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Abstract:
Superconducting cables have now become a mature technology used for energy transport, high-
�eld magnets (medicine (MRI), high-energy physics (LHC)) and fusion applications (ToreSupra,
eventually ITER and DEMO). The most performant superconductors being extremely brittle and
strain-sensitive, their electrical performance can be strongly a�ected by their mechanical behavior.
This degradation can be diminished by optimizing the geometry of cables using simulation tools.
To validate them, the simulated cable geometry can be compared to the geometry of real cables,
extracted from tomography images. This paper describes the analysis of the geometry from these
images for three types of cables. To our best knowledge, this is the �rst paper providing both
methods and results for the geometry analysis of superconducting cables. The results exhibit a
good accuracy w.r.t. ground truths and the proposed features appear to be relevant for detecting
deformations. Moreover, correlations can be established between some kinds of deformations.

1 INTRODUCTION

1.1 Motivation and scope

Superconducting cables have now become a ma-
ture technology in energy transport, high-�eld
magnets (medicine (MRI), high-energy physics
(LHC)) and magnetic con�nement in fusion ap-
plications (ToreSupra, eventually ITER, DEMO).

A superconducting cable presents a multi-
scale internal structure. Such a cable con-
sists of strands arranged together given some
application-dependent architecture. Individual
strands are composite structures either formed
by superconducting micro�laments embedded in
a metallic matrix or by a thin superconducting
layer deposited onto a metallic substrate.

A substantial drawback of some of these cables
concerns the fragility of the superconductors. Me-
chanical strains can indeed cause deformations,
thus degrading the performance of superconduc-
tors. Whereas these strains can be limited dur-
ing shaping (wiring or winding) or thermal cool-
down, they remain problematic during operation
when exposed to high electromagnetic �elds (due
to its own Lorentz force � and particularly under
cyclic loading).

However, the performance degradation can be
diminished by optimizing the geometry of the ca-
bles. Optimize the performance of these cables is

thus essential and could directly bene�t to a large
number of research and industrial actors. The
global performances of the cable are simulated
using models of the electrical and/or mechanical
behavior of the cable structure (Torre et al., 2014;
Manil et al., 2012). Given the complexity of vari-
ous types of cables, the validation of these models
is done by statistical comparison of the geometry
of the models to the geometry of real cables ob-
tained from tomography images. Depending on
the result of these comparisons, the design of the
cables can be adjusted, until a better cable archi-
tecture is obtained.

This paper focuses on the identi�cation of
the experimental geometry on three types of ca-
bles, involving (mostly) automatic registration,
segmentation, clustering and features extraction
tasks. To our best knowledge, this is the �rst pa-
per providing both methods and results for the
geometry analysis on these cables. For each type
of cable, we provide below the physical parame-
ters and the image characteristics.

1.2 Available cables

Three distinct types of cables are considered with
di�erent architectures, appearances and composi-
tion: the cables-in-conduit (Weiss et al., 2007),
the Rutherford cables (Oberli, 2013; Milanese
et al., 2012) and the power cables (Seidel and



(a) N05 (b) N22 (c) mgb2_113 (d) 18RRPN01 (e) 40RRPR02

Figure 1: Cross-sectional images from cables-in-conduit (a,b), power cables (c) and Rutherford cables (d,e).

Sturge, 2009; IEC, 2004). Several samples of
each with di�erent parameters were analyzed (see
Tab. 1 and 2 for their characteristics, and Fig. 1 to
assess the variety and the quality of the images).

Cables-in-conduit (see Fig. 1(a,b)) consist
of superconducting strands (s.c.) and non-
superconducting strands (n.s.c.). S.c. strands are
composed of kernels in Nb3Sn and bronze (white)
wrapped by a jacket in copper (gray) while n.s.c.
strands are made of copper (gray). All strands are
twisted together in a multistage fashion according
to a prede�ned cable pattern composed of stages
and petals. For instance, the pattern (3, 3, 5) of
the cable N05 has three stages. The �rst (lower)
stage consists of twisted triplets (15 petals), each
with 2 s.c. and 1 n.s.c. strands. These triplets
are again twisted by three (5 petals) and �nally by
�ve (1 petal), thus leading to a total of 30 s.c. and
15 n.s.c. strands. All strands are then inserted
in a stainless steel conduit. Some void fraction is
kept to enable the circulation of a cooling �uid
(helium). Notice that all stages are twisted with
a di�erent twist-pitch. Typically used in fusion
applications, these cables can transport currents
of 45kA under a magnetic �eld of 12.3T, exposed
to transversal Lorentz forces of 554kN/m.

Power cables (see Fig. 1(c)) consist of s.c.
strands in MgB2/nickel alloy and n.s.c. copper
strands. All strands are arranged in concentric
layers, twisted and inserted in a corrugated cryo-
genic envelope. Again, some void fraction is kept
to enable the circulation of a coolant (gaseous and
eventually liquid helium). S.c. strands are lo-
cated on the outer layer. Typically used in energy
distribution, each strand can convey a current of
400A under a magnetic �eld of 1T, developing
radial, centripetal, Laplace forces of 400N/m.

Rutherford cables (see Fig. 1(d,e)) roughly
consist of s.c. strands composed of cores in cop-
per (gray) surrounded by an intermediary zone
containing Nb3Sn �laments (white), themselves
wrapped in a copper jacket (gray). All strands

are twisted to form a two-layers �at cable, com-
pressed to a well-controlled rectangular section.
Depending on the design used, the �laments zone
is arranged to form either an hexagon or a cir-
cle. Typically used in medical imaging and high-
�eld magnets, these cables can transport currents
of the order of 20kA under a magnetic �eld of
10−15T, exposed to Lorentz forces of 1−5MN/m.

1.3 Outline of the paper

The rest of this paper is organized as follows. In
Section 2, we brie�y explain the approach for reg-
istering overlapping samples. In Section 3, we
describe for each type of cable the methods used
for extracting their structures of interest from the
resulting images. In Section 4, we propose indi-
cators re�ecting potential damages. Finally, in
Section 5, we present and discuss the results.

2 IMAGE REGISTRATION

The cable samples being too long to be imaged
at once, multiple overlapping scans have been ac-
quired with a constant translation step along the
z-axis1. Each scan has then been registered on
the previous one by minimizing the Mean Square
Error (MSE) of the di�erence of intensities over
the overlapping region along the z-axis.

The Fig. 2 depicts the MSE for a varying over-
lap between two overlapping scans, for a cable-
in-conduit (N05) and a power cable (mgb2_113).
The optimal overlap is taken as the one that min-
imizes the MSE. The minimization along the z-
axis is su�cient since no residual displacement
along the x and y axes was observed.

1From here, the z-axis will refer to the longitudinal
one while x,y axes will refer to transversal ones.



N05 N22 N25 mgb2_113 mgb2_133

Image size (x, y, z)
750× 800×

12431
750× 850×

12424
750 ×

750 × 7745
1200 × 1200 ×

5972
1300 × 1605 ×

6071
Resolution (µm) 12 12 12 10 10
Memory usage (GB) 6.94 7.37 4.05 8.1 12

Number of s.c./n.s.c. (all) strands 30/15 (45) 15/30 (45) 30/15 (45) 24/37 (61) 24/37 (61)
Strand � (µm) 800 800 800 1130 1330
Avail. sample length (µm) 149172 149088 92940 59270 60710
Twist-pitch sequence (mm) 45/85/125 45/85/125 35/65/110 227 260
First triplet (s.c.,n.s.c.) (2, 1) (1, 2) (2, 1) / /
Cable pattern (3, 3, 5) (3, 3, 5) (3, 3, 5) / /
Void fraction (%) 25 33 33 24.7 24.7

Table 1: Image characteristics (top) and physical parameters (bottom) of the cables-in-conduit (left to the double
bar) and power cables (right to the double bar).

COP-RRP 18PITN01 18PITN01_2 18RRPN01 18RRPN01_2 40RRPR01 40RRPR02

Image size (x, y, z)
1500 ×

300 × 1300
750 ×

1100×1200
1600 × 500 ×

1200
1100 ×

750 × 1200
1700 × 700 ×

1200
1600 ×

500 × 1200
1500 ×

500 × 1200
Resolution (µm) 15 10 6.75 10 6 15 15
Memory usage (MB) 558 945 916 945 1434 916 859

Number of strands 40 18 18 18 18 40 40
Strand � (µm) 1050 1020 1000 1050 1046 1080 1035
Avail. Sample
Length (µm) 19500 12000 8100 12000 7200 18000 18000

Table 2: Image characteristics (top) and physical parameters (bottom) of the Rutherford cables.

Figure 2: MSE of two overlapping scans for a cable-
in-conduit (left) and a power cable (right).

3 IMAGE SEGMENTATION

The purpose of the segmentation is to extract
the contours of strands (and the conduit, if need
be) and their centerlines. Most structures to ex-
tract are nearly circular and touch each other.
Their appearance and contrast however di�er for
all cable architectures. Distinct algorithms have
been designed for all types of cables. Unless it is
mentioned, unique values of parameters are used
for all images of the same type of cable.

These algorithms share common di�culties to
overcome to get reliable measurements. First,
they must be able to assess slight deviations from
the circularity, be robust to noise, artifacts and
poor contrast. Second, they must be fast and able
to handle large volume data (possibly more than
showed in Tab. 1 and 2). To accommodate these
constraints, a simple approach has been preferred
(whenever possible) where the 3D volume is seg-
mented as a sequence of 2D images along the z-
axis. This allows to run some steps in parallel.
Once the strand contours obtained, the center-
lines consist of the strand centroids. Moreover, we
assume the following known and constant: the di-
ameter of a strand (denoted by Sdr), the thickness

of the strand jacket (denoted by Sjt), the thick-
ness of the conduit of the cable (denoted by Cct)
as well as the number of s.c. and n.s.c. strands
(denoted by Nsc and Nnsc, resp.).

3.1 Rutherford cables

The core of strands being better contrasted than
the jackets, we propose an automatic procedure
that relies on the �laments zone to extract the
contours of strands in two steps (see Fig. 3).

3.1.1 Extraction of cores

First, an Alternate Sequential Filter (ASF) is ap-
plied on the source image with a squared struc-
turing element up to the size of 0.03×Sdr (Stern-
berg, 1986) (image ID (a)). This allows us to
both denoise the image and �ll the interstices be-
tween �laments. Next, a �lling algorithm is ap-
plied on the image ID (image IF (b)). The image
IF is then subtracted from the image ID (image
IA (c)). Once the image IA thresholded (image
IT (d)), it both contains cores and interstices. To
discard the interstices, a mask is built by thresh-
olding the image IF (image IT ′ (e)) and apply-
ing a morphological erosion with a square of size
0.15×Sdr as structuring element (image IM (f)).
Finally, the mask IM is intersected with the image
IT and the 3D Nsc largest connected components
are kept. The resulting components are labeled
and correspond to the cores (image IC (g)). Due
to the variety of images, notice that the above
thresholds need to be adjusted for some images.



(a) ID (b) IF (c) IA (d) IT (e) IT ′ (f) IM

(g) IC (h) IDM (α = 104) (i) IR (α = 0) (j) IR (α = 104) (k) IR (α = 106) (l) IR′

Figure 3: Steps for extracting the cores (a-g) and the strands (h-l) from an image of a Rutherford cable (COP-
RRP). The source image is �rst denoised by an ASF (a). Once (a) �lled (b), it is subtracted from (a), giving
(c). An intermediate result (d) is obtained by thresholding (c). A mask (f) is built by thresholding (b) (giving
(e)) and applying a morphological erosion on the result (f). (f) is then intersected with (d) and the 3D Nsc
largest connected components are kept. The resulting components are labeled and correspond to the cores (g).
A region-growing algorithm is then used to extract the �laments zone, based on geodesic distance maps whose
amount of regularity is controlled by a parameter α (h). The impact of α after region-growing is shown when it
is small (i), moderate (j), large (k). The strands are obtained by expanding the �laments zone with α = 0 (l).

3.1.2 Extraction of strands

As shown in Fig. 3, the �laments zone is poorly
contrasted and strands touch with each other. To
overcome these di�culties, we introduce several
priors (near circularity, small displacement and
volume conservation of strands sections) and pro-
ceed in two successive steps.

First, a distance transform is computed from
each labeled core of IC using an e�cient pixel
queue algorithm (Ikonen, 2005). This algorithm
has a worst-case complexity of O(n log n) (where
n is the number of pixels in the image). Each
distance map is computed using the WDTOCS
metric, described in (Ikonen, 2005). Let I : Ω ⊂
Z2 → R be an image and N be a neighborhood.
Without loss of generality, we propose to use

N = {(p, q) ∈ (Ω× Ω) | ‖p− q‖ ≤
√

2},

where ‖.‖ is the L2 norm in Z2. For any pixel
pair (p, q) ∈ N , the WDTOCS metric de�nes the
cost between p and q as

dist(p, q) =
√
‖p− q‖22 + α(Ip − Iq)2, (1)

α ∈ R+ is a parameter that balance geomet-
ric and image information. The larger the pa-
rameter α is, the more the image information is
taken into account. An example of distance map
from the rightmost core is shown in (h) where
the distance is proportional to the intensity (the
dynamic of the image has been stretched for visu-
alization purpose). Distance transforms being in-
dependent from each other, their computation is
in practice performed in parallel using OpenMP.
Once all the distance maps obtained using α > 0,

a region-growing algorithm is applied to obtain
the outer contour of the �laments zones: all cores
grow simultaneously by greedily selecting the pix-
els having the minimum cost based on their re-
spective distance maps, until a target volume is
reached 2. The e�ect of varying the parameter α
after region-growing is depicted on the image IR
when α is small (i), moderate (j) and large (k).
Finally, the contours of strands are obtained by
expanding the �laments zones in such a way that
none of them is favored. This is achieved by re-
peating the above steps for α = 0 (image IR′ (l)).
In our experiments, we set α = 104.

3.2 Cables-in-conduit

As shown in Fig. 4, the s.c. strands are better
contrasted than the n.s.c. ones. Based on this
observation, we propose a semi-automatic three-
steps scheme that �rst extract the conduit, then
the s.c. strands and �nally the n.s.c. strands.

3.2.1 Extraction of the conduit

First, the source image is denoised by an ASF
with a squared structuring element up to the size
of 0.05 × Sdr (Sternberg, 1986) (image ID (a)).
To further �atten homogeneous areas, the image
ID is �ltered by a Gaussian of size 0.05×Sdr and
thresholded (image IT (b)). Next, a morpholog-
ical opening, a holes �lling algorithm and then
a morphological closing are applied on the image
IT using a square of size 0.2× Sdr as structuring

2It is adjusted if the �laments zone is an hexagon.



(a) ID (b) IT (c) IM (d) IR (e) IT ′ (f) IF

(g) IW (h) IR′ (i) IC (j) IR′′ (z = 0) (k) IR′′ (z = 6211) (l) IR′′ (z = 12423)

Figure 4: Steps for segmenting the conduit (a-d), the s.c. strands (e-h) and the n.s.c. strands (i-l) from an
image of a cable-in-conduit (N22). The source image is �rst denoised by an ASF (a). Next, (a) is �ltered by a
Gaussian and thresholded (b). Holes are �lled in (b) by various morphological operations (c). An ellipse is then
�tted on (c) and adjusted on the inner contour of the conduit (d). Once the conduit obtained, (a) is thresholded
from the source image (e), dilated and �lled (f). Using (d) and (f), kernels are obtained by applying a watershed
algorithm (g) on the source image. S.c. strands (h) are then extracted by expanding (g) (same approach as
Rutherford cables with α = 0) and subtracting the complement of (d). Finally, n.s.c. strands are extracted with
α > 0 (j-l), constrained by (d) and (h) but from the strands centroids f the previous image (i).

element (image IM (c)). Assuming the ideal con-
duit is nearly circular, an ellipse is �tted on the
image IM . Its size is subtracted by 2× Cct to �t
the inner contour of the conduit (image IR (d)).

3.2.2 Extraction of the s.c. strands

The strategy employed here is to rely on kernels
to extract the contours of strands. For doing so,
the source image is �rst thresholded (image IT ′

(e)). Next, the resulting contours are closed us-
ing a morphological dilation with a square of size
0.25 × Sjt as structuring element and holes are
�lled (image IF (f)). To properly align the seg-
mentation on the contours of kernels, a watershed
algorithm (Meyer, 1991) is applied on the source
image (image IW (g)). The outside marker is the
complementary of the image IF and the markers
representing the kernels are obtained by perform-
ing a morphological erosion of the image IF with
a squared structuring element of size 1.25 × Sjt.
As for Rutherford cables, s.c. strands are �nally
obtained by expanding the kernels from the image
IW with α = 0 (see Section 3.1.2) and subtracting
the complement of the mask IR (image IR′ (h)).

3.2.3 Extraction of the n.s.c. strands

To overcome the poor contrast on n.s.c. strands,
we adopt the same strategy as for Rutherford ca-
bles (see Section 3.1.2) but with two di�erences.
First, the geodesic distances are computed us-
ing α > 0 but constrained in IR′ \ IR. Second,
the centroids of s.c. strands must be provided as
initialization (image IC (i)). Geodesic distance

maps are computed from these centroids and the
region-growing algorithm is applied. Once the
centroids computed on the resulting contours of
strands, the same procedure is applied on the next
image (image IR′′). This process continues until
the end of the cable is reached. To illustrate the
correctness of the propagation, the image IR′′ is
shown with the n.s.c. strands obtained at the be-
ginning (j), the middle (k) and the end (l) of the
cable. Unlike Rutherford cables, it is important
to notice that such an approach can fail to recover
the contours of n.s.c. strands since centroids de-
pend on the result of the previous image. Such a
situation can occur when the contribution of the
right term in Eq. 1 is insu�cient. In that case,
the procedure becomes unable to stick to the con-
tours of strands. A suitable value of the param-
eter α must therefore be chosen carefully. In our
experiments, we have chosen to set α = 8 × 104.

3.3 Power cables

For extracting strands, a convenient solution
would be to use the same approach as for
Rutherford cables (see Section 3.1.2) and for the
n.s.c. strands of the cables-in-conduit (see Sec-
tion 3.2.3). As shown in Fig. 1, despite the impor-
tant amount of noise, the images of power cables
present however a much better contrast compared
to the images of the other types of cables. We
detail below a simple procedure that automati-
cally �nd the contours of the conduit and then
the strands, both assumed to be nearly circular.



(a) IT (b) IF (c) IO (d) IR (e) ID (f) IT ′

(g) II (h) IH (i) IDM (j) IM (k) IS (l) IR′

Figure 5: Steps for segmenting the conduit (a-d) and the strands (i-l) from an image of a power cable (mgb2_113).
The source image is �rst thresholded (a) and �lled (b). From (b), the largest connected component is discarded
and a morphological opening is applied (c). An ellipse is �tted on (c) and adjusted on the inner contour of the
conduit (d). Next, the source image is denoised by an ASF (e) and thresholded (f). The complement of (d) is
subtracted from (f) and a morphological opening is applied (g). 3D connected components that do not spread
all along the cable are removed (h). The Euclidean distance to the contours of (h) is computed, �ltered by a
Gaussian (i) and maxima are identi�ed (j). Strands contours are obtained by applying a watershed algorithm
(l) on an image (k) combining the morphological gradient of the source image and the inverted distance map (i).

First, the source image is thresholded (image
IT (a)) and holes are �lled (image IF (b)). From
the image IF , the largest connected component is
discarded and a morphological opening is applied
with a squared structuring element of size 0.1 ×
Cct (image IO (c)). An ellipse is then �tted on
the image IO. Its size is subtracted by Cct to �t
the inner contour of the conduit (image IR (d)).

Second, the source image is denoised by an
ASF with a squared structuring element up to
the size of 0.05 × Sdr (image ID (e)) (Sternberg,
1986). A �rst rough estimate of the contours of
strands is obtained by thresholding the image ID
(image IT ′ (f)). The complement of the mask
IR is then subtracted from the image IT ′ and a
morphological opening is applied with a square of
size 0.03 × Sdr as structuring element (image II
(g)). Next, 3D connected components that do not
spread all along the cable in the background are
removed (image IH (h)). From the image IH , the
Euclidean distance to the contours is computed
and the resulting image is �ltered by a Gaussian
of size 0.25×Sdr (image IDM (i)) to ensure a good
detection of maxima (image IM (j)). Finally, the
contours of strands are obtained by applying a
watershed algorithm (Meyer, 1991) performed on
the summed image IS (k) composed of the in-
verted distance map IDM and the morphological
gradient (multiplied by a factor set to 0.1) of the
source image (image IR′ (l)). The role of the mul-
tiplier is to ensure the strands sections to remain
mostly circular along the cable.

4 DAMAGE INDICATORS

During operation, the cables can be exposed
to transversal Lorentz forces up to several MN/m.
These forces induce deformation and/or damages
to strands that come out as various geometrical
features. The features detailed below aim at de-
tecting these deformations.

4.1 Strand Section Compression

Any deviation to the circularity of strands is a
potential source of damage that need to be mea-
sured. A variety of shape descriptors has been
proposed in the literature. In this setting, desir-
able properties of shape descriptors are the invari-
ance to translation and rotation, the robustness
to noise and a reasonable sensitivity. The pa-
pers (Montero, 2009; �uni¢, 2012) gather a large
number of descriptors, out of which two have been
selected applicable in this context. Let S ⊂ Z2

be a strand section of a 2D binary image taken
along the z-axis. Before explaining these descrip-
tors, let us give their de�nition:

EF(S) =
λmax
λmin

∈ [1,+∞[ (Elongation Factor),

where λmin, λmax are the eigenvalues of the co-
variance matrix of the strand section S, and

CMPN(S) =
(]S)2

2π(µ2,0 + µ0,2)
∈]0, 1] (Compactness),

where ] denotes the cardinality of a set and µp,q
denotes the moment of order (p+q) of the strand



section S. EF and CMPN are statistical descrip-
tors. EF is lower-bounded by one for a circle
and increases for elongated shapes while CMPN
is upper-bounded by one for a circle and tends to
zero for elongated shapes. These two descriptors
verify the above mentioned properties.

4.2 Curvature

For all the considered types of cables, strands can
locally bend signi�cantly and these locations are
potentially source of damage. Do detect bendings
with a large amplitude, we propose to measure
the local curvature of the strand centerlines.

The curvature measures a failure of a curve to
be straight. It is is positive or null and equal to
the inverse of the radius of the tangent circle.

Let us represent a centerline with a two times
continuously di�erentiable space curve C(t) =
(x(t), y(t), z(t))T ∈ R3, parameterized by t. Also,
we denote resp. by γ′(t) and γ′′(t) the �rst and
second and derivatives of C with respect to t. The
local curvature of the curve C is de�ned by

κ(t) =
‖γ′(t)× γ′′(t)‖
‖γ′(t)‖3

, (2)

where ‖.‖ and × are respectively the L2 norm and
the cross product, both in R3. In what follows,
we brie�y discuss some numerical considerations.
First, to avoid division by zero, Eq. 2 is set to
zero when the denominator is smaller than some
ε > 0 3. Second, the derivatives are approximated
by standard �nite central di�erences. Due to the
presence of noise, estimating small values of cur-
vatures is however a delicate problem. Neverthe-
less, under the assumption that the strands can-
not mechanically bend over some limit value, the
�nite di�erences are computed using a grid spac-
ing (denoted by ∆h) proportional to the strand
diameter Sdr. A large value of ∆h allow us to
assess small curvature values despite the noise.
Also, we choose not to consider extremities of cen-
terlines. Finally, to yet increase the robustness,
the centerlines are �rst smoothed by a Gaussian
�lter of standard deviation σ = 0.05× Sdr.

4.3 Void fraction

It is the ratio of area not occupied by the strands
over the area delimited by the inner part of the
conduit. A large void fraction means that strands
are likely to move and bend. Once the cables are
segmented, it can be obtained without di�culty.

3ε is w.r.t. the precision of the implementation.

4.4 Twist-pitch

The twist-pitch refers to the stranding periodicity
of a cable. Unlike the power cables or the Ruther-
ford cables, the cables-in-conduit are wired and
compacted so that some (limited though) ran-
domness is injected in the architecture. As a con-
sequence, the estimation of twist-pitches only ap-
plies to cables-in-conduit. Given the presence of
some quantity of randomness, we will estimate
the twist-pitches using the autocorrelation of the
strand centerlines. Recall that di�erent stages
are wired with di�erent twist-pitches (see Tab. 1).
The estimation of these twist-pitches thus implies
to identify the stages of the cable.

The identi�cation of the petals at di�erent
stages can be seen as a hierarchical clustering
problem, constrained by the pattern of the ca-
ble. To form clusters at a given stage, a possible
choice is to use pairwise distances of all strands.
Indeed, closely running strands are more likely to
belong to the same petal.

Let us formalize the above problem. We de-
note the set of N centerlines of length K by
{ci}Ni=1, where ci ∈ R3K . For any couple (i, j) ∈
{1, . . . , N}2, we de�ne d(ci, cj) as the distances
between ci and cj . The distance is di�erent de-
pending of the norm. A reasonable choice for
d is the mean distance, based on the L2 norm.
Additionally, for a given number of stages (de-
noted by M), we denote by Pm the number of
petals, for any m ∈ {1, . . . ,M}. We also de-
note by {ϕm}Mm=1 a set of applications where
ϕm : {1, . . . , N} → {1, . . . , Pm} assigns a la-
bel to each centerline of the stage m, for any
m ∈ {1, . . . ,M}. Last, we denote by 1{.} the indi-
cator function returning 1 if its argument is true,
0 otherwise. Then, we propose to solve the con-
strained hierarchical clustering problem by �nd-
ing a minimizer to

M∑
m=1

∑
(i,j)∈{1,...,N}2

1{ϕm(i)=ϕm(j)}d(ci, cj)

2PmKM
, (3)

subject to the following constraints:

1. {ϕm}Mm=1 is a hierarchy,

2. For each petal at M = 1, Nsc/Nnsc are �xed,

3. For any stage, the size of each petal is �xed.

For a single stage, Eq. 3 can be put under the form
of an integer linear program (with a number of
variables and constraints both of O(N2P1)) and
solved exactly using an integer linear program-
ming solver. For this experiment, the last version



(a) (b) (c) (d)

Figure 6: Example of constrained hierarchical clus-
tering for identifying the the stages of the cable-in-
conduit N05 at the beginning (top row) and the end
(bottom row). (a): initialization of �rst stage, (b):
result - �rst stage petals (triplets), (c): initialization
of second stage, (d): result - second stage petals.

of CPLEX has been chosen for its good perfor-
mances (Mittelmann, 2007). Even for a simplistic
situation where a single stage and a limited num-
ber of centerlines are considered (N=15), several
days of calculus are needed. This remains accept-
able for this setting but becomes intractable for
large cables with hundreds of strands.

To overcome this situation, we use a greedy
strategy for solving Eq. 3 heuristically. An illus-
trative example is provided in Fig. 6 for the N05
cable (clusterings are superimposed on source im-
ages). For the �rst stage, random triplets sat-
isfying the above second and third constraints,
are formed (see Fig. 6(a)). A greedy heuristic is
then applied, that consist in swapping the pairs of
centerlines satisfying the above second constraint
and making the strongest decrease of Eq. 3. This
process is iterated until no swaps can be per-
formed (see Fig. 6(b)). The next stages are op-
timized in the same way, except that (i) the ini-
tialization is based on the clustering obtained at
the previous stage and (ii) that pairs of groups of
centerlines are swapped instead of centerlines (see
Fig. 6(c,d)). This allows us to keep clusterings as
a hierarchy (�rst above constraint). Finally, the
overall approach is run 100 times and the solution
having Eq. 3 minimum is kept.

4.5 Free areas and segments

Subject to an intense magnetic �eld, strands of
cables-in-conduit will transversally move wher-
ever there is locally an insu�cient compaction.
Identifying these locations is therefore an im-
portant indicator of fragility of some particular
stranding pattern. For doing so, we need a mea-
sure to estimate the area where a strand can
move. Let us denote by S ⊂ Z2 the section of

(a) (b) (c)

Figure 7: Toy example for estimating the area where
a strand section (S, red dot) can freely move with
respect its neighboring ones (T ). (b): complement
of the morphological closing of T by S, (c): geodesic
reconstruction (light gray) of S under (b).

a particular strand and by T that of the union of
the remaining ones, both from the same 2D bi-
nary image taken along the z-axis (see Fig. 7(a)).
We denote by F the area where S can move,
obtained by applying a morphological closing on
T using S as a structuring element (denoted by
ϕS(T ), see Fig. 7(b)) and then performing a
geodesic reconstruction of S under the comple-
ment (denoted by (.)c) of ϕS(T ) (see Fig. 7(c)):

F = [δB(S) ∧ [ϕS(T )]c]∞,

where δB(S) denotes the dilation of S by a ball B
of unit radius, ∧ denotes the logical AND and [.]∞

denotes iterated until idempotence (achieved in
practice, in a �nite number of iterations). Based
on F , we propose a �rst possible descriptor, Free
Transversal Area (FTA), expressed as

FTA(F, S) =
](F \ S)

]S
× 100 ∈ R+.

The above descriptor is null when the strand can-
not move and increases as the strand gets a larger
space to move. The distribution of FTA is a de-
scriptor revealing a fragility of a cable exposed
to a strong magnetic �eld. Extracting connected
components where FTA is greater than some pos-
itive value alongside a strand permits to identify
portions of strands able to move transversally.
This allows us to propose a second descriptor of
cable fragility, Free Transversal Segments (FTS),
de�ned as the set of all lengths of such segments.

5 EXPERIMENTAL RESULTS

5.1 Validation

5.1.1 Segmentation

Due to the variety of used cables and the variable
quality of images, the segmentation is a delicate
task needing validation. We propose to validate
the results by relying on an expert. First, this



expert did a visual check of the segmented ca-
bles to ensure there are no inconsistencies. Sec-
ond, the contours of the strands and the conduit
(where applicable) have been manually delineated
by this expert on a few 2D images, equally spaced
along the z-axis. For cables-in-conduit and power
cables, one image every 1.5mm and 8.5mm has
been selected, resp. Due to the variety of reso-
lution, three images have been only selected per
Rutherford cable. To assess the accuracy of the
results, we use evaluation metrics on the contours
of strands and the conduit using the Volumetric
Overlap Error (VOE), the Relative Absolute Vol-
ume Di�erence (RAVD), the Root Mean Square
Distance (RMSD) and the Maximum Distance
(MD) (see (Ginneken et al., 2007)) but also the
popular Dice Coe�cient (Dice, 1945). Although
the metrics from (Ginneken et al., 2007) were pre-
sented in a clinical setting, we do believe that
they still remain relevant here. In addition, we
also propose to compare the position of center-
lines using the L2 norm between centroids (CD).

The results of these comparisons are summa-
rized in Tab. 3. For each metric and type of cable,
the mean and standard deviation are provided.
For cables-in-conduit, the negative value of the
mean RVD for both s.c. and n.s.c. strands in-
dicates that their volume is under-estimated and
suggest that the parameters of the segmentation
procedure have to be adjusted. As expected, the
error on n.s.c. strands appears to be larger than
of the s.c. ones (e.g. a factor of two for the mean
CD). For power cables, this situation is reversed.
Although weaker, it still remains present due to
the poor contrast of strands close to the conduit.
The accuracy appears to be in the same range as
that of cables-in-conduit. For most of the metrics
used, the worse accuracy is reached for Ruther-
ford cables, slightly inferior to other types of ca-
bles. Nevertheless, all metrics globally show that
the structures of interest (especially the conduit)
are well segmented with, for instance, a mean DC
always greater than 94% and a mean RMSD al-
ways less than 3 pixels. The position of center-
lines is also well preserved with a mean CD always
less than 1.4 pixels. A subset of these results
is illustrated in Fig. 8. For each type of cable,
we provide the 2D images from the obtained seg-
mentations and the manual ones with the same
position along the z-axis (where manual segmen-
tations are available) having the largest (top row)
and the smallest (bottom row) average DC. Each
couple of images is then combined to show false
negatives (red) / false positives (cyan), superim-

N22 (96.42%) mgb2_133 (96.69%)18PITN01 (95.46%)

N05 (95%) mgb2_133 (95.89%) 40RRPR01 (93.4%)

Figure 8: Accuracy of the segmentation procedures
on the contours strands and the conduit (if avail-
able). For each type of cable, we select the 2D images
from the obtained segmentations and the manual ones
with the same position along the z-axis, having the
mean largest (top row) and smallest (bottom row)
DC. Both images are combined to show false nega-
tives (red) and false positives (cyan), superimposed
on the corresponding source image. For each image,
the average DC is provided between parentheses.

posed on the source image.

5.1.2 Damage indicators

To validate the capacity of the strand sections
compression indicators (see Section 4.1) to de-
tect non-circularities, we propose the following
experiment (see Fig. 9). Two distinct locations
have been identi�ed along the same strand of the
N25 cable, where the section is either ellipsoid or
circular. It has been veri�ed that the compres-
sion is unique along the strand. The contours of
these sections superimposed on source images are
shown on top row. On the bottom row are shown
the response returned by the indicators along the
cable. Both EF and CMPN depict a good robust-
ness to noise and highlight well the compression
by reaching a large peak at the compressed loca-
tion and remaining close to zero or one elsewhere.
The same observations were made at other loca-
tions and on Rutherford cables.

5.1.3 Clustering

Estimate the quality of the clustering w.r.t.
ground truths is an important issue. However,
no ground truths are currently available. Due
to a large number of strands and an important
number of constraints to satisfy, their construc-
tion is indeed a di�cult task, especially when the
cables are very short (as here). Since the cal-



DC (%) VOE (%) RVD (%) RMSD (pixels) MD (pixels) CD (pixels)

In-conduit

s.c. 95.77± 1.04 8.11± 1.91 −7.47± 2.17 1.60± 0.28 3.73± 0.97 0.59± 0.36
n.s.c. 95.47± 1.31 8.63± 2.35 −3.04± 2.89 1.85± 0.41 5.04± 1.63 1.22± 0.84

s.c.+n.s.c. 95.63± 1.18 8.35± 2.14 −5.44± 3.35 1.72± 0.37 4.33± 1.47 0.88± 0.70
Conduit 99.67± 0.06 0.67± 0.12 −0.07± 0.23 1.69± 0.17 5.16± 1.15 /

all 95.72± 1.31 8.18± 2.39 −5.33± 3.41 1.71± 0.36 4.34± 1.47 /

Power

s.c. 96.26± 1.15 7.18± 2.10 0.67± 3.62 2.85± 1.29 10.28± 5.66 1.28± 0.96
n.s.c. 96.59± 0.67 6.58± 1.26 −2.18± 2.35 2.21± 0.30 6.78± 1.30 1.07± 0.52

s.c.+n.s.c. 96.46± 0.90 6.82± 1.67 −1.06± 3.23 2.46± 0.90 8.16± 4.07 1.15± 0.73
Conduit 99.80± 0.10 0.39± 0.20 0.38± 0.22 2.10± 0.35 7.06± 3.43 /

all 96.52± 0.99 6.71± 1.84 −1.04± 3.21 2.46± 0.89 8.14± 4.06 /
Rutherford s.c. 94.44± 1.19 10.52± 2.13 −0.99± 3.10 2.45± 0.74 6.49± 2.56 1.39± 1.05

Table 3: Accuracy of the segmentation procedures with respect to ground truths for several metrics. The
keyword "all" gathers the contours of s.c. and n.s.c. strands as well as the contours of the conduit (if need be).

Figure 9: Validation of the strand section compres-
sion indicators on the N25 cable. Orange and green
triangles are resp. normal and compressed locations
along the same strand. On top row, the sections con-
tours are superimposed on source images. Red circles
are locations where partial scans have been registered.

culus of twist-pitches requires the cables to be
clustered, we believe that obtaining reasonable,
close-to-expected values, veri�es the clusterings.

5.2 Results

5.2.1 Cables-in-conduit

First, we have compared the values of void frac-
tion obtained experimentally to nominal values.
The result of these comparisons is presented in
Tab. 4. In average, the void fraction di�ers (in
absolute value) by 1.23% and does not exceed
2.72%. Compared to the cable N05, it also con-
�rms that the cables N22 and N25 are more likely
do develop damages due to larger void fraction.

Similarly, experimental values of twist-pitches
have been compared to nominal values. Depend-
ing of the length of the sample, more than one or
less than one twisting periods can be available.
For the studied cables, an exhaustive compari-

son to references values is possible. The result
of these comparisons is shown in Tab. 5. In av-
erage, the twist-pitches di�er (in absolute value)
by 2.93mm (3.25%) and do not exceed 9.38mm
(7.5%). Despite the randomness injected in these
cables, this result demonstrates that twist-pitches
remain close to nominal values.

Additionally, we have computed the correla-
tions between local curvature and strand sections
compression indicators. Then, we have decided
to retain the most relevant couples of indicators
for which the absolute value of the correlation co-
e�cient is larger than 0.8. Not surprisingly, EF
and CMPN are well correlated. But most im-
portantly, no correlation have been identi�ed be-
tween locally elevated curvature and other indi-
cators, meaning that bendings and compressions
locations do not coincide.

Moreover, we have compared in Fig. 10 the
distributions of several damage indicators (local
curvature, CMPN, EF, FTA and FTS) of two
cables-in-conduit that present di�erent lengths,
void fractions and twist-pitches: N05 (top row)
and N25 (bottom row). The distribution of FTS
is obtained by thresholding FTA at 15%, which
appears to be a good value to keep signi�cant
transversal moves. For each image, we provide
both the distribution over s.c. (pink), n.s.c.
(blue) and both (black thick line) strands. For
both cables, local curvatures remain very small
due to the near linearity of strands. Also, the
shape of the related distribution suggests that
it is centered around the curvature induced by
the twist-pitch and that local curvature maxima
correspond to locations of potential conductivity
loss. The mean of these distributions is nearly
the same (2×10−5µm−1) corresponding to a cur-
vature radius of 50mm. Nevertheless, the mean
is slightly larger for the N25 cable. This is con-
sistent with the fact that this cable has smaller



(a) (b) (c) (d) (e)

Figure 10: Distributions of damage indicators for s.c. (pink), n.s.c. (blue) and both (black thick line) strands
along the cables-in-conduit N05 (top row) and N25 (bottom row). The y-axis of FTA and FTS is in log-scale.

Measured void
fraction (%)

Nominal void
fraction (%)

N05 24.16± 0.19 25%
N22 30.28± 0.16 33%
N25 33.13± 0.14 33%

mgb2_113 29.07± 0.52 24.7%
mgb2_133 27.12± 0.77 24.7%

Table 4: Comparison of experimental and nominal
values of void fraction for all cables-in-conduit (top)
and all power cables (bottom).

twist-pitch values. Additionally, the distribution
of EF and CMPN on both cables is centered, as
expected, on a value close to one, meaning that
strands sections are mainly circular. The higher
peak and longer tail of the EF distribution on s.c.
strands for N05 than for N25 indicates more fre-
quent and more heavily compressed strands. This
is expected as a consequence of stronger com-
paction of the N05 cable.

Finally, the tail of the FTA and FTS distribu-
tions of the N05 cable is shorter than for the N25
cable. This means that the strands of the N05 ca-
ble have much less space to move and that the seg-
ments where they can move are shorter. Again,
this is an expected consequence of the stronger
compaction of the N05 cable.

5.2.2 Power cables

As for cables-in-conduit, the values of void frac-
tion obtained experimentally from segmentations
have been �rst compared to nominal values. The
result of these comparisons is available in Tab. 4.
In average, the void fraction di�ers (in absolute
value) by 3.4% from the nominal values (which
appears to be slightly larger than for cables-in-
conduit). A reasonable explanation to this is the

Cable Stage Twisting
Period

Experimental
twist-pitches

(mm)

Nominal
twist-pitches

(mm)

N05
1

1 43.81± 1.46 45
2 87.95± 2.52 90
3 131.57± 5.89 135

2 1 83.10± 6.00 85
3 1 129.06± 0.00 125

N22
1

1 43.92± 1.26 45
2 87.82± 2.24 90
3 131.77± 3.63 135

2 1 82.22± 2.80 85
3 1 115.62± 0.00 125

N25 1
1 35.84± 1.13 35
2 72.93± 2.48 70

2 1 61.89± 1.49 65

Table 5: Comparison of experimental and nominal
values of twist-pitches for all cables-in-conduit.

Figure 11: Distributions of the local curvature κ along
the power cables mgb2_113 (left) and mgb2_133
(right) for s.c. (pink), n.s.c. (blue) and both (black
thick line) strands.

observed lack of accuracy for some strands on the
outer layer (see comments in Section 5.1.1).

Finally, we have compared in Fig. 11 the dis-
tributions of the local curvature of the two power
cables: mgb2_113 and mgb2_133. As for cables-
in-conduit, the strands have near linear trajecto-
ries, thus leading to small values of local curva-
ture, ranging from 3 × 10−6 to 7 × 10−6µm−1.
This corresponds to a radius of curvature ranging



from 333 to 142mm. Unlike cables-in-conduit, the
shape of the related distributions is di�erent and
tends to be bimodal where each mode is centered
on the local curvature of s.c. or n.s.c. strands.
Also, it can be observed that the local curva-
ture on which the distribution for s.c. strands is
larger for the cable mgb2_133 than for the cable
mgb2_113. This is consistent which the twist-
pitch values given in Tab. 1. Nevertheless, this
di�erence is less marked for n.s.c. strands. A
possible explanation to this is that the curvature
of a strand is less a�ected by twist-pitch changes
as it becomes closer to the center of the cable.

5.2.3 Rutherford cables

In Fig. 12, we have compared the distributions
of several damage indicators (local curvature,
CMPN and EF) of two Rutherford cables pre-
senting a di�erent length and number of strands:
18RRPN01 and 40RRPR02. Notice that the y-
axis of all images is in log-scale to ease the anal-
ysis of results. In contrast to the other types of
cables studied, the local curvature appears to be
much larger (due to the folding of the cable), up
to 2.75×10−4µm−1. This corresponds to a radius
of curvature of 3.63mm. Moreover, the distribu-
tion of all indicators share the same shape. More
precisely, the head of these distributions corre-
sponds to the circular and straight strands with
null values of local curvature and values close to
one for the other indicators. The tail of these dis-
tributions corresponds to compressed and curved
strands, on the sides of the cable.

Finally, the correlations between all the above
indicators have been computed. The most rele-
vant couples of indicators were selected as those
having an absolute correlation coe�cient above
0.8. These correlations have permitted to con-
clude that EF and CMPN are the most corre-
lated ones. The obtained correlations between
local curvature and strand sections compression
indicators also con�rmed that bendings and com-
pressions locations coincide quite well with a co-
e�cient of about 0.7 in absolute value.

Figure 12: Distributions of the local curvature (top
row), CMPN (middle row) and the elongation factor
(bottom row) along the Rutherford cables 18RRPN01
and 40RRPR02. For the purpose of visualization, the
y-axis of all images is in log-scale.
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