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Abstract. A reaction-diffusion system of equation describing the distribution of population
density is considered. The existence of pulse solutions is proved by the Leray-Schauder
method based on the topological degree for elliptic operators in unbounded domains and
on a priori estimates of solutions. Numerical simulations show that such solutions become
stable in the case of global consumption of resources while they are unstable without the
integral terms. This model is used to describe human height distribution.
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1 Introduction

In this work we study the system of equations

du 0*u
% dy 92 + avv(l —rl(u) —rl(v)) — bu, (1.1)
v 0*v
5 = dy Ere + cuv(l —rl(u) —rl(v)) — dv (1.2)

on the whole axis. We will consider its positive stationary solutions decaying at infinity. We
will call such solutions pulses. Here all coefficients of the equations are positive constants,

)= [ Ty, Ody,  1(v) = / " oy t)dy.

—00 —0o0
In the context of population dynamics, this system describes the distribution of the popu-
lation in the case of sexual reproduction [7]. Here u is the density of males, v the density



of females, the space variable x corresponds to their phenotype. Diffusion terms describe
small random changes of the phenotype of offsprings in comparison with the phenotype of
parents. The reproduction terms are proportional to the product of densities and to avail-
able resources (K — rl(u) — rl(v)), where the carrying capacity K = 1 shows the rate of
production of resources, while their consumption is proportional to the total population
I(u)+I(v). The last terms in the right-hand side of equations (1.1), (1.2) describe mortality
of the population.

If we assume that all parameters characterizing male and female populations are equal
to each other, d; = dy, a = ¢, b = d, then taking a difference of equations (1.1) and (1.2), we
conclude that © = v. In this case we can reduce this system of equations to the equation

ou  O%*u

—_— = — 2 — —
o o T (1 —1I(u)) = bu. (1.3)
It is a particular case of a more general nonlocal reaction-diffusion equation
ou  0%u L o0
G = g a0 = ) b J) = [ ole = puly.tidy (1.4)

Here £ = 1 corresponds to asexual and k& = 2 to sexual reproduction. It has solutions
in the form of simple and periodic travelling waves and stationary pulses [2], [3], [4], [8],
[10]. The case where k = 2 and ¢(z) = 1 corresponds to sexual reproduction with global
consumption of resources. Equation (1.3) does not have travelling wave solutions but it has
stable stationary pulses [7].

In this work we will study the existence of stationary solutions of system (1.1), (1.2) in
the case where the parameters of male and female populations can be different from each
other. In this case the system of equations cannot be reduced to the single equation and
the proof of the existence of solutions becomes much more involved. We will study it by
the Leray-Schauder method which is based on the topological degree for elliptic operators in
unbounded domains [6]. We will carry out numerical simulations of this model in order to
verify stability of pulse solutions and we will use it to describe the human height distribution.

2 Existence of solutions

In this section we will study the existence of stationary solutions (pulses) for the reaction-
diffusion systems without the integral terms. We will use the Leray-Schauder method for the
elliptic problems in unbounded domains. In order to obtain a priori estimates of solutions,
we will first show that monotone and nonmonotone solutions of the corresponding problems
on the half-axis are separated from each other in the norm of the function space. After
that we will obtain a priori estimates of monotone solutions and will use the Leray-Schauder
method only for them. This approach was developed before for travelling wave solutions [7],
[9]. In the next section we will use the results of this section in order to prove the existence
of stationary solutions of system (1.1), (1.2).



2.1 Problem depending on parameter

In this section we will consider the problem

W+ auw —bu=0, V' +cuv—dov=0 (2.1)

W(0) = v'(0) = 0, u(co) = v(00) =0 (2.2)

with the coefficients that depend on the parameter 7 € [0, 1]. Solutions of this problem can
be extended on the whole axis by symmetry. The coefficients are positive for all values of
parameter and these dependencies are continuous. We will prove the following lemma about
monotonicity of solutions.

Lemma 2.1. Suppose that there exists a solution u,(x),v,(z) € C*T*(Ry) of problem (2.1),
(2.2) continuous with respect to T in the C'(R,)-norm. If both components of the solution
are monotonically decreasing for some 19 € [0, 1], then this is also true for all other values

of T.

Proof. Suppose that the assertion of the lemma does not hold, and at least one of the
components of solution is not strictly decreasing for some 71 € [0,1]. We can assume for
certainty that 7, > 75. Then there exists a value 7., 70 < 7. < 71 such that the functions u.(z)
and v, (z) are monotonically decreasing for all 7 € |1, 7..) and at least one of these functions
is not monotonically decreasing for any 7 € [, 7). We will show that this assumption will
lead to a contradiction.

We will use the notation u.(z) = u,, (x),v.(x) = v (x). Let us note first of all that
ul () < 0,v.(z) <0 for all z > 0 since these are C*(R,) limits of decreasing functions.
Then the following two properties hold:

u(0) > dr. /er., 0.(0) > br, /s, (2.3)

and

ul(z) <0, vi(r)<0, z>0. (2.4)

Let us begin with the first one. Since wu,(z) and v.(z) are non-increasing functions for x > 0
and v/ (0) = v,(0) = 0, then u”(0) < 0 and v7(0) < 0. We will show that these inequalities
are strict. Set w(z) = —ul(x), z(z) = —v.(x). Differentiating equations of system (2.1), we
obtain the following equations for these new functions:

w” 4+ a,v.(T)w + acu(x)z — bow = 0, (2.5)
2"+ couy ()2 + covi()w — doz = 0, (2.6)
w(0) = z(0) = 0. (2.7)



Here a, = a,,, and similarly for the other coefficients. Let us recall that w(z) > 0,z(z) >0
for all > 0. The coefficients of this system are non-negative since u,(x) > 0,v,(x) > 0.
Hence from the Hopf lemma it follows that either w/(0) > 0 or w(z) = 0 and 2/(0) > 0 or
z(x) = 0. We will prove below that these functions cannot be identically zero. Therefore
u/(0) < 0,v7(0) < 0. Inequalities (2.3) follow from these ones and from equations (2.1).

Similarly, from the positiveness theorem it follows that the functions w(z) and z(z) are
strictly positive for all x > 0 or they are identically zero. As above, we will show that they
cannot be identically zero. Hence they are strictly positive, and u/ (x) < 0,v,(x) < 0 for all
x > 0. This proves inequalities (2.4).

It remains to prove that the functions w(z) and z(x) are not identically zero. Suppose
that w(xz) = 0. Then wu.(z) = const. Since u,(00) = 0, then u(x) = 0. From the second
equation in (2.1) we conclude that v.(x) = 0. Since u,(z) — u.(x), v (xr) = v.(z) as
7 — 7. uniformly in C', then u.(0) < d,/c, and v,(0) < b,/a, for 7 sufficiently close to
T.. Moreover u,(0) > 0,v,(0) > 0 since these functions are monotonically decreasing. From
equations (2.1) we conclude that «”(0) > 0,v”(0) > 0. Hence we obtain a contradiction with
the assumption that these functions are decreasing.

Thus we proved that the functions u,(x) and v,(x) are not identically zero and that they
satisfy (2.3), (2.4).

From the definition of 7, it follows that there exists a sequence 7, N\ 7. such that u,, (x) —
u () and vy, () — vi(z) in CYR,) as 7, — 7. Denote u,(z) = u,, (z),v,(z) = v, ().
Then there is a sequence of positive numbers z,, such that u,(z,) = 0 or v/, (z,) = 0. We
will show that this assumption leads to a contradiction.

Without loss of generality we can affirm that one of the following three cases holds:
z, =0, z, = x, >0, x, — 0co. We will show that each of them leads to a contradiction.

1. @, — 0. Then passing to the limit we obtain . (0) = 0 or v/(0) = 0. This gives a
contradiction with (2.3).

2. x, — x,. Then u/(z,) = 0 or v, (z,) = 0. This contradicts (2.4).

3. x, — oo. Since the functions u,(x) and v,(z) converge to u.(z) and v.(x) uniformly on
the half-axis together with their first derivatives, then we can choose such £ > 0 and N > 0
that

u,(2) <0, v, (Z) <0, n>N; u,(z)+v,(x) <min(b,/an,d,/cy), x>%, n>N.
(2.8)
We will show that

u () <0, v (z)<0, x>z, n>N. (2.9)

Suppose that this is not the case and for some zy > 2, ng > N, at least one of the following
inequalities hold: u, (7o) > 0,v;, (z0) > 0.
Denote w(x) = —u,, (), z(r) = —v;, (z). These functions satisfy the equations



W 4 Ay Vg (T)W + Qg ting (2)2 — bpyw = 0, (2.10)

2"+ CpgUng ()2 4 CpgUng (x)w — dyyyz = 0. (2.11)

From (2.8) we conclude that w(z) > 0, z(Z) > 0. Further, we have at least on of the following
inequalities: w(x) < 0, z(xo) < 0. Therefore we can choose a number h > 0 such that

w(x)=w(x)+h>0, 2(x)=z2(x)+h>0, z>1,

and there exists x; > & such that at least one of the following equalities hold: w(x;) =
0,2(z1) = 0. Let us write the equations for the functions @ and 2. From (2.10), (2.11) we
obtain:

W' + g Ung (2) (W0 — h) + Apgting () (2 — h) — by, (w0 — h) = 0, (2.12)

2"+ Cgng () (2 — h) + Cpgng () (0 — h) — dpy (2 — h) = 0. (2.13)

This system of equations can be written as follows:

W 4 Ay Vg ()W + Aty ()2 — by + p(z) = 0, (2.14)

2" 4 Cpgtng ()2 4 CpgUng ()0 — dyy 2 4 q(z) = 0, (2.15)

() = h(bng = ang (tng () +0ng (2))) > 0, q(2) = hldny = Cng (tng () + 00 ) (2)) > 0, x> 7.
These estimates hold by virtue of (2.8).
Let us recall that
U Ung () 2() > 0, Cpyn, ()W (x) > 0.

Hence we can apply the positiveness theorem to equations (2.14), (2.15). Since
w(x) >0, 2(x) >0, >7; w(@) >0, 2()>0; w(x)=0 or 2(z;) =0,

then we obtain a contradiction with the positiveness theorem at least in one of these equa-
tions.
Thus, (2.9) is proved. Hence z,, cannot tend to infinity. This contradiction completes
the proof of the lemma.
O



2.2 A priori estimates of monotone solutions
2.2.1 Estimate of the maximum of solution

We consider the problem

W+ auww —bu=0, vV'+cuv—dv=0, (2.16)

u'(0) =2'(0) =0, u(o0) =wv(c0)=0. (2.17)

By a change of variables it can be reduced to the case where a, = ¢, = 1. Suppose that it
has a monotonically decreasing solution. We will estimate its value at x = 0. Let us begin
with the particular case where b, = d.. Then u = v. We multiply the first equation by u’
and integrate from 0 to co:

bu*(0) = —2/ w(x)u'(x)v(z)dr = —2/ w?(z)u (z)dx. (2.18)
0 0
Hence u(0) = 3b,/2. If b, # d,, then the estimate of the maximum of the solution becomes

much more involved. We present it in the Appendix.

Model with global consumption. Along with problem (2.1), (2.2), we will also consider
the system of equations

u” + aluv(l — I(u) — I(v)) — byu =0, (2.19)

V" 4 Quv(l — I(u) — I(v)) —dv =0 (2.20)

on the half-axis x > 0 with the following conditions a x = 0 and x — oo:

u'(0) =0'(0) =0, u(+00) = v(+00) =0. (2.21)

Here

1) = [ utdr, 10)= [ s

Set

ar =al(1—1I(u) — I(v)), c; =21 —I(u)—1(v)).

The we obtain problem (2.1), (2.2). We will consider monotonically decreasing solutions
u(x),v(z) € C*T(R,).

Let us note first of all that there is the estimate I(u) + I(v) < 1 for solutions of problem
(2.19)-(2.21). Indeed, otherwise the second derivatives of solutions are positive. Since u'(0) =
v'(0) = 0, then in the case of positive second derivatives the solution is monotonically
increasing. We obtain a contradiction with the assumption that the solution is decreasing.
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Lemma 2.2. There exists a positive constant M which depends on the coefficients a., b, c,, d,
such that monotone solutions ui(x), v, (x) of problem (2.19)-(2.21) satisfy the estimate

u(0) < M, v, (0) < M. (2.22)

Proof. Denote by z, the solution of the equation

Au(z)(1 - I(u) — I(v)) =d

and by x, the solution of the equation

a®v(z)(1 — I(u) — I(v)) = b
(the subscript 7 is omitted). Then

o () <0 , 0<z<u, o () <0 , 0<ze<uay,
>0 , r>x, >0 , r>x,

The function u(z) satisfies the problem

u” — bu + f(l’) =0, u|m:mv - u<Iv)7 U(OO) =0

on the half-axis # > z,. Here f(z) = a®u(z)v(z)(1 — I(u) — I(v)) > 0. Therefore it can be
estimated from below by the solution of the problem

W' —bu=0, u|pmp, = u(z,), ulcc)=0.

Hence

w(z) > u(z,)e @) x>,

Since I(u) < 1, then u(x,) < b and, by virtue of the previous inequality, |u/(z,)| < b*.
Next, we consider the same function in the interval 0 < x < z,. Since u”(z) < 0 for these
values of z, then |u/(z)] < ¥*, 0 < x < ,, and

u(0) — u(z,) < bz,
Hence u(0) < b+ b?z,. On the other hand, since u”(x) < 0 in this interval, then

u(x)Zu(O)—Mx, 0<z<ua,.
Therefore
I(w) > /0 " )y > %(U(O) ~ ulay)a.

From this estimate we obtain that w(0) < b+ 2I(u)/z,. Thus

7



u(0) < min(b + b*z,, b + 2/1,),

and u(0) is bounded independently of z,.
Similarly we can estimate v(0). The lemma is proved.

2.2.2 Estimates in weighted Holder spaces

Lemma 2.3. Consider monotonically decreasing solutions u,(x),v.(z) of problem (2.16),
(2.17) assuming that they are uniformly bounded in the C***(R,)-norm. Let x, the solution
of the equation c;u,(x) = d,/2 and by x, the solution of the equation a,v,(x) = b,/2 Then
T, and x, are bounded independently of T.

Proof. Suppose that the assertion of the lemma does not hold and at least one of these
values tends to infinity as 7, — 79. Let it be z, and x, > z,. Consider the functions
wy(x) = up,(z + x,) and z,(x) = v, (¢ + x,). Then the first one is a monotonically
decreasing function defined in the half-axis x > —x,. It satisfies the equation

w” + a;, zp(x)w — b, w =0 (2.23)
and
d, b,
= < —
wn(0) 2¢,. n(0) = 2a,,

Since the functions w, (z) and z,(x) are uniformly bounded, then we can get for them uniform
estimates in the Holder norm C?** on the half-axis x > —x,. Therefore we can choose locally
convergent subsequence of these sequences,

wy(x) = wo(x), zn(z) = 20(x), 1 — 0.

The functions wy(x) and zo(x) are defined on the whole axis, they are non-increasing, and
they are bounded and continuous together with their second derivatives. Passing to the limit
in equation (2.23), we get the equality

wy + aryzo(x)wg — brywe =0, x €R (2.24)
and
d,, b
= T < 2.2

Moreover, wy(oco) = 0,wp(—00) = w_ > 0. The limits wy(—o0) = w_ and zy(—00) = z_
should satisfy the equation

(@ry2— — bry)w_ =0



since w((z) — 0 as x — —oo. As w_ > 0, then a,z_ — b;, =0 and

ar20(z) — by <0, z€R

because zo(z) is a non-increasing function. From this inequality and (2.24) it follows that
wy(xz) > 0 for all z € R. Therefore wy(z) can be a bounded function only if w{(z) = 0 for
all z. Hence

ar20(z) — by, =0, z€R.

This equality contradicts (2.25). The lemma is proved.
0

Let p(z) = 1+ 2. Consider the weighted Holder space C27*(R; ), 0 < o < 1 with the
norm

lullczre e,y = llupllozre., ).

Lemma 2.4. Monotonically decreasing solutions w.(z),v.(z) of problem (2.1), (2.2) are
bounded in the norm Cﬁ*a (Ry) independently of T.

Proof. It is sufficient to estimate the uniform norm of the functions w, (x)u(z), v, (x)u(x).
Then the estimates of the Holder norm will follow by virtue of the equations. In order
to estimate these functions, it is sufficient to note that they are uniformly exponentially
decreasing for © > x¢y = max(x,, x,), where these values are defined in Lemma 2.3. Therefore
the functions are bounded for z > 3. On the other hand, since z( is bounded independently
of 7 and the functions u,(x), v, (z) are also bounded independently of 7, then the functions
ur(x)p(z), v (x)p(x) are bounded independently of 7 in the interval 0 < 2 < xy. The lemma
is proved.
O

Remark 2.5. The assertion of the lemma is also valid for problem (2.19)-(2.21). The proof
of the lemma in this case is similar.

2.3 Leray-Schauder method

We will prove existence of solutions by the Leray-Schauder method. Consider the operator
A, : E — F, where
U v + a,uv — byu
Ar v ) T V' +cuw—d

E={u,ve C2(Ry), v'(0) =0'(0) =0}, F=CIR,).

This operator is bounded and continuous. Assuming that the coefficients a,,b,,c,,d, are
sufficiently smooth functions of 7, we affirm that this operator is proper on closed bounded
sets and topological degree can be defined for it [6].

9



From the results of the previous section it follows that all monotone solutions of the
equation A, = 0 are strictly inside of some ball Br of the space E. Moreover from the
results of Section 2.1 we conclude that there exists a positive constant € such that

[ure —unlle + |l —onlls =€, V7 e[0,1].

for any monotone solution wu,s, vy, and any non-monotone solution uy, vy. Since the set of
solutions is compact inside the ball Bg by virtue of the properness of the operator, then it is
possible to construct it is possible construct a domain D C Bgi which contains all monotone
solutions and which does not contain any non-monotone solution. Indeed, it is sufficient to
take a ball of the radius €/2 around each monotone solution, to take their union and choose
its finite covering.

Let us also note that if € is sufficiently small, then domain D does not contain the
trivial solution. Indeed, all monotonically decreasing solutions satisfy the inequalities u(0) >
d./cr,v(0) > b /a,.

We can apply the Leray-Schauder method to the operator A, in the domain D. We will
obtain the existence of solutions if the topological degree (A, D) is different from 0 for
some value of 7. In the other words, it is sufficient to construct a model operator with the
degree different from 0.

2.4 Model problem
Consider the problem

Wt uww—bu=0, V'+uv—bv=0 (2.26)
on the half-axis > 0 with conditions
u'(0) =2'(0) =0, u(o0)=wv(c0)=0. (2.27)
Taking a difference of the two equations in (2.26) we can conclude that u(x) = v(x). There-
fore we reduce problem (2.26), (2.27) to the scalar problem
u +u?—bu=0, u(0)=0, u(cc)=0. (2.28)

It can be easily verified that it has a unique monotonically decreasing solutions for any b > 0.
Denote this solution by ug and consider problem (2.26) linearized about this solution:

" + avo(z) + dup(x) — b =0, (2.29)
" + awvo(z) + vug(z) — b0 =0, (2.30)
@(0) = #(0) = 0, (o0) = (c0) = 0. (2.31)

10



Here ug(xz) = wvo(x). Taking a difference of equations (2.29) and (2.30), we verify that
u(z) = 0(x). Hence we can reduce this problem to the following one:

" + 2dug(x) — bit = 0, (2.32)

@(0) =0, a(o0)=0. (2.33)

This is exactly the problem obtained as linearization of (2.28). It can be proved that this
problem has only trivial solution [7]. Therefore we can calculate the index of this stationary
point, that is topological degree with respect to small ball around this point:

ind ug = (—1)",

where v is the number of positive eigenvalues of the linearized operator together with their
multiplicities. Since 0 is not an eigenvalue of this operator, then the index is well defined
and it is different from zero.

2.5 Existence theorem

Consider the problem

v +auww —bu=0, v+ cuv—dv=0 (2.34)

u(0) =v(0) =0, wu(oco)=1wv(c0)=0. (2.35)

Set w = w/c,v = z/a. Then the new functions w and z satisfy the problem

w'twz—bw=0, 2Z'4+wz—dz=0 (2.36)

w(0) = 2(0) =0, w(oco) = z(c0) = 0. (2.37)
We can now formulate the main result of this section.

Theorem 2.6. Problem (2.36), (2.37) has a monotonically decreasing solution for any
positive numbers b and d.

Proof. We set a, = ¢, = 1,b;, = b,d, =7b+ (1 —7)d, 7 € [0, 1] and consider the operator
A, defined in Section 2.3. A priori estimates of monotone solutions of the equation A, =0
are obtained in Section 2.2. We can construct a domain D C FE such that it contains only
monotonically decreasing solutions of this equation and it does not contain non-monotone
solutions and the trivial solution (Sections 2.1, 2.3). The model problem is studied in Section
2.4. Since y(A;, D) # 0 for 7 = 1, then this is also true for 7 = 0. From this we conclude
about the existence of solutions for 7 = 0.
O
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3 System with global consumption

3.1 Existence of solutions

Consider the problem
u' +auv(l —I(u) —I(v)) —bu=0, v+ cuw(l—1I(u)—1(v))—dv=0 (3.1)

u(0) =v(0) =0, wu(oco)=1wv(c0)=0. (3.2)

Set k =1—1I(u) — I(v), u = w/ck,v = z/ak. Then the new functions w and z satisfy the
problem

w' twz—bw=0, 2Z'4+wz—dz=0 (3.3)

w(0) = 2(0) =0, w(oco) = z(c0) =0. (3.4)

Existence of solutions of this problem is proved in Theorem 2.6. Denote by wq(x), 2o(z) a
solution of this problem. Then we have the equality

1 1
Hence
K —k+B=0, (3.5)

where = I(wg)/c+1(zp)/a. This equation has two positive solutions if 5 < 1/4 no solutions
for 5 > 1/4. Therefore we have the following existence result.

Theorem 3.1. For any solution wy(x), zo(x) of problem (3.3), (3.4), problem (3.1), (3.2)
has two solutions uy 2(x) = wo(z)/cki2,v12(x) = 20(x)/akia if [(wo)/c+ I(2)/a < 1/4.
Here ky o are solutions of equation (3.5). There is only one such solution in the case of
equality and no solutions if the inequality is opposite.

We prove here the existence of solutions of problem (3.1), (3.2) with global consumption
of resources reducing it to the reaction-diffusion system with constant coefficients (without
integral terms). On the other hand, we have obtained above a priori estimates of solutions
directly for problem (3.1), (3.2), and we can apply for it the Leray-Schauder method. How-
ever, as it follows from the previous theorem, the number of solutions of this problem is
even, and the total value of the topological degree equals zero. Therefore we cannot directly
conclude that there exist solutions of problem (3.1), (3.2), and we reduce it to problem (3.3),
(3.4).

12



3.2 Parents with different phenotype

In the previous section we studied existence of solutions of problem (3.1), (3.2) on the half-
axis. It can be extended by symmetry on the whole axis. Hence we have the existence of
positive solutions of the problem

u" +auv(l = I(u) = I(v)) —bu=0, v"+cuwv(l—1I(u)—1(v))—dv=0, (3.6)

u(+o00) = v(+o0) = 0. (3.7)

Let us note that these solutions are invariant with respect to translation in space.

We will briefly discuss biological aspects of this model. The reproduction terms in equa-
tions (3.6) are proportional to the product u(x)v(x) of the densities of males and females.
We take these densities at the same space point x. If we interpret the space variable as
phenotype of the individuals, then this means that both parents have the same phenotype,
and their offsprings have the same phenotype as parents with a small perturbation due to
random mutations (diffusion term). However the phenotypes of parents can be different. For
example, it is known that there is a relation between the sizes of males and females who form
a couple. In order to take this difference into account, we will replace the term wu(z)v(z)
by the term w(z + h)v(x) assuming that the phenotype of males has a constant shift with
respect to the phenotype of females. We will also assume that male offsprings have the same
phenotype as their father, while female offspring as their mother. Then we get the system
of equations

u(z + h)" + au(z + h)o(z)(1 = I(u) = I(v)) = bu(z + h) = 0,

v(z)" + cu(z + h)v(z)(1 — I(u) — I(v)) — dv(x) = 0.

This system can be reduced to the system with the same phenotypes of parents if we introduce
the new functions w(z) = u(x+h), z(z) = v(x). Hence the result on the existence of solutions
remains valid in the case of different phenotypes of males and females.

3.3 Dynamics of solutions

We now consider the evolution problem on the whole axis,

ou 0*u
5 = d; pye +auv(l —rl(u) —ri(v)) — bu, (3.8)
v 0
5 dy 92 + cuv(l —rl(u) —rl(v)) — dv, (3.9)

where
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)= [ T, )dy, 1) = / " oy t)dy.

We will look for solutions of this problem decaying at infinity. Theorem 3.1 provides existence
of stationary solutions of this problem if we extend them on the whole axis by symmetry. If
r = 0, then these stationary solutions are unstable because the principal eigenvalue of the
corresponding linearized problem is positive [9].

We carry our numerical simulations of system (3.8), (3.9) on a sufficiently large interval
where the influence of the boundary can be neglected. We use the implicit finite difference
method with Thomas algorithm. Numerical simulations show that the solution of system
(3.8), (3.9) with > 0 converges to the stationary solution (pulse). From this point of view
we can suppose that the pulse solution becomes stable due to the presence of the integral
terms in the equations. Similarly, in the case of the scalar equation, pulse solutions are
unstable. However they become stable in the case of global consumption [2], [7].

Percent distribution

Height, inches

Figure 1: Human height distribution in statistical data (histograms), numerical simulations
of system (3.8), (3.9) with different phenotypes of parents (cf. Section 3.2) and normal
distributions (see the explanation in the text).

We will apply this system to model human height distribution. Here x is the height of
individuals, u(z,t) is the height density distribution for men and v(x,¢) for women. Since the
average height of men and women who form a couple are different, we will consider shifted
phenotypes (heights) as described in Section 3.2:

ou(z + h,t)
ot

O*u(z + h,t)

=d
! 0x?

+au(z+h,t)v(x, t)(1—rl(u) —rl(v)) —bu(x+h,t), (3.10)
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ov(z,t) O%*v(x,t)
ot o + cu(x + h,t)v(z, t)(1 —ri(u) — ri(v)) — dv(zx, t). (3.11)

We will compare numerical simulations of this model with statistical data [1] and with the
normal distribution. The histograms in Figure 1 show statistical data for the men height
distribution (blue) and for the women height distribution (red).

Upper curves for each distribution (blue and red) show the results of numerical simulation
of system (3.10), (3.11) with the value of parameters d; = 3.7,a = 50,7 = 0.393,b = 1,ds =
2.2,¢c = 50,d = 1. We suppose that all coefficients in the first equation are the same as
in the second equation except for the diffusion coefficients. In the other words, we assume
that natality and mortality of men and women are the same as well as the consumption
of resources. Diffusion terms show genetic variability of children with respect with their
parents. Genetic variability of men is greater than that of women, and their distribution is
wider.

The lower curves in both distributions correspond to the normal distributions. Black
curve (men height distribution) shows the normal distribution with parameters: mean 69,
standard deviation 2.8, variance 7.84; green curve (women height distribution) corresponds
to the normal distribution with parameters: mean 63.6, standard deviation 2.5, variance 6.25.
Model (3.8), (3.9) gives very close results to the normal distribution with some difference at
the tails of the distributions. Thus, stationary solutions of system (3.8), (3.9) give a good
description of the human height distribution.
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4 Appendix. Estimate of the maximum

Consider the problem

u'+uv—bu=0, v +uv—dv=0, (4.1)

u'(0) =2'(0) =0, u(oo) =wv(o0)=0. (4.2)
Multiplying the first equation by u’, the second by v" and integrating, we get

bu?(0) = —2 /Ooou(a:)u'($)v($)d:l:, dv?(0) = —2 /000 w(z)v(z)v' (z)dz.

We can introduce the function V (u) such that v(x) = V(u(z)) and the inverse function U (v)
such that u(x) = U(v(z)). Then the last equalities can be written in the following form:

u(0) v(0)
bu*(0) = 2/ uV (u)du, dv*(0) = 2/ U(v)vdv.
0 0

The estimate of u(0) and v(0) requires several steps.

1. Suppose that w(0) +v(0) > b+ d+ 2¢ for some € > 0. Then for some z, either u(z) = d+e€
or v(z) = b+ e. Indeed, if we assume that for all z > 0, u(z) < d+ € and v(x) < b+ ¢, then
this is also true for x = 0 and we obtain a contradiction.

We will assume for certainty that u(zg) = d+¢€, v(xg) < b+ € for some z = xy > 0. Since
u(z) and v(z) are decreasing functions, then u(x) > d + € for v > v(xg). Therefore
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v(0)
dv*(0) > 2(d + e)/ vdv = (d+ €)(v3(0) — v%(x0)).

v(z0)

Hence

v(0) <v(zo)\/1+d/e < (b+e)\/1+d/e (=v). (4.3)

2. Suppose that U(v) > k(v — ) for all 6 < v < v(0) and for some k& > 0,6 > 0. Then

v(0) v(0)
d*(0) > 2k / o(v — 8)dv — (gkzﬁ - 1«502) _ gk(zﬁ(m %) — k6(v2(0) — &%)
é 1)
or

3(d/k +6)v*(0) > 20°(0) + 8 = 3(d/k + 0)v*(0) > 20*(0) = v(0) < g(d/k +4).

Hence for k sufficiently large and § sufficiently small we obtain that v(0) < b. However, this
inequality should be opposite since u”(0) < 0.

Hence there exist some values k and § such that U(vy) = k(vy — 0) for some vy > 6
(Figure 2). Moreover, vy < v(0) < v1. Then for all u > U(vy), we have V(u) > 4.

A%
u=k(v-9)

) S L

U | (u(0),v(0)
wlo- |

| |

5 ; i

U(Vz) u 0 u

Figure 2: Illustration to the estimates of u(0),v(0). The function V(u) (or U(v)) is shown
on the (u,v)-plane. It is monotonically increasing, bounded from above by v; and intersects
the line u = k(v — 0).

3. Let f(v) = k(v —6). Consider the inverse function g(u) = tu + 6. Let ug be the solution
of the equation

17



1
Eu—Fé:Ul.

Then uy = k(vy —6) = k((b+ €)\/1+d/e —§). For k sufficiently large and ¢ sufficiently
small, we have that uy > 2d. Since vy < vy, then U(vg) = k(ve — §) < k(v1 — 0) = up.

4. If we assume that u(0) > wug, then for some z; > 0, we get u(z;) = ug. Then for
all 0 < = < 2y, u(zr) > wg > 2d. Since u(x) > uy > U(vy), then v(x) > vy > § and
v(z) <v(0) < vy.

Thus, we can summarize. There are some values z; and ugy such that u(z;) = uy and

2d <u(z), 0<wv(x) 0<z<uz; v(x)<wv, 0<z<oo. (4.4)
5. From estimates (4.4) and equations (4.1) we obtain:

u(zy) = uo, (4.5)

U+ p)u=0, 0<x<m, (4.6)
where p(x) = v(z) — b, |v(z) — b| < v; + b = ¢ (notation),

" (2)] = |p(z)[u(z) < quo, = =1, (4.7)

V'(z) = (d —u(z))v(z) < —dv(z) < =dd, 0<az<ux (4.8)

Consider the system where the coefficients depend on a parameter 7 € [0, 1]. We suppose
that the coefficients b,,d, are uniformly bounded. Suppose that there is a sequence of
solutions u,(z), v, (x) such that u.(0) — oo as 7 — 79, v,(0) satisfies estimate (4.3). All
values €, 9, x1, ug, ¢ can be chosen independently of 7.

Suppose that the value z; and the derivative u/ (1) are uniformly bounded. Since u,(x)
satisfies equation (4.6) with uniformly bounded coefficients, then u,(0) is also uniformly
bounded. If this derivative tends to infinity, then from (4.7) it follows that w,(x) becomes
negative. Finally, if z; tends to infinity, then v, (z) becomes negative since v, (0) is uniformly
bounded and its second derivative satisfies (4.8).
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