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ESTIMATES FOR THE LARGE TIME BEHAVIOR

OF THE LANDAU EQUATION

IN THE COULOMB CASE

K. CARRAPATOSO, L. DESVILLETTES, AND L. HE

Abstract. This work deals with the large time behaviour of the spatially homogeneous
Landau equation with Coulomb potential. Firstly, we obtain a bound from below of the
entropy dissipation D(f) by a weighted relative Fisher information of f with respect to
the associated Maxwellian distribution, which leads to a variant of Cercignani’s conjecture
thanks to a logarithmic Sobolev inequality. Secondly, we prove the propagation of polynomial
and stretched exponential moments with an at most linearly growing in time rate. As an
application of these estimates, we show the convergence of any (H- or weak) solution to the
Landau equation with Coulomb potential to the associated Maxwellian equilibrium with an
explicitly computable rate, assuming initial data with finite mass, energy, entropy and some
higher L1-moment. More precisely, if the initial data have some (large enough) polynomial
L1-moment, then we obtain an algebraic decay. If the initial data have a stretched exponential
L1-moment, then we recover a stretched exponential decay.

1. Introduction

The Landau equation is a fundamental model in kinetic theory that describes the evolution
in time of a plasma due to collisions between charged particles.

We consider in this work the spatially homogeneous Landau equation with Coulomb potential
(cf. [28, 12, 20])

(1) ∂tf = Q(f, f),

which is complemented with initial data f0 = f0(v) ≥ 0. Here f := f(t, v) ≥ 0 stands for the
distribution of particles that at time t ∈ R+ possess the velocity v ∈ R

3. The Landau operator
Q is a bilinear operator acting only on the velocity variable v. It writes

(2) Q(f, f)(v) = ∇ ·
∫

R3

a(v − w){f(w)∇f(v) −∇f(w)f(v)} dw,

where a is a matrix-valued function that is symmetric, (semi-definite) positive. It depends on
the interaction potential between particles, and is defined by (for i, j = 1, 2, 3)

(3) aij(z) = |z|γ+2Πij(z), Πij(z) = δij −
zizj
|z|2 , −4 < γ ≤ 1.

Observe that Π(z) := (Πij(z))i,j=1,2,3 is the orthogonal projection onto z⊥. One usually classifies
the different cases as follows: hard potentials 0 < γ ≤ 1, Maxwellian molecules γ = 0, moderately
soft potentials −2 ≤ γ < 0 and very soft potentials −4 < γ < −2. Note that the very
soft potentials include the Coulomb potential γ = −3. From now on, for the sake of clarity
and because it is the most physically interesting case, we shall only consider in this work the
Coulomb potential case γ = −3, except when moment estimates are concerned. It is however
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worth mentioning that our methods and results can be straightforwardly adapted to the soft
potentials case −4 < γ < 0, as explained in more details in the remarks after our main theorems.

One usually introduces the quantities

bi(z) =

3
∑

j=1

∂jaij(z) = −2 zi |z|−3, c(z) =

3
∑

i=1

3
∑

j=1

∂ijaij(z) = −8π δ0(z),

so that the Landau operator can be written as

(4)

Q(f, f) =

3
∑

i=1

∂i

( 3
∑

j=1

(aij ∗ f) ∂jf − (bi ∗ f) f
)

=

3
∑

i=1

3
∑

j=1

(aij ∗ f) ∂ijf + 8π f2.

At the formal level, we can write thanks to (2) a weak formulation of the Landau operator
Q, for a test function ϕ, in the following way:
(5)
∫

R3

Q(f, f)(v)ϕ(v) dv

= −1

2

3
∑

i=1

3
∑

j=1

∫∫

R3×R3

aij(v − w)

{

∂if

f
(v) − ∂if

f
(w)

}

{∂jϕ(v)− ∂jϕ(w)} f(v)f(w) dv dw.

Another weak formulation, based on (4), also holds at the formal level:

(6)

∫

R3

Q(f, f)(v)ϕ(v) dv =
1

2

3
∑

i=1

3
∑

j=1

∫∫

R3×R3

aij(v − w)
{

∂ijϕ(v) + ∂ijϕ(w)
}

f(v)f(w) dv dw

+

3
∑

i=1

∫∫

R3×R3

bi(v − w)
{

∂iϕ(v) − ∂iϕ(w)
}

f(v)f(w) dv dw.

From the weak formulation (5), we can easily deduce some fundamental properties of the Landau
operator Q. The operator indeed conserves (at the formal level) mass, momentum and energy,
more precisely

(7)

∫

R3

Q(f, f)(v)ϕ(v) dv = 0 for ϕ(v) = 1, vi,
|v|2
2

.

We also deduce from (5), at the formal level, the entropy structure by taking the test function
ϕ(v) = log f(v), that is

(8) D(f) := −
∫

Q(f, f)(v) log f(v) dv

=
1

2

3
∑

i=1

3
∑

j=1

∫∫

R3×R3

aij(v − w)

{

∂if

f
(v)− ∂if

f
(w)

}{

∂jf

f
(v)− ∂jf

f
(w)

}

f(v) f(w) dv dw.

Note that D(f) ≥ 0 since the matrix a is (semi-definite) positive. It also follows (see for example
[21]) that any equilibrium (that is, any f such that D(f) = 0) is a Maxwellian distribution

(9) µρ,u,T (v) =
ρ

(2πT )3/2
e−

|v−u|2

2T ,
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where ρ ≥ 0 is the density, u ∈ R
3 the mean velocity and T > 0 the temperature, defined by

ρ =

∫

R3

f(v) dv, u =
1

ρ

∫

R3

v f(v) dv, T =
1

3ρ

∫

R3

|v − u|2 f(v) dv.

As a consequence of the properties above at the level of the operator, we can obtain the corre-
sponding properties (at the formal level) for the solutions of the spatially homogeneous Landau
equation (1), that is, the conservation of mass, momentum and energy

(10) ∀t ≥ 0, ρ(t) = ρ(0), u(t) = u(0), T (t) = T (0),

on one hand, and the entropy property on the other hand

(11)
d

dt
H(f(t, ·)) = −D(f(t, ·)) ≤ 0,

where H(f) :=
∫

f(v) log f(v) dv is the entropy and D(f), defined by (8), is the entropy dissi-
pation.

Throughout this paper, we shall always assume that f0 ≥ 0 and f0 ∈ L1
2 ∩ L logL(R3).

Furthermore, in most of the paper, we suppose, without loss of generality, that f0 satisfies the
normalization identities

(12)

∫

R3

f0(v) dv = 1,

∫

R3

f0(v) v dv = 0,

∫

R3

f0(v) |v|2 dv = 3,

which can be rewritten ρ(0) = 1, u(0) = 0, T (0) = 1. Finally, we denote by µ(v) = (2π)−3/2e−|v|2/2

the Maxwellian distribution (centred reduced Gaussian) with same mass, momentum and energy
as f0 satisfying (12).

Let us briefly recall some existing results on the Landau equation (1) with Coulomb potential.
Villani [36] proved global existence of the so-called H-solutions for initial data with finite mass,
energy and entropy. More recently, the second author [14] proved that H-solutions are in
fact weak solutions (in the usual sense), thanks to a new estimate for the entropy dissipation
D(f). More precisely it is obtained in [14] that there is an explicitly computable constant
C0 = C0(H̄) > 0 such that, for all (normalized) f ≥ 0 satisfying H(f) ≤ H̄ , the following
inequality holds:

(13) ‖f‖L3
−3

≤ C0 (1 +D(f)),

where (for any p ∈ [1,+∞[, q ∈ R) the Lp
q norm is defined by

‖f‖p
Lp

q
=

∫

R3

|f(v)|p (1 + |v|2)pq/2 dv.

Therefore, since (for H solutions of the spatially homogeneous Landau equation) D(f) ∈
L1
t (]0,∞[) thanks to identity (11), we obtain that any H solution of this equation lies in

L1
loc([0,∞);L3

−3(R
3)), which is sufficient to define weak solutions in the usual sense (using the

weak form (6)), see [14] for more details. We also quote [37] for renormalized solutions in the
spatially inhomogeneous context, and [2] for local in time solutions.

Let us mention the results concerning the well-posedness issue. Fournier [23] obtained that
uniqueness holds in the class L∞

loc([0,∞);L1
2(R

3))∩L1
loc([0,∞);L∞(R3)), and this result implies

a local well-posedness result assuming further that the initial data lie in L∞(R3), thanks to the
local existence result of Arsenev-Peskov [6] for such initial data. We also refer to [25] and [26]
for the global well-posedness and the local well-posedness for the inhomogeneous equation in
weighted Sobolev spaces, as well as to [3, 4, 24] for the non-cutoff Boltzmann equation, whose
structure shares similarities with the Landau equation.

Concerning the large time behaviour issue, we shall mention some known results for all kind
of potentials. In the spatially homogeneous case, Villani and the second author [21] proved
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exponential decay to equilibrium in the Maxwellian molecules case γ = 0, and algebraic decay
for hard potentials 0 < γ ≤ 1. Later, the first author [8] proved exponential decay for hard
potentials. Toscani and Villani [33] proved algebraic decay for mollified soft potentials −3 <
γ < 0 (i.e. truncating the singularity of (3) at the origin) excluding the Coulomb case, and
the first author [9] proved polynomial convergence for moderately soft potentials −2 < γ < 0
and exponential convergence in the case −1 < γ < 0. Some results were also obtained in
the spatially inhomogeneous case. For potentials in the range −2 ≤ γ ≤ 1 and in a close-to-
equilibrium framework, exponential decay to equilibrium has been established by Mouhot and
Neumann [29], Yu [41], and more recently by Tristani, Wu and the first author [10]. Still in a
perturbative framework and for the Coulomb case, Guo and Strain [31] (see also [30]) proved
stretched exponential decay to equilibrium in a high-order Sobolev space with fast decay in
the velocity variable. Also, for general initial data and in the Coulomb case, Villani and the
second author [22] proved algebraic convergence to equilibrium for (uniformly w.r.t time) a
priori smooth solutions.

The aim of this work is to study the large time behaviour of solutions to the spatially ho-
mogeneous Landau equation in the Coulomb case. Our proof is based on an entropy-entropy
dissipation method.

This method (and its variants) has been widely used to tackle the large time behaviour of
many models in kinetic theory (cf. in particular [32, 21, 35], and earlier attempts like [15]) as
well as in many other PDEs or integral equations (cf. for example [1] or [17]). It is important
to emphasize that this method can handle nonlinear equations directly (that is, no linearization
is involved).

Roughly speaking, it consists in looking for some Lyapunov functional for the evolution
equation (usually called entropy) and then in computing its associated dissipation (usually
called entropy dissipation). Then, the existence of functional inequalities relating the entropy
dissipation to the entropy itself is investigated. When the method is successful, such inequalities
enable to close a differential inequality for the entropy, and yield the large time behaviour.

When the functional inequality involves quantities which grow slowly (that is, polynomially)
with respect to time along the flow of the equation, the entropy-entropy dissipation method is
said to be “with slowly growing a priori bounds”. We refer for example to [33] and [18] for such
a situation. In this work, we also use this variant of the entropy-entropy dissipation method.

In kinetic theory, more precisely when Boltzmann and Landau equations are concerned, the
functional inequality that hopefully links the entropy dissipation and the entropy was suggested
by Cercignani (cf. [11]), and has been known since as Cercignani’s conjecture. We refer to [19]
for a detailed description of the network of conjectures now bearing this name. We present in
this work a variant of the so-called weak Cercignani’s conjecture for the Landau equation (with
Coulomb potential).

2. Main results

We state in this section our main results. Hereafter we shall denote polynomial L1-moments
(for ℓ ∈ R) by

(14) Mℓ(f) := ‖f‖L1
ℓ(R

3) :=

∫

R3

〈v〉ℓ f(v) dv, 〈v〉 := (1 + |v|2)1/2,

as well as stretched exponential L1-moments (for s > 0, κ ∈ R) by

(15) Ms,κ(f) := ‖f‖L1(eκ〈v〉s dv) :=

∫

R3

eκ〈v〉
s

f(v) dv.
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Our first main result is a new estimate that bounds from below the entropy dissipation D(f)
(defined in (8)) by a weighted relative Fisher information of f with respect to the associated
Maxwellian distribution µ, provided that some higher moment of f is controlled.

Theorem 1. One can find C := C(H̄) > 0 depending only on H̄ such that for all f ≥ 0
satisfying (the normalization of mass, momentum and energy)

(16)

∫

R3

f(v) dv = 1,

∫

R3

f(v) v dv = 0,

∫

R3

f(v) |v|2 dv = 3,

and also satisfying (an upper bound on the entropy)

(17) H(f) :=

∫

R3

f(v) log f(v) dv ≤ H̄,

the following inequality holds:

(18) D(f) ≥ C(H̄) (M5(f))
−1

∫

R3

f(v)

∣

∣

∣

∣

∇f(v)

f(v)
+ v

∣

∣

∣

∣

2

〈v〉−3 dv.

Remark 1.1. (1) We consider in this work only the case of Coulomb potential, namely γ =
−3 in the definition of the matrix a given by (3). A straightforward adaptation also
gives analogous results for general soft potentials −4 < γ < 0. In this situation, estimate
(18) becomes

(19) D(f) ≥ C(H̄) (M2−γ(f))
−1

∫

R3

f(v)

∣

∣

∣

∣

∇f(v)

f(v)
+ v

∣

∣

∣

∣

2

〈v〉γ dv.

(2) We recall that in the case of Maxwell molecules, that is, γ = 0, estimate (19) is already
known (cf. [21]), and does not involve any higher moment of f (it involves only M2(f)).

The proof of this theorem is inspired by the arguments developed by the second author in [14],
where it is obtained that the weighted (non relative) Fisher information of f can be bounded
from above by the entropy dissipation D(f) plus some constant (depending on the mass and
energy of f , when f is not normalized). There are nevertheless important differences between
the computations of [14] and the proof given here. First, since we allow here the presence in
the estimate of a moment of high order, one can use simpler multiplicators than in [14] (no
Maxwellian with an arbitrary temperature is introduced in the proof, cf. also [16]). Secondly,
and most importantly, one has to keep the exact value of the coefficients appearing in front of
linear terms like vi, whereas those terms were estimated without too much care in [14].

As a consequence of estimate (18), we shall prove a variant of the so-called weak Cercignani’s
conjecture for the Landau equation (with Coulomb potential). We refer to [19] for a systematic
description of Cercignani’s conjecture. Let us say here that the term “weak” means that some
quantity other than the mass, energy and (upper bound on the) entropy plays a role in the
relationship between D(f) and a weighted version of the relative entropy. Indeed, we need here
a control on the fifth moment of f (that is, M5(f)). This result (variant of the weak Cercignani’s
conjecture) for the Landau equation (with Coulomb potential) is summarized in the corollary
below:

Corollary 1.1. One can find C := C(H̄) > 0 depending only on H̄ such that for all f ≥ 0
satisfying (the normalization of mass, momentum and energy) (16) and also satisfying (an upper
bound on the entropy) (17), the following inequality holds:

(20) D(f) ≥ C(H̄) (M5(f))
−1

∫
{

f log

(

Z1

Z2

f

µ

)

+
Z2

Z1
µ− f

}

〈v〉−3 dv,
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with Z1 =
∫

〈v〉−3µ and Z2 =
∫

〈v〉−3f . As a consequence, for any R > 0 (and some absolute
constant C > 0)

(21)

D(f) ≥ C(H̄) (M5(f))
−1 R−3

(

∫

f log(f/µ) dv −
∫

〈v〉≥R

f log f dv

− C

∫

〈v〉≥R

〈v〉2 f dv − C

∫

〈v〉≥R

µ dv

)

.

Remark 1.2. As already explained in Remark 1.1-(1), this result can be easily adapted to the
case of general soft potentials −4 < γ < 0, in which case we obtain estimates (20) and (21)
replacing M5(f) by M2−γ(f), 〈v〉−3 by 〈v〉γ , R−3 by Rγ , Z1 by

∫

〈v〉γµ, and Z2 by
∫

〈v〉γf .

As an application of the entropy dissipation estimates established in Theorem 1 and Corol-
lary 1.1, we obtain the convergence (with rate) of any (H- or weak) solution f (of the spatially
homogeneous Landau equation with Coulomb potential, and normalized initial data) to the as-
sociated Maxwellian equilibrium µ, assuming only that the initial data has finite mass, energy,
entropy and some higher L1-moment. Before stating our result, let us introduce the notion of
solutions that we shall consider in this work.

Definition 1 (H-solutions [36]). Consider a nonnegative f0 ∈ L1
2 ∩L logL(R3). We say that f

is a H-solution to the spatially homogeneous Landau equation (1) with Coulomb potential and
with initial data f0 if it satisfies:

(a) f ≥ 0, f ∈ C([0,∞);D′(R3)) ∩ L∞([0,∞);L1
2 ∩ L logL(R3)), f(0) = f0;

(b) The conservation of mass, momentum and energy, that is, for all t ≥ 0,
∫

f(t, v)φ(v) dv =

∫

f0(v)φ(v) dv for φ(v) = 1, vj, |v|2;

(c) The entropy inequality, for all t ≥ 0,

H(f(t)) +

∫ t

0

D(f(τ)) dτ ≤ H(f0);

(d) f satisfies (1) in the distributional sense: for any test function ϕ ∈ C1([0,∞);C∞
c (R3))

and for any t ≥ 0,
∫

f(t)ϕdv −
∫

f0ϕ(0) dv −
∫ t

0

∫

f(τ)∂tϕ(τ) dv dτ =

∫ t

0

∫

Q(f, f)(τ)ϕ(τ) dv dτ ;

where
∫

Q(f, f)ϕdv is defined by (5).

Definition 2 (Weak solutions). Consider a nonnegative f0 ∈ L1
2 ∩ L logL(R3). We say that f

is a weak solution to the spatially homogeneous Landau equation (1) with Coulomb potential and
with initial data f0 if it satisfies (a), (b), (c), and (d) of Definition 1, with the weak formulation
of
∫

Q(f, f)ϕdv being defined by (6).

As already mentioned, it was proven in [14] that if f ∈ L∞([0,∞);L1
2 ∩ L logL(R3)) and

D(f) ∈ L1([0,∞)) then f ∈ L1
loc([0,∞);L3

−3(R
3)), more precisely estimate (13) holds. Therefore

we can replace condition (a) by

(a′) f ≥ 0, f ∈ C([0,∞);D′(R3))∩L∞([0,∞);L1
2∩L logL(R3))∩L1

loc([0,∞);L3
−3(R

3)), f(0) = f0,

and then the two notions of solutions are equivalent (because with this new bound we can define
∫

Q(f, f)ϕdv by (6)).

Hereafter, in this work, we shall simply say that f is aH- or weak solution to the Cauchy prob-
lem (1), meaning that f satisfies (a′) (with estimate (13)), (b), (c) and (d), with

∫

Q(f, f)ϕdv
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being defined equivalently by (5) or (6). Moreover, we will sometimes split the operator
Q = Q1 +Q2 and use

∫

Q1(f, f)ϕdv defined by (5) and
∫

Q2(f, f)ϕdv defined by (6).
It is noticed in [36] that (5) and (6) make sense as soon as f satisfies (a′) and ϕ = ϕ(v) ∈

W 2,∞(R3).

We can now state our second main result.

Theorem 2. Let f0 ∈ L1
2 ∩ L logL(R3) satisfy the normalization (12), and consider any global

H- or weak solution f to the spatially homogeneous Landau equation (1) with Coulomb potential
and with initial data f0.

(i) Assume moreover that f0 ∈ L1
ℓ(R

3) with ℓ > 19
2 . Then for any positive β < 2ℓ2−25ℓ+57

9(ℓ−2) ,

there exists some computable constant Cβ > 0 depending only on β, the initial entropy
H(f0) and the initial moment Mℓ(f0), such that

∀ t ≥ 0, H(f(t)|µ) ≤ Cβ (1 + t)−β .

(ii) Assume moreover that f0 ∈ L1(R3, eκ〈v〉
s

dv), with κ > 0 and s ∈]0, 1/2[, or with κ ∈
]0, 2/e[ and s = 1/2. Then there exist some computable constants C, c > 0 depending only
on κ, s, the initial entropy H(f0) and the initial moment Ms,κ(f0), such that

∀ t ≥ 0, H(f(t)|µ) ≤ C e−c(1+t)
s

3+s (log(1+t))
− 3

3+s
.

Remark 2.1. (1) The normalization assumption (12) is only for simplicity. The theorem also
holds when the initial data are not normalized (i.e. for any f0 ∈ L1

2∩L logL(R3)), up to
the dependence of the constants and to a change in the limiting Maxwellian equilibrium
to µρ,u,T defined in (9).

(2) In point (ii), the best rate of convergence towards equilibrium that we can achieve is in

the case s = 1/2, where we get a decay with a rate O(e−(1+t)
1
7 (log(1+t))−

6
7 ). We mention

that in the close-to-equilibrium regime, the best decay rate is O(e−t
2
3 ), as can be seen

in [31].
(3) The restriction on the exponent s ∈]0, 1/2] comes from the results available on the

propagation of stretched exponential moments (see Corollary 8.1).
(4) The estimates which are presented in the theorem above concern the relative entropy of

the solution of the Landau equation. Thanks to the Cziszar-Kullback-Pinsker inequality
(cf. [13, 27]), they can be transformed in estimates on the L1 norm of f(t) − µ. Then,
by interpolation, they also yield estimates for weighted L1 norms of f(t)− µ.

(5) As in the case of Theorem 1 (see Remark 1.1), it is possible to extend the estimates of
Theorem 2 to the Landau equation with general soft potentials −4 < γ < 0. The rates
are then modified.

The proof of Theorem 2 uses the entropy dissipation estimate of Theorem 1 (more precisely,
that of Corollary 1.1) together with some interpolation inequalities, the regularity estimate (13)
and the propagation of L1-moments in the Coulomb case (see Lemma 8 and Corollary 8.1).

It is worth mentioning that we do not follow the usual arguments in order to prove Theorem 2
(see e.g. [33, 9]). Indeed, after obtaining a weak form of Cercignani’s conjecture as in (20), one
usually obtains, thanks to some interpolation arguments, an inequality of the form

(22)
d

dt
H(f |µ) = −D(f) ≤ −Kθ(f)H(f |µ)1+θ, θ > 0,

where Kθ(f) is some functional depending on moments and some (high-order) regularity bounds
on f . Then, in order to close the above differential inequality and conclude thanks to Gronwall’s
inequality, one needs to prove a priori estimates for solutions f (so that Kθ(f) can be controlled).
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However, when one considers the Coulomb potential, no a priori estimate is known for the high-
order regularity of the solutions, the only regularity estimate at hand is indeed (13), that uses
again the entropy dissipation D(f). Thus, instead of using an inequality like (22), we shall write
a similar inequality, but keeping the exponent 1 instead of 1+ θ, at the price of some remainder
term. We shall then use (13) in order to control part of this remainder term, and only at the
very end shall we choose some interpolation (depending on time) in order to close a differential
inequality and conclude thanks to some variant of Gronwall’s lemma.

3. Entropy dissipation estimate

This section is devoted to the proof of Theorem 1. Recall that we have defined in (8), for
any f := f(v) ≥ 0, by

D(f) :=
1

2

3
∑

i=1

3
∑

j=1

∫∫

R3×R3

f(v) f(w) |v − w|−1 Πij(v − w)

(

∂if

f
(v)− ∂if

f
(w)

)

×
(

∂jf

f
(v) − ∂jf

f
(w)

)

dvdw,

the entropy production of the Landau operator with Coulomb interaction, where Πij(z), defined
by (3) is the i, j-component of the orthogonal projection Π onto z⊥ := {y / y · z = 0}. We also
recall the notation Mp(f) for the moment of f of order p, and, for all i, j ∈ {1, 2, 3}, we define
by

P f
ij =

∫

R3

f(v) vi vj dv

the pressure tensor of f (when
∫

R3 f(v) v dv = 0).

The proof of Theorem 1 is a consequence of the three following Propositions 3, 4 and 5.

Proposition 3. We denote by Rf
ij(v, w), for all i, j ∈ {1, 2, 3}, the quantity (i, j-component of

the cross product of v − w and ∇f(v)
f(v) − ∇f(w)

f(w) )

(23) Rf
ij(v, w) = (vi − wi)

(

∂jf(v)

f(v)
− ∂jf(w)

f(w)

)

− (vj − wj)

(

∂if(v)

f(v)
− ∂if(w)

f(w)

)

.

Then, for all f := f(v) ≥ 0 such that (16) is satisfied, and for all i, j ∈ {1, 2, 3}, i 6= j, the
following formulas hold:

(24)
∂if(v)

f(v)
=

vj P
f
ij + vi P

f
ii +

∫

R3 R
f
ij(v, w) f(w) [wi P

f
ij − wj P

f
ii ] dw

(P f
ij)

2 − P f
ii P

f
jj

,

(25)
∂jf(v)

f(v)
=

vi P
f
ij + vj P

f
jj +

∫

R3 R
f
ij(v, w) f(w) [wi P

f
jj − wj P

f
ij ] dw

(P f
ij)

2 − P f
ii P

f
jj

,

(26) vi
∂jf(v)

f(v)
− vj

∂if(v)

f(v)
=

∫

R3

Rf
ij(v, w) f(w) dw.

Note that thanks to the case of equality in Cauchy-Schwarz inequality, we know that (P f
ij)

2 6=
P f
ii P

f
jj , so that formulas (24) and (25) are well defined.

Proposition 3 can be seen as an inversion of formula (23).
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Proof of Proposition 3. We consider i, j ∈ {1, 2, 3} such that i 6= j. Then, we expand Rf
ij(v, w)

in the following way:

(27) Rf
ij(v, w) =

[

vi
∂jf(v)

f(v)
− vj

∂if(v)

f(v)

]

+ wj
∂if(v)

f(v)
− wi

∂jf(v)

f(v)

−vi
∂jf(w)

f(w)
+ vj

∂if(w)

f(w)
+

[

wi
∂jf(w)

f(w)
− wj

∂if(w)

f(w)

]

.

Integrating (27) against f(w) dw, and recalling conditions (16), we get
∫

R3

Rf
ij(v, w) f(w) dw = vi

∂jf(v)

f(v)
− vj

∂if(v)

f(v)
,

which is exactly identical to (26).

Integrating then (27) against f(w)wi dw, and recalling conditions (16), we get

(28)

∫

R3

Rf
ij(v, w) f(w)wi dw = −P f

ii

∂jf(v)

f(v)
+ P f

ij

∂if(v)

f(v)
− vj .

Finally, integrating (27) against f(w)wj dw, and recalling conditions (16) (or exchanging i and
j in (28)), we get

(29)

∫

R3

Rf
ij(v, w) f(w)wj dw = −P f

ij

∂jf(v)

f(v)
+ P f

jj

∂if(v)

f(v)
+ vi.

Considering (28), (29) as a 2 × 2 linear system with unknowns ∂if(v)
f(v) ,

∂jf(v)
f(v) , we get thanks

to Cramer’s formulas (recalling that (P f
ij)

2 6= P f
ii P

f
jj because of the case of equality in Cauchy-

Schwarz inequality)

∂if(v)

f(v)
=

Det

(

vj +
∫

R3 R
f
ij(v, w) f(w)wi dw −P f

ii

−vi +
∫

R3 R
f
ij(v, w) f(w)wj dw −P f

ij

)

Det

(

P f
ij −P f

ii

P f
jj −P f

ij

) ,

∂jf(v)

f(v)
=

Det

(

P f
ij vj +

∫

R3 R
f
ij(v, w) f(w)wi dw

P f
jj −vi +

∫

R3 R
f
ij(v, w) f(w)wj dw

)

Det

(

P f
ij −P f

ii

P f
jj −P f

ij

) ,

which is exactly identical to formulas (24), (25). �

Proposition 4. We now define

(30) ∆f := inf
i,j=1,2,3;i6=j

(

P f
ii P

f
jj − (P f

ij)
2
)

.

Then there exists C > 0 an explicitly computable constant number such that for all f := f(v) ≥ 0
satisfying (16),

(31)

∫

R3

f(v)

∣

∣

∣

∣

∇f(v)

f(v)
+ v

∣

∣

∣

∣

2

〈v〉−3 dv

≤ C∆−2
f

(

sup
i,j=1,2,3;i6=j

(P f
ij)

2 + sup
j=1,2,3

|P f
jj − 1|2 +M5(f)D(f)

)

.
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Proof of Proposition 4. Thanks to (24), we see that (for any i, j ∈ {1, 2, 3} such that i 6= j)

∂if(v)

f(v)
+ vi = vj

P f
ij

(P f
ij)

2 − P f
ii P

f
jj

+ vi

(

1 +
P f
ii

(P f
ij)

2 − P f
ii P

f
jj

)

+

∫

R3 R
f
ij(v, w) f(w) [wi P

f
ij − wj P

f
ii ] dw

(P f
ij)

2 − P f
ii P

f
jj

,

so that, remembering that P f
ij ≤ 3/2 for all i, j ∈ {1, 2, 3}, i 6= j, and P f

ii ≤ 3 for all i ∈ {1, 2, 3},
since

∑3
i=1 P

f
ii = 3,
∣

∣

∣

∣

∂if(v)

f(v)
+ vi

∣

∣

∣

∣

2

≤ 3∆−2
f

(

|vj |2 (P f
ij)

2 + |vi|2
∣

∣

∣

∣

(P f
ij)

2 + P f
ii (1− P f

jj)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫

R3

Rf
ij(v, w) f(w) [wi P

f
ij − wj P

f
ii ] dw

∣

∣

∣

∣

2)

≤ 3∆−2
f

(

|vj |2 (P f
ij)

2 + 2 |vi|2 (P f
ij)

4 + 18 |vi|2 (1− P f
jj)

2

+9

[
∫

R3

|Rf
ij(v, w)| f(w) (|wi|+ |wj |) dw

]2)

.

Then,
∫

R3

f(v)

∣

∣

∣

∣

∂if(v)

f(v)
+ vi

∣

∣

∣

∣

2

〈v〉−3 dv ≤ 3∆−2
f

(

11

2
(P f

ij)
2 + 18 (1− P f

jj)
2

+9

∫

R3

〈v〉−3 f(v)

{
∫

R3

|Rf
ij(v, w)|2 f(w) |v − w|−3 dw

}

×
{
∫

R3

f(w) |v − w|3 (|wi|+ |wj |)2 dw
}

dv

)

≤ ∆−2
f

(

33

2
(P f

ij)
2 + 54 (1− P f

jj)
2 + 27

∫

R3

∫

R3

f(v) f(w) |Rf
ij(v, w)|2 |v − w|−3 dwdv

× sup
v∈R3

〈v〉−3

∫

R3

f(w) (4 |v|3 + 4 |w|3) 2 |w|2 dw
)

.

Observing then (cf. [14], p.11-12) that

D(f) =
1

4

3
∑

i=1

3
∑

j=1

∫

R3

∫

R3

f(v) f(w) |Rf
ij(v, w)|2 |v − w|−3 dwdv,

we end up with the estimate
∫

R3

f(v)

∣

∣

∣

∣

∇f(v)

f(v)
+ v

∣

∣

∣

∣

2

〈v〉−3 dv ≤ ∆−2
f

(

99

2
sup

i,j∈{1,2,3},i6=j

(P f
ij)

2

+162 sup
j∈{1,2,3}

(1 − P f
jj)

2 + 3456M5(f)D(f)

)

,

so that (31) holds with C = 3456. �
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Proposition 5. One can find C := C(H̄) depending only on H̄ such that for all f ≥ 0 satisfying
(16), (17), the following inequalities hold:

(32) ∆f ≥ C(H̄),

(33) sup
i,j∈{1,2,3},i6=j

(P f
ij)

2 ≤ C(H̄)M5(f)D(f),

(34) sup
i,j∈{1,2,3},i6=j

|P f
ii − P f

jj |2 ≤ C(H̄)M5(f)D(f).

Proof of Proposition 5. We first observe that (thanks to [14], p.15), for any δ > 0,

∆f := inf
i,j=1,2,3;i6=j

(

P f
ii P

f
jj − (P f

ij)
2
)

≥ inf
|θ|≤1

inf
k=i,j; l=i,j; k 6=l

(
∫

|vk − θ vl|2 f(v) dv

)2

≥ δ4 inf
|θ|≤1

inf
k=i,j; l=i,j; k 6=l

(
∫

|vk−θ vl|≥δ, |v|≤
√
6

f(v) dv

)2

≥ δ4
(

1− sup
|θ|≤1

sup
k=i,j; l=i,j; k 6=l

∫

|vk−θ vl|≤δ, |v|≤
√
6

f(v) dv −
∫

|v|≥
√
6

f(v) dv

)2

≥ δ4
(

1

2
− sup

|θ|≤1

sup
k=i,j; l=i,j; k 6=l

∫

|vk−θ vl|√
1+θ2

≤ δ√
1+θ2

, |v|≤
√
6

f(v) dv

)2

≥ δ4
(

1

2
− sup

|θ|≤1

sup
|A|≤48 δ√

1+θ2

∫

A

f(v) dv

)2

.

Using now the estimate (for all q > 0 and M > 1)

(35) sup
|A|≤q

∫

A

f(v) dv ≤ M q +
H̄

logM
,

we see that

∆f ≥ δ4
(

1

2
− 48 δM − H̄

logM

)2

,

so that taking M = e4 H̄ and 48 δM = 1
8 (that is δ = 2−7 3−1 e−4 H̄), we end up with

∆f ≥ 1

234
1

34
e−16 H̄ ,

and estimate (32) is proven.

We now turn to the proof of estimates (33) and (34).

Inserting (24) and (25) in (26), we see that

(v2i − v2j )P
f
ij + vi vj (P

f
jj − P f

ii)

+

∫

R3

Rf
ij(v, w) f(w)

[

vi wi P
f
jj − viwj P

f
ij − vj wi P

f
ij + vj wj P

f
ii

]

dw

= [(P f
ij)

2 − P f
ii P

f
jj ]

∫

R3

Rf
ij(v, w) f(w) dw,

and writing

|vi wi P
f
jj − vi wj P

f
ij − vj wi P

f
ij + vj wj P

f
ii | ≤ 9 |v||w|
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it follows

|(v2i − v2j )P
f
ij + vi vj (P

f
jj − P f

ii)| ≤
∫

R3

|Rf
ij(v, w)| f(w)

[

9 + 9 |v||w|
]

dw.

Then
∫

R3

f(v) 〈v〉−5

∣

∣

∣

∣

(v2i − v2j )P
f
ij + vi vj (P

f
jj − P f

ii)

∣

∣

∣

∣

2

dv

≤
∫

R3

f(v) 〈v〉−5

∣

∣

∣

∣

∫

R3

|Rf
ij(v, w)| f(w)

[

9 + 9 |v||w|
]

dw

∣

∣

∣

∣

2

dv

≤
∫

R3

f(v) 〈v〉−5

{
∫

R3

|Rf
ij(v, w)|2 f(w) |v − w|−3 dw

}

×
{
∫

R3

f(w) |v − w|3
[

9 + 9 |v||w|
]2
dw

}

dv

≤ C D(f) sup
v∈R3

〈v〉−5

∫

R3

f(w) (|v|3 + |w|3) (1 + |v|2|w|2) dw

≤ C D(f) sup
v∈R3

〈v〉−5

∫

R3

f(w)
(

|v|3 + |v|5|w|2 + |w|3 + |v|2|w|5
)

dw

≤ C D(f)M5(f),

where C > 0 is a (computable) constant number.

We now observe that
∫

R3

f(v) 〈v〉−5

∣

∣

∣

∣

(v2i − v2j )P
f
ij + vi vj (P

f
jj − P f

ii)

∣

∣

∣

∣

2

dv

≥ Sf

[

(P f
ij)

2 +
1

4
(P f

jj − P f
ii)

2

]

,

where

Sf := inf
φ∈R

∫

R3

f(v) 〈v〉−5 |(v2i − v2j ) cosφ+ 2 vi vj sinφ|2 dv.

Introducing cylindrical coordinates defined by vi = r cos θ, vj = r sin θ, and vk = z (where
k 6= i and k 6= j), we see that for all ε > 0 (and assuming without loss of generality that i = 1,
j = 2, k = 3)

Sf = inf
φ∈R

∫

z∈R

∫ 2π

θ=0

∫

r∈R+

f(r cos θ, r sin θ, z) (1 + r2 + |z|2)−5/2 r4 | cos(2θ − φ)|2 r drdθdz

≥ | sin ε|2
[
∫

z∈R

∫ 2π

θ=0

∫

r∈R+

f(r cos θ, r sin θ, z) r4 (1 + r2 + |z|2)−5/2 r drdθdz

− sup
φ∈R

∫

z∈R

∫ 2π

θ=0

∫

r∈R+

f(r cos θ, r sin θ, z)1{|2θ−φ−π
2 Z|≤ε} r drdθdz

]

.

As a consequence, denoting by | · | the Lebesgue measure on R
3, for all ε, δ, R1, R2 > 0,

Sf ≥ | sin ε|2
[
∫

z∈R

∫ 2π

θ=0

∫

r∈R+

f(r cos θ, r sin θ, z)

× (1 + r2 + |z|2)−5/2 r4 1{r≥δ} 1{r2+|z|2≤R2
1} r drdθdz

− sup
φ∈R

∫

z∈R

∫ 2π

θ=0

∫

r∈R+

f(r cos θ, r sin θ, z)1{r2+|z|2≤R2
2} 1{|2θ−φ−π

2 Z}|≤ε r drdθdz

−
∫

z∈R

∫ 2π

θ=0

∫

r∈R+

f(r cos θ, r sin θ, z) 1{r2+|z|2≥R2
2} r drdθdz

]
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≥ | sin ε|2
[

δ4

(1 +R2
1)

5/2

(

1−
∫

v∈R3

f(v)1{|v1|2+|v2|2≤δ2} 1{|v|≤R1} dv

−
∫

v∈R3

f(v)1{|v|≥R1} dv

)

−
∫

v∈R3

f(v)1{|v|≥R2} dv − sup
|A|≤16R3

2 ε

∫

A

f(v) dv

]

≥ | sin ε|2
[

δ4

(1 +R2
1)

5/2

(

1− sup
|A|≤2πR1 δ2

∫

A

f(v) dv − 3

R2
1

)

− 3

R2
2

− sup
|A|≤16R3

2 ε

∫

A

f(v) dv

]

.

Using now estimate (35), we see that for all ε, δ, R1, R2, M1, M2 > 0,

Sf ≥ | sin ε|2
[

δ4

(1 +R2
1)

5/2

(

1− 2πM1 R1 δ
2 − H̄

logM1
− 3

R2
1

)

− 3

R2
2

− 16M2R
3
2 ε−

H̄

logM2

]

.

The proof of (33), (34) is concluded by selecting successively R1 large enough, M1 large enough,
δ > 0 small enough, R2 large enough, M2 large enough, and ε > 0 small enough.

For example, selecting R1, M1 and δ in such a way that

3

R2
1

=
H̄

lnM1
= 2πM1 R1 δ

2 =
1

4
,

we end up with

Sf ≥ | sin ε|2
[

13−5/2

48

e−8 H̄

64 π2
− 3

R2
2

− 16M2R
3
2 ε−

H̄

logM2

]

.

Then, we fix R2,M2 and ε in such a way that

3

R2
2

=
H̄

logM2
= 16M2R

2
2 ε =

13−5/2

48

e−8 H̄

256 π2
.

�

We can now conclude the proof of Theorem 1.

Proof of Theorem 1. Thanks to Proposition 4 and Proposition 5, we see that it only remains to

estimate supj=1,2,3 |P f
jj − 1| in terms of supi,j∈{1,2,3},i6=j |P f

ii − P f
jj |.

In order to do so, we use the identity
∑3

j=1 P
f
jj = 3. We observe that

|P f
11 − 1| = |P f

11 −
1

3

3
∑

j=1

P f
jj | ≤

1

3
|P f

11 − P f
22|+

1

3
|P f

11 − P f
33|.

Doing the same computation with P f
22, P

f
33, we end up with

sup
j=1,2,3

|P f
jj − 1| ≤ 2

3
sup

i,j∈{1,2,3},i6=j

|P f
ii − P f

jj |,

and Theorem 1 is proven. �

We conclude this section with the proof of Corollary 1.1.
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Proof of Corollary 1.1. Let f ≥ 0 satisfy the normalization (16), and define the weighted (with
weight 〈v〉α for α ∈ R) relative Fisher information of f with respect to µ (the centred reduced
Gaussian) by

Iα(f |µ) :=
∫

R3

|∇(f/µ)|2
(f/µ)

〈v〉α dµ(v) =

∫

R3

f

∣

∣

∣

∣

∇f

f
+ v

∣

∣

∣

∣

2

〈v〉α dv.

With this notation, Theorem 1 becomes

(36) D(f) ≥ C(H̄)M5(f)
−1 I−3(f |µ).

We define ν(v) := Z−1
1 〈v〉−3 µ(v) and g(v) := Z−1

2 〈v〉−3f(v), where Z1 :=
∫

〈v〉−3 dµ(v) and
Z2 :=

∫

〈v〉−3f(v) dv are normalization constants so that
∫

ν(v) dv =
∫

g(v) dv = 1. Therefore
we can rewrite

I−3(f |µ) =
∫ |∇(f/µ)|2

(f/µ)
〈v〉−3 dµ(v) = Z2

∫ |∇(g/ν)|2
(g/ν)

dν(v) =: Z2 I(g|ν),

where I(g|ν) := I0(g|ν) denotes the standard (i.e. without weight) relative Fisher information
of g with respect to ν. We now observe that dν(v) = e−U(v) dv, with U(v) = 1

2 |v|2 + 3
2 log(1 +

|v|2) + U0, and where U0 := log((2π)3/2 Z1) is a normalization constant. We easily compute

Hess U(v) = Id+
3

〈v〉2 Id− 6

〈v〉4 v ⊗ v.

Hence we obtain (for all ξ, v ∈ R
3),

〈HessU(v)ξ, ξ〉 =
(

1 +
3

〈v〉2
)

|ξ|2 − 6

〈v〉4 (ξ · v)
2 ≥

(

1 +
3

〈v〉2 − 6 |v|2
〈v〉4

)

|ξ|2 >
5

8
|ξ|2.

Indeed, for all z ∈ R+ (z = |v|2),

1 +
3

1 + z
− 6z

(1 + z)2
=

z2 − z + 4

(1 + z)2
≥ 5

8
.

The probability measure dν satisfies then a log-Sobolev inequality thanks to the Bakry-Émery
criterion (see [7, 5]). Therefore, for some C > 0,

I(g|ν) ≥ C

∫

g

ν
log

g

ν
dν(v) = C

∫

{g

ν
log

g

ν
+ 1− g

ν

}

dν(v).

Thanks to estimate (36), we finally deduce, for some (new) constant C(H̄) > 0,

D(f) ≥ C(H̄) (M5(f))
−1

∫
{

f log

(

Z1

Z2

f

µ

)

+
Z2

Z1
µ− f

}

〈v〉−3 dv,

and the proof of (20) is complete. Now, for any R > 0, we estimate the integral from below
remembering that x log x+ 1− x ≥ 0 for x > 0,

D(f) ≥ C(H̄) (M5(f))
−1 R−3

∫

〈v〉≤R

{

f log

(

Z1

Z2

f

µ

)

+
Z2

Z1
µ− f

}

dv

≥ C(H̄) (M5(f))
−1 R−3

(

∫

〈v〉≤R

f log(f/µ) dv + log(Z1/Z2)

∫

〈v〉≤R

f dv

+

∫

〈v〉≤R

(µ− f) dv + (Z2/Z1 − 1)

∫

〈v〉≤R

µ dv

)

.
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≥ C(H̄) (M5(f))
−1 R−3

(

∫

f log(f/µ) dv +
Z2

Z1

(

Z1

Z2
log(Z1/Z2) + 1− Z1

Z2

)

−
∫

〈v〉≥R

f log(f/µ) dv + log(Z2/Z1)

∫

〈v〉≥R

f dv

+

∫

〈v〉≥R

(f − µ) dv + (1− Z2/Z1)

∫

〈v〉≥R

µ dv

)

≥ C(H̄) (M5(f))
−1 R−3

(

∫

f log(f/µ) dv −
∫

〈v〉≥R

f log(f/µ) dv

+ (1 + log(Z2/Z1))

∫

〈v〉≥R

f dv − (Z2/Z1)

∫

〈v〉≥R

µ dv

)

.

Since
∫

f =
∫

µ = 1 and
∫

〈v〉2f =
∫

〈v〉2µ = 4, we easily obtain that 2−11/2 ≤ Z1, Z2 ≤ 1. Then

D(f) ≥ C(H̄) (M5(f))
−1 R−3

(

∫

f log(f/µ) dv −
∫

〈v〉≥R

f log f dv

− C

∫

〈v〉≥R

〈v〉2 f dv − C

∫

〈v〉≥R

µ dv

)

,

which completes the proof of (21). �

4. Moments estimates

In this section we prove estimates for the polynomial and exponential L1-moments defined in
(14) and (15). For the sake of completeness we shall consider, only in this section, the Landau
operator Q (see (2)) for general soft potentials, i.e. a matrix aij (see (3)) for the whole range of
soft potentials −4 < γ < 0. It is worth mentioning that, in the case −2 ≤ γ ≤ 0, estimates for
polynomial moments have been established in [38, 40, 9] and stretched exponential moments in
[9]. Moreover, in the case −4 < γ < −2 polynomial moments estimates have been established
in [39, 14]. We shall improve the above mentioned results in Lemma 7, Corollary 7.1, Lemma 8
and Corollary 8.1.

We begin with a key lemma on the coercivity of the collision operator in weighted L1-space.

Lemma 6. Assume −4 < γ < 0. Let f be a nonnegative function and χ be either 1|·|≤1,
or a smooth C∞

c (R) radially symmetric cutoff function that satisfies 1B1/2
≤ χ ≤ 1B1 . Let

χη(·) = χ(·/η) with η ∈]0, 1], l > 2 and

I =

∫∫

R3×R3

f(v)f(w) |v − w|γ χc
η(v − w) 〈v〉l−2{−〈v〉2 + 〈w〉2} dw dv,

where χc
η = 1− χη.

Then there exist constants K,C > 0 such that

I ≤ −KM0(f)
1−γ/2M2(f)

γ/2 Ml+γ(f) + CM2(f)Ml−2+γ(f)

+ C(M2(f)/M0(f))
l/2−1+γ M0(f)M2(f).

Proof. We decompose the integral into two parts I = I1 + I2 with

I1 =

∫∫

{|v−w|<|w|}∩{|v−w|<|v|}
f(v)f(w)|v − w|γχc

η(v − w)〈v〉l−2{−〈v〉2 + 〈w〉2} dw dv,

I2 =

∫∫

{|v−w|≥|w|}∪{|v−w|≥|v|}
f(v)f(w)|v − w|γχc

η(v − w)〈v〉l−2{−〈v〉2 + 〈w〉2} dw dv.
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For the first term I1, we easily get I1 ≤ 0 thanks to Young’s inequality and using the symmetry
of the region {|v − w| < |w|} ∩ {|v − w| < |v|}:

∫∫

{|v−w|<|w|}∩{|v−w|<|v|}
f(v)f(w)|v − w|γχc

η(v − w) 〈v〉l−2〈w〉2 dw dv

≤
∫∫

{|v−w|<|w|}∩{|v−w|<|v|}
f(v)f(w)|v − w|γχc

η(v − w)

[

l − 2

l
〈v〉l + 2

l
〈w〉l

]

dw dv

=

∫∫

{|v−w|<|w|}∩{|v−w|<|v|}
f(v)f(w)|v − w|γχc

η(v − w) 〈v〉l dw dv.

Next we observe that

I2 =

∫∫

{|v−w|≥|w|}∪{|v−w|≥|v|}
f(v)f(w)|v − w|γ(χc

η(v − w) − 1|v−w|≥1)〈v〉l−2{−〈v〉2 + 〈w〉2} dw dv

−
∫∫

{|v−w|≥|w|}∪{|v−w|≥|v|}
f(v)f(w)|v − w|γ 1|v−w|≥1 〈v〉l−2{〈v〉2 − 〈w〉2} dw dv.

Using the estimate 1|v−w|≥1 ≤ 1|v−w|≥η ≤ χc
η(v − w) since η ∈]0, 1] and following an argument

similar to the one used for I1, we obtain that the first term in the right-hand side of the previous
identity is nonpositive. Hence we have

I2 ≤ −
∫∫

{|v−w|≥|w|}∪{|v−w|≥|v|}
f(v)f(w)|v − w|γ 1|v−w|≥1 〈v〉l−2{〈v〉2 − 〈w〉2} dw dv =: A+B,

and we estimate each term separately.
For the term A, we first write that

A ≤ −
∫∫

{|v−w|≥|w|}
f(v)f(w)|v − w|γ 1|v−w|≥1 〈v〉l dw dv,

and then we notice that the region {|v−w| ≥ |w|}∩{|v−w| ≥ 1} contains {|v| ≥ 2r}∩{|w| ≤ r}
for any r ≥ 1. Therefore, using that −|v − w|γ ≤ −C〈w〉γ〈v〉γ ,

A ≤ −C

∫∫

{|v|≥2r}∩{|w|≤r}
f(v)f(w)|v − w|γ〈v〉l dw dv

≤ −C

(

∫

{|w|≤r}
〈w〉γf(w) dw

)(

∫

{|v|≥2r}
〈v〉l+γf(v) dv

)

.

We can easily compute
∫

{|w|≤r}
〈w〉γf(w) dw ≥ 〈r〉γ

∫

|w|≤r

f(w) dw

= 〈r〉γ
(

M0(f)−
∫

{|w|≥r}
f(w) dw

)

≥ 〈r〉γ
(

M0(f)−
M2(f)

〈r〉2
)

,

and also
∫

{|v|≥2r}
〈v〉l+γf(v) dv = Ml+γ(f)−

∫

{|v|≤2r}
〈v〉l+γf(v) dv ≥ Ml+γ(f)− 〈2r〉l−2+γM2(f).

Gathering the previous estimates, we get

(37) A ≤ C

(

M2(f)

〈r〉2 −M0(f)

)

〈r〉γMl+γ(f) + C〈2r〉l−2+2γM0(f)M2(f)

≤ −KM0(f)
1−γ/2 M2(f)

γ/2 Ml+γ(f) + C(M2(f)/M0(f))
l/2−1+γ M0(f)M2(f)

by choosing r such that M2(f)/〈r〉2 = M0(f)/2.
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For the term B, we first decompose it into B = B1 +B2 +B3, with

B1 :=

∫∫

{|v−w|≥|v|}∩{|v−w|≥1}
f(v)f(w)|v − w|γ〈v〉l−2〈w〉2 dw dv,

B2 :=

∫∫

{|w|≤|v−w|≤2|w|}∩{|v−w|≥1}
f(v)f(w)|v − w|γ〈v〉l−2〈w〉2 dw dv,

B3 :=

∫∫

{|v−w|≥2|w|}∩{|v−w|≥1}
f(v)f(w)|v − w|γ 〈v〉l−2〈w〉2 dw dv,

and we claim that

(38) Bj ≤ CM2(f)Ml−2+γ(f), j = 1, 2, 3.

Indeed, we first remark that for all the terms, we have |v − w|γ ≤ C〈v − w〉γ since |v − w| ≥ 1,
thus in order to prove (38), we only need to prove that |v − w| ≥ c|v| for some constant c > 0
in each case j = 1, 2, 3. The first case j = 1 is immediate since |v − w| ≥ |v|. We then observe
that |w| ≤ |v − w| ≤ 2|w| implies |v − w| ∼ |w| and also |v| ≤ C|w|, which completes the case
j = 2. Finally, when |v − w| ≥ 2|w|, we obtain |v − w| ∼ |v| and the case j = 3 also holds.

We get the desired result by patching together estimates (37) and (38). �

We first state and prove estimates for L1-moments in the moderately soft potentials case
−2 ≤ γ < 0. We improve the results of [38, 40, 9].

Lemma 7. Assume that −2 ≤ γ < 0. Let f0 ∈ L1
2 ∩ L logL and consider any global H− or

weak solution f to the spatially homogeneous Landau equation (1) with initial data f0. Suppose
further that f0 ∈ L1

l for some l > 2. Then, there exists a constant C > 0 depending on γ,
M0(f0), M2(f0) (but not on l) such that, for all t ≥ 0,

Ml(f(t)) ≤ Ml(f(0)) + C l
l+γ
2 t.

Proof. For simplicity we only give here the a priori estimates for the moments. The rigorous
proof for any solution follows the same arguments as the ones that we shall present in Step 2 of
the proof of Lemma 8 below, in the case of very soft potentials.

Recall that thanks to the conservation of mass and energy, we have M0(f(t)) = M0(f0) and
M2(f(t)) = M2(f0) for all t ≥ 0. The equation for moments is (see e.g. [20])

d

dt
Ml(f) =

∫∫

f(v)f(w) |v−w|γ 〈v〉l
{

−2l+ 2l〈v〉−2〈w〉2 + l(l − 2)〈v〉−4[|v|2|w|2 − (v · w)2]
}

dw dv.

Because of the singularity of |v − w|γ , we split it into two parts |v − w|γ 1|v−w|≥1 and |v −
w|γ 1|v−w|≤1 , and we denote respectively T1 and T2 each term associated.

For the term T2, we write

T2 = l

∫∫

R6

|v − w|γ 1|v−w|≤1 〈v〉l−2
{

−2〈v〉2 + 2〈w〉2
}

f(v)f(w) dw dv

+ l(l− 2)

∫∫

R6

|v − w|γ 1|v−w|≤1 〈v〉l−4
{

|v|2|w|2 − (v · w)2
}

f(v)f(w) dw dv

=: T21 + T22.

Using Young’s inequality, we easily obtain
∫∫

R6

f(v)f(w)|v − w|γ 1|v−w|≤1 〈v〉l−2〈w〉2 dw dv

≤
∫∫

R6

f(v)f(w)|v − w|γ 1|v−w|≤1 〈v〉l dw dv,
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and this implies T21 ≤ 0. Moreover, using the inequality |v|2|w|2 − (v · w)2 ≤ |w|2|v − w|2, we
get, since γ + 2 ≥ 0,

T22 ≤ Cl2
∫∫

R6

f(v)f(w)|v − w|γ+2 1|v−w|≤1 〈v〉l−4〈w〉2 dw dv

≤ Cl2 M2(f)Ml−4(f).

We now investigate the term T1, that we write

T1 = −2l

∫∫

R6

|v − w|γ 1|v−w|≥1 〈v〉l−2{〈v〉2 − 〈w〉2}f(v)f(w) dw dv

+ l(l − 2)

∫∫

R6

|v − w|γ 1|v−w|≥1 〈v〉l−4{|v|2|w|2 − (v · w)2}f(v)f(w) dw dv

=: I + II.

Thanks to Lemma 6 (with χ = 1|·|≤1), we already have

I ≤ −KlM0(f)
1−γ/2M2(f)

γ/2 Ml+γ(f) + ClM2(f)Ml−2+γ(f)

+ Cl (M2(f)/M0(f))
l/2−1+γ M0(f)M2(f).

We consider now the term II. If l ≤ 4, we easily observe that

II ≤ Cl2(M2(f))
2.

Now let l > 4. We split II = II1 + II2, with

II1 = l(l − 2)

∫∫

{|v−w|≥1}∩{|w|≤|v|}
|v − w|γ 〈v〉l−4{|v|2|w|2 − (v · w)2}f(v)f(w) dw dv,

and

II2 = l(l − 2)

∫∫

{|v−w|≥1}∩{|w|≥|v|}
|v − w|γ 〈v〉l−4{|v|2|w|2 − (v · w)2}f(v)f(w) dw dv.

Using the estimate |v|2|w|2 − (v · w)2 ≤ |w|2|v − w|2, we get

II1 ≤ Cl2
∫∫

{|v−w|≥1}∩{|w|≤|v|}
|v − w|γ+2〈v〉l−4〈w〉2 f(v)f(w) dw dv

≤ Cl2
∫∫

{|v−w|≥1}∩{|w|≤|v|}
〈v〉l−2+γ〈w〉2 f(v)f(w) dw dv

≤ Cl2 M2(f)Ml−2+γ(f).

Using now the inequality |v|2|w|2 − (v · w)2 ≤ |v|2|v − w|2, it follows that

II2 ≤ Cl2
∫∫

{|v−w|≥1}∩{|w|≥|v|}
|v − w|γ+2〈v〉l−2 f(v)f(w) dw dv

≤ Cl2
∫∫

{|v−w|≥1}∩{|w|≥|v|}
〈v〉l−2〈w〉γ+2 f(v)f(w) dw dv

≤ Cl2
∫∫

{|v−w|≥1}∩{|w|≥|v|}
〈v〉2〈w〉l−2+γ f(v)f(w) dw dv

≤ Cl2 M2(f)Ml−2+γ(f).

Gathering the previous estimates and recalling that M0(f) and M2(f) are constants, we get,
for constants K,C > 0,

d

dt
Ml(f) ≤ −K lMl+γ(f) + Cl2 Ml−4(f) + C(l + l2 1l>4)Ml−2+γ(f) + C(l + l2 1l≤4)

≤ −KlMl+γ(f) + Cl2 Ml−2+γ(f) + Cl2,
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since Ml−4(f) ≤ Ml−2+γ(f) (remember that −2 ≤ γ < 0). If l ≤ 4 − γ, then Ml−2+γ(f(t)) is
uniformly bounded and we easily get

Ml(f(t)) ≤ Ml(f0) + C t.

Consider now l > 4− γ. Thanks to Young’s inequality, for any ǫ > 0,

Ml−2+γ(f) ≤ M
2

l−2+γ

2 (f)M
l−4+γ
l−2+γ

l+γ (f) ≤ Cǫ−
l−4+γ

2 M2(f) + ǫMl+γ(f).

Hence it yields

d

dt
Ml(f) +KlMl+γ(f) ≤ Cl2ǫMl+γ(f) + Cl2 ǫ−

l−4+γ
2 + C l.

Choosing ǫ = K
2C l−1, we get

(39)
d

dt
Ml(f) +

K

2
l Ml+γ(f) ≤ C(l

l+γ
2 + C l) ≤ Cl

l+γ
2 ,

from which we deduce

Ml(t) ≤ Ml(f0) + Cl
l+γ
2 t,

which completes the proof. �

Corollary 7.1. Consider the same setting as in Lemma 7. Suppose further that Ms,κ(f0) =
∫

f0(v) e
κ〈v〉s dv < ∞ with κ > 0 and 0 < s < 2, or with 0 < κ < 1/(2e) and s = 2.

Then, for some constant C > 0 depending only on the parameters γ, s, κ and the initial mass
and energy (that is, depending on M0(f0), M2(f0)),

(1) If s+ γ < 0, for all t ≥ 0,

Ms,κ(f(t)) ≤ Ms,κ(f0) + C t.

(2) If s+ γ ≥ 0, for all t ≥ 0,

Ms,κ(f(t)) ≤ Ms,κ(f0) + C.

Remark 7.1. As a direct consequence of Corollary 7.1-(2), the exponential convergence to equi-
librium established in [9, Theorem 1.4], for the case −1 < γ < 0, can be extended to the case
−2 ≤ γ ≤ −1, as explained in [9, Remark 1.5].

Proof. (1) We write eκ〈v〉
s

=
∑∞

j=0
κj

j! 〈v〉js so that

Ms,κ(f(t)) =

∫

(

∞
∑

j=0

κj

j!
〈v〉js

)

f(t) dv =

∞
∑

j=0

∫

κj

j!
〈v〉js f(t) dv =

∞
∑

j=0

κj

j!
Mjs(f(t)),

where we have used Tonelli’s theorem since the integrand in nonnegative (for any solution f).
Thanks to Lemma 7, we therefore obtain

Ms,κ(f(t)) ≤ Ct

∞
∑

j=0

κj

j!
(sj)

sj
2 + γ

2 +Ms,κ(f0),

and we only need to prove that the sum is finite. We rewrite

βj :=
κj

j!
(sj)

js
2 + γ

2 = (κ s
s
2 )j (sj)

γ
2
j

sj
2

j!
, j! ∼ (j/e)j

√

2π j as j → ∞,

hence we easily obtain that
∑∞

j=1 βj < ∞ for any κ > 0 if s < 2, or for 0 < κ < 1/(2e) if s = 2.
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(2) As in the proof of Lemma 7, we only give here the a priori estimates. Coming back to
(39), one has

d

dt
Ms,κ(f) =

∞
∑

j=0

κj

j!

d

dt
Mjs(f)

≤
∞
∑

j=0

κj

j!

{

−K jsMjs+γ(f) + C(js)
js
2 + γ

2

}

≤ −Kκs

∞
∑

j=1

κj−1

(j − 1)!
Mjs+γ(f) + C

∞
∑

j=0

κj

j!
(js)

js
2 +γ/2

= −Kκs

∞
∑

n=0

κn

n!
Mns+s+γ(f) + C

∞
∑

j=0

κj

j!
(js)

js
2 +γ/2 =: I + II.

Since s + γ ≥ 0, we know that −Mns+s+γ(f) ≤ −Mns(f), which implies the estimate I ≤
−KκsMs,κ(f). The second term II is finite for any κ > 0 if s < 2, or for 0 < κ < 1/(2e) if
s = 2. We finally obtain

d

dt
Ms,κ(f) ≤ −KκsMs,κ(f) + C,

which implies the desired uniform in time bound. �

We now investigate the case of very soft potentials −4 < γ ≤ −2. We get new estimates on
the propagation of the moments which improve the results of [39, Appendix B, p. 193] and [14].

Lemma 8. Assume that −4 < γ ≤ −2. Let f0 ∈ L1
2 ∩ L logL(R3) and consider any global

H− or weak solution f to the spatially homogeneous Landau equation (1) with initial data
f0. Assume moreover that f0 ∈ L1

l for some l > 2. Then there exists a constant C =
C(γ,M0(f0),M2(f0), H(f0)) > 0 (that does not depend on l) such that

Ml(f(t)) ≤ CMl(f0) + C l(l−6) |γ+1|
γ+4 −γ t.

Proof. We divide the proof into two steps.

Step 1: A priori estimates. We follow the argument of [39, Appendix B, p. 193] that uses
the entropy formulation of solutions (cf. [36]). Let η = cl−1 and χη(·) = χ(·/η) where c ∈]0, 1/2[
is a (small) constant and χ ∈ C∞

c (R) is a smooth radially symmetric cutoff function such that
1B1/2

≤ χ ≤ 1B1 , as in Lemma 6. Recall that a(z) = |z|γ+2Π(z) and decompose a = aη + acη
with aη(z) := χη(z)|z|γ+2Π(z) and acη(z) := χc

η(z)|z|γ+2Π(z), where χc
η(z) := 1 − χη(z). We

then write
d

dt
Ml(f) = I + II,

where

(40) I = −1

2

∫∫

f(v)f(w)χη |v − w|γ+2 Π

(∇f

f
(v)− ∇f

f
(w)

)

(∇ϕ(v) −∇ϕ(w)) dw dv,

(41) II = −1

2

∫∫

f(v)f(w)χc
η |v − w|γ+2 Π

(∇f

f
(v)− ∇f

f
(w)

)

(∇ϕ(v) −∇ϕ(w)) dw dv,

with Π = Π(v − w), χη = χη(v − w) and ϕ(v) = 〈v〉l.
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Therefore, by Cauchy-Schwarz inequality and using that χ2
η(v − w) ≤ 1|v−w|≤η, it follows

|I| ≤
(
∫∫

f(v)f(w) |v − w|γ+2 Π

(∇f

f
(v)− ∇f

f
(w)

)(∇f

f
(v)− ∇f

f
(w)

)

dw dv

)1/2

×
(
∫∫

f(v)f(w)|v − w|γ+2 1|v−w|≤η Π(∇ϕ(v) −∇ϕ(w))(∇ϕ(v) −∇ϕ(w)) dw dv

)1/2

,

and the first integral is bounded by
√

2D(f), see (8). For ϕ(v) = 〈v〉l, we have

|v − w|2Π(∇ϕ(v) −∇ϕ(w))(∇ϕ(v) −∇ϕ(w)) = l2
[

|v|2|w|2 − (v · w)2
] [

〈v〉l−2 − 〈w〉l−2
]2

.

Using the estimate

|v|2|w|2 − (v · w)2 ≤ min(|v|2, |w|2) |v − w|2,
and |〈v〉l−2 − 〈w〉l−2| ≤ lmax(〈v〉l−3, 〈w〉l−3) |v − w|, we finally get

|v − w|2Π(∇ϕ(v) −∇ϕ(w))(∇ϕ(v) −∇ϕ(w)) ≤ Cl4{〈v〉2l−4 + 〈w〉2l−4} |v − w|4.
Then

|I| ≤ Cl2D(f)1/2
(
∫∫

f(v)f(w)|v − w|γ+4 1|v−w|≤η 〈v〉2l−4 dw dv

)1/2

.

Since the last integral is over {|v−w| ≤ η = cl−1}, we claim that there exist universal constants
Ci(i = 1, 2) such that C1〈v〉l ≤ 〈w〉l ≤ C2〈v〉l. Indeed, we have

〈v〉l = (1 + |v|2)l/2 ≤
(

〈w〉2 + 2cl−1(|w|+ cl−1)
)l/2

≤
[(l+2)/4]
∑

k=0

l
2 (

l
2 − 1) . . . ( l

2 − k + 1)

k!

[

〈w〉2k(2cl−1)l/2−k(|w|+ cl−1)l/2−k

+(2cl−1)k(|w| + cl−1)k〈w〉l−2k

]

≤
[(l+2)/4]
∑

k=0

1

k!
〈w〉l ≤ C〈w〉l,(42)

where we use the fractional binomial expansion. Using the symmetry of v and w, we conclude
the proof of the claim. Now we obtain

(43)

|I| ≤ Cl2D(f)1/2
(
∫∫

f(v)f(w)|v − w|γ+4 1|v−w|≤η 〈w〉l−4〈v〉l dw dv

)1/2

≤ Cl2D(f)1/2 ηγ/2+2 M
1/2
l (f)M

1/2
l−4(f)

≤ D(f)Ml(f) + Cl−γ Ml−4(f).

For the term II, we use the usual weak formulation (cf. [36]), obtained from (41) by performing
an integration by parts w.r.t. both v and w:

II =

∫∫

f(v)f(w)
{

acη(v − w) : ∇2ϕ(v) + 2bcη(v − w) · ∇ϕ(v)
}

dw dv,

where (bcη(z))i=1,2,3 =
∑3

j=1 ∂j(a
c
η(z))ij = χc

η(|z|)bi(z) +
∑3

j=1(∂j [χ
c
η(|z|)]) aij(z). It follows

then

II =

∫∫

f(v)f(w)χc
η(|v − w|)

{

a(v − w) : ∇2ϕ(v) + 2b(v − w) · ∇ϕ(v)
}

dw dv

+ 2

3
∑

i=1

3
∑

j=1

∫∫

f(v)f(w) (∂j [χ
c
η(|v − w|)]) aij(v − w) ∂iϕ(v) dw dv,
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and we remark that the second integral vanishes since, for j ∈ {1, 2, 3}, (∂j [χc
η(|z|)]) = (χc

η)
′(|z|) |z|−1zj

and
∑3

j=1 aij(z)zj = 0. We finally obtain (see the proof of Lemma 7)

II = 2l

∫∫

f(v)f(w)|v − w|γχc
η(v − w) 〈v〉l−2{−〈v〉2 + 〈w〉2} dw dv

+ l(l − 2)

∫∫

f(v)f(w)|v − w|γχc
η(v − w) 〈v〉l−4{|v|2|w|2 − (v · w)2} dw dv

=: II1 + II2.

Using the elementary inequality |v|2|w|2 − (v · w)2 ≤ |w|2|v − w|2, we easily obtain, thanks to
the estimate χc

η(v − w) ≤ 1|v−w|≥η/2,

(44) II2 ≤ l2
∫∫

R6

f(v)f(w)|v − w|γ+2 1|v−w|≥η/2 〈w〉2〈v〉l−4 dw dv ≤ Cl−γ M2(f)Ml−4(f).

The term II1 is controlled thanks to Lemma 6 (with χ a C∞ function), which gives

II1 ≤ −K lM0(f)
1−γ/2M2(f)

γ/2 Ml+γ(f) + ClM2(f)Ml−2+γ(f)

+Cl (M2(f)/M0(f))
l/2−1+γ M0(f)M2(f).(45)

Finally, gathering estimates (43), (44) and (45), and using thatM0(f) andM2(f) are constant
in time, it follows

(46)
d

dt
Ml(f) +KlMl+γ(f) ≤ D(f)Ml(f) + Cl−γ Ml−4(f) + ClMl−2+γ(f) + C l.

Notice that Ml−2+γ(f) ≤ Ml−4(f) because −4 < γ ≤ −2, thus the third term in the right-hand
side of (46) can be absorbed into the second one. We also recall that

∫∞
0

D(f(s)) ds ≤ C < ∞
for some positive constant C depending on H(f0).

If 2 < l ≤ 6, then supt≥0 Ml−4(f(t)) ≤ C, hence

d

dt
Ml(f) +KlMl+γ(f) ≤ D(f)Ml(f) + C,

and by Gronwall’s lemma,

Ml(f(t)) ≤ CMl(f0) + Ct.

Suppose now that l > 6. We use Young’s inequality to obtain, for any ǫ > 0,

Ml−4(f) ≤ Cǫ−
l−6
γ+4 M2(f) + ǫMl+γ(f).

Coming back to (46) and choosing ǫ = K
2C l1+γ , we then get

d

dt
Ml(f) +

K

2
lMl+γ(f) ≤ D(f)Ml(f) + Cl(l−6) |γ+1|

γ+4 −γ + C l

≤ D(f)Ml(f) + Cl(l−6) |γ+1|
γ+4 −γ ,

hence

Ml(f(t)) ≤ CMl(f0) + Cl(l−6)
|γ+1|
γ+4 −γ t,

which yields the desired result.

Step 2: Rigorous proof. Let W l
δ(v) = 〈v〉l(1 + δ|v|2)− l

2 with δ ∈]0, 1/2[ being a (small)
parameter, and set M δ

l (f) =
∫

f(v)W l
δ(v) dv. It follows that W l

δ ∈ W 2,∞(R3) and then it can
be chosen as a test function in the formulation of the weak solution, that is,

∫

R3

f(t)W l
δ dv =

∫

R3

f0W
l
δ dv +

∫ t

0

∫

R3

Q(f, f)W l
δ dv dt.
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Similarly to (40) and (41), we have
∫

R3

Q(f, f)W l
δ dv = Iδ + IIδ,

where

(47) Iδ = −1

2

∫∫

f(v)f(w)χη |v − w|γ+2 Π

(∇f

f
(v) − ∇f

f
(w)

)

(∇W l
δ(v) −∇W l

δ(w)) dw dv,

and

IIδ = −1

2

∫∫

f(v)f(w)χc
η |v − w|γ+2 Π

(∇f

f
(v)− ∇f

f
(w)

)

(∇W l
δ(v)−∇W l

δ(w)) dw dv

=

∫∫

f(v)f(w)χc
η

(

a(v − w) : ∇2W l
δ(v) + 2b(v − w) · ∇W l

δ(v)
)

dw dv(48)

with Π = Π(v − w) and χη = χη(v − w).

Estimate of Iδ. By following the estimate of I in Step 1, we first have

|Iδ| ≤
(
∫∫

f(v)f(w) |v − w|γ+2 Π

(∇f

f
(v)− ∇f

f
(w)

)(∇f

f
(v)− ∇f

f
(w)

)

dw dv

)1/2

×
(
∫∫

f(v)f(w)|v − w|γ+2 χη Π(∇W l
δ(v)−∇W l

δ(w))(∇W l
δ (v)−∇W l

δ(w)) dw dv

)1/2

.

We claim that

|Iδ| ≤ Cl2
√

2D(f)

(
∫∫

f(v)f(w)χη |v − w|γ+4W l
δ(v)W

l
δ(w)〈w〉−4 dw dv

)
1
2

.

Indeed, following the computation of (42), we first have

1|v−w|≤cl−1(1 + δ|v|2) l
2 ∼ 1|v−w|≤cl−1(1 + δ|w|2) l

2 ,

from which, together with the fact 1|v−w|≤cl−1〈v〉l ∼ 1|v−w|≤cl−1〈w〉l, we get the (uniform w.r.t.
δ ∈]0, 1/2[) estimate

1|v−w|≤cl−1W l
δ(v) ∼ 1|v−w|≤cl−1W l

δ(w).(49)

Next by the mean value theorem, we see that

1|v−w|≤cl−1|∇W l
δ(v)−∇W l

δ(w)|

≤ 1|v−w|≤cl−1

∫ 1

0

|(∇2W l
δ)(v + t(w − v))|dt|v − w|

≤ 1|v−w|≤cl−1Cl2
∫ 1

0

W l
δ(v + t(w − v))〈v + t(w − v)〉−2dt |v − w|,

where we have used the estimate |∇2
vW

l
δ(v)| ≤ Cl2W l

δ(v)〈v〉−2 which is a consequence of (50)
(see below). Notice that |(v + t(w − v)) − v| ≤ cl−1 and |(v + t(w − v)) − w| ≤ cl−1. Then by
(49) we obtain that, if |v − w| ≤ cl−1,

W l
δ(v + t(w − v)) ∼ W l

δ(v) ∼ W l
δ(w).

Thus

1|v−w|≤cl−1|∇W l
δ(v)−∇W l

δ(w)|
≤ 1|v−w|≤cl−1Cl2|v − w|min{W l

δ(v),W
l
δ(w)}min{〈v〉−2, 〈w〉−2},

which is enough to prove the claim.
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As a consequence,

|Iδ| ≤ Cl2D(f)1/2 ηγ/2+2 (M δ
l (f))

1/2

(
∫

f(v)W l
δ(v)〈v〉−4dv

)1/2

≤ D(f)M δ
l (f) + Cl−γ

(
∫

f(v)W l
δ(v)〈v〉−4dv

)

.

Estimate of IIδ. Inserting the computations

∂jW
l
δ(v) = lW l

δ(v)
vj
〈v〉2 − lW l

δ(v)
δvj

1 + δ|v|2 ,

∂ijW
l
δ(v) = lW l

δ(v)
δij
〈v〉2 + l(l− 2)W l

δ(v)
vivj
〈v〉4 − lW l

δ(v)
δδij

1 + δ|v|2

+l(l+ 2)W l
δ(v)

δ2vivj
(1 + δ|v|2)2 − 2l2W l

δ(v)
δ

1 + δ|v|2
vivj
〈v〉2 ,(50)

into (48), we have
(51)

IIδ = l

∫∫

f(v)f(w)χc
η |v − w|γW l

δ(v)〈v〉−2

(

− 2|v|2 + 2|w|2 + (l − 2)
|v|2|w|2 − (v · w)2

〈v〉2
)

dvdw

+ l

∫∫

f(v)f(w)χc
η |v − w|γW l

δ(v)
δ

1 + δ|v|2
(

2|v|2 − 2|w|2 + (l + 2)(|v|2|w|2 − (v · w)2) δ

1 + δ|v|2
)

dvdw

− 2l2
∫∫

f(v)f(w)χc
η |v − w|γW l

δ(v)
δ〈v〉−2

1 + δ|v|2
(

|v|2|w|2 − (v · w)2
)

dvdw.

It is obvious that

|IIδ| ≤ Cl2
∫∫

f(v)f(w)W l
δ(v)(1 + 〈w〉2)dvdw.

Then thanks to the estimates of Iδ and IIδ, we get

M δ
l (f(t))−M δ

l (f0) ≤
∫ t

0

D(f(s))M δ
l (f(s))ds+ Cl2(M2(f0) + 1)

∫ t

0

M δ
l (f(s))ds.

By Gronwall’s inequality, we obtain that, for some constant C > 0 and for all t ≥ 0,

M δ
l (f(t)) ≤ CM δ

l (f0) + CeCl2 t,

which first implies that Ml(f) is bounded (uniformly locally in time):

Ml(f(t)) ≤ CMl(f0) + CeCl2 t,(52)

thanks to Fatou’s Lemma. We shall now use the bound (52) in order to improve the moment
estimate. We recall that

M δ
l (f(t))−M δ

l (f0) =

∫ t

0

Iδ(s)ds+

∫ t

0

IIδ(s)ds

≤
∫ t

0

D(f(s))M δ
l (f(s))ds+ Cl−γ

∫ t

0

Ml−4(f(s))ds+

∫ t

0

IIδ(s)ds.

Then by Gronwall’s inequality, we get

(53) M δ
l (f(t)) ≤ CMl(f0) + Cl−γ

∫ t

0

Ml−4(f(s))ds + C

∫ t

0

IIδ(s)ds.
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Thanks to (51) and the bound (52), we easily observe that we can apply the dominated conver-
gence theorem for the last term in the right-hand side of eq. (53). We therefore obtain, for all
t ≥ 0,

Ml(f(t)) ≤ CMl(f0) + Cl−γ

∫ t

0

Ml−4(f(s))ds + C

∫ t

0

II(s)ds.

From that inequality we can copy the argument used in the first step to give the bound on the
term II and thus obtain the desired estimate. This ends the proof of the lemma. �

Corollary 8.1. Consider the same setting as in Lemma 8. Suppose further that Ms,κ(f0) =
∫

f0(v) e
κ〈v〉s dv < ∞ with κ > 0 and 0 < s < γ+4

|γ+1| , or with 0 < κ < 1
e
|γ+1|
γ+4 and s = γ+4

|γ+1| .

Then there is C > 0 depending on the parameters γ, s, κ and the initial mass energy and entropy
(that is, depending on M0(f), M2(f) and H(f0)) such that

Ms,κ(f(t)) ≤ CMs,κ(f(0)) + C t, ∀ t ≥ 0.

Proof. The proof follows the same arguments as in the proof of Corollary 7.1-(1). From Lemma 8

and writing eκ〈v〉
s

=
∑∞

j=0 κ
j 〈v〉js

j! we get

Ms,κ(f(t)) =

∞
∑

j=0

κj

j!
Mjs(f(t)) ≤ Ct

∞
∑

j=0

κj

j!
(sj)(sj−6)

|γ+1|
γ+4 −γ + CMs,κ(f0).

We then conclude by observing that

βj :=
κj

j!
(sj)(sj−6) |γ+1|

γ+4 −γ = (κss
|γ+1|
γ+4 )j (sj)−6 |γ+1|

γ+4 −γ jjs
|γ+1|
γ+4

j!
, j! ∼ (j/e)j

√

2π j as j → ∞,

which implies
∑∞

j=0 βj < ∞ under the assumptions of the corollary. �

Remark 8.1. If we consider s+γ ≥ 0, the same argument presented in the proof of Corollary 7.1-
(2) would give us a uniform in time bound for the moment Ms,α(f(t)). But the conditions
γ ∈ (−4,−2], 0 < s ≤ (γ +4)/|γ+1| and s+ γ ≥ 0 imply γ = −2 and s = 2, so that we recover
exactly the result stated in Corollary 7.1-(2) (for γ = −2).

5. Large time behaviour

We now turn to the proof of Theorem 2. Before starting it, we state an interpolation lemma.

Lemma 9. (i) Let r ∈]1, 3[, and α ∈ R. Define θ(r, α) = 9(r−1)+2α
3−r . Then, there exists a

constant C := C(r) > 0, such that for any f := f(v) ≥ 0,
∫

R3

〈v〉α f | log f | dv ≤ C

(

Mα+2(f) +Mθ(r,α)(f)
3−r
2 ‖f‖

3
2 (r−1)

L3
−3(R

3)
+ 1

)

.

(ii) Let r ∈]1, 3[, s ∈]0, 2[ and κ > 0. Then for any κ1 > κ and κ2 > 2κ/(3− r), one can find
a constant C := C(r, κ, κ1, κ2) > 0 such that for any f := f(v) ≥ 0,

∫

R3

eκ〈v〉
s

f | log f | dv ≤ C

(

Ms,κ1(f) +Ms,κ2(f)
3−r
2 ‖f‖

3
2 (r−1)

L3
−3

+ 1

)

.

Proof. (i) We decompose the integral into
∫

〈v〉αf | log f | =
∫

〈v〉αf | log f | {1f>1 + 1e−|v|2<f≤1 + 10≤f≤e−|v|2 } =: I1 + I2 + I3.

For the term I1, we notice that f | log f |1f>1 ≤ C(r) f r 1f>1 (for r ∈]1, 3[, and some constant
C(r) > 0).
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Thanks to Hölder’s inequality, we get

I1 =

∫

〈v〉αf log f 1f>1

≤ C(r)

∫

〈v〉αf r = C(r)

∫

〈v〉α+ 9
2 (r−1) f

1
2 (3−r) 〈v〉− 9

2 (r−1) f
3
2 (r−1)

≤ C(r)Mθ(r,α)(f)
3−r
2 ‖f‖

3
2 (r−1)

L3
−3

.

For I2, we use the inequality | log f |1e−|v|2<f≤1 ≤ 〈v〉2 1e−|v|2<f≤1, in order to obtain

I2 ≤ Mα+2(f).

Finally, for I3, we use the estimate f | log f |10≤f≤e−|v|2 ≤ C
√
f 10≤f≤e−|v|2 ≤ C e−|v|2/2, so

that

I3 ≤ C

∫

〈v〉αe−|v|2/2 ≤ C,

for some constant C > 0.

(ii) We decompose the integral into
∫

eκ〈v〉
s

f | log f | =
∫

eκ〈v〉
s

f | log f | {1f>1 + 1e−|v|2<f≤1 + 10≤f≤e−|v|2 } =: I ′1 + I ′2 + I ′3.

For the term I ′1, again thanks to Hölder’s inequality, we obtain (for any r ∈]1, 3[ and some
constant C(r) > 0)

I ′1 =

∫

eκ〈v〉
s

f | log f |1f>1

≤ C(r)

∫

eκ〈v〉
s

f r = C(r)

∫

〈v〉 9
2 (r−1) eκ〈v〉

s

f (3−r)/2 〈v〉− 9
2 (r−1) f

3
2 (r−1)

≤ C(r, κ, κ2)Ms,κ2(f)
3−r
2 ‖f‖

3
2 (r−1)

L3
−3

.

For I ′2, we get (with constants whose dependence is explicitly stated)

I ′2 ≤ C(κ, κ1)Ms,κ1(f).

Finally, for I ′3, we get

I ′3 ≤ C(κ)

∫

eκ 〈v〉s−|v|2/2 ≤ C(κ).

�

From now on we consider a global (equivalently H- or weak) solution f := f(t, v) ≥ 0 to the
spatially homogeneous Landau equation with Coulomb potential (1), associated to nonnegative
initial data f0 ∈ L1

2 ∩ L logL(R3) satisfying the normalization (12).
We shall use in the sequel the following properties of such a solution:

• the conservation of mass, momentum and energy (10), more precisely
∫

f(t, v) dv = 1,

∫

f(t, v) v dv = 0,

∫

f(t, v) |v|2 dv = 3, ∀ t ≥ 0;

• the moments estimates of Lemma 8 and Corollary 8.1;
• the entropy-entropy dissipation inequality

(54) H(f(t)) +

∫ t

0

D(f(τ)) dτ ≤ H(f0) ≤ C0, ∀ t ≥ 0,

• f satisfies estimate (13).

We now start the:
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Proof of Theorem 2-(i). Recall that we assume that f0 ∈ L1
ℓ(R

3) with ℓ > 19
2 , which can be

rewritten as ℓ = 9
2 + 3k

2 and k > 10
3 .

We split the proof into four steps. All constants C > 0 in the proof of this part of the theorem
are simply written by C (and can change from line to line), but in fact depend on ℓ,Mℓ(f0), H̄ ,
where

∫

f0 log f0 dv ≤ H̄ (if f0 were not normalized, they also would depend on the mass and
energy of f0).

Step 1. First of all, we obtain from Lemma 8 (with γ = −3) that Mℓ(f(t)) ≤ C(1 + t), and
interpolating this result with the conservation of the energy M2(f(t)) = M2(f0) = 4 for any
t ≥ 0, it follows

M5(f(t)) ≤ C (1 + t)
3

ℓ−2 ,

since ℓ > 5.

Step 2. As a consequence we can write, using the entropy dissipation inequality (21) of Corol-
lary 1.1 with some R(t) > 0 to be chosen later (note that C depends on k below),

D(f(t)) ≥ C (1 + t)−
3

ℓ−2 R(t)−3 H(f(t)|µ)

− C (1 + t)−
3

ℓ−2 R(t)−3−k

{
∫

R3

f(t) | log f(t)| 〈v〉k dv +Mk+2(f(t)) + 1

}

.

Thanks to Lemma 9-(i) with α = k, r = 5/3, so that 3
2 (r − 1) = 1 and θ(r, k) = 9+3k

2 , we get

D(f(t)) ≥ C (1 + t)−
3

ℓ−2 R(t)−3 H(f(t)|µ)

− C (1 + t)−
3

ℓ−2 R(t)−3−k

(

Mk+2(f(t)) +M 9+3k
2

(f(t))
2
3 ‖f(t)‖L3

−3
+ 1

)

.

Thanks to (13), we know that

M 9+3k
2

(f(t))
2
3 ‖f(t)‖L3

−3
≤ CM 9+3k

2
(f(t))

2
3 (D(f(t)) + 1),

thus it follows
(

1 + C (1 + t)−
3

ℓ−2 M 9+3k
2

(f(t))
2
3 R(t)−3−k

)

D(f(t))

≥ C (1 + t)−
3

ℓ−2 R(t)−3H(f(t)|µ)
− C (1 + t)−

3
ℓ−2 R(t)−3−k Mk+2(f(t))

− C (1 + t)−
3

ℓ−2 R(t)−3−k M 9+3k
2

(f(t))
2
3 .

Step 3. We now choose R(t) = (1 + t)ν for some ν ∈]0, 13
(3k−1)
(3k+5) [ such that ν k > 2

3 . Note that

this is possible whenever 1
3

(3k−1)
(3k+5) k > 2

3 , which is implied by the condition k > 10
3 .

Using Lemma 8 (with γ = −3) again and interpolating the estimate with the conservation of
the energy as in step 1, we have (since 9+3k

2 = ℓ)

Mk+2(f(t)) ≤ C (1 + t)
k

ℓ−2 , [M 9+3k
2

(f(t))]
2
3 ≤ C (1 + t)

2
3 .

Therefore, noticing that

C (1 + t)−
3

ℓ−2 M 9+3k
2

(f)
2
3 R(t)−3−k ≤ C,
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we end up with

D(f(t)) ≥ C H(f(t)|µ)
(1 + t)3ν+

6
5+3k

− C

(1 + t)3ν+kν+ 6
5+3k− 2k

5+3k

− C

(1 + t)3ν+kν+ 6
5+3k− 2

3

≥ C H(f(t)|µ)
(1 + t)3ν+

6
5+3k

− C

(1 + t)3ν+kν+ 6
5+3k− 2

3

.

Step 4. Denoting x(t) := H(f(t)|µ), a := 3ν + 6
5+3k and b := 3ν + νk + 6

5+3k − 2
3 , we plug the

last estimate into (54) and obtain the following inequality (we denote by C1 > 0 and C2 > 0
two different constants in order to avoid confusions)

(55) x(t) + C1

∫ t

0

x(τ)

(1 + τ)a
dτ ≤ C0 + C2

∫ t

0

(1 + τ)−b dτ,

with 0 < a < 1 (because ν < 1
3

3k−1
3k+5 ) and b > a (because 1

3
(3k−1)
(3k+5) k > 2

3 , since k > 10
3 ).

We recall that the generalized Gronwall inequality (see e.g. [34])

u(t) ≤ φ(t) +

∫ t

0

λ(τ)u(τ)dτ

implies

u(t) ≤ φ(0)e
∫

t
0
λ(τ)dτ +

∫ t

0

e
∫

t
τ
λ(σ)dσ dφ(τ)

dτ
dτ,

that we apply to (55) and obtain

x(t) ≤ C0 e
−C1

(1+t)1−a

1−a + C2 e
−C1

(1+t)1−a

1−a

∫ t

0

(1 + τ)−b eC1
(1+τ)1−a

1−a dτ.

Then we observe that thanks to an integration by parts,

e−C1
(1+t)1−a

1−a

∫ t

0

(1 + τ)−b eC1
(1+τ)1−a

1−a dτ

= e−C1
(1+t)1−a

1−a

[

C−1
1 eC1

(1+t)1−a

1−a (1+t)a−b−C−1
1 e

1
1−a+C−1

1 (b−a)

∫ t

0

(1+σ)a−b−1 eC1
(1+σ)1−a

1−a dσ

]

≤ C−1
1 (1 + t)a−b + C−1

1 (b− a) e−C1
(1+t)1−a

1−a

∫ t

0

(1 + σ)a−b−1 eC1
(1+σ)1−a

1−a dσ

≤ C−1
1 (1+t)a−b+C−1

1 (b−a)
t

2
e−C1

(1+t)1−a

1−a (1+t/2)a−b−1 eC1
(1+t/2)1−a

1−a +C−1
1 (b−a)

t

2
(1+t/2)a−b−1.

We therefore see that

x(t) ≤ C (1 + t)−(b−a) = C (1 + t)−(νk−
2
3 ).

This entails that H(f(t)|µ) ≤ C (1 + t)−β for all β ∈]0, k
3

(3k−1)
(3k+5) − 2

3 [, and this ends the proof of

Theorem 2-(i). �

We now turn to the

Proof of Theorem 2-(ii). In the sequel, the constant denoted by C in fact depends on κ, s, and
H̄ . We split the proof into the same four steps as in the proof of Theorem 2-(i).

Step 1. From Corollary 8.1, we get the estimate

Ms,κ(f(t)) ≤ C (1 + t).

Interpolating this estimate with the conservation of the energy M2(f(t)) = M2(f0) = 4 (for all
t ≥ 0), we claim that

M5(f(t)) ≤ C log3/s(1 + t).
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Indeed we can write, for any r > (6/(κ s))1/s,
∫

〈v〉5f(t) =
∫

〈v〉≤r

〈v〉5 f(t) +
∫

〈v〉>r

〈v〉5 f(t)

≤ r3 M2(f(t)) + r3 e−
κ
2 rs

∫

〈v〉>r

〈v〉2 e κ
2 〈v〉sf(t)

≤ C r3
(

1 + e−
κ
2 rs Ms,κ(f(t))

)

.

We choose then r = sup[( 2κ logMs,κ(f(t)) )
1/s, (6/(κ s))1/s], which concludes the claim.

Step 2. Using the entropy dissipation inequality (21) of Corollary 1.1, we can argue as in the
proof of Theorem 2-(i) above and obtain, for any κ0 ∈]0, κ[ and some R(t) > 0 to be chosen
later:

D(f(t)) ≥ C log−3/s(1 + t)R(t)−3 H(f(t)|µ)

− C log−3/s(1 + t)R(t)−3 e−κ0 R(t)s
{
∫

eκ0 〈v〉s f(t) | log f(t)|+
∫

〈v〉2eκ0 〈v〉s f(t) + 1

}

.

Then, for r ∈]1, 3[, κ1 > κ0, κ2 > 2κ0/(3− r), it follows from Lemma 9 and the bound (13) that

D(f(t)) ≥ C log−3/s(1 + t)R(t)−3 H(f(t)|µ)

− C log−3/s(1 + t)R(t)−3 e−κ0 R(t)s
[

2Ms,κ1(f(t)) + 1 +Ms,κ2(f(t))
(3−r)/2 ||f(t)||

3
2 (r−1)

L3
−3

]

.

As a consequence, considering r = 5/3, and κ1 ∈]κ0, κ[, κ2 > 3
2 κ0, we get

D(f(t))

(

1 + C log−3/s(1 + t)R(t)−3 e−κ0 R(t)s Ms,κ2(f(t))
2/3

)

≥ C H(f(t)|µ)
R(t)3 log3/s(1 + t)

− C (1 + t)

eκ0 R(t)s R(t)3 log3/s(1 + t)
.

Step 3. We now choose R(t) = (1 + t)
1

3+s (log(1 + t))−
3+qs
3s , for some q ∈ R to be chosen later,

so that, taking κ0 ∈]0, 2
3 κ[ and κ2 ∈] 32 κ0, κ[,

C log−3/s(1 + t)R(t)−3 e−κ0R(t)s Ms,κ2(f(t))
2/3 ≤ C.

Denoting x(t) := H(f(t)|µ) and gathering the previous estimates together with (54), we see
that (denoting by C1, C2 > 0 the constants to avoid confusions)

x(t) + C1

∫ t

0

x(τ)

(1 + τ)
3

3+s (log(1 + τ))−q
dτ

≤ C0 + C2

∫ t

0

e−κ0(1+τ)
s

3+s (log(1+τ))−
3+qs

3 (1 + τ)
s

3+s (log(1 + τ))q dτ,

thus by the generalized Gronwall’s inequality it follows, denoting A(t) :=
∫ t

0
(1+ τ)−

3
3+s (log(1+

τ))q dτ ,

x(t) ≤ C0 e
−C1A(t)+C2 e

−C1A(t)

∫ t

0

eC1 A(τ) (1+τ)
s

3+s (log(1+τ))q e−κ0(1+τ)
s

3+s (log(1+τ))−
3+qs

3 dτ.

We can now complete the proof by some elementary computations. We observe that (thanks to
an integration by parts) for all a > −1 and b ∈ R,

∫ t

0

(1 + σ)a (log(1 + σ))b dσ =
(1 + t)a+1

a+ 1
(log(1 + t))b +O

(

(1 + t)a+1 (log(1 + t))b−1
)

,
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so that (for t large enough)

(56) 2 (1 + t)
s

3+s (log(1 + t))q ≥
∫ t

0

(1 + σ)−
3

3+s (log(1 + σ))q dσ ≥ (1 + t)
s

3+s (log(1 + t))q.

We hence split

x(t) ≤ C0 e
−C1 A(t)

+ C2 e
−C1 A(t)

∫ t/n

0

eC1 A(τ) (1 + τ)
s

3+s (log(1 + τ))q e−κ0(1+τ)
s

3+s (log(1+τ))−
3+qs

3 dτ

+ C2 e
−C1 A(t)

∫ t

t/n

eC1 A(τ) (1 + τ)
s

3+s (log(1 + τ))q e−κ0(1+τ)
s

3+s (log(1+τ))−
3+qs

3 dτ

=: e−C1 A(t) x(0) + I1 + I2,

for some n > 0 to be chosen large enough. Thanks to (56), we easily get

C0 e
−C1 A(t) ≤ C0 e

−C1 (1+t)
s

3+s (log(1+t))q .

Moreover we write for the term I1, using (56),

I1 ≤ C2 e
−C1(A(t)−A(t/n))

∫ t/n

0

(1 + τ)
s

3+s (log(1 + τ))q e−κ0(1+τ)
s

3+s (log(1+τ))−
3+qs

3 dτ

≤ C e−C1(A(t)−A(t/n)) ≤ C e−C1(1+t)
s

3+s (log(1+t))q+2C1(1+t/n)
3

3+s (log(1+t/n))q

≤ C e−C1 (1+t)
s

3+s (log(1+t))q (1−2n
− 3

(3+s) ) ≤ C e−
C1
2 (1+t)

s
3+s (log(1+t))q ,

when n > 0 is chosen large enough (i.e. such that 1 − 2
n3/(3+s) ≥ 1/2). For the other term, we

have

I2 ≤ C2

∫ t

t/n

(1 + τ)
s

3+s (log(1 + τ))q e−κ0(1+τ)
s

3+s (log(1+τ))−
3+qs

3 dτ

≤ C e−
κ0
2 (1+t/n)

s
3+s (log(1+t/n))−

3+qs
3

∫ t

t/n

(1 + τ)
s

3+s (log(1 + τ))q e−
κ0
2 (1+τ)

s
3+s (log(1+τ))−

3+qs
3 dτ

≤ C e−c
κ0
2 (1+t)

s
3+s (log(1+t))−

3+qs
3 ,

for some constants c, C > 0.
Finally, taking − 3+qs

3 = q, that is q = − 3
3+s , we deduce that there are constants C, c > 0

such that

x(t) ≤ C e−c (1+t)
s

3+s (log(1+t))
− 3

3+s
,

which completes the proof. �

Acknowledgement: The research leading to this paper was funded by the French “ANR
blanche” project Kibord: ANR-13-BS01-0004. K.C. is supported by the Fondation Mathématique
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