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Technical Note 

Introduction 

Perinatal imaging plays a major role in the assessment of human brain development. Magnetic 

resonance imaging (MRI) is considered the most powerful tool for exploring the anatomy and 

signal intensity of the neonatal brain. But reliably assessing the shape, volume and signal 

intensity of cerebral structures – particularly the white matter (WM) – is a challenge. Unlike 

in CT imaging, there is no MRI equivalent to the Hounsfield scale to help radiologists 

quantify and compare signal intensities. 

Newborns differ from older populations by their smaller brain size and an inverted white/grey 

matter contrast on MRI. Brain maturation is a dynamic process that can be charted in vivo via 

the development of myelination features, which have been described exhaustively using 

MRI[1, 2]. Grey and white matter components can be analyzed in two complementary ways, 

based on either morphology or signal intensity. Each radiologist has his or her own way of 

looking at this exam, as illustrated by the numerous scoring systems for determining the 

nature and extent of MR imaging abnormalities[3]. The premature newborn brain is a peculiar 

entity – no longer fetal, but not yet adult.Subjective analysis can be an issue, as demonstrated 

recently by the debate overdiffuse excessive high signal intensity (DEHSI).DEHSI was 

initially described as regions of “high signal intensity in the periventricular frontal and 

parieto-occipital area on T2-weighted images,[4, 5] and has been reported in up to 80% of 

very premature infants at term-equivalent age[6].Though its prognostic value is under 
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debate[7–12], DEHSI are now considered a development-related imaging pattern [8]. This 

finding can influence medical decisions when associated with other abnormalities such as 

white matter punctate lesions, in which case it may then have significant ethical implications. 

Our purpose, however, is to focus on the analysis of white matter signal intensity in T2-

weighted MRI to evaluate the reliability of the radiologist’s eye, independent of any 

associated abnormalities. 

 

Materials and Methods 

Data acquisition 

We used axial T2-weighted TSE images from 60 different premature newborns (born between 

28 and 29 weeks of gestation) whose clinical status, transfontanellar ultrasound and 

electroencephalogram were all normal. Infants underwent MRI after feeding, swaddling and 

placement of ear protection. Parents gave their informed consent for medical use of the MR 

images. The images were acquired at term-equivalent age (between 39 and 40 weeks of 

gestation) using routine protocols on a Philips 1.5T Achieva system with an 8-element head 

coil. The acquisition parameters were as follows: TR=3750 ms; TE=110 ms;Turbo-factor = 

16. The MRI slices were acquired on a 512 x 512 pixel matrix, covering the field of view, 

without interpolation, with a resolution of 2.560pixelsper millimeter (pixel size = 0.39 x 0.39 

mm) and slice thickness=4 mm.Signal intensity analyses were performed with ImageJ 

software[13]. 

Observers 

Measurements were performed by three people: two senior radiologists (Observer 1 and 

Observer 2, with three and twenty years of experience in pediatric neuroimaging, 

respectively) and one senior computer science researcher (Observer 3, with twenty years of 
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experience in medical imaging). The rationale for using this sample of readers was to try to 

evaluate the role of experience in the specific analysis of white matter.The computer science 

researcher was used as a “non-clinical” control, who would not be influenced by the clinical 

context or the particularity of newborn brain MRI contrast. 

White matter signal intensity analysis 

The three readers compared the relative signal intensity of different circular regions of interest 

(ROI).In all cases, the ROIs were defined by one of the senior radiologists in the same areas –

corresponding to the frontal and occipital periventricular white matter – before each 

experiment session. The viewing parameters were kept constant for all of the images to avoid 

any change during or between experiments. 

Comparison1 was between the highest signal intensity of the periventricular frontal white 

matter and the subcortical frontal white matter (Figure 1). Comparison2 was between the 

same highest signal intensity of the periventricular frontal white matter and the subcortical 

occipital white matter (Figure 1).These two comparisonsweredone twice, four weeks apart, to 

test the intra-observer variability. 

The following semi-quantitative classification was used: 

-1 = periventricular frontal white matter displays lower signal intensity than the subcortical 

frontal white matter; 

0 = no difference in signal intensity; 

1 = periventricular frontal white matter displays slightly higher signal intensity than the 

subcortical frontal white matter 
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2 = periventricular frontal white matter displays much higher intensity signal than the 

subcortical frontal white matter 

Statistical analysis 

Intra- and inter-observer agreement on the white matter signal intensity comparisons were 

assessed using Fleiss’ kappa coefficient, where agreement is considered “fair” if κ is between 

0.21 and 0.40, “moderate”if κ is between 0.41 and 0.60, “substantial” ifκ is between 0.61 and 

0.80, and “almost perfect”if κ is between 0.81 and 1. Statistical analysis was performed using 

R software[14]. 

Results 

4–category classification system: 

The overall inter-observerFleiss’ kappa agreement was moderate for the first comparison, 

between the periventricular frontal and subcortical frontal white matter signal (Table 1) 

The overall inter-observerFleiss’ kappa agreement was fair to moderate for the second 

comparison, between the periventricular frontal and subcortical occipital white matter signal 

(Table 1). 

The intra-observer Fleiss’ kappa agreement was fair for two observers and poor to fair for the 

third (Table 2). 

3–category classification system: 

We further analyzed our results to investigate the impact of distinguishing grades 1 and 2 by 

merging them into one category. The resulting Fleiss’ kappa agreement is shown in Tables 3 

and 4. 
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The overall interobserver Fleiss’ kappa agreement was fair to substantial for the first 

comparison, between the periventricular frontal and subcortical frontal white matter signal. 

The overall interobserver Fleiss’ kappa agreement was fair to substantial for the second 

comparison, between the periventricular frontal and subcortical occipital white matter signal. 

The intraobserver Fleiss’ kappa agreement was fair to moderate for two observers and 

moderate for the third. 

Discussion 

Brain MRI provides fine details of the newborn brain using multiple sequences. Recent debate 

on the significance of DEHSI in the white matter[4, 5] of term-equivalent age premature 

infants deserves special attention for ethical reasons.In our experience, however, the 

assessment of such white matter “high signal intensity” issomewhat subjective, and inter-

observer variability may be underestimated. While it has been shown that the detectability of 

low-contrast lesions can be affected by retinal photoreceptor light adaptation [15], to our 

knowledge there is no published work evaluating observer variability in interpreting newborn 

brain MRI. The scale chosen for the comparison is similar to that used in previously published 

studies[11, 16].Our results show fair to substantial intra- and inter-observer agreement in the 

analysis of white matter signal intensity. If we simplify our scale by combining grades 1 and 2 

to reduce subjectivity, we see a slight improvement in the inter- and intraobserver Fleiss’ 

kappa agreement, as might be expected. But the overall results are similar, highlighting the 

difficulty of visual intensity signal analysis, whatever the scale used.Though the difficulties in 

interpreting Kappa statistics are well known, they are still commonly used to quantify 

interobserver agreement, even in recent publications[3, 5]. In our study, all experiments were 

done twice under strictly identical viewing conditions by all observers simultaneously to 

avoid any bias. We were thus able to study inter- and intraobserver variability and obtain 
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more robust results. One previous study focused specifically on the appearance of DEHSI on 

different T2-weighted sequences (Fast Spin Echo and Single Shot FSE)[17], and concluded 

that the appearance of DEHSI on MR images following preterm birth is highly subjective, 

with slightly low intra- and inter-observer agreement (intraclass correlation of 0.04). Though 

our results showed better agreement foranalysis of WM intensity, this is an important 

limitation of the visual assessment task, and one we should be aware of. Another difficulty is 

the subjective identification of the highest WM signal intensity, which might explain the 

moderate inter-observer agreement. A great deal of caution is needed when drawing 

conclusions about WM signal intensity, and these results highlight the need for a 

semiautomatic tool to make signal intensity analysisin the neonatal brain more objective. 
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Table 1: 

Inter-observer Fleiss’ 

Kappa Agreementwith 

4 class scale 

Comparison 1: periventricular 

frontal white matter vs. 

subcortical frontal white 

matter  

Comparison 2: 

periventricular frontal 

white matter vs. 

subcortical occipital white 

matter  

1
st
occasion 2

nd
occasion 1

st
occasion 2

nd
occasion 

Overall Agreement 0.414 0.595 0.604 0.368 

Observer 1/Observer 2 0.25 0.627 0.555 0.222 

Observer 1/Observer 3 0.536 0.631 0.626 0.415 

Observer 2/Observer 3 0.456 0.525 0.635 0.479 

Table 1: Inter-observer Fleiss’ Kappa Agreement for the comparisons 1 and 2 with 4 class 

scale. 

Table 2: 

Intra-observer Fleiss’ 

Kappa Agreement 

with 4 class scale 

Comparison 1: 

periventricular frontal 

white matter vs. 

subcortical frontal white 

matter  

Comparison 2: 

periventricular frontal white 

matter vs. subcortical 

occipital white matter  

Observer 1 0.211 0.213 

Observer 2 0.1 0.301 

Observer 3 0.366 0.402 

Table 2: Intra-observer Fleiss’ Kappa Agreement for the comparisons 1 and 2 with 4 class 

scale. 

Table 3: 

Inter-observer Fleiss’ 

Kappa Agreement 

with 3 class scale 

Comparison 1: periventricular 

frontal white matter vs. 

subcortical frontal white 

matter 

Comparison 2: 

periventricular frontal 

white matter vs. 

subcortical occipital white 

matter 
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 1
st
 occasion 2

nd
 occasion 1

st
 occasion 2

nd
 occasion 

Overall Agreement 0.344 0.625 0.72 0.407 

Observer 1/Observer 2 0.169 0.667 0.732 0.276 

Observer 1/Observer 3 0.587 0.7 0.732 0.461 

Observer 2/Observer 3 0.155 0.506 0.696 0.494 

Table 3: Inter-observer Fleiss’ Kappa Agreement for the comparisons 1 and 2 with 3 class 

scale. 

Table 4: 

Intra-observer Fleiss’ 

Kappa Agreement 

with 3 class scale 

Comparison 1: 

periventricular frontal 

white matter vs. 

subcortical frontal white 

matter 

Comparison 2: 

periventricular frontal white 

matter vs. subcortical 

occipital white matter 

Observer 1 0.439 0.383 

Observer 2 0.129 0.411 

Observer 3 0.498 0.463 

Table 4: Intra-observer Fleiss’ Kappa Agreement for the comparisons 1 and 2 with 3 class 

scale. 

Figures captions 

Figure 1: Visual comparison of the highest signal intensity between circular regions of 

interest. Comparison 1 was between the periventricular frontal (A) and subcortical frontal (B) 

white matter. Comparison 2 was between the periventricular frontal (A) and subcortical 

occipital (C) white matter at term-equivalent age on T2-weighted axial slices. 
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