=
∣∣σ̄(e− jω)

∣∣
max

ω

= ∥T (e− jω)∥∞, ∀ ω ∈ [0, π fs] (A.7)

In Eq. (A.7), σ̄(e− jω) is the largest singular value of T (e− jω) computed using sin-
gular value decomposition [135, 269].

The generalized stability margin can be computed with the function smarg.m
from the toolbox REDUC® ([3]).1

As the value of b(K,G) decreases, the closed-loop system will be close to insta-
bility and it will be less robust with respect to the variations (or uncertainties) of the
plant nominal transfer function.

1 To be downloaded from the book website.
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A.2 Normalized Distance Between Two Transfer Functions

Consider a transfer function G. Let denotes the number of unstable zeros by nzi and
the number of unstable poles by npi . The number of encirclements of the origin of
the complex plane is given by

wno(G) = nzi(G)−npi(G) (A.8)

(positive value = counter clockwise encirclements; negative value = clockwise en-
circlements). It is possible to compare two transfer functions G1 and G2 only if they
satisfy the following property:

wno(1+G∗
2G1)+npi(G1)−npi(G2)−np1(G2) = 0 (A.9)

where G∗
2 is the complex conjugate of G2 and np1(G2) is the number of poles of G2

located on the unit circle.2

The normalized distance between two transfer functions satisfying the property
of Eq. A.9 is called the Vinnicombe distance or ν-gap ([248]).

Let define the normalized difference between two transfer functions G1(e− jω)
and G2(e− jω) as

Ψ
(
G1(e− jω),G2(e− jω)

)
=

G1(e− jω)−G2(e− jω)(
1+ |G1(e− jω)|2

) 1
2
(

1+ |G2(e− jω)|2
) 1

2
(A.10)

The normalized distance (Vinnicombe distance) is defined by

δν(G1,G2) = |Ψ (G1,G2)|max
ω

= ∥Ψ (G1,G2)∥∞,∀ ω ∈ [0, π fs] (A.11)

One observes immediately from the structure of Ψ that

0 ≤ δν(G1,G2)< 1. (A.12)

If the condition of Eq. A.9 is not satisfied, by definition

δν(G1,G2) = 1. (A.13)

The Vinnicombe distance can be computed with the function vgap.m from the
toolbox REDUC® ([3]).3

2 The condition of Equation A.9 is less restrictive than the condition used in Section 7.2.5 where
two transfer functions with the same number of unstable poles and with the same number of encir-
clements of the origin have been considered.
3 To be downloaded from the book website.
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A.3 Robust Stability Condition

Using the generalized stability margin and the Vinnicombe distance between two
transfer functions, one can express a robust stability condition (sufficient condition)
for a controller K designed on the basis of the nominal model G1 as follows. Con-
troller K which stabilizes model G1 will also stabilize model G2 if

δν(G1,G2)≤ b(K,G1). (A.14)

This condition can be replaced by a less restrictive condition, but which should
be verified at all frequencies:4

|Ψ (G1,G2)| ≤
∣∣T (e− jω)

∣∣−1
, ∀ ω ∈ [0, π fs] . (A.15)

A.4 Notes and References

The original reference for Vinnicombe distance (ν-gap) and generalized stability
margin is [248]. For a good pedagogical presentation, but with extensive use of the
H∞ norm, see [269, 135].

These concepts have been very useful for validation of reduced order controllers
(see Chapter 9) and of the models identified in closed-loop operation (see Chapter
8).

4 This condition has to be compared with the conditions given in Section 7.2.5 (Eqs. (7.53), (7.54)
and (7.55)). Equation (A.15) can be interpreted as a generalization of these conditions.



Appendix B
Implementation of the Adaptation Gain
Updating—The U-D Factorization

The adaptation gain equation is sensitive to round-off errors. This problem is com-
prehensively discussed in [29] where a U-D factorization has been developed to
ensure the numerical robustness of the PAA. To this end, the adaptation gain matrix
is rewritten as follows

F(t) =U(t)D(t)UT (t) (B.1)

where U(t) is an upper triangular matrix with all diagonal elements equal to 1 and
D(t) is a diagonal matrix. This allows the adaptation gain matrix to remain positive
definite so that the rounding errors do not affect the solution significantly.

Let

G(t) = D(t)V (t) (B.2)
V (t) =UT (t)φ f (t) (B.3)

β (t) = 1+V T (t)G(t) (B.4)

δ (t) =
λ1(t)
λ2(t)

+V T (t)G(t) (B.5)

Define:

Γ (t) =
U(t)G(t)

β (t)
=

F(t)φ f (t)
1+φ T

f (t)F(t)φ f (t)
(B.6)

The U-D factorization algorithm of the parameter adaptation gain is given below.
Initialize U(0) and D(0) at time t = 0, this provides the initial value of the adap-

tation gain matrix F(0) =U(0)D(0)UT (0). At time t +1, determine the adaptation
gain Γ (t) while updating D(t +1) and U(t +1) by performing the steps 1 to 6.

1. Compute V (t) =UT (t)φ f (t), G(t) = D(t)V (t), β0 = 1 and δ0 =
λ1(t)
λ2(t)

2. For j = 1 to np (number of parameters) go through the steps 3 to 5
3. Compute
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β j(t) =β j−1(t)+Vj(t)G j(t)

δ j(t) =δ j−1(t)+Vj(t)G j(t)

D j j(t +1) =
δ j−1(t)

δ j(t)λ1(t)
D j j(t)

Γj(t) =G j(t)

M j(t) =−
Vj(t)

δ j−1(t)

4. If j = 1 then go to step 6 else for i = 1 to j−1 go through step 5
5. Compute

Ui j(t +1) =Ui j(t)+Γi(t)M j(t)

Γi(t) = Γi(t)+Ui j(t)Γj(t)

6. For i = 1 to np do

Γi(t) =
1

βnp(t)
Γi(t)

A lower bound on the adaptation gain is simply obtained by maintaining the values
of the elements of the diagonal matrix D(t) above some specified threshold d0 as
follows:

di(t) =
{

d0 or di(t −1) if di(t)≤ d0
di(t) otherwise

}
(B.7)

Notice that the implementation of such an algorithm is indeed simple to legitimate
its use.1

1 The function udrls.m (MATLAB) available from the book website implements this algorithm.



Appendix C
Interlaced Adaptive Regulation: Equations
Development and Stability Analysis

C.1 Equations Development

From Eq. (13.61), re-written here, the development of the equations in order to
obtain Eq. (13.63) is shown next.

The a priori error is given by

ε
◦(t +1) = υ(t +1)+

q−dB∗HS0 HR0

P0

[
BQ

AQ
− B̂Q(t)

ÂQ(t)

]
w(t) (C.1)

For constant B̂Q(t) and ÂQ(t) or neglecting the non-commutativity of time-varying
operators, (C.1) can be written1

ε
◦(t +1) = υ(t +1)+

q−dBHS0HR0

P0

[
BQ

AQ
− B̂Q(t)

ÂQ(t)

]
w(t +1), (C.2)

observing that

uQ(t +1) =
BQ

AQ
w(t +1) (C.3)

= BQw(t +1)−A∗
QuQ(t) (C.4)

= BQw(t +1)−A∗
QûQ(t)−A∗

Q (uQ(t)− ûQ(t)) (C.5)

and also
ûQ(t +1) = B̂Q(t)w(t +1)− ÂQ(t)ûQ(t), (C.6)

then (C.1) becomes

1 Taking advantage of the notation B = q−1B∗ one can conveniently use the relation Bw(t + 1) =
B∗w(t).
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ε
◦(t +1) = υ(t +1)+

q−dBHS0HR0

P0
[
(
BQ − B̂Q(t)

)
w(t +1)−

−
(
A∗

Q − Â∗
Q(t)

)
ûQ(t)−A∗

Q (uQ(t)− ûQ(t))]. (C.7)

One can then define the a posteriori error as:

ε(t +1) = υ(t +1)+
q−dBHS0HR0

P0
[
(
BQ − B̂Q(t +1)

)
w(t +1)−

−
(
A∗

Q − Â∗
Q(t +1)

)
ûQ(t)−A∗

Q (uQ(t)− ûQ(t))]. (C.8)

It is necessary to find an expression relating the difference uQ(t)− ûQ(t) to the a
posteriori error ε(t +1). The measured output of the system, y(t), is given by

y(t) = ŷ1(t)+ p(t), (C.9)

where ŷ1(t) is the process output with the adaptive YKIIR compensator and p(t) is
the effect of the disturbance. Under the assumption that the ideal YKIIR compen-

sator BQ(q−1)

AQ(q−1)
completely cancels out the disturbance p(t), Eq. (C.9) becomes

y(t) = ŷ1(t)− y1(t), (C.10)

where y1(t) = −p(t) is the process output with the ideal YKIIR compensator BQ
AQ

.
One can define

ŷ1(t) =−q−dB
A

1
S0

[
R0y(t)+HS0HR0 ûQ(t)

]
(C.11)

as the plant output with the estimated YKIIR compensator and

y1(t) =−q−dB
A

1
S0

[
0+HS0HR0uQ(t)

]
(C.12)

as the plant output with the ideal YKIIR compensator (y(t) is zero in this case).
Introducing these equations in (C.10), one obtains

y(t) =−q−dB
A

R0

S0
y(t)+

q−dB
A

HS0HR0

S0
(uQ(t)− ûQ(t)) (C.13)[

1+
q−dB

A
R0

S0

]
y(t) =

q−dBHS0HR0

AS0
(uQ(t)− ûQ(t)) . (C.14)

Therefore, since P0 = AS0 +q−dBR0, one gets

ε(t) = y(t) =
q−dBHS0HR0

P0
(uQ(t)− ûQ(t)) (C.15)

noting that ε(t) = y(t) if B̂Q(t) and Â∗
Q(t) are used. One introduces also the notation
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û f
Q(t) =

q−dBHS0HR0

P0
ûQ(t). (C.16)

Turning back to (13.61) and using (C.15) and (C.16) as well as (13.59) one ob-
tains:

ε
◦(t +1) = υ(t +1)+

(
BQ − B̂Q(t)

)
w f (t)−

−
(
A∗

Q − Â∗
Q(t)

)
û f

Q(t)−A∗
Qε(t). (C.17)

The a posteriori error equation becomes

ε(t +1) = υ(t +1)+
(
BQ − B̂Q(t +1)

)
w f (t)−

−
(
A∗

Q − Â∗
Q(t +1)

)
û f

Q(t)−A∗
Qε(t). (C.18)

The above equation can be re-written as

ε(t +1) =
1

AQ

[
θ

T
1 − θ̂

T
1 (t +1)

]
φ1(t)+υ

f (t +1)+υ1(t +1), (C.19)

where υ f (t + 1) and υ1(t + 1) = −
(

A∗
Q − Â∗

Q(t +1)
)

û f
Q(t) are vanishing signals

because υ f (t + 1) is the output of an asymptotically stable filter whose input is a
Dirac pulse and Â∗

Q(t +1)→ A∗
Q as shown next.

C.2 Stability Analysis of Interlaced Scheme (Sketch)

C.2.1 Estimation of ÂQ

Taking into account the structure of the Eq. (13.46) and the results of Chapter 4 and
[144], one can immediately conclude that

lim
t→∞

εDp(t) = 0. (C.20)

and
lim
t→∞

θ̃
T
Dp(t +1)φDp(t) = 0. (C.21)

where θ̃ T
Dp
(t +1) = θ̂ T

Dp
(t +1)−θ T

Dp
.

From (C.21) one gets:
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θ̃
T
Dp(t)φDp(t −1) =

n−1

∑
i=1

(p̂(t − i)+ p̂(t −2n+ i)) α̃i(t)+ p̂(t −n)α̃n(t)

=

(
n−1

∑
i=1

(
z−i + z−2n+i)

α̃i(t)+ z−n
α̃n(t)

)
p̂(t)

→ 0 as t → ∞ (C.22)

where {α̃i}n
1 = {α̂i(t)−αi}n

1.
Based on the assumption that p̂(t) has n independent frequency components,

the Frequency Richness Condition for Parameter Convergence holds. Therefore, the
only solution to the above equation is limt→∞ α̃i(t) = 0, i.e., the parameters converge
to their true values.

Since AQ(z−1) = Dp(ρz−1), then ÂQ(z−1) = D̂p(ρz−1), one concludes that:

lim
t→∞

ÂQ(z−1) = AQ(z−1) (C.23)

C.2.2 Estimation of BQ(z−1)

In all the cases the equation for the a posteriori adaptation error takes the form

ν(t +1) = H(q−1)[θ1 − θ̂1(t +1)]Φ1(t) (C.24)

which allows to use straightforwardly for stability analysis the results of Chapter 4,
Seection 4.4.2 and [144].

For each choice of a the regressor and of the adaptation error a different posi-
tive real condition has to be satisfied for assuring asymptotic stability. The various
options and the stability conditions are summarized in Table 13.2.



Appendix D
Error Equations for Adaptive Feedforward
Compensation

D.1 Derivation of Eq. (15.27)—Chapter 15

Under Assumption H2 (perfect matching condition), the output of the primary path
can be expressed as:

x(t +1) =−z(t +1) =−G(q−1)u(t +1) (D.1)

where u(t +1) is a dummy variable given by:

u(t +1) =−S∗(q−1)u(t)+R(q−1)y(t +1) = θ
T

ϕ(t) = [θ T
S ,θ

T
R ]

[
ϕy(t)
ϕu(t)

]
(D.2)

where

ϕ
T (t) = [−u(t), . . .−u(t −nS +1),y(t +1), . . .y(t −nR +1)]

= [ϕT
u (t),ϕ

T
y (t)] (D.3)

and y(t +1) is given by

y(t +1) = w(t +1)+
B∗

M(q−1)

AM(q−1)
u(t) (D.4)

This is illustrated in Fig. D.1.
For a fixed value of the parameter vector θ̂ characterizing the estimated filter

N̂(q−1) of same dimension as the optimal filter N(q−1), the output of the secondary
path can be expressed by (in this case ẑ(t) = ẑ◦(t) and û(t) = û◦(t)):

ẑ(t) = G(q−1)û(t) (D.5)

where
û(t +1) = θ̂

T
φ(t). (D.6)
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Fig. D.1 Equivalent representation of the system under the perfect matching hypothesis.

The key observation is that the dummy variable u(t +1) can be expressed as:

u(t +1) = θ
T

φ(t)+θ
T [ϕ(t)−φ(t)]

= θ
T

φ(t)+θ
T
S [ϕu −φû]+θ

T
R [ϕy −φŷ] (D.7)

Define the dummy error (for a fixed vector θ̂ )

ε(t +1) = u(t +1)− û(t +1) (D.8)

and the adaptation error

ν(t +1) =−e(t +1) = z(t)− ẑ(t) = G(q−1)ε(t +1) (D.9)

It results from (D.7) that:

u(t +1) = θ
T

φ(t)−S∗(q−1)ε(t)+R(q−1)[y(t +1)− ŷ(t +1)] (D.10)

But taking into account the expressions of y(t) and ŷ(t) given by (D.4) and (15.19),
respectively, one gets:

u(t +1) = θ
T

φ(t)−
(

S∗(q−1)− R(q−1)B∗
M(q−1)

AM(q−1)

)
ε(t) (D.11)

and therefore:

ε(t +1) = [θ − θ̂ ]T φ(t)−
(

S∗(q−1)− R(q−1)B∗
M(q−1)

AM(q−1)

)
ε(t) (D.12)

This gives:
AMS−BMR

AM
ε(t +1) = [θ − θ̂ ]T φ(t) (D.13)
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which can be rewritten as:

ε(t +1) =
AM(q−1)

P(q−1)
[θ − θ̂ ]T φ(t) (D.14)

Taking now into account (D.9) one gets (15.27).

D.2 Adaptation Errors for Algorithm II—Chapter 15

For Algorithm II, the equation for the a posteriori error (15.34) becomes

ν(t +1) =
AMG
PĜ

[θ − θ̂(t +1)]T φ f (t) (D.15)

=
AMB∗

GÂG

PB̂∗
GAG

[θ − θ̂(t +1)]T φ f (t) (D.16)

=
bG

1

b̂G
1

AM
(
B∗

G/bG
1

)
ÂG

P
(
B̂∗

G/b̂G
1

)
AG

[θ − θ̂(t +1)]T φ f (t) (D.17)

One can now apply the result given in Chapter 4, Eqs. (4.125) to (4.131), with
monic polynomials

H1 = AM
(
B∗

G/bG
1
)

ÂG, H2 = P
(
B̂∗

G/b̂G
1
)

AG, (D.18)

to obtain

ν(t +1) =
bG

1

b̂G
1

[
θ − θ̂(t +1)

]T
φ f (t)+H∗

1 (q
−1)
[
θ − θ̂(t)

]T
φ f (t −1)

−H∗
2 (q

−1)ν(t). (D.19)

and respectively

ν
◦(t +1) =

bG
1

b̂G
1

[
θ − θ̂(t)

]T
φ f (t)+H∗

1 (q
−1)
[
θ − θ̂(t)

]T
φ f (t −1)

−H∗
2 (q

−1)ν(t). (D.20)

Therefore equation (15.36) will be exact if bG
1 = b̂G

1 . This implies in practice that bG
1

and b̂G
1 should have the same sign and one needs to assume that their values are very

close (which means that a good identification of G has been done). Same situation
occurs for Algorithm III since one uses Ĝ instead of G.
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D.3 Derivation of Eq. (15.86)—Chapter 15

For a fixed value of the parameter vector θ̂ characterizing the estimated filter N̂(q−1)
of same dimension as the optimal filter N(q−1), the output of the secondary path can
be expressed by (in this case ẑ(t) = ẑ◦(t), û(t) = û◦(t) and e(t) = e◦(t)):

ẑ(t) = Gû(t) (D.21)

with

û(t) = û1(t)−
BK

AK
e(t) = û1(t)+

BK

AK
ν(t), (D.22)

where
û1(t +1) = θ̂

T
φ(t). (D.23)

The key observation is that using [127, Eqs. (63) to (67)], the dummy variable
u(t +1) can be expressed as:

u(t +1) = θ
T

φ(t)−S∗[u(t)− û1(t)]+R[y1(t +1)− ŷ1(t +1)]. (D.24)

Define the dummy error (for a fixed vector θ̂ )

ε(t +1) = u(t +1)− û1(t +1)−KGε(t +1) (D.25)

and the adaptation error becomes:

ν(t +1) =−e(t +1) =−x(t +1)− ẑ(t +1) = Gε(t +1). (D.26)

Taking into account the (D.22) and (D.26), u(t +1) becomes:

u(t +1) = θ
T

φ(t)−S∗[u(t)− û(t)+
BKBG

AKAG
ε(t)]

+R[y1(t +1)− ŷ1(t +1)]. (D.27)

It results from (D.27) by taking into account the expressions of u1(t) and û1(t)
given by (67) of [127] and (15.31) that:

u(t +1) = θ
T

φ(t)−
[

S∗(1+
BKBG

AKAG
)− R(q−1)B∗

M
AM

]
ε(t). (D.28)

Using equations (D.22) and (D.25), one gets (after passing all terms in ε on the
left hand side):

ε(t +1) =
AMAGAK

Pf b− f f
[θ − θ̂ ]T φ(t). (D.29)

Taking now into account equation (D.26) one obtains equation (15.86).
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D.4 Derivation of Eq. (16.16)—Chapter 16

Using hypothesis H2” (Section 16.3), one can construct an equivalent closed-loop
system for the primary path as in Fig. D.2.

+

+

+

+

++

+

+

-

+
+

+

+

-

Fig. D.2 Equivalent system representation.

Considering a Q(q−1) filter as in (16.2), the polynomial S(q−1) given in (16.1)
can be rewritten as

S(q−1) = 1+q−1S∗ = 1+q−1((AQS0)
∗−BQB∗

M). (D.30)

Under hypothesis H2” (perfect matching condition), the output of the primary
path can be expressed as

x(t) =−z(t) =−G(q−1)u(t) (D.31)

and the input to the Youla–Kučera compensator as

y(t +1) = w(t +1)+
BM

AM
u(t +1) (D.32)

where u(t) is a dummy variable given by

u(t +1) =−S∗u(t)+Ry(t +1)
=− ((AQS0)

∗−BQB∗
M)u(t)+(AQR0 −BQAM)y(t +1)

=− (AQS0)
∗u(t)+AQR0y(t +1)+BQ (B∗

Mu(t)−AMy(t +1)) . (D.33)

Similarly, the output of the adaptive feedforward filter (for a fixed Q̂) is given by
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û(t +1) =− (ÂQS0)
∗û(t)+ ÂQR0ŷ(t +1)+ B̂Q (B∗

M û(t)−AM ŷ(t +1)) . (D.34)

The output of the secondary path is

ẑ(t) = G(q−1)û(t). (D.35)

Define the dummy error (for a fixed estimated set of parameters)

ε(t) =−u(t)+ û(t) (D.36)

and the adaptation error

ν(t) =−e(t) =−(−z(t)+ ẑ(t)) =−G(q−1)ε(t)). (D.37)

Equation (D.33) can be rewritten as

u(t +1) =−(AQS0)
∗û(t)+AQR0ŷ(t +1)

+BQ(B∗
M û(t)−AM ŷ(t +1))− (AQS0)

∗(u(t)− û(t))

+AQR0(y(t +1)− ŷ(t +1))
+BQ[B∗

M(u(t)− û(t))−AM(y(t +1)− ŷ(t +1))]. (D.38)

Taking into consideration Eqs. (16.8), (D.32)

BQ[B∗
M(u(t)− û(t))−AM(y(t +1)− ŷ(t +1))] =

= BQ

[
B∗

Mε(t)−AM
B∗

M
AM

ε(t)
]
= 0 (D.39)

and subtracting (D.34) from (D.38) one obtains

ε(t +1) =−((−AQ + ÂQ)S0)
∗û(t)+(−AQ + ÂQ)R0ŷ(t +1)

+(−BQ + B̂Q)[B∗
M û(t)−AM ŷ(t +1)]

− (AQS0)
∗
ε(t)+AQR0

B∗
M

AM
ε(t). (D.40)

Passing the terms in ε(t) on the left hand side, one gets:[
1+q−1

(
AM(AQS0)

∗−AQR0B∗
M

AM

)]
ε(t +1) =

AQP0

AM
ε(t +1)

= (−A∗
Q + Â∗

Q)[−S0û(t)+R0ŷ(t)]

+(−BQ + B̂Q)[BM û(t +1)−AM ŷ(t +1)] (D.41)

Using Eqs. (D.37) and (16.18) one gets Eq. (16.16).



Appendix E
“Integral + Proportional” Parameter
Adaptation Algorithm

“Integral + Proportional” parameter adaptation algorithms (IP-PAA) ([6, 238, 144])
should be considered in the context of AVC for two reasons:

• It allows to remove or to relax the positive real conditions for stability.
• It may accelerate the adaptation transients.

E.1 The Algorithms

The equations for the development of the integral + proportional adaptation for
adaptive feedforward compensation are identical to those given in Chapter 15 up to
Eq. (15.35).

The specificity of the IP-PAA is that the estimated parameter vector θ̂(t) is at
each instant the sum of two components

θ̂(t) = θ̂I(t)+ θ̂P(t), (E.1)

where θ̂I(t) is the integral component generated through the type of algorithm intro-
duced in Chapter 4 (these algorithms have memory) and a proportional component
θ̂P(t) generated by an adaptation algorithm without memory.

The following IP-PAA is proposed:

θ̂I(t +1) = θ̂I(t)+ξ (t)FI(t)Φ(t)ν(t +1), (E.2a)

θ̂P(t +1) = FP(t)Φ(t)ν(t +1), (E.2b)

ν(t +1) =
ν◦(t +1)

1+ΦT (t)(ξ (t)FI(t)+FP(t))Φ(t)
, (E.2c)

FI(t +1) =
1

λ1(t)

FI(t)−
FI(t)Φ(t)ΦT (t)FI(t)

λ1(t)
λ2(t)

+ΦT (t)FI(t)Φ(t)

 , (E.2d)

FP(t) = α(t)FI(t); α(t)>−0.5, (E.2e)
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F(t) = ξ (t)FI(t)+FP(t), (E.2f)

ξ (t) = 1+
λ2(t)
λ1(t)

Φ
T (t)FP(t)Φ(t), (E.2g)

θ̂(t +1) = θ̂I(t +1)+ θ̂P(t +1), (E.2h)
0 < λ1(t)≤ 1, 0 ≤ λ2(t)< 2, FI(0)> 0, (E.2i)

Φ(t) = φ f (t), (E.2j)

where ν(t + 1) is the (filtered) adaptation error, λ1(t) and λ2(t) allow to obtain
various profiles for the matrix adaptation gain FI(t) (see Section 4.3.4 and [144]
for more details). For α(t) ≡ 0, one obtains the algorithm with integral adaptation
gain introduced in Section 4.3.3 (see also [127]). A detailed stability analysis can be
found in [6].

The sufficient positive real conditions given in Chapter 15 for the integral type
adaptation can be relaxed when using integral + proportional adaptation.

E.2 Relaxing the Positive Real Condition

One has the following result ([6]):

Theorem E.1. The adaptive system described by Eqs. (15.34), (15.44) and (E.2) for
λ2(t)≡ 0 and λ1(t)≡ 1 is asymptotically stable provided that:

T1) It exists a gain K such that H
1+KH is SPR,

T2) The adaptation gains FI and FP(t) and the observation vector Φ(t) satisfy

t1

∑
t=0

[
Φ

T (t −1)
(

1
2

FI +FP(t −1)
)

Φ(t −1)−K
]

ν
2(t)≥ 0 (E.3)

for all t1 ≥ 0 or

Φ
T (t)

(
1
2

FI +FP(t)
)

Φ(t)> K > 0, (E.4)

for all t ≥ 0.

The proof is given in [6]. The condition T1 is the consequence of the following
result ([6]):

Given the discrete transfer function

H(z−1) =
B(z−1)

A(z−1)
=

b0 +b1z−1 + . . .+bnBz−nB

1+a1z−1 + . . .+anA z−nA
, (E.5)

under the hypotheses:

H1) H(z−1) has all its zeros inside the unit circle,
H2) b0 ̸= 0,
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there exists a positive scalar gain K such that H
1+KH is SPR.

It is interesting to note that condition (E.3) implies that the regressor vector has
the property

t1

∑
t=0

[
Φ

T (t −1)Φ(t −1)
]
> ε > 0, (E.6)

which means that the trace of the covariance matrix of the regressor vector is pos-
itive, i.e., that the energy of the signal is greater than zero. The magnitude of the
proportional gain will depend on how far the transfer function is from a SPR trans-
fer function (level of K) and what is the energy of the regressor (which depends
upon the disturbance).

E.3 Experimental Results

The AVC system considered in Chapter 15, has been used to carry on the experi-
ment (see also Section 2.3). The adaptive feedforward compensator structure for the
experiments has been nR = 3, nS = 4. A PRBS excitation on the global primary path
will be considered as the disturbance. For the adaptive operation, algorithm FUPLR
has been used with scalar adaptation gain (λ1(t) = 1, λ2(t) = 0). A variable α(t)
in the IP-PAA has been chosen, starting with an initial value of 200 and linearly
decreasing to 100 (over a horizon of 25 sec). Time domain results obtained on the
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Fig. E.1 Real time results obtained with algorithm FUPLR using “Integral” scalar adaptation gain
(left) and “Integral + Proportional” scalar adaptation gain (right).

AVC system are shown in Fig. E.1. The advantage of using an IP-PAA is an overall
improvement of the transient behaviour despite that the SPR condition on

H(q−1) =
AMG
PĜ
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Fig. E.2 Phase of estimated H(z−1) for FUPLR.
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Fig. E.3 Real time results obtained with FUPLR using “Integral” scalar adaptation gain (left) and
“Integral + Proportional” scalar adaptation gain (right) over 1500 sec.

is not satisfied (the SPR condition is not satisfied around 83 Hz and around 116 Hz
as shown in Fig. E.2). The improvement of performance can be explained by the
relaxation of the SPR condition when using IP adaptation.

Figure E.3 shows the comparison between “Integral” and “Integral + Propor-
tional” adaptation over an horizon of 1500 sec (Fig. E.1 is a zoom of Fig. E.3
covering only the first 30 sec after the introduction of the adaptive feedforward
compensator). One can see that the various “spikes” which are obtained when us-
ing “Integral” adaptation and certainly caused by the violation of the SPR condition
at some frequencies, are strongly attenuated when using “Integral + Proportional”
adaptation. The attenuation obtained for the IP adaptation over the last 10 sec shown
in Fig. E.3 is of 13.45 dB, while for the I adaptation one has 12.99 dB. It is clear that
IP adaptation gives better results even on a long run. For other experimental results
see [4].
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