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Abstract

The presented study deals with Elastic Flow Rerouting (EFR)—an
original traffic restoration strategy for protecting traffic flows in com-
munication networks (including wireless networks) against multiple link
failures. EFR aims at alleviating the trade-off between practicability of
traffic restoration and the cost of network resources observed in existing
networking solutions. We present an extension of EFR capable of man-
aging multiple partial link failures. We describe EFR and its extension,
formulate the EFR related optimization problems, and discuss approaches
for their resolution. We also discuss numerical results illustrating effec-
tiveness of EFR in terms of the link capacity cost.

Keywords: survivability; traffic restoration; mixed-integer programming; par-
tial link failures.

1 Introduction

This work deals with survivable communication networks, and in particular
it presents a novel rerouting algorithm based on the concept of paths with
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elastic, failure state-dependent flow. The purpose of the proposed algorithm
is to achieve a good compromise between the restoration time management
complexity on one hand and the link cost network on the other. It is also
intended to be as general as possible to cope with a large number of practical
cases including both total and partial link failures occurring in modern wireless
networks. Both aspects are elaborated in detail below.

Let us start with some comments on the relation between management com-
plexity of traffic restoration and traffic restoration time, and the cost of link
capacity that characterizes protection/restoration strategies. In general, there
is a trade-off between the amount (and thus cost) of the extra (protection) link
capacity installed in the network on one hand and the traffic restoration manage-
ment complexity and the restoration time required for network reconfiguration
on the other hand. In other words, the more protection capacity is available the
simpler and more time efficient restoration process could be applied. With this
in mind, we recall below some of the well-known restoration strategies, assuming
the case of total failures of single links.

In general, most of strategies designed to cope with failures of links in a net-
work fall into one of two groups. They are either based on demand restoration
or on protection. The former group, i.e., restoration strategies, is commonly
divided into another two subgroups: link restoration and flow restoration. Link
Restoration (LR), also called Link Protection [1], assumes single total link fail-
ures and it restores the capacity of a failed link (together with the traffic car-
ried on the link) on a restoration path between its terminal nodes. LR achieves
relatively short restoration times as compared to end-to-end flow restoration
mechanisms but leads to less efficient use of link capacity.

A commonly studied flow restoration strategy is the end-to-end flow restora-
tion utilizing stub release, called Restricted Restoration (RR) in [1, 2]. The
strategy restores solely the affected flows for the duration of the failure, while
the unaffected flows are kept unchanged. The affected flows release the capacity
that they were using on the unaffected links and this capacity can be used for
rerouting—the mechanism widely known as stub release.

Another well known option for flow restoration is Global Rerouting (GR),
called Unrestricted Reconfiguration in [1,2]. The strategy allows for the rerout-
ing of all traffic flows, both affected and unaffected. In fact, GR, as the least
constrained restoration strategy, achieves the minimum link capacity cost, but
its management complexity and restoration time are the highest. With the
above strategies (LR, RR, and GR), the network area involved in rerouting is
gradually extended from local (vicinity of a node) to global (entire network),
and at each step more efficient use of link capacity is achieved, while the restora-
tion process itself becomes increasingly complex and its management more time
consuming.

As for the methods based on protection, the most common approach is
Path Diversity (PD) also known as Demand-wise Shared Protection [3]. The
approach can be seen as the opposite to GR, because it does not admit any
rerouting. The main assumption of PD is that the links are over-dimensioned
so that there remains a sufficient amount of capacity on the unaffected paths to
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carry the traffic in any failure situation, that is to say, without any rerouting
nor establishing new paths. Although PD operation is relatively simple, the
network cost in terms of link capacity can increase significantly when PD is in
use.

Observe that although both RR and PD admit multiple link failures, the
links are assumed to fail totally (as in LR), and hence only GR is capable of
dealing with partial (multiple) failures.

The second important characteristic of our method concerns its domain of
applicability, covering both wired and wireless networks. In the large majority
of works on network restoration for wired networks, the proposed restoration
methods assume total failure of the network elements (single or multiple). Al-
most nothing is done to cope with partial failures despite the frequency of such
events in modern wireless networks. More precisely, partial failure scenarios
correspond to partial lose of transmission capacity, which happens in partic-
ular in wireless networks using microwave radio or Free Space Optical (FSO)
transmission technology.

The above, somewhat simplified, considerations motivate us to look for a
method with acceptable restoration time, reasonable management effort, and
affordable link capacity cost. In the paper, we study a method that combines
positive features of the strategies discussed above. The method is intended to
achieve a compromise between the capacity cost, restoration time, and man-
agement effort, while covering a large set of applications. The method is called
Elastic Flow Rerouting (EFR) and its full study, including a mathematical for-
mulation and a discussion on its complexity, is presented in this paper. We
show that the problem becomes computationally intractable even for moder-
ate size instances, so that there is a need for heuristic approaches. Hence, we
propose a heuristic solution method accompanied with numerical results. All
this constitutes the first main contribution of the paper. Next, we pursue the
study with an extension of the method covering multiple partial link failures
scenarios. The extended EFR method combines features from both EFR and
Flow Thinning [13]—another method of dealing with partial failure scenarios
proposed in the past. We provide a mathematical formulation for the general
case and conclude with some preliminary numerical results. This is the second
main contribution of the paper.

The paper is organized as follows. In Section 2, we explain the main idea
behind the EFR strategy. In Section 3, the mathematical model for the dimen-
sioning (link cost minimization) problem is given. It is followed by a greedy
heuristic method described in Section 4. We elaborate in detail how EFR is
modified to handle partial failure cases and provide the corresponding mathe-
matical model in Section 5. In Section 6, we discuss the pratical relevance of the
proposed methods. In particular we focus on the application context in wire-
less networks and the corresponding cost model. Then, in Section 7, numerical
results for both studied cases are reported. The paper is concluded in Section
8.
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2 Elastic Flow Rerouting

Elastic Flow Rerouting (EFR), first presented in [5], is intended to deal with
total link failures. The approach can be summarized as follows. In the nominal
state, when all links are operational, traffic is routed over a given set of
paths for each traffic demand. In each failure state (to simplify the explanation
only total failures of single links are considered), EFR uses the same set of
(nominal) routing paths but with possibly modified path-flow values. In each
failure state, we distinguish affected flows and affected demands. In a given
failure state, the affected flows are those routed on paths going through a failing
link, and the affected demands are those for which at least one path is affected
and the total capacity of unaffected paths is not sufficient to carry the demand
traffic. The main idea behind EFR is to restore traffic of the affected demands
by means of increasing the flow on their routing paths, possibly together with
decreasing flows of the unaffected demands. Thus, an increase of the path-
flows is allowed only for the affected demands, while a decrease of path-flows
is allowed only for the unaffected demands, besides the failed flows which are
automatically decreased to 0 for both types of demands. Notice that no new
paths are allowed to be established. To limit the number of path-flows and
prevent from establishing paths with subzero bandwidth that could be adjusted
upon failure occurrence, the traffic volumes that can be thinned and thickened
are bounded by a fixed percentage of their nominal path-flows. Summarizing,
flows (on existing paths) can be increased due to:

• capacity released on affected paths

• capacity possibly released on some paths of unaffected demands

• protection capacity as a result of network over-dimensioning.

Clearly, the capacity released on routing paths of unaffected demands is limited,
because the remaining flows on the routing paths for the unaffected demands
must be sufficient to carry the still requested traffic volume. EFR is illustrated
by the following example.

Consider a network with 5 nodes A, B, C, D, and E and 7 undirected links
(A,B), (A,C), (A,E), (B,D), (B,E), (C,D), and (C,E). The unit capacity
cost of all seven links equals 1. We consider two demands d1 and d2 (each with
demand volume equal to 1) between nodes A and E for d1 and nodes A and D
for d2. We consider single-link failure scenarios in which each link can fail, but
only one at a time. We show below what is the result of the minimum link cost
network when EFR is used to recover from single link failures.

The solution requires a capacity of
1

3
at link (B,E),

2

3
at link (C,E), and 1 at

all other five links; thus, the total dimensioning cost is 6. In the nominal state,
as depicted in Figure 1, demand d1 is realized on 3 paths: path p1 = {(A,E)}
with 1 flow value and paths p2 = {(A,B), (B,E)} and p3 = {(A,C), (C,E)}
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both with
1

3
flow value; while d2 is routed on 2 paths: p4 = {(A,B), (B,D)}

and p5 = {(A,C), (C,D)} both with
2

3
flow value.

E 

C 

B 

A 

D 

𝑝1(1) 

𝑝2(1/3) 

𝑝3(1/3) 

𝑝4(2/3) 

𝑝5(2/3) 

Figure 1: EFR - Nominal State.

Figure 2 represents the failure of link (A,C). Due to the failure, the traffic
requirement for d2 is no longer met and there is no bandwidth remaining at link
(A,B) to increase the traffic of path p4. Hence, as demand d1 is not affected
by the failure, it releases all the bandwidth on path p2 (it is possible as still
enough bandwidth remains on path p1). Enough bandwidth is now available to

increase the bandwidth on p4 by
1

3
; thus, to meet the traffic requirement of d2.

In this way, all demands are fully operational.

E 

C A 

D 

𝑝1(1) 

𝑝4(↗ 1) 
B 

𝑝2(↘ 0) 

Figure 2: EFR - Failure of link (A,C).

Another failure scenario, presented in Figure 3, is concerned with the failure
of link (A,E). The traffic requirement for d1 is no longer satisfied, and there is
no bandwidth available to increase the traffic on paths p2 and p3. As demand

d2 is not affected by the failure, it releases
1

3
of bandwidth on path p5 to make

room for path p3 thickening. Finally, d1 increases the bandwidth of paths p2 by
1

3
; thus, all demands recover from the failure.
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E 
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B 

A 

D 

𝑝2(1/3) 

𝑝3(↗ 2/3) 

𝑝4(2/3) 

𝑝5(↘ 1/3) 

Figure 3: EFR - Failure of link (A,E).

The other failure scenarios are simple of similar to the two examples de-
scribed above. Failures of links (B,E) and (C,E) do not cause any problem
for demand d1. The other link failures are close to the failure of (A,C). Note
that the dimensioning cost of 6 is also the optimal cost for both GR and RR
strategies.

In short, we can say that EFR adds rerouting capabilities to PD, but, unlike
RR or GR, seeks to find the capacity needed for rerouting by decreasing some
flows on the nominal routing paths of unaffected demands in addition to the
capacity released by the affected flows.

3 Mathematical model of EFR

The optimization problem considered in this paper is referred to as Elastic Flow
Rerouting Problem (EFR-P) and is as follows. The objective is to minimize the
total cost of link capacity assuming that in a nominal state, all demand volumes
are realized by means of nominal path-flows. When the network is subject to a
failure of a link, then the demand volumes, possibly reduced, are realized for the
duration of the failure state by the same nominal path-flow, but appropriately
thinned or thickened depending on the state of the corresponding demands.
The utilized notation is given in Section 3.1, while the detailed formulation of
EFR-P is given in Section 3.2. Section 3.3 is devoted to the complexity study
of the proposed method.

3.1 Notation

The considered network is modeled using a graph G = (V, E), undirected or
directed, composed of a set of routers V seen as nodes and a set of links E seen
as arcs or edges. In the sequel, we will always consider undirected graphs unless
stated explicitly otherwise. Thus, each link e ∈ E represents an unordered pair
{v, w} of some nodes v, w ∈ V. We assign to each link e ∈ E a non-negative unit
capacity cost ξe, which is a parameter, and a capacity reservation ye, which is an
optimization variable. The total cost of the network is given by C =

∑
e∈E ξeye.
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Demands are represented by set D. Each demand d ∈ D is associated with an
unordered pair of nodes {o(d), t(d)}. For the sake of simplicity we call o(d) a
source node and t(d) a termination node. Volume h0

d (a parameter) has to be
sent between o(d) and t(d). Notice that demand volumes and link capacities
are expressed in the same units. Also, to each demand d we assign a set of
admissible paths Pd composed of selected elementary paths between o(d) and
t(d) in graph G. Recall that an elementary path does not traverse any node
more than once. Paths from Pd are used to realize demand volume h0

d by
means of nominal path-flows of volume represented by optimization variables
x0
dp, p ∈ Pd. The given sets of admissible paths define the link-path incidence

coefficients δedp, e ∈ E , d ∈ D, p ∈ Pd, where δedp = 1 if path p ∈ Pd traverses
link e ∈ E (i.e., if e ∈ p, treating paths as subsets of links: p ⊆ E), and δedp = 0
if path p ∈ Pd does not traverse link e. It is important to note that the sets of
admissible paths Pd, d ∈ D, are parameters in the EFR-P problem formulation.

Network links are subject to totall failures. The set of failure states is de-
noted by S. Each failure state s ∈ S is identified with a set of links (s ⊆ E) that
are not operational. The set of paths in Pd that are unaffected by the failure
state s ∈ S, i.e., the set of all paths from Pd that do not contain a link in s, is
denoted by Psd . Symmetrically, the set of paths that are affected by s is denoted
by P̄sd .

A traffic demand d is considered affected by a failure state s if its surviving
nominal path-flows are not sufficient to carry the traffic volume requested for
this state, i.e., when

∑
p∈Ps

d
x0
dp < hsd. Otherwise, the demand is unaffected.

The status (affected/unaffected) of demand d ∈ D in failure state s ∈ S is
represented, by a binary variable T sd , d ∈ D, s ∈ S: T sd = 1 if d is an affected
demand in s, and T sd = 0 if d is not affected in s.

In failure state s ∈ S, unaffected demands d ∈ Ds (resp. affected demands
d ∈ D̄s) can only thin (resp. thicken) their unaffected path-flows. This concerns
only paths in Psd . The demand volumes associated to a given failure state must
be realized for the unaffected demands by means of the surviving nominal path-
flows that are appropriately thinned (decreased), and for the affected demands—
appropriately thickened (increased). The values by which the nominal path-
flows will be thinned (resp. thickened) for the state s ∈ S are denoted usdp, d ∈
Ds, p ∈ Psd (resp. by vsdp, d ∈ D̄s, p ∈ Psd). Hence, for a given failure state, all
the nominal path-flows of a given demand can be either thinned or thickened.
The thinning (resp. thickening) state-dependent path-flows usdp (resp. vsdp),
s ∈ S, d ∈ D, p ∈ Psd , are optimization variables and are bounded by ratio a ≤ 1
(resp. b ≥ 0) of their nominal values, or by 0 depending on the status of the
demand.

3.2 EFR-P formulation

Optimization problem EFR-P is given in the non-linear path-flow formulation
(1) for a given list of admissible path sets Pd, d ∈ D. In the formulation,
objective (1a) minimizes the total cost of links, i.e., the dimensioning cost.
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Constraints (1b) do not allow nominal link loads exceed nominal link capacities.
Constraints (1c) assure that for each demand its paths have jointly sufficient
capacity to satisfy the demand volume requested for the nominal state. Next,
constraints (1d) force that in each state s ∈ S, the capacity of each working
link e ∈ E \ {s} is not exceeded. Constraints (1e) assure that in each failure
state s ∈ S, the adjusted flows are sufficient to realize the (possibly reduced
with respect to h0

d) volume hsd of demand d ∈ D. Then, constraints (1h) do
not allow exceeding the thinning/thickening limits imposed by parameters a
and b. Constraints (1f) assure that each binary variable T sd takes value T sd = 1
if the corresponding demand is affected by more than a given ε > 0 in the
failure state s, while constraints (1g) deal with unaffected demands. Finally,
constraints (1h)-(1j) force variables x, u, and v to be correctly defined with
respect to affected/unaffected demands and T binary variables.

minC =
∑
e∈E

ξeye (1a)∑
d∈D

∑
p∈Pd

δedpx
0
dp ≤ ye, e ∈ E (1b)

∑
p∈Pd

x0
dp ≥ h0

d, d ∈ D (1c)

∑
d∈D

∑
p∈Ps

d

δedp(x
0
dp − usdp + vsdp) ≤ ye, s ∈ S, e ∈ E \ {s} (1d)

∑
p∈Ps

d

(x0
dp − usdp + vsdp) ≥ hsd, s ∈ S, d ∈ D (1e)

∑
p∈Ps

d

x0
dp +M(T sd − 1) ≤ hsd − ε, s ∈ S, d ∈ D (1f)

∑
p∈Ps

d

x0
dp + hsdT

s
d ≥ hsd, s ∈ S, d ∈ D (1g)

x0
dp − a−1usdp − b−1vsdp ≥ 0, s ∈ S, d ∈ D, p ∈ Psd (1h)

usdp +M(T sd − 1) ≤ 0, s ∈ S, d ∈ D, p ∈ Psd (1i)

vsdp −MT sd ≤ 0, s ∈ S, d ∈ D, p ∈ Psd (1j)

x, y, u, v continuous, nonnegative, T binary (1k)

Next, we discuss state-dependent constraints (1f),(1g),(1i), and (1j). If∑
p∈Ps

d
x0
dp < hsd, demand d is affected by the failure state s and its path-

flows can only be thickened, so usdp = 0. Otherwise, demand d is not af-
fected and its path-flows can only be thinned, which implies that vsdp = 0.
For this purpose, the constraints use a very large number called big-M co-
efficient, as well as a very small value ε (constraints (1f)) which, together
with T sd binary variables, emulates IF -like constraints. Using a large value
M and a small value ε typically leads to a high numerical instability. To
avoid this issue, constraints (1f),(1g),(1i), and (1j) are modeled in CPLEX,
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the solver utilized in our experiments, as indicator constraints. For instance,
the “strictly less than” linear constraints equivalent to (1f) are modeled as
IF (

∑
p∈Ps

d
x0
dp ≥ hsd) THEN T sd = 0 ELSE T sd = 1.

3.3 Complexity discussion

Formulation (1) is hard to solve exactly by mixed-integer linear solvers for
mainly two reasons. First, the number of variables used in the formulation
can be very large, since the sets of admissible paths can be of exponential sizes
with respect to the size of a network. Second, it contains binary variables and
big-M coefficients, which both lead to numerical instability and very poor linear
relaxations. All this gives a hint on the practical difficulty and the computa-
tional complexity of the EFR problem. Before stating the actual computational
complexity let us clarify, in the light of the above formulation, the connection
of EFR to other restoration strategies mentioned in Section 1. First, taking
a = 0 and b = 0 leads to PD strategy (neither thinning nor thickening are pos-
sible). Second, for a = 1 and b→∞ one can see that EFR converges to Global
Rerouting, while for a = 0 and b → ∞ EFR becomes RR strategy. We can
easily check that all requirements for each strategy are satisfied. For instance
let us consider RR: taking a = 0 implies that flow thinning is not allowed,
while b → ∞ means that new rerouting paths can be created in practice; this
is because the flow on some paths can be enlarged at any finite value starting
from practically insignificant flow values. All these special cases have different
levels of complexity for the single link failure case: GR and PD fall into the
polynomial time complexity class [2], while RR is shown to be NP-hard for
both the directed [9] and undirected [20] cases. The observation suggests that
both problems will exhibit the same NP complexity. Not surprisingly, we will
use similar arguments to show the NP-hardness in question. The proof given
for EFR is inspired by the RR NP-hardness proof presented in [9]. The proof is
based on a specific network constructed to show that finding an RR solution is
equivalent to solving the elementary path problem EL-PATH, which consists in
answering the question whether there exists an elementary path going through
a fixed link in a directed graph. Problem EL-PATH is NP-hard, because it can
be reduced from 2-DIV-PATH, which itself is NP-hard [21].

The network instance utilized in the proof is depicted in Figure 4. It assumes
a simplified failure scenario involving a single demand and failures of only two
links. Considering a single demand only has a particular impact on using EFR—
the method cannot employ thinning as there is no interest in considering cases
when the demand is unaffected. Hence, in the following, we consider the EFR
problem with a set to 0 and b set to a large but finite value, thus the nom-
inal flows cannot be decreased, but they can be increased and multiplied by
b + 1. Then, bearing in mind that we are looking for solutions involving only
elementary routing paths, the following proposition can be proven.

Proposition 1. EFR problem is NP-hard already for the case with two failing
links and one demand.
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Proof. The proof is deduced from the problem of existence of an elementary
path in a directed graph traversing a given link. Let this problem be denoted
by EL-PATH. As discussed in [9], EL-PATH (the decision problem consisting in
answering whether there exists an elementary path going through a given link
in a directed graph) is NP-hard.

The upper left part of Figure 4 represents an instance of EL-PATH, asking
for finding whether there exists an elementary path from v to w traversing a
given link (a, b) in a directed graph represented by the oval. The main part of
the figure shows how this instance of EL-PATH can be reduced to an instance
of the considered case of EFR with one demand d from node o to node t (with
volume hd = 1) and two failing links f1 and f2.

T w 

a 

b 

v 

w 

a 

b 

v 

w 

a 

b 

v 𝑊31 𝑊32 

𝑈31 𝑈32 

𝑉3 

𝑶 

𝑉2 𝑉1 

𝑊2 

𝑈2 

𝑊1 

𝑈1 

1
3  1

3  
𝑓2 𝑓1 

1

3
+
1

3
𝑏 

1

3
+
1

3
𝑏 

1

3
+
1

3
𝑏 

Figure 4: Illustration of the proof.

In the main graph, the links depicted by solid lines have large unit costs ξ,
while unit costs of the links drawn as dotted lines are negligible with respect
to ξ. The two ovals in the main graph are the copies of the oval in the upper
left part. Unit costs of all possible links in these two ovals are also negligible as
compared to ξ. Note that the nodes in both ovals in the main graph have the
same names, but this should not lead to a confusion.

We first show that the objective function value C of any feasible solution
of EFR must be greater than or equal to 5

3ξ. To demonstrate this, consider
the following cuts involving the expensive links, i.e., links (o, v1), (o, v2), (o, v3),
(w31, u31), and (w32, u32):

• one cut for the normal state: {(o, v1), (o, v2), (o, v3)}

• first cut for failure of f1: {(w31, u31), (w32, u32), (o, v2)}

• second cut for failure of f1: {(w31, u31), (o, v2), (o, v3)}
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• first cut for failure of f2: {(o, v1), (o, v3), (w32, u32)}

• second cut for failure of f2: {(w31, u31), (w32, u32), (o, v1)}.

The capacity of each of these five cuts must be greater than or equal to the
requested volume hd = 1. Hence, by summing up the inequalities expressing
these conditions for all five cuts we see that the sum of the capacity reservations
of the five expensive links must be at least 5

3 . As each of these links has the
unit cost ξ, we conclude that C ≥ 5

3ξ.
Now we will establish bounds of optimal solutions of EFR in the case when

an elementary path from v to w traversing link (a, b) in the oval exists (Case
1), and in the case when it does not exist (Case 2).

Case 1: Suppose that the oval contains an elementary path P from v to
w traversing link (a, b). Then, there exists a solution that achieves the cost
C0 = 5

3ξ + 1
b ξ. In this solution, the flows in the normal state are as follows:

• 1
3 : path o− v1 − w1 − u1 − (b− w part of P )− t

• 1
6 : path o − v3 − w31 − u31 − v − (v − a part of P ) − w1 − u1 − b −
(b− w part of P )− t

• 1
6 : path o − v3 − w32 − u32 − v − (v − a part of P ) − w2 − u2 − b −
(b− w part of P )− t

• 1
3 : path o− v2 − w2 − u2 − (b− w part of P )− t.

• 1
6b : patho− v3 − w32 − u32 − v − P − t

• 1
3b : path o− v1 − w31 − u31 − v − P − t.

• 1
6b : path o− v3 − w31 − u31 − v − P − t

• 1
3b : path o− v1 − w32 − u32 − v − P − t.

When link f1 fails, flow on o − v3 − w32 − u32 − v − P − t is enlarged to
reach 1

6 and flow on o− v1−w31−u31− v−P − t is thickened to 1
3 . When link

f2 fails, the third and the fourth normal flows are rerouted in a symmetric way
by enlarging respectively the flows on path o− v3 − w31 − u31 − v − P − t and
path o− v1 − w32 − u32 − v − P − t. The resulting capacity reservations of the
expensive, solid-line links are all equal to 1

3 (for links w31 − v31 and w32 − v32),
and ( 1

3+ 1
3b ) for the three other links (respectively o − V − 1, O − v − 2, and

o−v3) as depicted in Figure 4. The resulting capacity is ( 5
3 + 1

b )ξ and for b = 36
it gives a cost of 61

36ξ.
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Case 2: Now assume that there is no elementary path from v to w through
(a, b) in the oval. We will show that in this case the cost C0 of an optimal
solution of EFR must be greater than or equal to 7

4ξ. Indeed, it has been shown
in [9] that any solution for RR in the considered network is necessarily greater
than or equal to 7

4ξ, which is greater than 61
36ξ. This holds also for EFR as

for a = 0 all EFR solutions are necessarily solutions of RR, so EFR cannot do
better than RR.

To summarize, solving the constructed instance of EFR for the optimal cost
C0 yields a solution of EL-PATH: an elementary path P in question exists if
C0 ≤ 61

36ξ, and does not exist when C0 ≥ 7
4ξ. In this way, EL-PATH is reduced

to EFR and hence EFR is NP-hard.

4 Heuristic method

As remarked in the previous section, formulation (1) combines the big-M con-
straints with a large number O(|D||S|) of binary variables, and produces large-
scale integer-programming problems which happen to be intractable even for
moderate size networks.

Solving the EFR-P requires solving a combinatorial optimization problem
over the combinations of affected/unaffected demands sets for each failure. Ad-
ditionally, it requires applying path generation in the solution process. In conse-
quence, the exact solution of EFR-P would require branch-and-price algorithms.
Obviously, solving formulation (1) with binary variables T sd set to fixed values
representing a certain choice of affected/unaffected demands would give an up-
per bound for the optimal solution of EFR-P. In fact, as we will see below, the
optimization problem behind such upper bound solutions is much simpler to
solve than EFR-P itself.

Hence, a natural heuristic approach solving EFR-P would be to sequentially
approach a set of problems with the unaffected/affected demands gradually
fixed in each iteration. Such a mindset leads to a greedy heuristic approach
described in Section 4.1. Next, the problem solved at each iteration, called
EFR-PF (EFR-P fixed), is presented in detail in Section 4.2.

4.1 Description of the heuristic

In this section, we present the greedy heuristic method used to solve the EFR-
P optimization problem. In each iteration, the heuristic creates and solves an
instance of EFR-PF (version of EFR-P (1), in which all T sd , d ∈ D, s ∈ S, are
fixed to 0 or 1), and then adjusts the states (affected/unaffected) of the demands.
The process is repeated until no improvement is achieved—more precisely, it is
finished when all demands’ states remain unchanged.

The algorithm starts with an empty set of unaffected demands for each fail-
ure state, and with some initial admissible path-sets. Thus, at the beginning all
demands are considered as potentially affected. After solving the correspond-
ing LP, we know exactly which demands are affected and non-affected in the
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current solution x. This gives a hint how to update the unaffected demands for
the next iteration—the set of unaffected demands is extended with the demands
that are not affected in the obtained solution x. In this way, the new unaffected
demands can contribute to the restoration process by potentially releasing some
flow on their paths. For the next iteration, the EFR-PF instance is extended
with the constraints that characterize the demands recently moved to the set of
unaffected demands.

In consequence, any feasible solution will always keep these demands un-
affected because of the recently added constraints, which are not subject to
removal in the subsequent steps of the iteration process. Therefore, at each it-
eration, the obtained solution x can only extend the set of unaffected demands
and no demands that have been previously made unaffected can become af-
fected. The process of updating the sets of unaffected demands continues until
a solution to LP returns the same set of unaffected demands in two consecutive
iterations. This is the key idea of the method used in Heuristic EFR-H detailed
in Algorithm 1 below.

Algorithm 1: Heuristic method for EFR-P

Step 0: Initialization of path-sets
Define initial admissible path-sets Pd ⊆ P̄d, d ∈
D.

Step 1: Initialization of demands’ states
Put Ds := ∅, s ∈ S.

Step 2: Solving EFR-PF
Let x be the resulting solution. Set Ds(x): the
set of unaffected demands corresponding to so-
lution x.

Step 3: Update demands’ states
If Ds = Ds(x), s ∈ S, then go to Step 4. Oth-
erwise, Ds := Ds(x), s ∈ S, and go back to Step
2.

Step 4: Return the solution

We can easily deduce that the algorithm will always stop, because once a
demand is considered unaffected it will remain unaffected for all consecutive
iterations. On the other hand, affected demands can change their states and
become unaffected. Hence, the process will necessarily stop since the set of
unaffected demands cannot be extended to infinity, and the algorithm ends when
we obtain the same set of unaffected demands for two consecutive iterations.

One of the disadvantages of the presented algorithm is its fast convergence to
local minima. If a large set of demands becomes unaffected in a single iteration,
the heuristic may not be able to find high quality solutions. In order to alleviate
this issue, the number of demands that can become unaffected in a failure state
s in a single iteration is limited to MAXd. If MAXd takes a very low value,
the heuristic will slowly converge, will explore a lot more scenarios, but the
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computation time will be much longer. In contrast, if MAXd takes a high
value, the computations will be fast, but the algorithm will quickly converge
to a local minimum that can be very far from the true optimum. The most
reasonable value of MAXd depends on a network instance. However, we notice
that MAXd = 5 represents a good compromise between the computation time
and the solution quality. Still, observe that the presented method is not exact;
thus, obtained solutions are in general suboptimal although we have already
achieved almost optimal results in the majority of tests (look at Section 7).

4.2 Formulation of EFR-PF problem

Let us now look in detail how the EFR-PF problem used in each iteration of
the above algorithm is formally defined. We first introduce additional notation
by defining two sets: E(d) = {s ∈ S : d ∈ Ds} is the set of links whose failures
do not affect demand d, and Ē(d) = {s ∈ S : d ∈ D̄s} is the set of links whose
failures affect demand d. Note that in the EFR-PF problem the sets Ds, s ∈ S
are predefined. Then, a linear programming formulation for EFR-PF, denoted
by PF (Ds,P) and given in (2), can be obtained from (1) by fixing the variables
accordingly.

minC =
∑
e∈E

ξeye (2a)

[π0
e ]

∑
d∈D

∑
p∈Pd

δedpx
0
dp ≤ ye, e ∈ E (2b)

[λ0
d]

∑
p∈Pd

x0
dp ≥ h0

d, d ∈ D (2c)

[πse ]
∑
d∈D

∑
p∈Ps

d

δedpx
0
dp −

∑
d∈Ds

∑
p∈Ps

d

δedpu
s
dp +

∑
d∈D̄s

∑
p∈Ps

d

δedpv
s
dp ≤ ye

s ∈ S, e ∈ E \ {s}
(2d)

[λsd]
∑
p∈Ps

d

(x0
dp − usdp) ≥ hsd, d ∈ Ds, s ∈ E(d) (2e)

[λsd]
∑
p∈Ps

d

(x0
dp + vsdp) ≥ hsd, d ∈ D̄s, s ∈ Ē(d) (2f)

[σsdp] usdp ≤ ax0
dp, s ∈ E(d), p ∈ Psd (2g)

[σsdp] vsdp ≤ bx0
dp, s ∈ Ē(d), p ∈ Psd (2h)

x, u, z, y continuous, nonnegative (2i)

In formulation (2), objective (2a) minimizes the total cost of links, and (2b)-
(2f) are similar to (1b)-(1e) defined for EFR-P. Constraint (1e) is split in two
constraints (2e) and (2f). Then, constraints (2g) do not allow releasing more
than fraction a of the nominal flow assigned to a path, and constraints (2h)
ensure that flow increase on a disrupted path by more than fraction b of the
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nominal flow is not permitted. The values of a and b are fixed parameters
with 0 ≤ a ≤ 1, b ≥ 0. In the formulation, the quantities in brackets to the
left are dual variables associated with constraints. All these variables are, by
assumption, non-negative.

The condition stipulating that surviving flows of the affected demands are
not sufficient to satisfy the required demand volume can be expressed as:∑

p∈Ps
d

x0
dp ≤ hsd − ε, s ∈ S, d ∈ D̄s, (3)

for a very small ε > 0. Nevertheless, we have deliberately chosen not to introduce
this constraint into the EFR-PF formulation (2)1. In practice, the EFR-PF
formulation (2) solved in the first iteration of the algorithm does not contain
constraints (2e), because Ds is initally set to ∅. Having a solution, each demand
d ∈ D is checked if it satisfies (3). If constraint (3) is not satisfied for a particular
demand, the demand is added to set Ds. At this stage, the obtained solution
x remains feasible for the new LP problem. Thus, the heuristic generates a
sequence of approximate solutions that are improving in time.

Although EFR-PF is an LP, the problem is still not easy to solve because of
the possibly exponential numbers of path-flow variables x, u, and z. To avoid
the non-compact nature of the formulation, paths are generated on the fly using
Path Generation (PG) applied to formulation (2). Unfortunately, PG turns out
to be a difficult problem as it is shown in the following subsections.

4.3 Dual problem

Let us consider the problem dual to problem (2) for a given set of admissible
paths P. The dual, denoted by D(P), is as follows (for the derivation see for
example [1]):

maxW =
∑
d∈D

(h0
dλ

0
d +

∑
s∈S

hsdλ
s
d) (4a)

π0
e +

∑
s∈S\{e}

πse = ξe, e ∈ E (4b)

λ0
d +

∑
s∈E(d)\p

(λsd + aσsdp) +
∑

s∈Ē(d)\p

(λsd + bσsdp) ≤
∑
s∈S\p

|p|s + |p|0,

d ∈ D, p ∈ Pd
(4c)

λsd + σsdp ≥ |p|
s
, d ∈ D, p ∈ Pd, s ∈ E(d) \ p (4d)

λsd − σsdp ≤ |p|
s
, d ∈ D, p ∈ Pd, s ∈ Ē(d) \ p (4e)

λ, π, σ continuous, nonnegative (4f)

1The idea behind this relies on the way the above heuristic works: we do not need to
constrain a solution obtained at each step of the heuristic to a fixed set of affected/unaffected
demands, but only need to prevent the set of unaffected demands from shrinking.
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where, for a given path p ∈ P, we have used the notation |p|0 =
∑
e∈p π

0
e and

|p|s =
∑
e∈p π

s
e .

We notice that the optimal solution of (4) must give for d ∈ D, p ∈ Pd, s ∈
E(d) \ p:

σsdp =

{
0, if |p|s ≤ λsd
|p|s − λsd, if |p|s > λsd

(5)

and for d ∈ D, p ∈ Pd, s ∈ Ē(d) \ p:

σsdp =

{
|p|s − λsd, if |p|s < λsd
0, if |p|s ≥ λsd

(6)

Observe that if we replace σsdp with these values, formulation (4) and for-
mulation (9) given below have the same sets of feasible variables π and λ. We
introduce some additional notation. For d ∈ D, p ∈ Pd:

Fd(p) = {s ∈ E(d) \ p : |p|s > λsd} (7)

Symmetrically, for d ∈ D, p ∈ Pd:

F̄d(p) = {s ∈ Ē(d) \ p : |p|s < λsd} (8)

Considering (5)-(8), the transformed formulation of the dual problem is as
follows:

maxW =
∑
d∈D

(h0
dλ

0
d +

∑
s∈S

hsdλ
s
d) (9a)

π0
e +

∑
s∈S\{e}

πse = ξe, e ∈ E (9b)

λ0
d + a

∑
s∈Fd(p)

∆s
dp + b

∑
s∈F̄d(p)

∆s
dp −

∑
s∈S\p

∆s
dp ≤ |p|

0
, d ∈ D, p ∈ Pd (9c)

λ, π continuous, nonnegative (9d)

with ∆s
dp = |p|s − λsd, d ∈ D, p ∈ Pd, s ∈ S \ p.

4.4 Pricing problem

Let P̄d denote the set of all paths in the network graph between o(d) and t(d).
The essence of the pricing problem related to the dual problem (9) formulated
for a given (limited) admissible path-sets Pd, d ∈ D, is to check whether for at
least one demand d ∈ D there exists a path q ∈ P̄d \Pd (i.e., path q outside the
current admissible path-set Pd), for which (9c) cannot be satisfied for any set
of non-negative dual variables σsdq, s ∈ Ē(d) \ q. In fact, this is the case if and
only if:

∆0
dq +

∑
s∈S\q

∆s
dq − a

∑
s∈Fd(q)

∆s
dq − b

∑
s∈F̄d(q)

∆s
dq < 0 (10)
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with ∆0
dq = |q|0 − λ0

d, d ∈ D.
The Pricing Problem (PP) for a given π, λ and a given demand d ∈ D is as

follows:
minimize ‖q‖ over q ∈ P̂d (11)

where
‖q‖ = ∆0

dq +
∑
s∈S\q

∆s
dq − a

∑
s∈Fd(q)

∆s
dq − b

∑
s∈F̄d(q)

∆s
dq.

Observe that if ‖q‖ < 0 for a path q satisfying (11), then the current optimal
dual solution π, λ violates dual constraints (9c) for path q. Moreover, the
violation is maximal over all paths p ∈ P̂d.

Finally, we note that PP is difficult. In particular, the term
∑
s∈S\q

∑
e∈p π

s
e

included in
∑
s∈S\q ∆s

dq is difficult to deal with. This problem is also known in
the literature as the quadratic shortest path problem, since its cost depends not
only on the arcs included in the path, but also on the other arcs. Furthermore,
it is encountered in the pricing problem of RR known to be NP-hard, see [6–9]
and a survey on path generation [2]. In our experiments, we have incorporated
all potential paths in the initial path set.

5 EFR - multiple partial link failures

In this section, we present an extension of EFR, referred to as EFRPLF, in-
tended to handle partial link failures. It is among the first attempts to address
flow protection against multiple partial failures in an implementable way. The
approach is based on two (re)routing strategies: Flow-Thinning and EFR.

Flow-Thinning (FT) [16] is a protection strategy resilient to multiple partial
link failures. The main idea behind FT is to, when a partial failure occurs, adjust
the nominal path-flows by thinning them down so the flows are not rerouted.
In short, EFRPLF can be seen as an extension of EFR to partial failures using
the features of FT. The approach works as follows. When a link partially fails,
the affected nominal path-flows can only be thinned following the idea of FT.
Next, flow adjustments are made according to EFR. The above implies that
EFRPLF becomes pure EFR when applied to total link failures. In this section,
we present the optimization problem (referred to as EFRPLF-P) associated to
the EFRPLF approach discussed above.

Network links are subject to capacity variations that we consider as partial
failures. The set of failure states is still denoted by S. Each failure state s ∈ S
is identified with a set of links (s ⊆ E) that cannot operate at full capacity. As
for EFR, the set of paths in Pd that are unaffected by the failure state s ∈ S,
i.e., the set of all paths from Pd that do not contain any link in s, is denoted
by Psd . Symmetrically, the set of paths that are affected by s is denoted by P̄sd .
The nominal path-flow x0

dp affected by s (p ∈ P̄sd) can only be thinned—they
are thinned to zsdp, which are optimization variables. A traffic demand d is said
to be affected by a failure state s if its surviving nominal path-flows (thinned
or not) are not sufficient to carry the traffic volume assumed for this state, i.e.,
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when
∑
p∈P̄s

d
zsdp +

∑
p∈Ps

d
x0
dp < hsd. Otherwise, the demand is unaffected. The

state (affected/unaffected) of demand d ∈ D in failure state s ∈ S is represented,
as for EFR, by a binary variable T sd , d ∈ D, s ∈ S: T sd = 1 if d is an affected
demand in s, and T sd = 0 if d is not affected in s. The remaining variables are as
in EFR-P and the process is based on the same idea as for EFR. In failure state
s ∈ S, unaffected demands d ∈ Ds (resp. affected demands d ∈ D̄s) can only
thin (resp. thicken) their unaffected path-flows. This will concern only paths
in Psd . The values by which the nominal flows are thinned (resp. thickened)
are denoted by usdp (resp. vsdp) and bounded by ratio a ≤ 1 (resp. b ≥ 0)
of their nominal values, or by 0 depending on the state of the demand. The
mathematical formulation of EFRPLF, inspired from EFR, is given below:

minC =
∑
e∈E

ξeye (12a)∑
d∈D

∑
p∈Pd

δedpx
0
dp ≤ ye, e ∈ E (12b)

∑
p∈Pd

x0
dp ≥ h0

d, d ∈ D (12c)

∑
d∈D

(
∑
p∈Ps

d

δedp(x
0
dp − usdp + vsdp) +

∑
p∈P̄s

d

δedpz
s
dp) ≤ αseye, s ∈ S, e ∈ E (12d)

∑
p∈Ps

d

δedp(x
0
dp − usdp + vsdp) +

∑
p∈P̄s

d

δedpz
s
dp ≥ hsd, s ∈ S, d ∈ D (12e)

∑
p∈P̄s

d

zsdp +
∑
p∈Ps

d

x0
dp +M(T sd − 1) ≤ hsd − ε, s ∈ S, d ∈ D (12f)

∑
p∈P̄s

d

zsdp +
∑
p∈Ps

d

x0
dp + hsdT

s
d ≥ hsd, s ∈ S, d ∈ D (12g)

0 ≤ usdp ≤ ax0
dp, s ∈ S, d ∈ D, p ∈ Psd (12h)

0 ≤ vsdp ≤ bx0
dp, s ∈ S, d ∈ D, p ∈ Psd (12i)

0 ≤ zsdp ≤ x0
dp, d ∈ D, s ∈ S, p ∈ P̄sd (12j)

usdp +M(T sd − 1) ≤ 0, s ∈ S, d ∈ D, p ∈ Psd (12k)

vsdp −MT sd ≤ 0, s ∈ S, d ∈ D, p ∈ Psd (12l)

x, y, z, u, v continuous, nonnegative, T binary (12m)

where the objective function is to minimize the total cost of the network.
Constraints (12b) do not allow the nominal link loads to exceed the nominal
link capacities. Constraints (12c) ensure that the nominal flows are sufficient to
satisfy each demand d ∈ D.

Constraints (12e) assure that in each failure state s ∈ S the adjusted flows
are sufficient to realize the volume of each demand d ∈ D and constraints (12d)
verifie that the surviving capacity of each link e ∈ E is not exceeded. Constraints
(12f) - (12g) are related to the states of demands. They restrict T sd values to be
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equal to 1 for an affected demand and 0 otherwise. Note that (12f) is handled
by CPLEX MIP solver in the same way as (1f) in Section 3. Constraints (12h)
- (12l) express bound constraints for variables u, v, and z.

Note that EFRPLF-P is obviously as difficult as EFR, because for total fail-
ures it reduces to EFR. This statement holds since flow thinning can be applied
only for partial failures—it completely disappears when the link failure cuts
the traffic entirely (total failure). Therefore, the already demonstrated NP-
hardness of EFR immediately implies the following corollary.

Corollary 1. The EFRPLF problem represented by (12) is NP-hard.

6 Practical applications of EFR and EFRPLF

The first part of the study presented in this paper deals with total link failures.
The importance of such problems is very well established, as such total link
failure problems arise in almost all telecommunication networks. Therefore, in
this section, we focus on justifying the importance of problems that deal with
partial link failures. We concentrate on broadband wireless communications
networks in our explanations, as these networks hold great promise for provid-
ing private high-speed data connections by means of microwave radio [11, 15]
or free space optical (FSO) transmission [17, 19]. Both microwave and optical
transmission refer to terrestrial point-to-point digital communications, usually
employing highly directional antennas within the line-of-sight (LOS). What is
important, the two technologies operate at unlicensed frequency bands, contrary
to radio communications based for instance on LTE. Moreover, both microwave
and FSO are sensitive to interferences—the feature we utilize in our optimiza-
tion model. Despite recent advances in optimization of fixed broadband wireless
networks, a variety of questions in this area have not been addressed yet. Par-
ticularly, capacity planning in fixed wireless networks is quite different from that
in wired networks. In fact, environmental conditions, especially weather, play
an important role since they can introduce instantaneous variations into the
communication channel, likely leading to outage events which can be modeled
as multiple partial link failures. As a common practice, operators tend to highly
over-provision bandwidth during network planning to avoid traffic bottlenecks
under adverse scenarios (when the performance of some links deteriorates). This
approach, however, incurs additional costs that do not result in resource- and
cost-efficient networks, leading to an inefficient use of the radio spectrum.

Below we discuss an issue of how to manage partial failures in fixed wire-
less networks. Even though FSO and microwave radio have a lot in common,
in this section, we will focus on microwave radio communications. Radio fre-
quency spectrum is a limited resource regulated worldwide by the International
Telecommunications Union (ITU). In conjunction with the ITU regulations, na-
tional legislation instruments establish the availability of frequency bands for
specific applications and the procedures to use licenses. A license (assignment)
is an authorization given by administration for a radio station to use a radio
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frequency under specified conditions. In most cases (also assumed in this pa-
per), the price of frequency spectrum for a single microwave link is a function
of the amount of spectrum (bandwidth) in MHz associated with the license.

Commonly, to support broadband applications, modern microwave systems
use quadrature amplitude modulation (QAM). An m-QAM scheme utilizes m
combinations of amplitude and phase, each one representing an n-bit pattern
called a symbol (with n = log2m and integer). Given the channel bandwidth
B and the m-QAM scheme in use, we can approximate the channel capacity C
by:

C [Mb/s] = nB [MHz]. (13)

The m-QAM schemes with high values of m assure bandwidth efficiency, but
are more susceptible to errors due to channel impairments. As the modulation
scheme changes to accommodate higher data rates, the signal-to-noise ratio
(SNR) requirement increases to preserve the bit error rate (BER).

Table 1: Bandwidth efficiency, SNR requirement, and capacity.

Modulation
scheme

Bandwidth
efficiency

SNR
require-
ment

Capacity
for
7MHz

Capacity
for 28MHz

QPSK 2 bps/Hz 14.21 dB 14 Mbps 56 Mbps
16-QAM 4 bps/Hz 21.02 dB 28 Mbps 112 Mbps
32-QAM 5 bps/Hz 25.24 dB 35 Mbps 140 Mbps
64-QAM 6 bps/Hz 27.45 dB 42 Mbps 168 Mbps
128-QAM 7 bps/Hz 31.10 dB 49 Mbps 196 Mbps
256-QAM 8 bps/Hz 33.78 dB 56 Mbps 224 Mbps

Moreover, the transmitted signal suffers deep fades and hence microwave
links are susceptible to outage events. To overcome this issue, modern microwave
systems employ adaptive modulation and coding, which both have been proven
to considerably enhance link performance [14]. To keep the BER performance,
this technique entails the variability of the link capacity. One of the first study
of network optimization assuming the above paradigm was presented in [12].

In the following, we exploit the capability of the above considered networks
to adapt the capacity of links to meet the current SNR requirement. We assume
that a list of states, typically corresponding to degraded weather condition in a
particular area, is given. Each state is represented by a vector of link capacities
where a set of links (corresponding to the degraded area) have their capacity
decreased due to the modulation scheme applied to cope with the weather con-
ditions in the area, while the others remain unchanged. Such an approach leads
us to present an extension of EFR that takes into account partial link failures.
The extension is discussed in detail in the following section.

Formulation EFRPLF can easily be adapted to consider the mentioned mod-
ulation schemes. In addition to notations used for EFRPLF, we introduce new
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binary optimization variables ywe taking value 1 iff frequency w ∈ We is se-
lected for link e, where We is a set of frequencies available on link e. The
capacity of link e, denoted by ye, is determined by the combination of the mod-
ulation and the frequency. It is expressed as ye =

∑
w∈We

bw0
e ywe , where bw0

e

is the bandwidth efficiency coefficient used in optimal conditions, while in de-
graded conditions (partial failure state s) this is given by bwse < bw0

e , which
leads to decreased link capacities. Hence, the objective function of EFRPLF-
P becomes minC =

∑
e∈E

∑
w∈We

ξwe y
w
e . As capacities now depend on the

modulation, the right hand side of constraints (12b) and (12d) are to be re-
placed by

∑
w∈We

bw0
e ywe and

∑
w∈We

bwse ywe respectively. Finally, constraints∑
w∈We

ywe = 1, e ∈ E ensure that a link can only use one frequency.

7 Numerical results

In this section, we present results of a computational study illustrating the
performance of EFR-P and the heuristic on the total single link failure case
followed by preliminary results for the EFRPLF problem.

7.1 Dimensioning cost

We consider undirected networks; thus, the optimization problems are treated
in their versions for undirected network graphs. Network instances used in
our tests, listed in Table 2, are taken from SNDlib [10]. In the table depicted
are the number of vertices, edges and demands of each networks, as well as
the maximum and minimum degree of the corresponding graphs (∆(G), δ(G)).
When solving the problems, we consider sets of all paths for polska, nobel-us,
and nobel-germany (as these are low meshed network instances), and all paths
with up to 7 links for di-yuan (a highly meshed network with 11 nodes). The
study was carried out on a computer equipped with an Intel Xeon CPU E5-2670
2.60GHz processor and 132 GB of RAM, using CPLEX 12.5 (CPLEX 2013).

We recall that although in theory EFR-P gives the exact formulation and
solving it should provide the optimal solution of the problem, using big-M co-
efficients in the formulation yields numerical issues. To handle this, constraints
with the big-M coefficients are replaced by appropriate CPLEX indicator con-
straints.

Table 2: Network description.

network |V| |E| |D| ∆(G) δ(G)

di-yuan 11 42 22 9 7

polska 12 18 66 5 2

nobel-us 14 21 91 6 2

nobel-germany 17 26 121 4 2
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Below we compare the cost effectiveness of the following traffic protection
strategies: Elastic Flow Rerouting (EFR), Path Diversity (PD), Restricted
Restoration (RR), i.e., end-to-end flow rerouting with stub release, and Global
Rerouting (GR). Recall that in a failure state, GR is allowed to restore flows for
all demands in the available link capacity from scratch, while RR can restore
only affected flows, i.e., the nominal flows that use a particular failing link in a
given state.

In the reported experiments, we always use the same traffic reduction ratio
β for all demands in all failure states, i.e., hsd = βh0

d for all d ∈ D and s ∈ S.
We also assume that the decreasing factor a is always equal to 1.0, while the
increasing factor b takes values 0.1, 0.5, 1.0, or 3.0, which means that the nominal
flows can be increased by up to 10% (resp. to 50%, multiplied by 2, or multiplied
by 4). The decreasing and increasing factors are maximum limits applied to
each path-flows in case of failures. In our experiments, we have incorporated all
potential paths in the initial path set.

Let CGR denote the optimal value of the objective function (i.e., minimum
cost of the link capacity) for GR, and CbEFR, CPD, and CRR the respective values
for the remaining strategies. Note that CaEFR is computed by solving EFR-P
for the assumed thickening factor b. The rest of the costs are computed through
solving appropriate optimization problems that can be found for example in [1].
Certainly, the computed link capacities (and thus the link capacity cost) ensure
routing of all traffic demands in the nominal state and the guaranteed traffic
restoration (specified by β) in all failure states. As we already mentioned, the
cost CGR, indicated by GR, is not greater than any of the remaining costs, as
GR assumes the least restricted flow restoration mechanism. Hence, we can
define the relative cost increase for each strategy S (where S stands for EFR,
PD, RR, or GR) with respect to GR as GS = CS−CGR

CGR
×100%. In the following,

this quantity will be called the relative gap. Note that, by definition, GGR = 0.
In Table 3, for all four network instances, we present GRR, GPD, and GaEFR,

as a function of the traffic reduction ratio β assumed for the failure states. We
consider 5 scenarios with different values of β varying from 60% to 100%. In
the table, numbers in bold correspond to the scenarios, in which EFR performs
better than RR and PD in terms of the cost. Experiments for values of β less
than 60% show that for EFR and GR the cost does not increase comparing to
the cost of routing the demands in the nominal state.

In Table 3, interesting results in terms of the cost-effectiveness are indicated.
As expected, the cost of the network for EFR is often lower than CRR for b = 1
for most of β. In fact, CRR can be seen as C+∞

EFR with a = 0. Hence, because
increasing b decreases CbEFR, the gain of cost using EFR instead of RR comes
from the ability to decrease the bandwidth of paths of unaffected demands. We
also notice that the gap between the lower bound—(the cost of CGR) and C3.0

EFR

remains low, with a maximum of 12.6%.
We now study the efficiency of the heuristic method expressed as a relative

gap between the objective function of the EFR-P problem using formulation
(1) (denoted CbEFR) and the cost achieved by the heuristic algorithm CbEFR−H .
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Table 3: Relative gap (in %) for all strategies.

β GRR GPD G0.1
EFR G0.5

EFR G1.0
EFR G3.0

EFR

d
i-
y
u
a
n

0.6 16.5 41.0 37.2 27.3 20.5 10.2

0.7 19.4 47.8 43.4 31.9 23.9 11.9

0.8 21.0 53.1 48.0 34.9 25.9 12.6

0.9 17.5 60.1 46.9 31.6 22.0 11.4

1.0 9.4 60.2 46.0 30.9 19.7 11.0

p
o
ls
k
a

0.6 14.4 47.2 35.5 20.6 15.5 7.7

0.7 17.6 66.3 52.1 21.8 15.9 7.6

0.8 10.5 69.0 53.6 17.3 8.1 1.8

0.9 4.1 69.0 53.6 15.5 4.9 1.3

1.0 0.2 69.0 53.6 14.5 4.1 1.2

n
o
be

l-
u
s

0.6 14.8 59.6 48.1 31.0 23.3 11.9

0.7 15.9 77.9 62.8 33.3 24.2 11.4

0.8 12.5 88.3 70.6 31.9 19.7 7.4

0.9 5.8 88.3 71.7 34.1 20.5 11.2

1.0 1.9 88.3 71.7 33.6 16.9 8.1

n
o
be

l-
g
e
rm

a
n
y 0.6 14.1 44.0 31.4 17.0 12.1 6.0

0.7 10.7 51.8 38.3 19.1 15.2 12.5

0.8 5.0 51.9 39.7 15.5 10.2 6.6

0.9 1.6 51.9 39.7 14.8 8.0 4.1

1.0 0.0 51.9 39.7 14.6 5.9 3.0

Table 4 shows the values of Hb
EFR =

Cb
EFR−H−C

b
EFR

Cb
EFR

× 100%—the relative gap

between CbEFR−H and CbEFR—as a function of the traffic reduction ratio. The
results are given for the settings used in Table 3. We notice that the heuristic
method performs well for all networks indicating the maximum relative gap of
less than 2%. However, as this method contains some randomness, the gap with
the exact solution can be different if we compute the solution of the heuristic a
second time. Still, the heuristic seems to be able to find a solution close to the
optimal solution, with a gap not exceeding 2% in most cases. In the table, we
present the best obtained gap after running the heuristic for three times. Thus,
we notice that the heuristic is usually able to find the optimal solution after just
a few repetitions, as indicated by the 0.0 value of the gap (in bold).

Finally, we study the performance of EFRPLF, i.e., EFR applied to par-
tial failures. Let CGR denote the optimal value of the objective function (i.e.,
minimum cost of the link capacity) for GR, and CbEFRPLF

, CFT the respective
values for the remaining strategies. We define the relative cost increase for
each strategy S (where S stands for EFRPLF or FT) with respect to GR as
KS = CS−CGR

CGR
× 100%. To make a comparison with results for FT and GR
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Table 4: Relative gap (in %) between the exact solution and the heuristic
solution.

β H0.1
EFR H0.5

EFR H1.0
EFR H3.0

EFR

d
i-
y
u
a
n

0.6 0.0 0.0 0.0 0.0

0.7 0.0 0.0 0.0 0.0

0.8 0.0 0.0 0.0 0.0

0.9 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0

p
o
ls
k
a

0.6 0.0 0.0 0.0 0.0

0.7 0.0 0.9 0.4 0.2

0.8 0.0 0.6 0.7 0.0

0.9 0.0 1.1 0.7 0.0

1.0 0.0 1.2 0.1 0.0

n
o
be

l-
u
s

0.6 0.0 0.0 0.0 0.0

0.7 0.0 0.0 0.0 0.0

0.8 0.0 0.0 0.0 0.1

0.9 0.0 0.0 0.1 0.1

1.0 0.0 0.1 0.1 0.1

n
o
be

l-
g
e
rm

a
n
y 0.6 0.0 0.0 0.0 0.0

0.7 1.1 0.0 0.0 0.0

0.8 0.0 0.0 0.0 0.0

0.9 0.0 0.0 0.0 0.0

1.0 0.0 0.1 0.3 0.0

possible, some vital changes are needed in the way the capacities are affected
by the perturbation for EFRPLF. Instead of variables ywe , e ∈ E , w ∈ We we
use ye, e ∈ E . By extension, instead of bwse ywe , e ∈ E , w ∈ We, s ∈ S we use
γye, e ∈ E , s ∈ S, where γ express the perturbation ratio. The results are given
for several levels of perturbation γ: 50%, 75%, and 95%. As no network instance
could be solved within a limited period of time (10 hours), we present results of
network polska with a limited set of demands: 20 demands instead of 66.

We notice that EFRPLF performs generally better than FT. For lower per-
turbation ratios, for instance γ = 50%, differences of costs of the network for
FT and EFRPLF remains insignificant—the gap between FT and EFRPLF for
all values of b is less than 10%. However, if we consider stronger perturbation
ratios, for instance γ = 95%, EFRPLF becomes clearly more cost-efficient than
FT. When the thickening ratio is very low, for instance 10%, the gap between
FT and EFRPLF is equal to 5.7% 2. If we increase the thickening ratio, the gap
between FT and EFRPLF reaches 25.7% (b = 3).

2This gap value is computed using results for each strategy as done for the gap with GR.
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Table 5: Relative gap (in %) of EFRPLF and FT compared to GR.

γ KFT K0.1
EFR K0.5

EFR K1.0
EFR K3.0

EFR

50% 14.3 11.3 6.6 5.0 3.3

75% 26.0 20.9 10.9 7.8 3.9

95% 43.9 35.8 18.3 11.6 7.0

7.2 Restoration time

We analyze here the solutions obtained with the EFR, GR, and RR strategies
in terms of average number of paths, length of the paths, and restoration time.
Table 6 shows the average number of paths in the nominal state, the total
number of distinct paths, and the number of paths used for thickening or new
paths created. Notice that not all strategies allow for establishing new paths.
Moreover, in the table, the average length of the paths is shown both for nominal
and failure states. We notice that even though GR and RR use less paths in
the nominal state, the average total number of paths used by these strategies is
significantly higher.

Table 6: Paths of the solutions obtained by EFR, GR, and RR for network
polska

EFR0.5 EFR1.0 GR RR

Avg. number of paths per demand in nominal state 4.12 3.02 1.27 1.51

Avg. number of distinct paths per demand 4.12 3.02 7.26 7.36

Avg. number of paths to thick/create per demand 0.94 0.61 1.24 0.41

Avg. length of the paths in nominal state 3.41 3.14 3.13 2.46

Avg. length of all paths 3.41 3.14 4.44 5.57

In the following, we study the restoration time of EFR, compared to GR
and RR. In the experiment, we use a simplified restoration model that returns
a fraction of satisfied demands in a function of time elapsed after the failure.
The results are presented in Figures 5 and 6, where the former represents the
ratio of satisfied demands in time in the network polska for a total failure of a
link at the border of the network, while the latter presents the same result for
a total failure of a link in the center of the network.

As expected, EFR leads to a substantial gain in terms of restoration time,
roughly two times faster than GR and three times faster than RR. This is
mainly due to two factors: EFR do not create new paths and the total number
of paths it uses is smaller. Therefore, the time when EFR practically ends the
whole restoration process is also the time when GR strategy ends disconnecting
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Figure 5: Demand satisfaction ratio of the network polska after failure of
Kolobrzeg-Szczecin (at the border of the network).
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Figure 6: Demand satisfaction ratio of the network polska after failure of
Lodz-Warsaw (in the center of the network).

flows that are to be rerouted. The reason GR outperforms RR in terms of
total restoration time is the average length of restoration paths used by the
strategies. The longer restoration paths of RR strategy induce longer restoration
times. Another important aspect, mentioned earlier, is the capability of EFR
to maintain a high level of satisfaction ratio of demands during the restoration
process. From the figures we notice that GR encumbers the process as a lot of
routing paths should first be released and others have to be settled from the
scratch, while EFR benefits from optimized flow paths at a large part available
in most of failure situations. The issue can be perfectly seen in the figures
around time 5-7, when the demand satisfaction ratio for GR plunges to merely
50%, while at the same time reaching 100% for EFR and about 85% for RR.
This feature is expected to be even more important for partial failure situations.
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8 Concluding remarks

In the paper, we have studied a protection strategy called Elastic Flow Rerouting
(EFR) and its extension called EFRPLF. The strategies are based on the concept
of elastic (failure state-dependent) path-flows. EFR is designed to handle total
link failures, while its extension deals with multiple partial link failures related to
broadband wireless (FSO, microwave) networks. When it comes to the relation
of link capacity cost, management effort, and traffic restoration time, the EFR
strategy appears to be encouraging, especially when traffic is supposed to be
partially restored.

From the theoretical viewpoint, optimization of EFR gives rise to a chal-
lenging multi-commodity flow problem EFR-P, combining two difficult issues:
a combinatorial subproblem dealing with the choice of the demand states, and
a likely NP-hard pricing subproblem for path generation. To the best of our
knowledge, such a problem has not been considered in the literature on traffic
protection strategies before. We have introduced an exact MIP formulation of
EFR-P that works for a given set of admissible paths, and proposed a fast sub-
optimal heuristic approach for EFR-P. Looking for an exact approach with a
reasonable efficiency will be the subject of our future work.

We have also considered the case with partial failures. The corresponding
problem, denoted by EFRPLF-P, is even more difficult, since it combines two
levels of decisions: at the first level it choses flows that have to be thinned and
at the second level it optimizes the way the affected demands can enlarge their
flows using resources released from the unaffected demands. All this makes the
problem highly combinatorial. Additionally, the corresponding pricing problem
is very complicated, as it embraces features coming from two other NP-hard
pricing problems: one for FT and the other for EFR.
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Appendix: Binary formulation of the pricing prob-
lem

The pricing problem formulated in (11) is difficult because of the particular
form of the total dual length ‖q‖. Nevertheless, the problem can be stated as a
binary programming problem by means of formulation (14) given below. In the
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formulation, binary variables ue, e ∈ E , specify the path q we are looking for:
q = {e ∈ E : ue = 1}. Binary variables zs, s ∈ S, in turn, denote if |p|s > λsd. If
that is the case, then zs = 1; otherwise zs = 0. Besides, δ+(v) and δ−(v) denote
the sets of all links outgoing from, and all links incoming to, respectively, node
v ∈ V, constant d indicates a considered demand, node o is its originating node
and t is its terminating node.

minL =
∑
e∈E

ueπ
0
e +

∑
s∈S

(1− us)(
∑
e∈E

ueπ
s
e − λsd)+

−a
∑
s∈S

zs(1− us)(1− T sd )(
∑
e∈E

ueπ
s
e − λsd)+

−b
∑
s∈S

(1− zs)(1− us)T sd (
∑
e∈Ē

ueπ
s
e − λsd)

(14a)

∑
e∈δ+(o)

ue −
∑

e∈δ−(o)

ue = 1 (14b)

∑
e∈δ+(v)

ue −
∑

e∈δ−(v)

ue = 0, v ∈ V \ {o, t} (14c)

λs(1− zs) ≥ λs −
∑
e∈E

πseue, s ∈ S (14d)

zs
∑
e∈E

πse ≥
∑
e∈E

πseue − λs, s ∈ S (14e)

ue ∈ {0, 1}, e ∈ E ; zs ∈ {0, 1}, s ∈ S. (14f)

Constraints (14b) and (14c) assure that variables ue that are equal to 1 form
a path from o to t. Constraints (14d) and (14e) force each variable zs, s ∈ S,
to be equal to 1 when the length, with respect to πs, of the path q defined by
variables u is greater than λs; and to be equal 0 otherwise. T sd are already given
from the instance of the problem in hand.

To get rid of bi- and tri-linearities involving variables zs and ue in the ob-
jective function, we can introduce five binary (formally continuous) variables
W s, V s, Xs

e , Y
s
e , Z

s
e , e ∈ E , s ∈ S. The objective function should be rewritten as

L =
∑
e∈E

ueπ
0
e +

∑
s∈S

(
∑
e∈E

Xs
eπ

s
e − (1− us)λsd)+

−a
∑
s∈S

(1− T sd )(
∑
e∈E

Y se π
s
e −W s

e λ
s
d)− b

∑
s∈S

T sd (
∑
e∈Ē

Zseπ
s
e − V se λsd)

(15)

and add the following set of constraints

Xs
e ≥ ue − us, e ∈ E , s ∈ S (16a)

Y se ≤ zs, Y se ≤ (1− us), Y se ≤ ue, e ∈ E , s ∈ S (16b)

Zse ≤ (1− zs), Zse ≤ (1− us), Zse ≤ ue, e ∈ E , s ∈ S (16c)

W s ≥ zs − us, s ∈ S (16d)

V s ≥ 1− us − zs, s ∈ S. (16e)
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