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Abstract. Reaction-diffusion equations with a space dependent nonlinearity are considered
on the whole axis. Existence of pulses, stationary solutions which vanish at infinity, is studied
by the Leray-Schauder method. It is based on the topological degree for Fredholm and proper
operators with the zero index in some special weighted spaces and on a priori estimates of
solutions in these spaces. Existence of solutions is related to the speed of travelling wave
solutions for the corresponding autonomous equations with the limiting nonlinearity.
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1 Introduction

Existence of solutions of the semilinear elliptic equation

∆w + F (w, x) = 0 (1.1)

in Rn, n ≥ 1 depends on the nonlinearity F (w, x). It is studied in detail for polynomial
functions F (w, x) = wp where existence of solutions is determined by the values of n and
p [4], [5], [6], [7], [8]. Another typical example is given by the nonlinearity F (w, x) =
−a(x)|w|p−2w+λb(x)|w|q−2w, where a(x) and b(x) are positive functions and λ is a positive
parameter. Under some additional conditions it is proved that there exists a value of λ for
which a nontrivial solution of this equation exists in the corresponding function space. In
some cases it can be proved that this solution is radial (n > 1) and non-negative. The review
of methods and results can be found in [1], [9].
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In the second example considered above, the nonlinearity has variable sign and the trivial
solution w = 0 can be stable. In this case, nontrivial solutions, if they exist, do not bifurcate
from the trivial one. We can expect that they separate basins of attraction of the trivial
solution and of some other solution or infinity (blow up solution). These properties can
be clearly seen in the autonomous case, for example F (w, x) = −aw + bw2, where a and
b are some positive constants. In this case, equation (1.1) has a positive solution (pulse)
which vanish at infinity [2]. It is unstable as a stationary solution of the corresponding
parabolic equation. Solution of the Cauchy problem with a perturbed initial condition will
converge either to 0 or grow to infinity. Moreover, such pulse solutions exist for any values
of parameters a and b and not only for some values of parameters as in the example above.
In the one-dimensional case, they can be easily found analytically.

In this work we will study existence of pulse solutions for a nonautonomous nonlinearity.
We will consider the one-dimensional equation on the whole axis

w′′ + F (w, x) = 0 (1.2)

and we will look for its classical solutions with the limits

w(±∞) = 0. (1.3)

Similar to the example above, we will see that such solutions can separate basin of attraction
of the trivial solution and of some other solution. In fact, existence of solutions of problem
(1.2), (1.3) will be determined by the properties of travelling waves for the corresponding
autonomous equation with the limiting function F0(w) = lim|x|→∞ F (w, x). The typical form
of the function F considered in this work is given by the example from population dynamics

F (w, x) = w2(1− w)− σ(x)w, (1.4)

where the first term in the right-hand side describes the reproduction of the population, the
second term its mortality. The mortality rate σ(x) is a positive function which depends on
the space variable. We can consider the nonlinearity in a more general form. The conditions
on it will be specified below.

We will use function (1.4) in order to explain the main features of this problem. Consider
first the case where σ(x) ≡ σ0 is a constant. Set

F0(w) = w2(1− w)− σ0w.

Suppose that 0 < σ0 < 1/4 and consider the zeros of this function, w0 = 0, w1 and w2 are
solutions of the equation w(1− w) = σ0, 0 < w1 < w2. If∫ w2

0

F0(w)dw > 0, (1.5)

then the equation

w′′ + F0(w) = 0 (1.6)
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with the limits w(±∞) = 0 has two solutions. The trivial solution W0(x) ≡ 0 and a positive
solution W1(x) which can be easily found analytically. Its explicit form is not essential for
us. In the case of the inequality ∫ w2

0

F0(w)dw < 0 (1.7)

there exists only trivial solution. Finally, if∫ w2

0

F0(w)dw = 0, (1.8)

then equation (1.6) does not have nontrivial solutions, which vanish at infinity, but there is
a solution with the limits

w(−∞) = w2, w(+∞) = 0. (1.9)

Let us note these three cases are related to the speed of travelling waves, that is solutions
of the equation

w′′ + cw′ + F0(w) = 0

with limits (1.9). Here c is the wave speed. Its sign can be determined multiplying the
equation by w′ and integrating from −∞ to +∞. If condition (1.5) is satisfied, then c > 0.
If the inequality is opposite, then c < 0. Finally, in the case (1.8), c = 0. We will see that
properties of solutions of problem (1.2), (1.3) depend on the sign of the wave speed.

Condition (1.5). In this case, the question about the existence of solution can be for-
mulated in the following way. If we change the function σ(x) by a continuous deformation
starting from the constant σ0, will the nontrivial solution persist? We will study this ques-
tion by a Leray-Schauder method which is based on topological degree and a priori estimates
of solutions. Topological degree in unbounded domains is defined in weighted spaces, in the
space without weight it may not exist. Therefore the estimates should also be obtained in
the weighted spaces. Usual estimates in Hölder or Sobolev spaces are not sufficient.

Let us explain in more detail what estimates we need in order to prove the existence of
solutions and how they can be obtained. Consider equation (1.2) with the function στ (x)
which depends on a parameter τ . Suppose that there exists a limit σ0 = limx→±∞ στ (x).
Let E = C2+α

µ (R) be the weighted Hölder space with the norm ∥u∥E = ∥uµ∥C2+α(R), where

µ(x) =
√
1 + x2. If the usual Hölder norm ∥u∥E0 , E0 = C2+α(R) is bounded and the solution

decays exponentially at infinity, then the weighted Hölder norm is also bounded. The E0-
norm of the solution can be estimated by the usual methods, exponential decay of solution at
infinity follows from the assumption F ′

0(0) < 0. However this is not sufficient for a uniform
estimate in the weighted Hölder space. Consider a family of solutions uτ which depends
on a parameter τ . If the weighted norm ∥u∥E tends to infinity as τ → τ0, then it can be
verified that equation (1.6) has a nonzero solution, and uτ converges to this solution. Under
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some additional conditions, we will prove that this convergence cannot occur and will obtain,
by this, a priori estimates of solutions. We will use here monotonicity of solutions on the
half-axis.

Condition (1.7). The situation is different in the case of condition (1.7). Equation (1.6)
does not have nontrivial solutions vanishing at infinity. A nontrivial solution can bifurcate
from the trivial solution. Condition (1.7) will allow us to obtain a priori estimates of non-
trivial solutions in the weighted norm. Hence if the trivial solution becomes unstable, then
we will obtain the existence of a nontrivial solution. Let us note that for function (1.4) the
trivial solution becomes unstable if the function σ(x) is negative for some x. This does not
correspond to the biological meaning of this example. We consider this case in view of other
possible applications and more general functions F .

Thus, equality (1.8) separates two cases where we prove existence of solutions. In the
case where this equality is satisfied, the method to prove existence of solutions developed in
this work is not applicable.

Nonlocal equations. Besides equation (1.2) we will also study the nonocal equation

w′′ + F (w, x, I) = 0, I(w) =

∫ ∞

−∞
w(x)dx (1.10)

with the typical example of nonlinearity

F (w, x, I) = w2(1− I)− σ(x)w. (1.11)

This case is quite similar to the previous one, and analysis of the existence of solutions is
based on the previous results. However, due to the integral term, the number of solutions
can change, and some of them can become stable [12]. Though we do not study stability of
solutions in this work, this is an important argument for the investigation of pulse solutions.
Existence and dynamics of pulses for autonomous nonlocal reaction-diffusion equations are
studied in [13], [15] (see also [16]).

Leray-Schauder method. Existence of solutions will be proved by the Leray-Schauder
method based on the topological degree for elliptic problems in unbounded domains. Let
us recall that the Leray-Schauder degree is not generally applicable in this case. It can be
used under some special conditions on the coefficients which allow the reduction of the cor-
responding operator to the compact operator [9]. In our case this approach is not applicable.
We will use the degree construction for Fredholm and proper operators with the zero index
[11]. This construction requires the introduction of special weighted spaces. Therefore a pri-
ori estimates of solutions required for the Leray-Schauder method should also be obtained
in the weighted spaces. This is a special type of estimates where the boundedness of the so-
lution and of its derivatives is not sufficient. These estimates will be obtained for monotone
solutions and will require separation of monotone and non-monotone solutions (explained
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below). This approach is inspired by the method of proof of travelling waves for monotone
and locally monotone systems [10].

In the next section we will introduce function spaces and operators, we will obtain a priori
estimates of solutions and prove the main existence result (Theorem 2.7). It corresponds to
the case (1.5) in the example considered above. In Section 3 we will discuss another possible
case which correspond to inequality (1.7). Nonlocal equations will be considered in Section
4.

2 Monotone solutions on the half-axis

We begin with the problem on the half-axis. We consider equation (1.2) for x > 0 with the
Neumann boundary condition and look for a solution decaying at infinity:

w′(0) = 0, w(+∞) = 0. (2.1)

This problem can be extended to the whole axis by symmetry. We will assume that

F (0, x) = 0, x ≥ 0; F ′
x(w, x) < 0, w > 0, x ≥ 0 (2.2)

and for some ϵ > 0

F ′
w(0, x) ≤ −ϵ, ∀x ≥ 0. (2.3)

Moreover, there exists w+ > 0 such that

F (w, x) < 0, ∀x ≥ 0, w > w+. (2.4)

2.1 Operators and spaces

We will use the Leray-Schauder method to prove the existence of solutions. We need to
introduce the operators, function spaces, construct a continuous deformation of the operator
and obtain a priori estimates of solutions. Operators and spaces should be defined in such
a way that the topological degree exists for them. We suppose that the function F (w, x) is
sufficiently smooth with respect to both variables. We can assume for simplicity that it is
infinitely differentiable with all derivatives bounded. Consider the operator

A(w) = w′′ + F (w, x)

acting from the space

E1 = {u ∈ C2+α
µ (R+), u′(0) = 0}

into the space E2 = Cα
µ (R+). Here Ck+α

µ (R+) is a weighted Hölder space with the norm
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∥u∥Ck+α
µ (R+) = ∥uµ∥Ck+α(R+),

where µ(x) is a weight function. We will set µ(x) =
√
1 + x2. Construction of the topological

degree for such spaces and operators can be found in [11].

2.2 Separation of monotone solutions

We will obtain a priori estimates of solutions for monotonically decreasing solutions. There-
fore we need to separate them from non-monotone solutions. We understand this separation
in the following sense. Consider a solution wτ (x) ̸≡ 0 which depends on parameter τ . The
dependence on τ is continuous in the norm C1(R+). Suppose that the solution wτ (x) is
monotonically decreasing for τ < τ0 and it is not monotonically decreasing for τ > τ0. We
will prove that this assumption leads to a contradiction.

We proceed by contradiction. Then there is a sequence τn → τ0 and the sequence of
solutions wn(x) = wτn(x) such that these functions are not monotone and the function
w0(x) = wτ0(x) is monotone. Therefore there exists a sequence xn such that w′

n(xn) = 0.
Without loss of generality, we can suppose that xn → x0, where one of the following three
cases takes place: 0 < x0 < ∞, x0 = ∞, x0 = 0. We will show that all of them lead to
contradiction.

Finite value of x0. Consider first the case where 0 < x0 < ∞. Then w′
0(x0) = 0 and

w′
0(x) ≤ 0 for all x ≥ 0. Set u(x) = −w′

0(x). Differentiating equation (1.2), we get

u′′ + F ′
w(w0, x)u− F ′

x(w0, x) = 0. (2.5)

Since u(x) ≥ 0 for all x ≥ 0, u(x0) = 0, F ′
x < 0, then we obtain a contradiction in signs

in the last equation. If the inequality in (2.2) is not strict, that is F ′
x ≤ 0, then the last

equation contradicts the maximum principle.

Remark. Condition (2.2) can be replaced by a weaker condition. Suppose that

F (w, x) = 0 ⇒ F ′
x(w, x) < 0, w > 0, x ≥ 0. (2.6)

Therefore the derivative F ′
x is negative not everywhere as in condition (2.2) but only at zero

lines of the function F . In this case, since w′′
0(x0) = 0, then F (w0(x0), x0) = 0. By virtue of

condition (2.6), we have F ′
x(w0(x0), x0) < 0. Differentiating equation (1.2) and taking into

account that w′
0(x0) = 0, we obtain

w′′′
0 (x0) = −F ′

x(w0(x0), x0) > 0. (2.7)

Hence w′
0(x) > 0 in some neighborhood of the point x0. This contradicts the assumption

that w′
0(x) ≤ 0.
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Infinite value of x0. We consider now the case where xn → ∞. Since wn(x) → w0(x)
in C1(R+) and w0(x) → 0 as x → ∞, then wn(xn) → 0 as n → ∞. If wn(xn) > 0, then
F (wn(xn), xn) < 0 and w′′

n(xn) > 0. Hence any positive extremum of the functions wn(x) is a
minimum. Therefore they cannot converge to zero at infinity. Similarly, if wn(xn) < 0, then
it is a maximum and, as before, the function cannot converge to zero at infinity. Finally, if
wn(xn) = 0, then by virtue of condition (2.2) we have that F (wn(xn), xn) = 0, w′′

n(xn) = 0.
Therefore wn(x) ≡ 0. This contradicts our assumption that all solutions wτ (x) are nontrivial.

Zero value of x0. Let us consider the last case where xn → x0 = 0. We note that
F (w0(0), 0) > 0. Indeed, if F (w0(0), 0) < 0, then w′′

0(0) > 0. Since w′
0(0) = 0, then this

function cannot be monotonically decreasing.
If F (w0(0), 0) = 0, then w′′

0(0) = 0. The function u(x) = −w′
0(x) satisfies equation

(2.5) where F ′
x < 0. Since u(x) ≥ 0 for all x ≥ 0, u(0) = 0 and u′(0) = 0, then we

obtain a contradiction with the Hopf lemma which affirms that u′(0) > 0. In the case of the
generalized condition (2.6), we get inequality (2.7). It contradicts the assumption that the
function w0(x) is decreasing.

Thus, we proved that F (w0(0), 0) > 0. Therefore the same inequality holds in some
neighborhood of x = 0. Since wn(x) converges uniformly to w0(x), then w′′

n(x) < 0 in the
interval 0 < x < δ with some positive δ independent of n. This assertion contradicts the
assumption that w′

n(xn) = 0 and xn → 0 as n → ∞. We proved the following theorem.

Theorem 2.1 (Separation of monotone solutions.) There exists a positive number r
such that for any solution of problem (2.8), (2.9), which depends on a parameter τ , we have

∥wM − wN∥E1 ≥ r

for any monotone solution wM and any nonmonotone solution wN of this problem. This
estimate does not depend on τ .

2.3 A priori estimates of monotone solutions

We consider the equation

w′′ + Fτ (w, x) = 0 (2.8)

on the half-axis x > 0 with the Neumann boundary condition:

w′(0) = 0. (2.9)

We will look for its solution decaying at infinity, w(+∞) = 0. In order to simplify the
presentation, we suppose that the function Fτ (w, x) is infinitely differentiable with respect
to all variables w, x, τ ,

Fτ (0, x) = 0, x ≥ 0;
∂Fτ (w, x)

∂x
< 0, w > 0, x ≥ 0 (2.10)
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and

∂Fτ (0, x)

∂w
≤ −ϵ, x ≥ 0, τ ∈ [0, 1] (2.11)

for some ϵ > 0. Moreover, there exists w+ > 0 such that

Fτ (w, x) < 0, ∀w > w+, x ≥ 0, τ ∈ [0, 1] (2.12)

Let wτ (x) be positive solutions of problem (2.8), (2.9) decaying at infinity. From condition
(2.12) it follows that wτ (x) ≤ w+ for all x and τ . Indeed, since we consider montonically
decreasing solutions, it is sufficient to verify that wτ (0) ≤ w+. If the opposite inequality
holds, then, by virtue of the equation, w′′

τ (0) > 0, and this function is not decreasing.
Since the function Fτ (w, x) is sufficiently smooth with respect to w, x and τ , then solutions

are uniformly bounded in C2(R+) and the dependence on τ is continuous in C1(R+). In order
to prove that solutions are uniformly bounded in the weighted Hölder norm, it is sufficient
to verify that the weighted norm

∥wτ∥µ = ∥wµ∥C(R+)

of these solutions is uniformly bounded. Here µ(x) =
√
1 + x2.

Let ϵ > 0 be sufficiently small such that Fτ (w, x) < 0 for 0 < w < ϵ and all x ≥ 0. Such
ϵ exists by virtue of condition (2.11). Since wτ (x) is a decreasing function and, obviously,
wτ (0) > ϵ (otherwise Fτ (wτ (0), 0) < 0 and w′′

τ (0) > 0), then there exists a unique solution
of the equation wτ (x) = ϵ. Denote it by xτ .

The solutions wτ (x) admit a uniform exponential estimate for x > xτ . Therefore if xτ is
uniformly bounded, then we obtain a uniform estimate of the norm ∥wτ∥µ.

Suppose that the values xτ are not uniformly bounded. Then there exists a sequence τn
for which xn = xτn → ∞. Without loss of generality we can assume that τn → τ0 for some
τ0 ∈ [0, 1]. We will consider the corresponding sequence of solutions wn(x) = wτn(x). It has a
subsequence locally convergent to a solution w0(x) such that w′

0(0) = 0 and w0(∞) > 0. The
latter follows from the equality wn(xn) = ϵ and convergence of the sequence xn to infinity.

Let us also consider the sequence vn(x) = wn(x + xn) of shifted solutions. Obviously,
vn(0) = ϵ. It has a subsequence locally convergent to a monotone solution v0(x) of equation

v′′ + F+(v) = 0 (2.13)

defined on the whole axis and such that v0(+∞) = 0, v0(−∞) > ϵ. Here

F+(v) = lim
x→∞

Fτ0(v, x).

This limit exists by virtue of the condition on the derivative in (2.10).
Set v− = v(−∞). Then F+(v−) = 0. Multiplying equation (2.13) by v′ and integrating,

we obtain
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∫ v−

0

F+(u)du = 0.

Thus, the assumption that xτ is not uniformly bounded leads to the conclusion that there
exists a zero v− of the function F+ such that the previous equality holds.

Condition 2.2. For any v > 0, if F+(v) = 0, then
∫ v

0
F+(u)du ̸= 0.

If this condition is satisfied, then the values xτ are uniformly bounded. Hence the norm
∥wτ∥µ is also uniformly bounded.

2.4 Model problem

Consider the function F (w, x), which satisfies conditions (2.2)-(2.4), and the limit function

F+(w) = lim
x→+∞

F (w, x).

We suppose that it satisfies the following conditions:

F ′
+(0) < 0, F+(w) < 0 for w > w+ (2.14)

with some w+ > 0. Moreover there exists w0 ∈ (0, w+) such that F+(w0) ̸= 0,∫ w0

0

F+(u)du = 0,

∫ w

0

F+(u)du ̸= 0 ∀w ∈ (0, w+), w ̸= w0. (2.15)

Then problem

w′′ + F+(w) = 0, w′(0) = 0, w(+∞) = 0

has a unique positive solution w0(x), and w0(0) = w0 is its maximal value.
We will find the index of this solution, that is the value of the degree with respect to

small sphere around this solution. It is given by the following expression:

ind(w0) = (−1)ν ,

where ν is the number of positive eigenvalues (with their multiplicities) of the linearized
operator

Lu = u′′ + F ′
+(w0(x))u

acting on functions C2(R+).

Lemma 2.5. The eigenvalue problem

u′′ + F ′
+(w0(x))u = λu, u′(0) = 0, u(∞) = 0 (2.16)

does not have a zero eigenvalue.
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Proof. Let us note that the essential spectrum of this problem lies in the left-half plane
since F ′

+(0) < 0. Suppose that the assertion of the lemma does not hold and problem (2.16)
has a nontrivial solution u0(x) for λ = 0. Then this solution cannot be positive for all x.
Indeed, if u0(x) > 0 for 0 ≤ x < ∞, then the function v0(x) = u0(|x|) defined on the whole
axis is a positive solution of the equation

v′′ + F ′
+(w1(x))v = 0, x ∈ R,

where the function w1(x) is an extension on the whole axis of the function w0(x) by symmetry.
Since the function v0(x) is positive, then λ = 0 is the principal eigenvalue of the operator

Lv = v′′ + F ′
+(w1(x))v,

and this eigenvalue is simple [10]. On the other hand, v1(x) = w′
1(x) is an eigenfunction of

this operator corresponding to the zero eigenvalue, and

v1(x) = −w′
0(−x) > 0, −∞ < x < 0, v1(x) = w′

0(x) < 0, 0 < x < ∞.

Hence this eigenfunction is not positive, and it is different from the eigenfunction v0(x). We
obtain a contradiction with simplicity of the principal eigenvalue.

Thus, the function u0(x) has variable sign. Since it is determined up to a factor, we can
assume that u0(0) < 0. Then it has positive values for some x > 0 and it decays at infinity
since F ′

+(0) < 0.
Next, the function u1(x) = −w′

0(x) is a solution of the problem

u′′ + F ′
+(w0(x))u = 0, u(0) = 0, u(∞) = 0,

which differs from problem (2.16) considered for λ = 0 by the boundary condition. This
function is positive for all x > 0. We will use this function to prove that the solution u0(x)
cannot exist. Set ω(x) = tu1(x)−u0(x), where t is a positive number. This function satisfies
the equation

ω′′ + F ′
+(w0(x))ω = 0. (2.17)

Let x0 be such that
F ′
+(w0(x)) < 0, x0 ≤ x < ∞.

Since u1(x) is a positive function, we can choose t for which ω(x0) > 0. We can verify that

ω(x) > 0, x0 ≤ x < ∞. (2.18)

Indeed, if ω(x1) < 0 for some x1 > x0, then this function has a negative minimum since it
converges to 0 at infinity. We obtain a contradiction in signs in equation (2.17) at the point
of minimum. If ω(x1) = 0, then we get a contradiction with the maximum principle. Indeed,
since ω(x) ≥ 0 for x ≥ x0, then this function is either everywhere positive or identically zero
for such x. The latter contradicts the assumption that ω(x0) > 0.
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Let us recall that u0(0) < 0. Therefore ω(0) > 0 for any t > 0. Moreover, (2.18) holds
for t large enough. Hence for t sufficiently large, the function ω(x) is positive for all x ≥ 0.
If t = 0, then it has negative values since u0(x) has positive values. Let t0 be the infimum of
all t for which ω(x) is positive for all x ≥ 0. Then there exists a value x2 ∈ [0, x0] for which
ω(x2) = 0. Indeed, if ω(x) is positive in this interval, then t can be decreased in such a way
that it remains positive there. Since ω(x0) > 0, then (2.18) holds, and ω(x) is positive for
all x. This contradicts the definition of t0.

Thus, ω(x) ≥ 0 for all x ≥ 0 and ω(x2) = 0. But this is not possible by virtue of the
maximum principle. Hence problem (2.16) cannot have nontrivial solution for λ = 0.

�
Remark 2.6. The principal eigenvalue λ0 of problem (2.16) is positive. Indeed, if it is
non-positive, then, since the corresponding eigenfunction is positive, we will obtain a con-
tradiction with the fact that the function −w′

0(x) is a positive (for x > 0) solution of the
equation Lu = 0 (cf. the proof of the lemma).

We proved in Lemma 2.5 that this problem does not have a zero eigenvalue. We can
verify that any real λ ∈ (0, λ0) is not an eigenvalue of this problem. Indeed, suppose that
there is an eigenvalue λ∗ ∈ (0, λ0). The corresponding eigenfunction u∗(x) cannot be positive
because only the principal eigenvalue has a positive eigenfunction [10]. As in the proof of
the lemma, we introduce the function ω = tu1 − u∗. It satisfies the equation

ω′′ + F ′
+(w0(x))ω + ϕ(x) = λ∗ω,

where ϕ(x) = λ∗tu1. As above, we choose t > 0 in such a way that ω(x) ≥ 0 for all x and
ω(x2) = 0 for some x2 > 0. Since ϕ(x) > 0 for all x > 0, then we obtain a contradiction in
signs in the last equation at x = x2.

2.5 Existence theorem

We can now prove the main theorem of this section.

Theorem 2.7. If the function F (w, x) satisfies conditions (2.2)-(2.4) and the function
F+(w) satisfies conditions (2.14), (2.15), then problem

w′′ + F (w, x) = 0, (2.19)

w′(0) = 0 (2.20)

on the half-axis x > 0 has a positive monotonically decreasing solution vanishing at infinity.
It belongs to the weighted Hölder space E1.

Proof. We will consider the homotopy

Fτ (w, x) = τF (w, x) + (1− τ)F+(w).
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Let us recall Condition 2.2, which follows from (2.14), (2.15), and assumption that solutions
are uniformly bounded are used for a priori estimates of monotone solutions. The latter
can follow from the maximum principle or from the estimates. Conditions (2.14) and (2.15)
provide existence of solutions for the model problem; conditions (2.10) and (2.11), which
follow from (2.2)-(2.4) and the definition of the function Fτ (w, x), provide separation of
monotone solutions.

For τ = 0 this equation has a unique strictly decreasing solution w0(x). Let us find its
index, that is the degree with respect to a small ball which contains only this solution and
no other solutions. Such small ball exists because the operator linearized about this solution
is invertible (Lemma 2.5). By virtue of Lemma 2.5 and Remark 2.6

ind (w0) = (−1)ν = −1,

where ν is the number of positive eigenvalues of the operator linearized about this solution
together with their multiplicities [11].

Let us recall that the operator Aτ : E1 × [0, 1] → E2,

Aτ (w) = w′′ + Fτ (w, x)

is proper on closed bounded sets. This means that for any compact set G ⊂ E2 and any
closed bounded set M ⊂ E1 × [0, 1], the set A−1

τ (G) ∩ M is compact. Therefore the set
of solutions of equation (2.8) for all τ ∈ [0, 1] is compact. By virtue of a priori estimates
of monotone solutions, there is a bounded ball B ⊂ E1 which contains all such solutions.
Next, because of the separation of monotone and non-monotone solutions, we can construct
a domain D ⊂ B such that it contains all monotone solutions, and it does not contain
non-monotone solutions.

Next, monotone solutions of problem (2.8) cannot approach the trivial solution w ≡
0 in the norm of the function space. Indeed, if w(0) is sufficiently small, then w′′(0) =
−Fτ (w(0), 0) > 0 and the solution is not monotone since it grows for small x and vanishes
at infinity.

Thus, the domain D can be constructed in such a way that it does not contain the trivial
solution either. Therefore by virtue of homotopy invariance of the degree γ(Aτ , D) we get

γ(A1, D) = γ(A0, D) = −1.

Hence equation (2.8) has a positive decaying solution from the space E1 for τ = 1. The
theorem is proved.

�
Remark 2.8. If we consider equation (2.19) on the whole axis with a function F (w, x) even
with respect to x for each w, then we can use the result of Theorem 2.7 and extend the
solution from the half-axis to the whole axis by symmetry.

Let us also comment on a possible generalization of these results to the multidimensional
case. The Leray-Schauder method is based on the topological degree and a priori estimates
of solutions. We use the degree construction for Fredholm and proper operators with the
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zero index. It can be applied if the essential spectrum of the linearized operator lies in
the left-half plane of the complex plane [11]. This condition is satisfied for the problem
under consideration. Hence the degree theory is applicable in the multidimensional case. A
priori estimates is the limiting part of the application of the Leray-Schauder method. Some
preliminary considerations show that they can be obtained in the radially symmetric case.

It should be also noted that autonomous problems in the whole space possess a zero
eigenvalue related to the invariance of solutions with respect to translation. Therefore the
index of solution is not defined. Moreover the solution is not isolated but there is a whole
family of solutions obtained from each other by translation. In the case of travelling wave
solutions, a special technique, functionalization of the parameter was developed in order to
deal with this question [10]. In general, it is possible to remove invariance with respect to
translation in space considering the subspace orthogonal to the eigenfunction corresponding
to the zero eigenvalue.

2.6 Examples

Example 2.9. Consider the function

F (w, x) = aw2(1− w)− σ(x)w,

where a > 0 is a constant, σ(x) is a positive bounded increasing function, σ+ = σ(+∞). If
problem (2.8), (2.9) has a positive solution, then the estimate supx w(x) ≤ 1 holds. Indeed,
otherwise at the point of maximum we obtain a contradiction in signs in the equation.

Let a > 4σ+. Then equation aw(1 − w) = σ+ has two positive solutions. Denote the
maximal of them by v−. If

v−

(
1− 3

4
v−

)
>

3σ+

2a
,

then
∫ v−
0

F+(u)du > 0, and Condition 2.2 is satisfied. In this case we can apply the result
on the existence of solutions. If the integral is negative, the solution may not exist since
condition (2.15) is not satisfied.

Example 2.10. Consider, next, the function

F (w, x) = aw2 − σ(x)w.

Condition 2.2 is obviously satisfied in this case. However we need to estimate the maximum
of the solution. It does not follow in this case from the maximum principle since the function
F (w, x) is not negative for large w. We multiply the equation

w′′ + aw2 − σ(x)w = 0

by w′ and integrate from 0 to ∞. Taking into account that w′(0) = 0 and w′(x) < 0 for all
x > 0, we get
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a

3
w3(0) = −

∫ ∞

0

σ(x)ww′dx <
1

2
σ+w

2(0).

Hence supx w(x) = w(0) < 3σ+/2a. Thus we can obtain a priori estimates and prove
existence of solutions by the Leray-Schauder method.

Remark about upper and lower functions. Let us consider as example the function F
given by equality (1.4). The condition (2.2) implies that σ′(x) > 0. Set

F−(w) = w2(1− w)− σ(0)w, F+(w) = w2(1− w)− σ(+∞)w.

Suppose that problems

w′′ + F±(w) = 0, w′(0) = 0, w(+∞) = 0

have solutions and denote them by w−(x) and w+(x), respectively. Their existence depends
on the values of σ(0) and σ(+∞), and it can be easily verified. Then w−(x) is an upper
function and w+(x) is a lower function. If w+(x) ≤ w−(x) for all x ≥ 0, then we can use the
method of upper and lower functions to prove the existence of solutions of the problem under
consideration. However, this inequality does not hold, and this method is not applicable.
On the other hand, the function w−(x) is positive, and it can be considered as an upper
function. Then the corresponding solution will decay in time and uniformly converge to the
trivial solution w = 0. Hence it cannot be used to prove the existence of a pulse solution.

3 Solutions on the half-axis without monotonicity con-

dition

In the previous section we proved existence of monotone solutions on the half-axis using
separation of monotone and non-monotone solutions and a priori estimates of monotone
solutions. In this section we will study the case without separation of monotone and non-
monotone solutions. In this case we need to obtain a priori estimates of solutions which may
not be monotone. We consider problem (2.8), (2.9) on the half-axis assuming that condition
(2.11) is satisfied. We do not assume here condition (2.10).

We consider the equation
w′′ + Fτ (w, x) = 0 (3.1)

on the half-axis x > 0 with the boundary condition

w′(0) = 0. (3.2)

We will look for solutions decaying at infinity. Here

Fτ (w, x) = τF (w, x) + (1− τ)F+(w),

where
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F+(w) = lim
x→∞

F (w, x).

The function Fτ (w, x) depends on the parameter τ ∈ [0, 1]. We suppose that it is infinitely
differentiable with respect to the variables w, x, τ and

Fτ (0, x) = 0, Fτ (w, x) < 0, ∀w > w+, x ≥ 0, τ ∈ [0, 1]. (3.3)

We will also assume that

F+(0) = 0, F ′
+(0) < 0 and

∫ w

0

F+(u)du < 0, ∀w ∈ (0, w+). (3.4)

Proceeding as in Section 2.3, we estimate the values xτ . If they are not uniformly
bounded, then the equation

w′′ + F+(w) = 0 (3.5)

has a bounded solution w0(x) on the whole axis such that w0(+∞) = 0. Then 0 ≤ w0(x) ≤
w0 for all x ∈ R. Moreover either w0(x) is a monotonically decreasing solution with some
limit w0 at −∞ or it is a pulse solution vanishing at ±∞ and some maximal value w0. In
both cases,

∫ w0

0
F+(u)du = 0. We obtain a contradiction with inequality (3.4). Thus, we can

formulate the following theorem.

Theorem 3.1. If conditions (3.3) and (3.4) are satisfied, then solutions of problem (3.1),
(3.2) are uniformly bounded in the norm C2+α

µ (R+).

If τ = 0, then equation (3.1) coincides with equation (3.5). It has only the trivial
solution. The value of the degree with respect to any bounded set in the space E1 equals 1.
If F (0, x) ≡ 0 for all x, then problem (3.1), (3.2) also has the trivial solution. If a simple real
eigenvalue of the problem linearized about the trivial solution crosses the origin, then this
solution becomes unstable and nontrivial solutions bifurcate from it. This is not only a local
bifurcation. There is a continuous branch of solutions starting from the trivial solution.

4 Existence of pulses in the case of global consumption

We consider the equation

w′′ + F (w, x, I(w)) = 0 (4.1)

on the whole axis. It describes evolution of biological species with global consumption of
resources [3], [12], [14]. Here

F (w, x, I) = aw2(1− I(w))− σ(x)w, I(w) =

∫ ∞

−∞
w(x)dx.

We look for a positive solution decaying at infinity. Set
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c = 1− I(w) (4.2)

and w = u/(ac). Then we get the equation

u′′ + u2 − σ(x)u = 0 (4.3)

which we studied in Section 2.6. If σ(x) is a positive even function bounded and increasing
for x > 0, then it has a positive decaying at infinity solution (Example 2.10). Then from
(4.2)

c2 − c+
1

a
I(u) = 0. (4.4)

This equation has two real solutions if I(u) < a/4, one solution in the case of equality, and
no solutions if the inequality is opposite. Hence equation (4.1) has pulse solutions if the
reproduction rate coefficient a is sufficiently large.

Example 4.1. In the case when σ(x) = σ0 > 0 is a constant, assuming u′(0) = 0 we can
find the analytic solution:

u(x) =
3σ0

2cosh2
(√

σ0

2
x
)

and the value of the integral I(u) = 6
√
σ0. Therefore, in the case of a > 24

√
σ0 we have the

two pulse solutions given by the formula

w1,2(x) =
3σ0

2ac1,2cosh2
(√

σ0

2
x
) , c1,2 =

1±
√
1− 24

a

√
σ0

2
.

When a = 24
√
σ0, there is a single pulse

w(x) =
3σ0

acosh2
(√

σ0

2
x
) .

Finally, for 0 < a < 24
√
σ0, we have no real valued pulse solutions.
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