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CONTINUITY OF THE TIME AND ISOPERIMETRIC

CONSTANTS IN SUPERCRITICAL PERCOLATION

OLIVIER GARET, RÉGINE MARCHAND, EVIATAR B. PROCACCIA,
AND MARIE THÉRET

Abstract. We consider two different objects on supercritical Bernoulli perco-
lation on the edges of Zd : the time constant for i.i.d. first-passage percolation
(for d ≥ 2) and the isoperimetric constant (for d = 2). We prove that both
objects are continuous with respect to the law of the environment. More
precisely we prove that the isoperimetric constant of supercritical percolation
in Z2 is continuous in the percolation parameter. As a corollary we obtain
that normalized sets achieving the isoperimetric constant are continuous with
respect to the Hausdroff metric. Concerning first-passage percolation, equiv-
alently we consider the model of i.i.d. first-passage percolation on Zd with
possibly infinite passage times: we associate with each edge e of the graph a
passage time t(e) taking values in [0, +∞], such that P[t(e) < +∞] > pc(d).
We prove the continuity of the time constant with respect to the law of the
passage times. This extends the continuity property of the asymptotic shape
previously proved by Cox and Kesten [8, 10, 19] for first-passage percolation
with finite passage times.

1. Introduction

We consider supercritical bond percolation on Zd, with parameter p > pc(d), the
critical parameter for this percolation. Almost surely, there exists a unique infinite
cluster C∞ – see for instance Grimmett’s book [15]. We study the continuity prop-
erties of two distinct objects defined on this infinite cluster: the isoperimetric (or
Cheeger) constant, and the asymptotic shape (or time constant) for an independent
first-passage percolation. In this section, we introduce briefly the studied objects
and state the corresponding results: more precise definitions will be given in the
next section.

1.1. Isoperimetric constant of the infinite cluster in dimension 2. For a
finite graph ג = (V ,(ג) E(ג)), the isoperimetric constant is defined as

ϕג = min

{ |∂A|
|A| : A ⊂ V ,(ג) 0 < |A| ≤ |V |(ג)

2

}
,

where ∂A is the edge boundary of A, ∂A = {e = (x, y) ∈ E(ג) : x ∈ A, y /∈
A, or x /∈ A, y ∈ A}, and |B| denotes the cardinal of the finite set B.

We consider the isoperimetric constant ϕn(p) of C∞ ∩ [−n, n]d, the intersection
of the infinite component of supercritical percolation of parameter p with the box
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[−n, n]d:

ϕn(p) = min

{ |∂A|
|A| : A ⊂ C∞ ∩ [−n, n]d, 0 < |A| ≤ |C∞ ∩ [−n, n]d|

2

}
,

In several papers (e.g. [2], [21], [22], [3]), it was shown that there exist constants
c, C > 0 such that c < nϕn(p) < C, with probability tending rapidly to 1. This
led Benjamini to conjecture the existence of limn→+∞ nϕn(p). In [24], Rosenthal
and Procaccia proved that the variance of nϕn(p) is smaller than Cn2−d, which
implies nϕn(p) is concentrated around its mean for d ≥ 3. In [4], Biskup, Louidor,
Procaccia and Rosenthal proved the existence of limn→+∞ nϕn(p) for d = 2. This
constant is called the Cheeger constant. In addition, a shape theorem was obtained:
any set yielding the isoperimetric constant converges in the Hausdorff metric to the

normalized Wulff shape Ŵp, with respect to a specific norm given in an implicit
form, see Proposition 2.4 below. For additional background and a wider introduc-
tion on Wulff construction in this context, the reader is referred to [4]. Our first
result is the continuity of the Cheeger constant and of the Wulff shape in dimension
d = 2:

Theorem 1.1. For d = 2, the applications

p ∈ (pc(2), 1] 7→ lim
n→+∞

nϕn(p) and p ∈ (pc(2), 1] 7→ Ŵp

are continuous, the last one for the Hausdorff distance between non-empty compact
sets of R2.

1.2. First-passage percolation on the infinite cluster in dimension d ≥ 2.

Consider a fixed dimension d ≥ 2. First-passage percolation on Zd was introduced
by Hammersley and Welsh [16] as a model for the spread of a fluid in a porous
medium. To each edge of the Zd lattice is attached a nonnegative random vari-
able t(e) which corresponds to the travel time needed by the fluid to cross the
edge. When the passage times are independent identically distributed variables
with common distribution G, with suitable moment conditions, the time needed to
travel from 0 to nx is equivalent to nµG(x), where µG is a semi-norm associated to
G called the time constant; Cox and Durrett [9] proved this result under necessary
and sufficient integrability conditions on the distribution G of the passage times.
Kesten in [17] proved that the semi-norm µG is a norm if and only if G({0}) < pc(d).
In casual terms, the asymptotic shape theorem (in its geometric form) says that in
this case, the random ball of radius n, i.e. the set of points that can be reached
within time n from the origin, asymptotically looks like nBµG , where BµG is the unit
ball for the norm µG. The ball BµG is thus called the asymptotic shape associated
to G.

A natural extension is to replace the Zd lattice by a random environment given
by the infinite cluster C∞ of a supercritical Bernoulli percolation model. This is
equivalent to allow t(e) to be equal to +∞. The existence of a time constant in first-
passage percolation in this setting was first proved by Garet and Marchand in [12],
in the case where (t(e)11t(e)<+∞) is a stationary integrable ergodic field. Recently,
Cerf and Théret [6] focused of the case where (t(e)11t(e)<+∞) is an independent field,
and managed to prove the existence of an appropriate time constant without any
integrability assumption. In the following, we adopt the settings of Cerf and Théret:
the passage times are independent random variables with common distribution G
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taking its values in [0, +∞] such that G([0, +∞)) > pc(d), and we denote by µG

the corresponding time constant.
Our second result is the continuity of the time constants µG(x) with respect to

the distribution G of the passage times, uniformly in the direction. More precisely,
let (Gn)n∈N and G be probability measures on [0, +∞]. We say that Gn converges

weakly towards G when n goes to infinity, and we write Gn
d→ G, if for any

continuous bounded function f : [0, +∞] 7→ [0, +∞) we have

lim
n→+∞

∫

[0,+∞]
f dGn =

∫

[0,+∞]
f dG .

Equivalently, Gn
d→ G if and only if limn→∞ Gn([t, +∞]) = G([t, +∞]) for all

t ∈ [0, +∞) such that t 7→ G([t, +∞]) is continuous at t. Let Sd−1 = {x ∈ Rd :
‖x‖2 = 1}.
Theorem 1.2. Let G, (Gn)n∈N be probability measures on [0, +∞] such that for

every n ∈ N, Gn([0, +∞)) > pc(d) and G([0, +∞)) > pc(d) . If Gn
d→ G, then

lim
n→+∞

sup
x∈Sd−1

|µGn(x)− µG(x)| = 0 .

This result extends the continuity of the time constant in classical first-passage
percolation proved by Cox and Kesten [8, 10, 19] to first-passage percolation with
possibly infinite passage times. As in the classical case, the semi-norm µG is a norm
if and only if G({0}) < pc(d) (see proposition 2.7 below). In that case, we denote
by BµG its unit ball and call it the asymptotic shape associated to G. We can quite
easily deduce from Theorem 1.2 the following continuity of the asymptotic shapes
when they exist:

Corollary 1.3. Let G, (Gn)n∈N be probability measures on [0, +∞] such that for
every n ∈ N, Gn([0, +∞)) > pc(d), G([0, +∞)) > pc(d) and G({0}) < pc(d). If

Gn
d→ G, then

lim
n→+∞

dH(BµGn
,BµG) = 0 ,

where dH is the Hausdorff distance between non-empty compact sets of Rd.

Particularly, when Gp = pδ1 +(1−p)δ+∞, the norm µGp governs the asymptotic
distance in the infinite cluster of a supercritical Bernoulli percolation (see [12, 13,
14]). We get the following corollary:

Corollary 1.4. For p > pc(d), let us denote by Bp the unit ball for the norm that is
associated to the cheminal distance in supercritical bond percolation with parameter
p. Then,

p ∈ (pc(d), 1] 7→ Bp

is continuous for the Hausdorff distance between non-empty compact sets of Rd.

As a key step of the proof of Theorem 1.2, we study the effect of truncations of
the passage time on the time constant. Let G be a probability measure on [0, +∞]
such that G([0, +∞)) > pc(d). For every K > 0, we set

GK = 1[0,K)G + G([K, +∞])δK ,

i.e., GK is the law of the truncated passage time tK
G (e) = min(tG(e), K). We have

the following control on the effect of these truncations on the time constants:
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Theorem 1.5. Let G be a probability measure on [0, +∞] such that G([0, +∞)) >
pc(d). Then

∀x ∈ Zd lim
K→∞

µGK (x) = µG(x) .

As a consequence of these results, we can approximate the time constants for
the chemical distance in supercritical percolation on Zd by the time constants for
some finite passage times:

Corollary 1.6. Let p > pc(d), and consider G = pδ1 + (1 − p)δ+∞. Then GK =
pδ1 + (1− p)δK for all K ≥ 1 and

∀x ∈ Zd lim
K→∞

µGK (x) = µG(x) .

1.3. Idea of the proofs. Obviously, the two main theorems of the paper, The-
orems 1.1 and 1.2, state results of the same nature. Beyond this similarity, their
proofs share a common structure and a common renormalisation step. The idea of
the delicate part of both proofs is inspired by Cox and Kesten’s method in [10].
Consider that some edges of Zd are "good" (i.e. open, or of passage time smaller
than some constant), and the others are "bad", for a given law of the environment
(a parameter p for the percolation, or a given law G of passage times), and look at
a path of good edges in this setting. Then change a little bit your environment :
decrease p to p− ε, or increase the passage times of the edges. Some edges of the
chosen path become bad. To recover a path of good edges, you have to bypass these
edges. The most intuitive idea is to consider the cluster of bad edges around each
one of them, and to bypass the edge by a short path along the boundary of this
cluster. This idea works successfully in Cox and Kesten’s paper. Unfortunately in
our setting the control we have on these boundaries, or on the number of new bad
edges we create, is not good enough. This is the reason why we cannot perform
our construction of a modified good path at the scale of the edges. Thus we need
to use a coarse graining argument to construct the bypasses at the scale of good
blocks.

In section 2, we give more precise definitions of the studied objects and state
some preliminary results. In Section 3, we present the renormalization process
and the construction of modified paths that will be useful to study both the time
constant and the isoperimetric constant. Sections 4 and 5 are devoted to the study
of first-passage percolation. In Section 4, we use the renormalization argument to
study the effect of truncating the passage times on the time constant. We then use
it in Section 5 to prove the continuity of the time constant. Finally Section 6 is
devoted to the proof of the continuity of the isoperimetric constant, using again the
renormalization argument.

2. Definitions and preliminary results

In this section we give a formal definition of the objects we briefly presented in
the introduction. We also present the coupling that will be useful in the rest of the
paper, and prove the monotonicity of the time constant.

2.1. Lattice and passage times. Let d ≥ 2. We consider the graph whose
vertices are the points of Zd, and we put an edge between two vertices x and
y if and only if the Euclidean distance between x and y is equal to 1. We de-
note this set of edges by Ed. We denote by 0 the origin of the graph. For



CONTINUITY OF THE TIME AND ISOPERIMETRIC CONSTANTS 5

x = (x1, . . . , xd) ∈ Rd, we define ‖x‖1 =
∑d

i=1 |xi|, ‖x‖2 =
√∑d

i=1 x2
i and

‖x‖∞ = max{|xi| : i ∈ {1, . . . , d}}.
Let (t(e), e ∈ Ed) be a family of i.i.d. random variables taking values in [0, +∞]

with common distribution G. We emphasize that +∞ is a possible value for the
passage times, on the contrary to what is assumed in classical first-passage perco-
lation. The random variable t(e) is called the passage time of e, i.e., it is the time
needed to cross the edge e. If x, y are vertices in Zd, a path from x to y is a sequence
r = (v0, e1, . . . , en, vn) of vertices (vi)i=0,...,n and edges (ei)i=1,...,n for some n ∈ N
such that v0 = x, vn = y and for all i ∈ {1, . . . , n}, ei is the edge of endpoints vi−1

and vi. We define the length |r| of a path r as its number of edges and we define
the passage time of r by T (r) =

∑
e∈r t(e). We obtain a random pseudo-metric T

on Zd in the following way (the only possibly missing property is the separation of
distinct points):

∀x, y ∈ Zd , T (x, y) = inf{T (r) : r is a path from x to y} ∈ [0, +∞] .

Since different laws appear in this article, we put a subscript G on our notations
to emphasize the dependance with respect to the probability measure G : tG(e),
TG(r) and TG(x, y).

As we are interested in the asymptotic behavior of the pseudo-metric TG, we will
only consider laws G on [0, +∞] such that G([0, +∞)) > pc(d). Here and in the
following, pc(d) denotes the critical parameter for bond Bernoulli percolation on
(Zd,Ed). Thus there a.s. exists a unique infinite cluster CG,∞ in the super-critical
percolation (1{tG(e)<∞}, e ∈ Ed) that only keeps edges with finite passage times.
Our generalized first-passage percolation model with time distribution G is then
equivalent to standard i.i.d. first-passage percolation (where the passage time of
an edge e is the law of tG(e) conditioned to be finite) on a super-critical Bernoulli
percolation performed independently (where the parameter for an edge to be closed
is G({+∞})). For instance, if we take Gp = pδ1 + (1− p)δ+∞ with p > pc(d), the
pseudo-distance TGp is the chemical distance in supercritical bond percolation with
parameter p.

To get round the fact that the times TG can take infinite values, we introduce

some regularized times T̃ C
G, for well chosen sets C. These regularized passage times

have better integrability properties. Let C be a subgraph of (Zd,Ed). Typically, C
will be the infinite cluster of an embedded supercritical Bernoulli bond percolation.
For every x ∈ Zd, we define the random vertex x̃C as the vertex of C which minimizes
‖x− x̃C‖1, with a deterministic rule to break ties. We then define the regularized

passages times T̃ C
G by

∀x, y ∈ Zd , T̃ C
G(x, y) = TG(x̃C , ỹC) .

2.2. Definition of the Cheeger constant in supercritical percolation on Z2.

We collect in this subsection the definitions and properties of the Cheeger constant
obtained in [4]. The Cheeger constant can be represented as the solution of a
continuous isoperimetric problem with respect to some norm. To define this norm,
we first require some definitions. We fix p > pc(2), we denote by Cp the Pp-a.s.
unique infinite cluster CGp,∞ and we set θp = Pp(0 ∈ Cp).

For a path r = (v0, e1, . . . , en, vn), and i ∈ {2, . . . , n − 1}, an edge e = (xi, z) is
said to be a right-boundary edge if z is a neighbor of xi between xi+1 and xi−1 in
the clockwise direction. The right boundary ∂+r of r is the set of right-boundary
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Figure 1. A right most path

edges. A path is called right-most if it uses every edge at most once in every
orientation and it doesn’t contain right-boundary edges. See Figure 1; the solid
lines represent the path, dashed lines represent the right-boundary edges, and the
curly line is a path in the medial graph which shows the orientation (see [4] for a
thorough discussion). For x, y ∈ Z2, let R(x, y) be the set of right-most paths from
x to y. For a path r ∈ R(x, y), define b(r) = |{e ∈ ∂+r : e is open}|. For x, y ∈ Cp

we define the right boundary distance, b(x, y) = inf{b(r) : r ∈ R(x, y), r is open}.
The next result yields uniform convergence of the right boundary distance to a
norm on R2.

Proposition 2.1 (Definition of the norm, Theorem 2.1 in [4] ). For any p > pc(2),
there exists a norm βp on R2 such that for any x ∈ R2,

βp(x) := lim
n→∞

b(0̃Cp , ñx
Cp)

n
Pp − a.s. and in L1(Pp).

Moreover, the convergence is uniform on S1 = {x ∈ R2 : ‖x‖2 = 1}.
We will require the following control on the length of right-most paths.

Lemma 2.2 (Proposition 2.9 in [4]). There exist C, C′, α > 0 (depending on p)
such that for all n,

P

[
∃γ ∈

⋃

x∈Z2

R(0, x) : |γ| > n , b(γ) ≤ αn

]
≤ Ce−C′n.

The connection between the Cheeger constant and the norm βp goes through a
continuous isoperimetric problem. For a continuous curve λ : [0, 1] → R2, and a
norm ρ, let the ρ-length of λ be

lenρ(λ) = sup
N≥1

sup
0≤t0<...<tN ≤1

N∑

i=1

ρ(λ(ti)− λ(ti−1)).

A curve λ is said to be rectifiable if lenρ(λ) <∞ for any norm ρ. A curve λ is called
a Jordan curve if λ is rectifiable, λ(0) = λ(1) and λ is injective on [0, 1). For any
Jordan curve λ, we can define its interior int(λ) as the unique finite component of



CONTINUITY OF THE TIME AND ISOPERIMETRIC CONSTANTS 7

R2 \ λ([0, 1]). Denote by Leb the Lebesgue measure on R2. The Cheeger constant
can be represented as the solution of the following continuous isoperimetric problem:

Proposition 2.3 (Theorem 1.6 in [4]). For every p > pc(2),

lim
n→+∞

nϕn(p) = (
√

2 θp)−1 inf{lenβp(λ) : λ is a Jordan curve, Leb(int(λ)) = 1}.

Moreover one obtains a limiting shape for the sets that achieve the minimum in
the definition of ϕn(p). This limiting shape is given by the Wulff construction [25].
Denote by

(1) Wp =
⋂

n̂:‖n̂‖2=1

{x ∈ R2 : n̂ · x ≤ βp(n̂)} and Ŵp =
Wp√

Leb(Wp)
,

where · denotes the Euclidean inner product. The set Ŵp is a minimizer for the
isoperimetric problem associated with the norm βp, and it gives the asymptotic
shape of the minimizer sets in the definition of ϕn(p). Denote by Un(p) be the set
of minimizers of ϕn(p); then

Proposition 2.4 (Shape theorem for the minimizers, [4] Theorem 1.8). For every
p > pc(2), Pp almost surely,

max
U∈Un(p)

inf
ξ∈R

2
dH

(
U

n
, ξ +

√
2 Ŵp

)
−→

n→+∞
0.

By Proposition 2.3 and Definition (1), Theorem 1.1 will follow from the conti-
nuity of p 7→ βp.

2.3. Definition and properties of the time constant. As announced in the
introduction, we follow the approach by Cerf and Théret in [6], which requires
no integrability condition on the restriction of G to [0, +∞). We collect in this
subsection the definition and properties of the time constants obtained in their
paper.

Let G be a probability measure on [0, +∞] such that G([0, +∞)) > pc(d), and let
M > 0 be such that G([0, M ]) > pc(d). We denote by CG,M the a.s. unique infinite
cluster of the percolation (1{tG(e)≤M}, e ∈ Ed), i.e. the percolation obtained by

keeping only edges with passage times less than M . For any x, y ∈ Zd, the (level

M) regularized passage time T̃
CG,M

G (x, y) is then

T̃
CG,M

G (x, y) = TG(x̃CG,M , ỹCG,M ) .

The parameter M only plays a role in the choice of x̃CG,M and ỹCG,M . Once these

points are chosen, the optimization in T̃
CG,M

G (x, y) is on all paths between x̃CG,M

and ỹCG,M , paths using edges with passage time larger than M included. But as
x̃CG,M ∈ CG,M and ỹCG,M ∈ CG,M , we know that exists a path using only edges with
passage time less than M between these two points. To be more precise, we denote
by DC(x, y) the chemical distance (or graph distance) between two vertices x and
y on C:

∀x, y ∈ Zd , DC(x, y) = inf{|r| : r is a path from x to y , r ⊂ C} ,

where inf ∅ = +∞. The event that the vertices x and y are connected in C is
denoted by {x C←→ y}. Then, for any x, y ∈ Zd,

T̃
CG,M

G (x, y) ≤ MDCG,M (x̃CG,M , ỹCG,M ) .
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The regularized passage time T̃
CG,M

G enjoys then the same good integrability prop-
erties as the chemical distance on a supercritical percolation cluster (see [1]):

Proposition 2.5 (Moments of T̃ , [6]). Let G be a probability measure on [0, +∞]
such that G([0, +∞)) > pc(d). For every M ∈ [0, +∞) such that G([0, M ]) > pc(d),
there exist positive constants C1, C2 and C3 such that

∀x ∈ Zd , ∀l ≥ C3‖x‖1 , P
[
T̃

CG,M

G (0, x) > l
]
≤ C1e−C2l .

We denote by CG,∞ the a.s. unique infinite cluster of the percolation obtained
by keeping only edges with finite passage time, i.e. the percolation (1{tG(e)<∞}, e ∈
Ed). Property 2.5 implies in particular that the times T̃

CG,M

G (0, x) are integrable. A
classical application of a subadditive ergodic theorem gives the existence of a time
constant:

Proposition 2.6 (Convergence to the time constant, [6]). Let G be a probability
measure on [0, +∞] such that G([0, +∞)) > pc(d). There exists a deterministic
function µG : Zd → [0, +∞) such that for every M ∈ [0, +∞) satisfying G([0, M ]) >
pc(d), we have the following properties:

∀x ∈ Zd µG(x) = inf
n∈N∗

E
[
T̃

CG,M

G (0, nx)
]

n
= lim

n→+∞

E
[
T̃

CG,M

G (0, nx)
]

n
,(2)

∀x ∈ Zd lim
n→∞

T̃
CG,M

G (0, nx)

n
= µG(x) a.s. and in L1,(3)

∀x ∈ Zd lim
n→∞

T̃
CG,∞

G (0, nx)

n
= µG(x) in probability ,(4)

∀x ∈ Zd lim
n→∞

TG(0, nx)

n
= θ2

GδµG(x) + (1 − θ2
G)δ+∞ in distribution,(5)

where θG = P[0 ∈ CG,∞].

Note that even if the definition (2) of the time constants µG(x) requires to intro-

duce a parameter M in the definition of the regularized passage times T̃
CG,M

G (0, nx),
these time constants µG(x) do not depend on M . Note also that if instead of tak-
ing the x̃CG,M in the infinite cluster CG,M of edges with passage time less than M ,
we take the x̃CG,∞ in the infinite cluster CG,∞ of edges with finite passage time,
the almost sure convergence is weakened into the convergence in probability (4).
Without any regularization, the convergence in (5) is only in law.

As in the classical first-passage percolation model, the function µG can be ex-
tended, by homogeneity, into a pseudo-norm on Rd (the only possibly missing prop-
erty of µG is the strict positivity):

Proposition 2.7 (Positivity of µG, [6]). Let G be a probability measure on [0, +∞]
such that G([0, +∞)) > pc(d). Then either µG is identically equal to 0 or µG(x) > 0
for all x 6= 0, and we know that

µG = 0 ⇐⇒ G({0}) ≥ pc(d) .

Proposition 2.5 gives strong enough integrability properties of T̃
CG,M

G (0, x) to
ensure that the convergence to the time constants is uniform in the direction:
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Proposition 2.8 (Uniform convergence, [6]). Let G be a probability measure on
[0, +∞] such that G([0, +∞)) > pc(d). Then for every M ∈ [0, +∞) such that
G([0, M ]) > pc(d), we have

lim
n→∞

sup
x∈Zd , ‖x‖1≥n

∣∣∣∣∣
T̃

CG,M

G (0, x)− µG(x)

‖x‖1

∣∣∣∣∣ = 0 a.s.

When µG > 0, this uniform convergence is equivalent to the so called shape

theorem, that we briefly present now. We define BG,t (resp. B̃
CG,M

G,t , B̃
CG,∞

G,t ) as the
set of all points reached from the origin within a time t :

BG,t = {z ∈ Zd : TG(0, z) ≤ t} ,

(resp. T̃
CG,M

G , T̃
CG,∞

G ), and when µG is a norm we denote by BµG its closed unit
ball. Roughly speaking, the shape theorem states that the rescaled set BG,t/t

(respectively B̃
CG,M

G,t /t, B̃
CG,∞

G,t /t) converges towards BµG . The convergence holds in

a sense that depends on the regularity of times considered (see [6] for more precise
results).

2.4. Coupling. To understand how µG depends on G, it is useful to consider pas-
sage times (tG(e)) with common distribution G, that also have good coupling prop-
erties. For any probability measure G on [0, +∞], we denote by G the function

G : [0, +∞)→ [0, 1]

t 7→ G([t, +∞]),

which characterizes G. For two probability measures G1, G2 on [0, +∞], we define
the following stochastic domination relation:

G1 � G2 ⇔ ∀t ∈ [0, +∞) G1(t) ≥ G2(t).

This is to have this equivalence that we choose to characterize a probability measure
G by G instead of the more standard distribution function t 7→ G([0, t]).

Given a probability measure G on [0, +∞], we define the two following pseudo-
inverse functions for G:

∀t ∈ [0, 1] , Ĝ(t) = sup{s ∈ [0, +∞) : G(s) ≥ 1− t} and

G̃(t) = sup{s ∈ [0, +∞) : G(s) > 1− t} .

These pseudo-inverse functions can be used to simulate random variable with dis-
tribution G:

Lemma 2.9. Let U be a random variable with uniform law on (0, 1). If G is a

probability measure on [0, +∞], then Ĝ(U) and G̃(U) are random variables taking

values in [0, +∞] with distribution G, and G̃(U) = Ĝ(U) a.s.

Proof. The function Ĝ has the following property

(6) ∀t ∈ [0, 1] , ∀s ∈ [0, +∞) , Ĝ(t) ≥ s ⇐⇒ G(s) ≥ 1− t .

Then for all s ∈ [0, +∞), we have P[Ĝ(U) ≥ s] = P[U ≥ 1 − G(s)] = G(s),

thus Ĝ(U) has distribution G. The function G̃ does not satisfy the property (6).

However, Ĝ(t) 6= G̃(t) only for t ∈ [0, 1] such that G−1({1 − t}) contains an open

interval, thus the set {t ∈ [0, 1] : Ĝ(t) 6= G̃(t)} is at most countable. This implies

that Ĝ(U) = G̃(U) a.s., thus G̃(U) has the same law as Ĝ(U). �
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In the following, we will always build the passage times of the edges with this
lemma. Let then (u(e), e ∈ Ed) be a family of i.i.d. random variables with uniform
law on (0, 1). For any given probability measure G on [0, +∞], the family of i.i.d
passage times with distribution G will always be

(7) ∀e ∈ Ed , tG(e) = Ĝ(u(e)) .

Of course the main interest of this construction is to obtain couplings between laws:
if G1 and G2 are probability measures on [0, +∞],

G1 � G2 ⇒ tG1(e) ≤ tG2(e) for all edges e.

In particular in the case of Bernoulli percolation, if p ≤ q, Gq = qδ1 + (1− q)δ∞ �
Gp = pδ1 + (1 − p)δ∞ thus Cp ⊂ Cq. Moreover, we have the following pleasant
property:

Lemma 2.10. Let G, (Gn)n∈N be probability measures on [0, +∞]. We define the

passage times tG(e) and tGn(e) as in equation (7). If Gn
d→ G, then

a.s. , ∀e ∈ Ed , lim
n→∞

tGn(e) = tG(e) .

Proof. (i) Let us prove that if Gn � G for all n, then

∀t ∈ [0, 1] lim
n→∞

Ĝn(t) = Ĝ(t) .(8)

Consider t ∈ [0, 1], let x = Ĝ(t) and xn = Ĝn(t). Since Gn � G, we have Gn ≥ G

thus xn ≥ x. Suppose that lim
n→+∞

xn := x > x. Up to extraction, we suppose

that limn→+∞ xn = x. Choose β ∈ (x, x) such that G is continuous at β, thus

limn→∞ Gn(β) = G(β). On one hand, by the definition of Ĝ and the monotonicity
of G, we have G(β) < 1− t. On the other hand, β < xn for all n large enough, thus
Gn(β) ≥ 1−t for all n large enough, and we conclude that G(β) = limn→∞ Gn(β) ≥
1− t, which is a contradiction, and (8) is proved.

(ii) Similarly, if Gn � G for all n, then ∀t ∈ [0, 1] lim
n→∞

Ĝn(t) = G̃(t) .

(iii) We define Gn = min{G,Gn} (resp. Gn = max{G,Gn}), and we denote
by Gn (resp. Gn) the corresponding probability measure on [0, +∞]. Notice that

Gn
d→ G and Gn

d→ G. Fix an edge e. Then Gn � G for all n, and (i) implies that

a.s. lim
n→∞

tGn
(e) = tG(e) .

As Gn � G for all n and tG(e) = G̃(u(e)) almost surely, (ii) implies that

a.s. lim
n→∞

tG
n
(e) = tG(e) .

Finally, as Gn � Gn � Gn for all n, we know by coupling that tG
n
(e) ≤ tGn(e) ≤

tGn
(e), which gives the desired convergence. �

2.5. Stabilization of the point x̃ and monotonicity of the time constant.

We need to extend the monotonicity of the time constant to first-passage percolation
on the infinite cluster of supercritical percolation. Since we work with different
probability measures, the fact that, in the regularization process, the point x̃CG,M

depends on G may be disturbing. We get round this problem by considering an
alternative probability measure H :
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Lemma 2.11. Let G and H be probability measures on [0, +∞] such that G � H.
For all M ∈ [0, +∞) satisfying H([0, M ]) > pc(d), we have

µG(x) = inf
n∈N∗

E
[
T̃

CH,M

G (0, nx)
]

n
= lim

n→∞

T̃
CH,M

G (0, nx)

n
a.s. and in L1.

Proof. Since G � H we get by coupling that tG(e) ≤ tH(e) for all e ∈ Ed. Let M ∈
[0, +∞) satisfying H([0, M ]) > pc(d), then G([0, M ]) > pc(d) and CH,M ⊂ CG,M .

The proof of the convergence of T̃
CH,M

G (0, nx)/n is a straightforward adaptation of

the proof of the convergence of T̃
CG,M

G (0, nx)/n: by the subadditive ergodic theorem,
there exists a function µ′

G,H : Rd → [0, +∞) such that for all x ∈ Zd we have

µ′
G,H(x) = inf

n∈N∗

E
[
T̃

CH,M

G (0, nx)
]

n
= lim

n→∞

T̃
CH,M

G (0, nx)

n
a.s. and in L1 .

It remains to prove that µ′
G,H = µG. For any x ∈ Zd, for any ε > 0, we have

P
[∣∣∣T̃ CH,M

G (0, nx)− T̃
CG,M

G (0, nx)
∣∣∣ > nε

]

≤ P
[
TG(0̃CG,M , 0̃CH,M ) + TG(ñx

CG,M , ñx
CH,M ) > nε

]

≤ 2P
[
TG(0̃CG,M , 0̃CH,M ) > nε/2

]
.(9)

Since 0̃CG,M ∈ CG,M ⊂ CG,∞ and 0̃CH,M ∈ CH,M ⊂ CG,M ⊂ CG,∞, the time

TG(0̃CG,M , 0̃CH,M ) is finite a.s. thus the right hand side of inequality (9) goes to
0 as n goes to infinity. This concludes the proof of Lemma 2.11. �

As a simple consequence of the coupling built in section 2.4 and the stabilization
Lemma 2.11, we obtain the monotonicity of the function G 7→ µG:

Lemma 2.12. Let G, H be probability measures on [0, +∞]. we have

G � H =⇒ µG ≤ µH .

Proof. By construction of µG and µH , it suffices to prove that µG(x) ≤ µH(x) for
all x ∈ Zd. By coupling, since G � H , we have tG(e) ≤ tH(e) for every edge e.
Using Lemma 2.11 the conclusion is immediate, since we have a.s.

µG(x) = lim
n→∞

T̃
CH,M

G (0, nx)

n
≤ lim

n→∞

T̃
CH,M

H (0, nx)

n
= µH(x) .

�

2.6. Stabilization of the point x̃ for the Cheeger constant. Concerning the
Cheeger constant, we need a stabilization result similar to Lemma 2.11. For a path
r ∈ R(x, y), let us define bp(r) = |{e ∈ ∂+r : e is p − open}|. For x, y ∈ Cp, we
define bp(x, y) = inf{bp(r) : r ∈ R(x, y), r is p− open}.

Lemma 2.13. For any p, p0 such that pc(2) < p0 ≤ p ≤ 1, for any x ∈ R2, we
have

βp(x) = lim
n→∞

bp(0̃Cp0 , ñxCp0 )

n
Pp − a.s. and in L1(Pp).
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Proof. Exactly as in the proof of Lemma 2.11, since the convergence of bp(0̃Cp , ñx
Cp)/n

follows from a subadditive argument, the proof can be adapted straightforwardly
to prove the existence of

βp,p0 (x) := lim
n→∞

bp(0̃Cp0 , ñxCp0 )

n
Pp − a.s. and in L1(Pp).

The only thing we have to prove is the equality βp,p0 (x) = βp(x). By the almost-
subbadditivity of bp (see equation (2.27) in [4]), we have

bp(0̃Cp , ñx
Cp) ≤ bp(0̃Cp0 , ñx

Cp0 ) + bp(0̃Cp0 , 0̃Cp) + bp(x̃Cp0 , ñx
Cp) + 4 .

Since Cp0 ⊂ Cp, there exists a finite simple (thus also right-most) path γ which is

p-open between 0̃Cp0 and 0̃Cp , and by [4, Lemma 2.5] we know that |∂+γ| < 3|γ|,
thus bp(0̃Cp0 , 0̃Cp) ≤ 3|γ| < +∞. The same holds for bp(ñx

Cp0 , ñx
Cp). As in the

proof of Lemma 2.11, this is enough to conclude that βp,p0 (x) = βp(x). �

Notice that Lemma 2.13 does not imply the monotonicity of the Cheeger con-
stant. Indeed, consider pc(2) < p ≤ q, then

• a q-open path γ may not be p-open,
• a p-open path γ is q-open by coupling, but bq(γ) may be strictly bigger

than bp(γ),

thus no trivial comparison between bp(0̃Cp , ñx
Cp) and bq(0̃Cp , ñx

Cp) holds.

3. Renormalization

In this section we present the renormalization process and the construction of
modified paths that will be useful to study both the time constant and the isoperi-
metric constant. We consider coupled bound i.i.d. Bernoulli percolations of different
parameters. As we will see in Section , the construcion of modified paths in the
model of first passage percolation reduces to this simplest case.

3.1. Definition of the renormalization process. Consider parameters p0 and
q such that pc(d) < p0 ≤ q ≤ 1. Consider i.i.d. Bernoulii percolation on the
edges of Zd for these three parameters that are coupled, i.e. any p0-open edge is
q-open. Denote as before by Cp0 the a.s. unique infinite cluster of the supercritical
Bernoulli field of parameter p0. We call this field the p0-percolation and its clusters
the p0-clusters.

We use a renormalization process in the spirit of the work of Antal and Pisz-
tora [1]. For a large integer N , that will be apropriately chosen later, we chop Zd

into disjoint N -boxes as follows: we set BN to be the box [−N, N ]d∩Zd and define
the family of N -boxes by setting, for i ∈ Zd,

BN (i) = τi(2N+1)(BN ),

where τb stands for the shift in Zd with vector b ∈ Zd. We will also refer to the
box BN (i) as the N -box with coordinate i. The coordinates of N -boxes will be
denoted in bold and considered as macroscopic sites, to distinghish them from the
microscopic sites in the initial graph Zd. We also introduce larger boxes: for i ∈ Zd,

B′
N (i) = τi(2N+1)(B3N ).
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As in [1], we say that a connected cluster C is a crossing cluster for a box B, if
for all d directions there is an open path contained in C ∩ B joining the the two
opposite faces of the box B.

Let C′
p0

= (Zd, {e ∈ Ed : e is p0-open}) be the graph whose edges are opened for
the Bernoulli percolation of parameter p0. We recall that Cp0 is the infinite cluster

of C′
p0

, and we have DCp0 (x, y) = DC′
p0 (x, y) for every vertices x and y in Cp0 , and

DCp0 (x, y) = +∞ if x or y are not in Cp0 . Let us recall the following result, obtained

by Antal and Pisztora [1, Theorem 1.1], that says that the chemical distance DC′
p0

can’t be too large when compared to ‖ · ‖1 or ‖ · ‖∞ (or any other equivalent norm):

there exist positive constants Â, B̂, β such that

(10) ∀x ∈ Zd P(β‖x‖1 ≤ DC′
p0 (0, x) < +∞) ≤ Â exp(−B̂‖x‖1) ,

(11) ∀x ∈ Zd P(β‖x‖∞ ≤ DC′
p0 (0, x) < +∞) ≤ Â exp(−B̂‖x‖∞) ,

and

(12) ∀x ∈ Zd P(β‖x‖2 ≤ DC′
p0 (0, x) < +∞) ≤ Â exp(−B̂‖x‖2) .

In fact Antal and Pisztora proved (10), but different norms being equivalent in Rd,
we can obtain (11) and (12) by changing the constants.

Definition 3.1. We say that the macroscopic site i is (p0, q)-good (or that the box
BN (i) is (p0, q)-good) if the following events occur:

(i) There exists a unique p0-cluster C in B′
N (i) which has more than N vertices;

(ii) This p0-cluster C is crossing for each of the 3d N -boxes included in B′
N (i);

(iii) For all x, y ∈ B′
N (i), if ‖x− y‖∞ ≥ N and x and y belong to this p0-cluster

C, then DC′
p0 (x, y) ≤ 3βN ;

(iv) If π is a q-open path in B′
N (i) such that |π| ≥ N , then π intersects this

p0-cluster C in B′
N(i), i.e., they share a common vertex.

We call this cluster C the crossing p0-cluster of the (p0, q)-good box BN (i).

Otherwise, BN (i) is said to be (p0, q)-bad. For short, we say that B is good or
bad if there is no doubt about the choice of (p0, q).

On the macroscopic grid Zd, we consider the same standard nearest neighbour
graph structure as on the microscopic initial grid Zd. Moreover we say that two
macroscopic sites i and j are ∗-neighbors if and only if ‖i − j‖∞ = 1. If C is a
connected set of macroscopic sites, we define its exterior vertex boundary

∂vC = {i ∈ Zd\C : i has a neighbour in C}.
For a bad macroscopic site i, denote by C(i) the connected cluster of bad macro-
scopic sites containing i: the set ∂vC(i) is then a ∗-connected set of good macro-
scopic sites. For a good macroscopic site i, we define ∂vC(i) to be {i}.

3.2. Modification of a path. Let pc(d) < p0 ≤ p ≤ q and N be fixed. Let now γ
be a q-open path in Zd. What we want to do is to remove from γ the edges that are
p-closed, and to look for bypasses for these edges using only edges that are p0-open.

To γ, we associate the connected set Γ ⊂ Zd of N -boxes it visits: this is a
lattice animal, i.e. a connected finite set of Zd, containing the box that contains
the starting point of γ. We decompose γ into two parts, namely γa = {e ∈ γ :
e is p-open} and γb = {e ∈ γ : e is p-closed}. We denote by Bad the (random) set
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of bad connected components of the macroscopic percolation given by the states of
the N -boxes.

Lemma 3.2. Assume that y ∈ Cp0 , that z ∈ Cp0 , that the N -boxes containing y
and z are (p0, q)-good and belong to an infinite cluster of (p0, q)-good boxes. Let γ
be a q-open path between y and z. Then there exists a p-open path γ′ between y and
z that has the following properties :

(1) γ′ \ γ is a collection of disjoint self avoiding p0-open paths that intersect
γ′ ∩ γ only at their endpoints;

(2) |γ′ \ γ| ≤ ρd


N

∑

C∈Bad: C∩Γ6=∅

|C|+ Nd|γb|


, where ρd is a constant de-

pending only on the dimension d.

Before proving Lemma 3.2, we need a simpler estimate on the cardinality of a
path inside a set of good blocks.

Lemma 3.3. There exists a constant ρ̂d, depending only on d, such that for every
fixed N , for every n ∈ N∗, if (BN (i))i∈I is a ∗-connected set of n (p0, q)-good
N -blocks, if x ∈ BN(j) for j ∈ I and x is in the crossing p0-cluster of BN(j), if
y ∈ BN(k) for k ∈ I and y is in the crossing p0-cluster of BN (k), then there exists
a p0-open path from x to y of length at most equal to ρ̂d(Nn + Nd).

Proof of Lemma 3.3. Since (BN (i))i∈I is a ∗-connected set of good blocks, the defi-
nition of good boxes ensures that there exists a p0-cluster C in C′

p0
∩∪i∈I{e ∈ B′

N (i)}
which is crossing for every N -box included in ∪i∈IB′

N (i) (see Proposition 2.1 in An-
tal and Pisztora [1]). Since x and y are in C, there exists a path γ = (γ1, . . . , γp)
from x to y in C′

p0
∩ ⋃

i∈I{e ∈ B′
N (i)}. Let (ϕi)1≤i≤r be the path of macro-

scopic sites corresponding to the path of good blocks visited by γ (ϕ may not
be injective). Notice that r ≤ 3dn. We now extract a sequence of points along
γ. Let Ψ(1) = 1 and j(1) = 1. If Ψ(1), . . . , Ψ(k) and j(1), . . . , j(k) are de-
fined, if the set {i ≥ Ψ(k) : ‖ϕi − ϕΨ(k)‖∞ ≥ 2} is non empty we define
Ψ(k + 1) = inf{i ≥ Ψ(k) : ‖ϕi−ϕΨ(k)‖∞ ≥ 2} and we choose j(k + 1) ≥ j(k) such
that γj(k+1) ∈ BN (ϕΨ(k+1)); if the set {i ≥ Ψ(k) : ‖ϕi − ϕΨ(k)‖∞ ≥ 2} is empty
we stop the process. We obtain a sequence (γj(k), k = 1, . . . , r′) of points, with
r′ ≤ r. By construction, for all k ∈ {1, . . . , r′− 1}, we have ‖γj(k+1)− γj(k)‖∞ ≥ N
and

‖ϕΨ(k+1) −ϕΨ(k+1)−1‖∞ = ‖ϕΨ(k+1)−1 −ϕΨ(k)‖∞ = 1 ,

thus γj(k) ∈ B′
N (ϕΨ(k+1)−1) and γj(k+1) ∈ B′

N (ϕΨ(k+1)−1). For all k ∈ {1, . . . , r′−
1}, BN (ϕΨ(k+1)−1) is a good box, and γj(k) and γj(k+1) belong to the crossing
p0-cluster of BN (ϕΨ(k+1)−1), thus there exists a path from γj(k) to γj(k+1) in C′

p0

of length at most 3βN . By glueing these paths, we obtain a path from x = γj(1) to

γj(r′) in C′
p0

of length at most 3βNr′ ≤ 3d+1βNn. Finally, since y and γj(r′) belong
to the crossing p0-cluster of B′

N (ϕΨ(r′)), there exists a path from γj(r′) to y in C′
p0

of length at most |{e ∈ B′
N (ϕΨ(r′))}| ≤ 2d 3dNd. �

Proof of Lemma 3.2. To the path γ, we associate the sequence ϕ0 = (ϕ0(j))1≤j≤r0

of N -boxes it visits. Note that ϕ is not necessarily injective, and that the previously
defined lattice animal Γ is equal to ϕ0({1, . . . , r0}).

From the sequence ϕ0, we extract the subsequence (ϕ1(j))1≤j≤r1 , with r1 ≤ r0,
of N -boxes B such that γ ∩ B contains at least one edge that is p-closed (more
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precisely, we keep the indices of the boxes B that contain the smallest extremity,
for the lexicographic order, of an edge of γ that is p-closed). Notice that r1 ≤ |γb|.
The idea is the following:

(1) If ϕ1(j) is good, we add to γ all the p0-open edges in B: there will be
enough such edges in the good N -box to find a by-pass for the edge of γ
that is p-closed.

(2) If ϕ1(j) is bad, we will look for such a by-pass in the exterior vertex bound-
ary ∂vC(ϕ1(j))) of the connected component of bad boxes of ϕ1(j).

In the second case, we use Lemma 3.3 to control the length of the by-pass we
create. We recall that if i is good, then ∂vC(i) = {i}. Note that some ∂vC(ϕ1(j)))
may coincide or be nested one in another or overlap. In order to define properly
the modification of our path, we need thus to extract a subsequence once again,
see Figure 2. We first consider the ∗-connected components (Sϕ2(j))1≤j≤r2 , with

: the boxes (ϕ1(j))1≤j≤r1

: the sets of good boxes in (Sϕ2(j))1≤j≤r2
that do not belong to (Sϕ4(j))1≤j≤r4

y

z

γ

: the sets of good boxes (Sϕ4(j))1≤j≤r4

Figure 2. Construction of the path γ′ - step 1.

r2 ≤ r1, of the union of the (∂vC(ϕ1(j)))1≤j≤r1 , by keeping only the smallest index
for each connected component. Next, in case of nesting, we only keep the largest
connected component. We denote by (Sϕ3(j))1≤j≤r3 , with r3 ≤ r2, the remaining
hypersurfaces of good N -boxes. Finally it may happen that γ visits several times
the same Sϕ3(j) for some j: in this situation we can and must remove the loops that
γ makes between its different visits in Sϕ3(j). Thus by a last extraction we obtain
(Sϕ4(j))1≤j≤r4 , where Sϕ4(1) = Sϕ3(1) and for all k ≥ 1, ϕ4(k + 1) is the infimum of
the indices (ϕ3(j))1≤j≤r3 such that γ visits Sϕ3(j) after it exits Sϕ4(k) for the last
time (if such a j exists).

Note that the path γ must visit each (Sϕ4(j))1≤j≤r4 . We now cut γ in several
pieces. Let Ψin(1) = min{k ≥ 1 : γk ∈ ∪i∈Sϕ4(1)

BN (i)} and Ψout(1) = max{k ≥
Ψin(1) : γk ∈ ∪i∈Sϕ4(1)

BN (i)} (see Figure 3). By recurrence, for all 1 ≤ j ≤ r4,
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γ′
j,link

γ′
j,in

γ′
j,out

γj

γj+1
γ

yj

γψin(j)

y′
j

x′
j

γψout(j)

xj

Sϕ4(j)

Figure 3. Construction of the path γ′ - step 2.

we define Ψin(j) = min{k ≥ Ψout(j − 1) : γk ∈ ∪i∈Sϕ4(j)
BN (i)} and Ψout(j) =

max{k ≥ Ψin(j) : γk ∈ ∪i∈Sϕ4(j)
BN (i)}. For all 1 ≤ j ≤ r4 − 1, let γj be the

part of γ from γΨout(j) to γΨin(j+1). By construction γj contains no p-closed edge,
and has at least N vertices in B′

N (i) for some i ∈ Sϕ4(j) (resp. in B′
N (k) for some

k ∈ Sϕ4(j+1)), thus γj intersects the crossing p0-cluster of B′
N (i) (resp. B′

N (k)) ;
let us denote by xj (resp. yj+1) the last (resp. first) intersection of γj with the
p0-cluster of B′

N (i) (resp. B′
N (k)). The vertex xj (resp. yj+1) is not inside BN (i)

(resp. BN (k)), but it is connected inside the p0-cluster of B′
N (i) (resp. B′

N (k)) to
a vertex x′

j (resp. y′
j+1) of BN (i) (resp. BN (k)) by a path γ′

j,out (resp. γ′
j+1,in) of

length at most equal to 2d3dNd ≤ ρ̂dNd. Let us study more carefully the beginning
of the path γ. Since the N -box containing y belongs to an infinite cluster of good
boxes, it cannot be in the interior of Sϕ4(1). If the box containing y is not in Sϕ4(1)

(thus it is outside Sϕ4(1)), denote by γ0 the portion of γ from 0 to γΨin(1), and define
as previously y1, y′

1 and γ′
1,in. If the box containing y is in Sϕ4(1), then Ψin(1) = 1

and γΨin(1) = y. As y ∈ Cp0 and the box containing y is good, y is in the crossing
p0-cluster of the box containing y, thus we can define y1 = y′

1 = y, γ0 = ∅ and
γ′

1,in = ∅. Similarly, we define xr4 , x′
r4

, γr4 and γ′
r4,out depending on the fact that

the box containing z belongs to Sϕ4(r4) or not. For all 1 ≤ j ≤ r4, we can apply
Lemma 3.3 to state that there exists a p0-open path γ′

j,link from y′
j to x′

j of length

at most ρ̂d(Nd + N |Sϕ4(j)|).
For all 1 ≤ j ≤ r4, define γ′

j = γ′
j,in ∪ γ′

j,link ∪ γ′
j,out. By construction each γ′

j is

p0-open. We can glue together the paths γ0, γ′
1, γ1, γ′

2, . . . , γ′
r4

, γr4 in this order to
obtain a p-open path γ′ from y to z. Up to cutting parts of these paths, we can
suppose that each γ′

i is a self-avoiding path, that the γ′
i are disjoint and that each

γ′
i intersects only γi−1 and γi, and only with its endpoints.

Finally we need an estimate on |γ′ r γ|. Obviously γ′ r γ ⊂ ∪r4

i=1γ′
i, thus

|γ′ r γ| ≤ 2r4ρ̂dNd +

r4∑

i=1

ρ̂d(Nd + N |Sϕ4(j)|)

≤ 3r4ρ̂dNd + ρ̂dN

r4∑

i=1

|Sϕ4(j)|

≤ 3ρ̂dNd|γb|+ ρ̂dN
∑

C∈Bad: C∩Γ6=∅

|∂vC| .



CONTINUITY OF THE TIME AND ISOPERIMETRIC CONSTANTS 17

To conclude, we just have to remark that |∂vC| ≤ 2d|C|. �

3.3. Probabilistic estimates. We want to bound the probability that |γ′ r γ| is
big for q− p0 small enough. Lemma 3.2 makes appear the connected set Γ ⊂ Zd of
N -boxes visited by the path γ. To control |γ′ r γ|, we need to have a deterministic
control on |Γ|. This is the purpose of the following Lemma.

Lemma 3.4. There exists a constant C̃d, depending only on d, such that for every
path γ of Zd, for every N ∈ N∗, if Γ is the animal of N-blocks that γ visits, then

|Γ| ≤ C̃d

(
1 +
|γ|+ 1

N

)
− 1 .

Proof. Let γ = (γi)i=1,...,n be a path of Zd for a n ∈ N∗ (γi is the i-th vertex of γ,
n = |γ|+1), and fix N ∈ N∗. Let Γ be the animal of N-blocks that γ visits. We will
include Γ in a bigger set of blocks whose size can be controlled. Let p(1) = 1 and i1

be the macroscopic site such that γ1 ∈ BN (i1). If p(1), . . . , p(k) and i1, . . . , ik are
constructed, define p(k + 1) = inf{j ∈ {p(k), . . . , n} : γj /∈ B′

N (ik)} if this set is
not empty and let ik+1 be the macroscopic site such that γp(k+1) ∈ BN (ik+1), and
stop the process if for every j ∈ {p(k), . . . , n} , γj ∈ B′

N (ik). We obtain two finite
sequences (p(1), . . . , p(r)) and (i1, . . . , ir). First notice that

Γ ⊂
r⋃

k=1

B′
N (ik)

by construction, thus |Γ| ≤ 3dr−1. Moreover for every k ∈ {1, . . . , r−1}, ‖γp(k+1)−
γp(k)‖1 ≥ N , thus p(k1)− p(k) ≥ N . This implies that N(r− 1) ≤ p(r)− p(1) ≤ n,
and we conclude that

|Γ| ≤ 3d
(

1 +
n

N

)
− 1 .

�

Then we need a control on the probability that a block is good.

Lemma 3.5. (i) For every q > pc(d), there exists δ0(q) > 0 such that if
p0 ∈ (pc(d), q] satisfy q − p0 ≤ δ0, then for every p < 1, there exists an
integer N(p0, q, p) such that the field (11{BN (i) is (p0, q)-good})i∈Zd stochasti-
cally dominates a family of independent Bernoulli random variables with
parameter p.

(ii) For every p0 > pc(d), there exists δ1(p0) > 0 such that if q1 ∈ [p0, 1] sat-
isfy q1 − p0 ≤ δ1, then for every p < 1 there exists an integer N ′(p0, q1, p)
such that for any q ∈ [p0, q1] the field (11{B′

N
(i) is (p0, q)-good})i∈Zd stochas-

tically dominates a family of independent Bernoulli random variables with
parameter p.

Proof. Obviously, the states of (BN (i))i∈Zd have a finite range of dependance and
are identically distributed. Then, by the Liggett–Schonmann–Stacey Theorem [20],
it is sufficient to check that limN→+∞ P(BN good) = 1, for BN = BN (0).

Consider first the properties (i) and (ii) of the Definition 3.1, that depend only
on p0. For any p0 > pc(d), when d ≥ 3, the fact that

lim
N→+∞

P(BN satisfies (i) and (ii)) = 1

follows from the Pisztora coarse graining argument (see Pisztora [23] or the coarse
graining section in Cerf [5]), see also for instance Grimmett [15] Lemma (7.104).
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When d = 2, see Couronné and Messikh [7]. We now study the property (iii) in the
Definition 3.1, that also depends only on p0. Using Antal and Pisztora’s estimate
(10), for any fixed p0 > pc(d), we have for all N

P[BN does not satisfy (iii)]

≤
∑

x∈B′
N

∑

y∈B′
N

1‖x−y‖∞≥NP

[
x

C′
p0←→ y , DC′

p0 (x, y) ≥ 3βN

]

≤
∑

x∈B′
N

∑

y∈B′
N

1‖x−y‖∞≥NP

[
x

C′
p0←→ y , DC′

p0 (x, y) ≥ β‖x− y‖∞

]

≤
∑

x∈B′
N

∑

y∈B′
N

1‖x−y‖∞≥N Âe−B̂‖x−y‖∞ ≤ (3N)d.(3N)dÂe−B̂N

that goes to 0 when N goes to infinity. The delicate part of the proof is the study
of the property (iv) in the Definition 3.1. For q = p0, we are done since property
(iv) is implied by the uniqueness of the p0-crossing cluster in B′

N . We want to
deduce from this that property (iv) is asymptotically typical. We follow the proof
of Russo’s formula, see for instance Theorem 2.25 in [15]. For given parameters
pc(d) < p0 < p ≤ 1, we denote by Pp0,p the probability of the corresponding
coupled Bernoulli percolation, and we declare that

• an edge e is in state 0 if e is p-closed,
• an edge e is in state 1 if e is p0-closed and p-open,
• an edge e is in state 2 if e is p0-open.

We define AN as the event that there exists a crossing cluster C of edges of state 2
in B′

N , and a path π ⊂ B′
N of edges of state 1 or 2 such that |γ| = N and γ does

not intersect C. Let us fix p0. When p vary, the edges of state 2 remain unchanged,
we only change the state of edges from 0 to 1 and conversely. For a given p0, the
event AN is increasing in p. We denote by N (AN ) the random number of edges
that are 0 − 1-pivotal for A, i.e., the number of edges e such that if e is in state 1
then AN occurs, and if e is in state 0 then AN does not occur. Following the proof
of Russo’s formula, we obtain that

∂

∂p
Pp0,p(AN ) =

1

p
Ep0,p[N (AN ) |AN ]Pp0,p(AN ) .

We remark that when A occurs, N (AN ) ≤ N , the length of the desired path, thus

Ep0,p[N (AN ) |AN ] = Ep0,p[1ANN (AN ) |AN ] ≤ N .

We obtain that

Pp0,q(AN ) = Pp0,p0(AN ) exp

(∫ q

p0

1

p
Ep0,p[N (AN ) |AN ] dp

)

≤ Pp0,p0(AN ) exp

(
N

∫ q

p0

1

p
dp

)

≤ Pp0,p0(AN ) exp

(
N log

(
q

p0

))

≤ Pp0,p0(AN ) exp

(
N log

(
1 +

q − p0

p0

))
(13)
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It comes from the coarse graining arguments previously cited to study property (i)
that Pp0,p0(AN ) decays exponentially fast with N : there exists κ1(p0), κ2(p0) such
that

(14) Pp0,p0(AN ) ≤ κ1(p0)e−κ2(p0)N .

Part(ii) of Lemma 3.5: When p0 is fixed, combining (13) and (14) is enough to

conclude that there exists δ1(p0) > 0 such that if q1 < p0 + δ1, then

(15) lim
N→∞

Pp0,q1(AN ) = 0 .

We conclude that for every p0 > pc(d), there exists δ1(p0) > 0 such that if q1 ∈ [p0, 1]
satisfy q1 − p0 ≤ δ1, then for every p < 1 there exists an integer N ′(p0, q1, p) such
that for q = q1 the field (11{B′

N
(i) is (p0, q1)-good})i∈Zd stochastically dominates a fam-

ily of independent Bernoulli random variables with parameter p. The only property
of a good block that depends on q is property (iv), and if p0 ≤ q ≤ q1 then any
q-open path is also a q1-open path, thus if a block is (p0, q1)-good then it is (p0, q)-
good for any parameter q ∈ [p0, q1] . We conclude that for N ′ = N ′(p0, q1, p),
for any q ∈ [p0, q1], the field (11{B′

N
(i) is (p0, q)-good})i∈Zd stochastically dominates a

family of independent Bernoulli random variables with parameter p.

Part(i) of Lemma 3.5: If q is fixed, we need to replace (14) by a control on Pp0,p0 (AN )
which is uniform for p0 in a left neighborhood of q. Let us have a closer look at
the proof of (14). In dimension d ≥ 3, we refer to the proof of Lemma 7.104 in
Grimmett [15] : the constants κ1(p0), κ2(p0) of (14) appearing in Grimmett’s book
are explicit functions of the parameters δ(p0) and L(p0) chosen in Lemma 7.78 in
[15]. The probability controlled in Lemma 7.78 in [15] is clearly non decreasing in
the parameter p of the percolation, thus the choice of δ(p) and L(p) made for a
given p > pc(d) can be kept unchanged for any p′ ≥ p. Fixing p′

0 = (q − pc(d))/2,
we obtain that for any p0 ∈ [p′

0, q],

(16) Pp0,p0(AN ) ≤ κ1(p′
0)e−κ2(p′

0)N .

Combining (13) and (16) we can conclude that in dimension d ≥ 3, when q is
fixed, there exists δ0(q) such that if p0 ∈ [p′

0, q] satisfies q − p0 ≤ δ0, then (15) still
holds. In dimension 2, (14) is obtained by Couronné and Messikh [7], Theorem
9, in a more general setting. The constants appearing in this theorem are explicit
functions of the constants appearing in Proposition 6 in [7], and the same remark as
in dimension d ≥ 3 leads to the uniform control (16), and the proof is complete. �

We can now use Lemma 3.5 to bound the probability that
∑

C∈Bad: C∩Γ6=∅
|C|

is big. Denote by Animals the set of lattice animals containing 0, and Animalsn

the subset of those having size n.

Lemma 3.6. Let ε > 0. Let psite
c (d) be the critical parameter for independent

Bernoulli site percolation on Zd. Choose α = α(ε) > 0 and then p = p(ε) ∈
(psite

c (d), 1), such that

7d exp(−αε) ≤ 1

3
,(17)

p +
eα7d(1 − p)

1− eα7d(1− p)
≤ 3

2
.(18)
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For a given q > pc(d) (resp. p0 > pc(d)), for a fixed p0 ∈ (pc(d), q] such that
q − p0 ≤ δ0(q) (resp. q1 ≥ p0 such that q1 − p0 ≤ δ1(p0) and any q ∈ [p0, q1]), let
finally N = N(p0, q, p(ε)) (resp. N = N ′(p0, q1, p(ε))) be large enough to have the
stochastic comparison of Lemma 3.5 with this parameter p(ε). Then for all m ∈ N,
we have

P


∃Γ ∈ Animals, |Γ| ≥ m

N
,

∑

C∈Bad: C∩Γ6=∅

|C| ≥ ε|Γ|


 ≤ e− m

N +1 .

Proof. We have

P(m)
def
= P


∃Γ ∈ Animals, |Γ| ≥ m

N
,

∑

C∈Bad: C∩Γ6=∅

|C| ≥ ε|Γ|




≤
∑

n≥ m
N

∑

Γ∈Animalsn

P


 ∑

C∈Bad: C∩Γ6=∅

|C| ≥ ε|Γ|




≤
∑

n≥ m
N

∑

Γ∈Animalsn

Pp


 ∑

C∈Bad: C∩Γ6=∅

|C| ≥ ε|Γ|


 .

For the last inequality, we use the coupling Lemma 3.5 to replace the locally de-
pendent states of our N -boxes by an independent Bernoulli site percolation with
parameter p chosen in (18). From now on, we work with this Bernoulli site perco-
lation with parameter p. Denote by C(0) the connected component of closed sites
containing 0 (with the convention that if 0 is open, then C(0) = ∅). Let (C̃(i))i∈Zd

be independent and identically distributed random sets of Zd with the same law as
C(0). Fix a set Γ = (Γ(i))1≤i≤n of sites; we first prove that, for the independent
Bernoulli site percolation, the following stochastic comparison holds:

(19)
∑

C∈Bad: C∩Γ6=∅

|C| �
n∑

i=1

|C̃(i)|.

The idea is to build algorithmically the real clusters from the sequence of pre-
clusters (C̃(i))i∈Zd , as in the work of Fontes and Newman [11], proof of Theorem 4.
Note however that in our sum (19), each visited cluster is only counted once, while
they count each cluster the number of times it is visited, which explains the differ-
ence between our stochatic domination and their one. We proceed by induction on
j ∈ {1, . . . , n} to build a new family (C(i))1≤i≤n such that

Aj
def
=

⋃

C∈Bad: C∩{Γ(i): 1≤i≤j}6=∅

C
law⊂

j⋃

i=1

C(i) ⊂
j⋃

i=1

(Γ(i) + C̃(i)).

Set C(1) = Γ(1) + C̃(1). Assume now that (C(i))1≤i≤j are built for some j < n:

• if Γ(j + 1) ∈ Aj , then Aj+1 = Aj , so we set C(j + 1) = ∅;
• if Γ(j + 1) ∈ ∂vAj (the exterior vertex boundary of Aj), then it is a good

site, so we set C(j + 1) = ∅;
• otherwise, the conditional distribution of the bad cluster C containing the

site Γ(j + 1), given Aj , is that of the percolation cluster of Γ(j + 1) in a
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site percolation model where Zd is replaced by Zd\(Aj ∪∂vAj); thus, it has
the same law as the connected component of Γ(j + 1) in

C(j + 1)=
(
Γ(j + 1) + C̃(j + 1)

)
\ (Aj ∪ ∂vAj) ,

which ends the construction and proves (19). As the number of lattice animals
containing 0 with size n is bounded from above by (7d)n (see Kesten [18], p 82. or
Grimmett [15], p.85), we have, by the Markov inequality,

P(m) ≤
∑

n≥ m
N

(7d)n exp(−αεn) (Ep(exp(α|C(0)|)))n .

But

Ep(exp(α|C(0)|)) = p +
∑

k≥1

exp(αk)Pp(|C(0)| = k) ≤ p +
∑

k≥1

exp(αk)Pp(|C(0)| ≥ k)

≤ p +
∑

k≥1

exp(αk)(7d)k(1 − p)k = p +
eα7d(1− p)

1− eα7d(1− p)
.

With the choices (17) and (18) we made for α and p, this ensures that

P(m) ≤
∑

n≥ m
N

2−n ≤ 2− m
N +1.

�

4. Truncated passage times, proof of Theorems 1.5

Let G be a probability measure on [0, +∞] such that q := G([0, +∞)) > pc(d).
Let δ0(q) be given by Lemma 3.5. Fix M0 large enough so that p0 := G([0, M0]) >
pc(d) and q − p0 ≤ δ0. For a K ∈ [M0, +∞), define p = p(k) = G([0, K]). We
define the following bound i.i.d. Bernoulli percolations :

• an edge e is declared p0-open if and only if tG(e) ≤M0,
• an edge e is declared p-open if and only if tG(e) ≤ K,
• an edge e is declared q-open if and only if tG(e) <∞.

These percolations are naturally coupled, thus we can use the modification of paths
presented in the previous section. Denote as before by CG,M0 the a.s. unique infinite
cluster of the supercritical Bernoulli field {1tG(e)≤M0

: e ∈ Ed}. We call this field
the M0-percolation and its clusters the M0-clusters. They correspond exactly to
the p0-percolation and the p0-clusters.

4.1. Estimation for the passage time of the modified path.

Lemma 4.1. There exists a positive constant ρ′
d (depending only on d and M0)

such that the following holds: Assume that y ∈ CG,M0 , that z ∈ CG,M0 , that the
N -boxes containing y and z are good and belong to an infinite cluster of good boxes.
Then for every K ≥M0,

TG(y, z) ≤ TGK (y, z)

(
1 +

ρ′
dNd

K

)
+ ρ′

dN
∑

C∈Bad: C∩Γ6=∅

|C|,

where Γ is the lattice animal of N -boxes visited by an optimal path between y and
z for the passage times with distribution GK .
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Proof. As y ∈ CG,M0 and z ∈ CG,M0 , the quantities TG(y, z) and TGK (y, z) are
bounded by M0 times the chemical distance in CG,M0 between y and z, and are
thus finite. Let γ be an optimal path between y and z for TGK (y, z) : since its
passage time is finite, γ is q-open, and we can consider the modification γ′ given
by Lemma 3.2. Since γ′ is a path between y and z, and γ′ r γ is p0-open, we have

TG(y, z) ≤
∑

e∈γ′

tG(e) =
∑

e∈γ∩γ′

tG(e) +
∑

e∈γ′\γ

tG(e) ≤
∑

e∈γa

tG(e) + M0 |γ′ \ γ| .

On one hand, since γ is an optimal path between y and z for TGK (y, z), we have

∑

e∈γa

tG(e) =
∑

e∈γa

tGK (e) ≤
∑

e∈γ

tGK (e) = TGK (y, z) .

On the other hand, using the estimate on the cardinality of γ′\γ given in Lemma 3.2,
and noticing that the number of edges in γb is less than TGK (γ)/K, we obtain

|γ′ \ γ| ≤ ρd


NdTGK (γ)

K
+ N

∑

C∈Bad: C∩Γ6=∅

|C|


 .

�

Lemma 4.2. Suppose that G({0}) < pc(d). For every ε > 0 there exists p1(ε) > 0
and A(ε) > 0 such that for every K ≥M0, for all x large enough,

P

(
T̃

CG,M0

G (0, x) ≤ T̃
CG,M0

GK (0, x)

(
1 +

A(ε)

K

)
+ ε‖x‖1

)
≥ p1(ε).

Proof. Let ε > 0 be fixed. Let psite
c (d) be the critical parameter for independent

Bernoulli site percolation on Zd. Choose α = α(ε) > 0 and then p = p(ε) ∈
(psite

c (d), 1), such that

7d exp(−αε) ≤ 1

3
,(20)

p +
eα7d(1 − p)

1− eα7d(1− p)
≤ 3

2
(21)

as in Lemma 3.6. Let N = N(p0, q, p(ε)) be large enough to have the stochastic
comparison of Lemma 3.5 with this parameter p(ε). Let K ≥ M0. Fix a large x,
at least large enough so that ‖x‖1 ≥ 12dN .

Let Fx be the following good event: the N -boxes containing 0 and x and all
the adjacent boxes are good and belong to an infinite cluster of good boxes. For
any y in the same (3N)-box as 0, for any z in the same (3N)-box as x, let Ey,z

be the event that y ∈ CG,M0 , z ∈ CG,M0 and the N -boxes containing y and z are
good and belong to an infinite cluster of good boxes. For any such (y, z), we have
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‖y − z‖1 ≤ ‖x‖1 + 6dN ≤ 2‖x‖1. For any given β′′, we have

P

(
T̃

CG,M0

G (0, x) ≥ T̃
CG,M0

GK (0, x)

(
1 +

ρ′
dN(ε)d

K

)
+ 4 ε C̃d ρ′

d β′′‖x‖1

)

≤ P[F c
x ]

+ P

(
Fx ∩

{
T̃

CG,M0

G (0, x) ≥ T̃
CG,M0

GK (0, x)

(
1 +

ρ′
dN(ε)d

K

)
+ 4 ε C̃d ρ′

d β′′‖x‖1

})

≤ P[F c
x ]

+
∑

y,z

P

(
Fx ∩ {0̃CG,M0 = y , x̃CG,M0 = z}

∩
{

TG(y, z) ≥ TGK (y, z)
(

1 +
ρ′

dN(ε)d

K

)
+ 4 ε C̃d ρ′

d β′′‖x‖1

}
)

≤ P[F c
x ]

+
∑

y,z

P

(
Ey,z ∩

{
TG(y, z) ≥ TGK (y, z)

(
1 +

ρ′
dN(ε)d

K

)
+ 2 ε C̃d ρ′

d β′′‖y − z‖1

})
,

(22)

where the sum is over every y in the same (3N)-box as 0, and every z in the same
(3N)-box as x - indeed, on the event Fx, we know that CG,M0 intersects the box

of 0 (resp. x) thus 0̃CG,M0 (resp. x̃CG,M0 ) belongs to the same (3N)-box as 0 (resp.
x). Note that the stochastic comparison and the FKG inequality ensure that

(23) P(Fx) ≥ θ23̇d

site,p(ε) > 0 ,

where θsite,p(ε) denotes the density of the infinite cluster in a supercritical vertex
i.i.d. Bernoulli percolation of parameter p(ε).

Consider a couple (y, z) as in (22). On the event Ex,y, we have

TGK (y, z) ≤M0DCG,M0 (y, z) <∞ .

Let γy,z be a geodesic for TGK (y, z), and let Γy,z be the lattice animal of the N -
boxes visited by this geodesic. By Lemma 4.1, we have

P

(
Ey,z ∩

{
TG(y, z) ≥ TGK (y, z)

(
1 +

ρ′
dN(ε)d

K

)
+ 2 ε C̃d ρ′

d β′′‖y − z‖1

})

≤ P


Ey,z ∩





∑

C∈Bad: C∩Γy,z 6=∅

|C| ≥ 2 ε C̃d β′′‖y − z‖1

N(ε)






 .

Note that by construction, on the event Ey,z, we have |Γy,z| ≥ ‖y− z‖1/N . On the

other hand Lemma 3.4 implies that |Γy,z| ≤ C̃d(1+(|γy,z|+1)/N)−1 ≤ 2C̃d|γy,z|/N
at least for x large enough (remember that |γy,z| ≥ ‖y − z‖1 ≥ ‖x‖1 − 6dN ≥
‖x‖1/2). Thus we obtain

P

(
Ey,z ∩

{
TG(y, z) ≥ TGK (y, z)

(
1 +

ρ′
dN(ε)d

K

)
+ 2 ε C̃d ρ′

d β′′‖y − z‖1

})

≤ P (Ey,z ∩ {|γy,z| > β′′‖y − z‖1})

+ P


Ey,z ∩





∑

C∈Bad: C∩Γy,z 6=∅

|C| ≥ |Γy,z|






 .(24)
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Since GK({0}) = G({0}) < pc(d), there exist positive constants A′, B′, β′ such that
for all k ∈ N∗ (see Proposition 5.8 in Kesten [19]):

(25) P [∃r s.a. path starting at y s.t. |r| ≥ k and TGK (r) ≤ β′k] ≤ A′ exp(−B′k).

Let β be given by Antal and pisztora’s estimate (10). By (10) we have

P(Ey,z ∩ {DCG,M0 (y, z) ≥ β‖y − z‖1}) ≤ P(β‖y − z‖1 ≤ DC′
G,M0 (y, z) < +∞)

≤ Â exp(−B̂‖y − z‖1) .(26)

Fix β′′ = βM0

β′ > 0. Combining (25) and (26) we obtain the existence of positive

constants A′′, B′′ such that

P (Ey,z ∩ {|γy,z| > β′′‖y − z‖1})
≤ P(Ey,z ∩ {DCG,M0 (y, z) ≥ β‖y − z‖1})

+ P (Ey,z ∩ {TGK (y, z) ≤M0β‖y − z‖1} ∩ {|γy,z| > β′′‖y − z‖1})
≤ Âe−B̂‖y−z‖1 + A′e−B′β′′‖y−z‖1 ≤ A′′e−B′′‖y−z‖1 .(27)

By Lemma 3.6, with the choices (20) and (21) we made for α and p, we know that

P


Ey,z ∩





∑

C∈Bad: C∩Γy,z 6=∅

|C| ≥ |Γy,z|








≤ P


∃Γ ∈ Animals, |Γ| ≥ ‖y − z‖1

N(ε)
,

∑

C∈Bad: C∩Γ6=∅

|C| ≥ ε|Γ|


 = P(‖y − z‖1)

≤ 2−
‖y−z‖1

N(ε)
+1.

(28)

Combining (22), (23), (24), (27) and (28), we obtain that

P

(
T̃

CG,M0

G (0, x) ≥ T̃
CG,M0

GK (0, x)

(
1 +

ρ′
dN(ε)d

K

)
+ 4 ε C̃d ρ′

d β′′‖x‖1

)

≤ 1− θ23̇d

site,p(ε) +
∑

y,z

(
A′′e−B′′‖y−z‖1 + 2−

‖y−z‖1
N(ε)

+1
)

≤ 1− θ23̇d

site,p(ε) + 2(3N(ε))d
(

A′′e−B′′‖x‖1/2 + 2−
‖x‖1

2N(ε)
+1
)

≤ 1− p1(ε),

for a well-chosen p1(ε) > 0 and every x large enough. �

4.2. Proof of Theorem 1.5. If G({0}) ≥ pc(d), then µGK (x) = µG(x) = 0, so
there is nothing to prove. Suppose from now on that G({0}) < pc(d).

For any ε > 0, consider p1(ε) and A(ε) as given by Lemma 4.2, and define, for

K ≥ M0, Ψ(K) = infε>0
A(ε)

K + ε. It is easy to see that limK→+∞ Ψ(K) = 0. Fix

ε > 0, δ > 0, K ≥M0 and x ∈ Zd.
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With the convergence (2) in Proposition 2.6 and Lemma 4.2, we can choose n
large enough such that

P

(
µG(x)− δ ≤ T̃

CG,M0

G (0, nx)

n

)
≥ 1− p1(ε)

3
,

P

(
T̃

CG,M0

GK (0, nx)

n
≤ µGK (x) + δ

)
≥ 1− p1(ε)

3
,

P

(
T̃

CG,M0

G (0, nx) ≤ T̃
CG,M0

GK (0, nx)

(
1 +

A(ε)

K

)
+ εn‖x‖1

)
≥ p1(ε).

For every ε > 0, for every δ > 0, on the intersection of these 3 events, that has
positive probability, we obtain

∀K ≥M0, x ∈ Zd µG(x)− δ ≤ (µGK (x) + δ)

(
1 +

A(ε)

K

)
+ ε‖x‖1,

and by letting δ going to 0 we get

∀ε > 0, K ≥M0, x ∈ Zd µG(x) ≤ µGK (x)

(
1 +

A(ε)

K

)
+ ε‖x‖1.

It follows that for every ε > 0,

0 ≤ µGK (x)− µG(x) ≤ µGK

A(ε)

K
+ ε‖x‖1 ≤ (µG(x) + ‖x‖1)

(
A(ε)

K
+ ε

)
,

thus, by optimizing ε,

0 ≤ µGK (x) − µG(x) ≤ (µG(x) + ‖x‖1)Ψ(K) .

Theorem 1.5 is proved by using the fact that lim
K→+∞

Ψ(K) = 0.

5. Continuity of the time constant, proof of Theorem 1.2

We first state two properties:

Lemma 5.1. Suppose that G, (Gn)n∈N are probability measures on [0, +∞] such

that G([0, +∞)) > pc(d) and Gn([0, +∞)) > pc(d) for all n ∈ N. If Gn
d→ G and

Gn � G for all n, then

∀x ∈ Zd , lim
n→+∞

µGn(x) ≤ µG(x) .

Lemma 5.2. Suppose that G, (Gn)n∈N are probability measures on [0, R] for some

common and finite R ∈ [0, +∞). If Gn
d→ G, then

∀x ∈ Zd , lim
n→∞

µGn(x) = µG(x) .

To prove Theorem 1.2, we follow the general structure of Cox and Kesten’s proof
of the continuity of the time constant in first-passage percolation with finite passage
times in [10]. We first deduce Theorem 1.2 from Theorem 1.5 and Lemmas 5.1
and 5.2. Lemmas 5.1 and 5.2 will be respectively proved in subsections 5.3 and 5.4.
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5.1. Proof of Theorem 1.2. Let G, (Gn)n∈N be probability measures on [0, +∞].
We first prove that for all fixed x ∈ Zd, we have

(29) lim
n→∞

µGn(x) = µG(x) .

We define Gn = min{G,Gn} (resp. Gn = max{G,Gn}), and we denote by Gn

(resp. Gn) the corresponding probability measure on [0, +∞]. Then Gn ≤ G ≤ Gn

(resp. Gn ≤ Gn ≤ Gn), thus by Lemma 2.12 we have µG
n
(x) ≤ µG(x) ≤ µGn

(x).

To conclude that (29) holds, it is sufficient to prove that

(i) lim
n→∞

µG
n
(x) ≥ µG(x) and (ii) lim

n→+∞
µGn

(x) ≤ µG(x) .

Notice that Gn
d→ G and Gn

d→ G. Inequality (ii) is obtained by a straightforward
application of Lemma 5.1. For any K ∈ [0, +∞), we define GK = 1[0,K)G +

G([K, +∞])δK (resp. GK
n = 1[0,K)Gn + Gn([K, +∞])δK), the distribution of

tK
G (e) = min(tG(e), K) (resp. tK

Gn
(e) = min(tG

n
(e), K)). Using Lemmas 2.12 and

5.2, since GK
n

d→ GK , we obtain for all K

lim
n→∞

µG
n
(x) ≥ lim

n→∞
µGK

n
(x) = µGK (x) ,

and by Theorem 1.5 we have limK→∞ µGK (x) = µG(x). This concludes the proof
of (i), and of (29).

By homogeneity, (29) also holds for all x ∈ Qd. We know that |µGn(x) −
µGn(y)| ≤ µGn(e1)‖x− y‖1, where e1 = (1, 0, . . . , 0). Moreover limn→∞ µGn(e1) =
µG(e1), thus for all n ≥ n0 large enough we have |µGn(x)−µGn(y)| ≤ 2µG(e1)‖x−
y‖1 for all x, y ∈ Rd. This implies that for any fixed ε > 0, there exists η > 0 such
that for all x, y ∈ Rd such that ‖x− y‖1 ≤ η, we have

sup{|µG(x) − µG(y)|, |µGn(x)− µGn(y)|, n ≥ n0} ≤ ε .

There exists a finite set (y1, . . . , ym) of rational points of Rd such that

Sd−1 ⊂
m⋃

i=1

{x ∈ Rd : ‖yi − x‖1 ≤ η} .

Thus lim
n→+∞

sup
x∈Sd−1

|µGn(x)−µG(x)| ≤ 2ε+ lim
n→+∞

max
i=1,...,m

|µGn(yi)−µG(yi)| = 2ε.

Since ε was arbitrary, Theorem 1.2 is proved.

5.2. Bound on sequences of probability measures.

Lemma 5.3. Suppose that G and (Gn)n∈N are probability measures on [0, +∞]

such that Gn
d→ G.

(i) If G([0, +∞)) > pc(d) and Gn([0, +∞)) > pc(d) for all n ∈ N, then there
exists a probability measure H+ on [0, +∞] such that Gn � H+ for all n
and H+([0, +∞)) > pc(d).

(ii) If G({0}) < pc(d) and Gn({0}) < pc(d) for all n ∈ N, then there exists
a probability measure H− on [0, +∞] such that Gn � H− for all n and
H−({0}) < pc(d).



CONTINUITY OF THE TIME AND ISOPERIMETRIC CONSTANTS 27

Proof. (i) We define Ĥ+ = supn∈N Gn, and H+(x) = inf{Ĥ+(y) : y < x} for all

x ∈ [0, +∞). Then Ĥ+ and H+ are non-increasing functions defined on [0, +∞)
and they take values in [0, 1]. By construction H+ is left continuous and H+ ≥ Gn,

for all n ∈ N. Moreover we have Ĥ+(x) = H+(x) = 1 for all x ≤ 0. Thus there
exists a probability measure H+ on [0, +∞] such that H+(t) = H+([t, +∞]) for all
t ∈ [0, +∞). It remains to prove that H+([0, +∞)) > pc(d). Since G([0, +∞)) >
pc(d), i.e. lim+∞ G < 1− pc(d), there exist A ∈ [0, +∞) and ε > 0 such that G is
continuous at A and G(A) ≤ 1−pc(d)−2ε. Moreover Gn

d→ G and G is continuous
at A, thus there exists n0 such that for all n ≥ n0 we have Gn(A) ≤ G(A) + ε ≤
1 − pc(d) − ε. For any i ∈ {1, . . . , n0 − 1}, Gi([0, +∞)) > pc(d) thus there exists
Ai < +∞ such that Gi(Ai) < 1 − pc(d). Fix A′ = max(A, A0, . . . , An0−1) < +∞.
We conclude that

Ĥ+(A′) = max

(
G0(A′), . . . ,Gn0−1(A′), sup

n≥n0

Gn(A′)

)

≤ max

(
G0(A0), . . . ,Gn0−1(An0−1), sup

n≥n0

Gn(A)

)
< 1− pc(d) ,

thus H+([0, +∞)) = 1− lim+∞ H+ > pc(d).
(ii) We define H− = infn∈N Gn. Then H− is non-increasing, defined on [0, +∞) and
it takes values in [0, 1]. Fix t0 ∈ [0, +∞). Let us prove that H− is left continuous at
t0. By definition of H−, for any ε > 0, there exists n0 such that H−(t0) ≥ Gn0 (t0)−ε.
Since Gn0 is left continuous, there exists η > 0 such that for all t ∈ (t0 − η, t0] we
have Gn0 (t) ≤ Gn0 (t0) + ε. Thus for all t ∈ (t0 − η, t0], we obtain

H−(t) ≤ Gn0 (t) ≤ Gn0(t0) + ε ≤ H−(t0) + 2ε ,

thus H− is right continuous. By construction H− ≤ Gn, for all n ∈ N. Moreover
H−(t) = 1 for all t ≤ 0. Thus there exists a probability measure H− on [0, +∞]
such that H−(t) = H−([t, +∞]) for all t ∈ [0, +∞). It remains to prove that
H−({0}) < pc(d). Since G({0}) < pc(d), there exists η > 0 such that G([0, η)) <
pc(d), i.e., G(η) > 1 − pc(d). Let ε > 0 such that G(η) ≥ 1 − pc(d) + 2ε. There
exists δ ∈ [0, η) such that G is continuous at δ. Then limn→∞ Gn(δ) = G(δ), thus
there exists n0 such that for all n ≥ n0, Gn(δ) ≥ G(δ) − ε ≥ 1 − pc(d) + ε. For
any i ∈ {1, . . . , n0 − 1}, there exists δi > 0 such that Gi(δi) > 1 − pc(d). Fix
δ′ = min(δ, δ0, . . . , δn0−1) > 0. We conclude that

H−(δ′) = min

(
G0(δ′), . . . ,Gn0−1(δ′), inf

n≥n0

Gn(δ′)

)

≥ min

(
G0(δ0), . . . ,Gn0−1(δn0−1), inf

n≥n0

Gn(δ)

)
> 1− pc(d) ,

and H−({0}) = 1− limt→0,t>0 H
−(t) ≤ 1− H(δ′) < pc(d) . �

5.3. Proof of Lemma 5.1. We follow the structure of Cox and Kesten’s proof of
Lemma 1 in [10].

We take H+ as given in Lemma 5.3 (i), and we fix M ∈ [0, +∞) such that

H+([0, M ]) > pc(d). We work with the stabilized points x̃CH+,M . We consider

a point x ∈ Zd, and k ∈ N∗. For any path r from 0̃CH+,M to k̃x
CH+,M

, using
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Lemma 2.10 we have a.s.

TG(r) =
∑

e∈r

tG(e) = lim
n→+∞

∑

e∈r

tGn(e) ≥ lim
n→+∞

T̃
CH+,M

Gn
(0, kx) .

Taking the infimum over any such path r, we obtain

T̃
CH+,M

G (0, kx) ≥ lim
n→+∞

T̃
CH+,M

Gn
(0, kx) .

Conversely, since G � Gn, thanks to the coupling of the laws we get T̃
CH+,M

G (0, kx) ≤
T̃

CH+,M

Gn
(0, kx) for all n, thus

∀k ∈ N∗ , a.s., lim
n→∞

T̃
CH+,M

Gn
(0, kx) = T̃

CH+,M

G (0, kx) .

Since for all n we have T̃
CH+,M

Gn
(0, kx) ≤ T̃

CH+,M

H+ (0, kx) that is integrable by Propo-
sition 2.5, the dominated convergence theorem implies that, for all k ∈ N∗,

(30) lim
n→∞

E
[
T̃

CH+,M

Gn
(0, kx)

]
= E

[
T̃

CH+,M

G (0, kx)
]

.

By Lemma 2.11, we know that µG(x) = infk∈N∗ E
[
T̃

CH+,M

G (0, kx)
]

/k. For any

ε > 0, there exists K(G, ε) such that

(31) µG(x) ≥
E
[
T̃

CH+,M

G (0, Kx)
]

K
− ε ,

and using (30) we know that there exists n0(ε, K) such that for all n ≥ n0 we have

(32)
E
[
T̃

CH+,M

G (0, Kx)
]

K
≥

E
[
T̃

CH+,M

Gn
(0, Kx)

]

K
− ε .

Since µGn(x) = infk∈N∗ E
[
T̃

CH+,M

Gn
(0, kx)

]
/k, combining equations (31) and (32),

we obtain that for any ε > 0, for all n large enough,

µG(x) ≥ µGn(x) − 2ε .

This concludes the proof of Lemma 5.1.

Remark 5.4. The domination we use to prove (30) is free, since whatever the prob-

ability measure H+ on [0, +∞] we consider, the regularized times T̃
CH+,M

H+ (0, x) are
always integrable. In [8], Cox considered the (non regularized) times TGn(0, x) for
probability measures Gn on [0, +∞). By Lemma 5.3 it is easy to obtain TGn(0, x) ≤
TH(0, x) for some probability measure H on [0, +∞). However, without further as-
sumption, TH(0, x) may not be integrable. This is the reason why Cox supposed
that the family (Gn, n ∈ N) was uniformly integrable. In [9], Cox and Kesten cir-
cumvent this problem by considering some regularized passage times that are always
integrable. There is no straigthtforward generalization of their regularized passage

times to the case of possibly infinite passage times, but the T̃ introduced in [6] plays
the same role.
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5.4. Proof of Lemma 5.2. Of course, Lemma 5.2 can be seen as a particular
case of the continuity result by Cox and Kesten. But, as noted by Kesten in his
Saint-Flour course [19], the Cox–Kesten way makes use of former results by Cox in
[9] and is not the shortest path to a proof in the compact case. In [19] Kesten also
gave a sketch of a shorter proof in the compact case. We thought the reader would
be pleased to have a self-contained proof, so we present a short but full proof of
Lemma 5.2, quite inspired by Kesten [19].

Let G, (Gn)n∈N be probability measures on [0, R], and consider x ∈ Zd. As

in the proof of Theorem 1.2, we have Gn � Gn, where Gn = max(G,Gn), thus
µGn ≤ µGn

. Applying Lemma 5.1, we know that

lim
n→+∞

µGn
(x) ≤ µG(x) .

If µG(x) = 0, then limn→∞ µGn(x) = limn→∞ µGn
(x) = µG(x) = 0 and the proof

is complete. We suppose from now on that µG(x) > 0, thus x 6= 0. Since the
passage times tG(e) are finite, it is well known that µG(x) > 0 for x 6= 0 if and only
if G({0}) < pc(d) (see Theorem 6.1 in [19], or Proposition 2.7 in a more general
setting). We want to prove that limn→∞µG

n
(x) ≥ µG(x), where Gn = min(G,Gn).

Notice that x̃CG
n

,M = x̃CG,M = x for any M ≥ R, thus we do not need to introduce

regularized times T̃ . In what follows we note s.a. for self avoiding. Since Gn
d→ G,

we have limn→∞ Gn({0}) ≤ G({0}) < pc(d), thus we consider only n large enough
so that Gn({0}) < pc(d). Applying Lemma 5.3 (ii) to the sequence of functions Gn,
we obtain the existence of a probability measure H− on [0, +∞] (in fact on [0, R])
such that H− � Gn for all n and H−({0}) < pc(d). Thanks to the coupling, we
know that tH− (e) ≤ tG

n
(e) ≤ tG(e) for every edge e, thus we obtain that for all

A ∈ N∗, for all C ∈ [0, +∞),

P[TG
n
(0, kx) ≤ TG(0, kx)− εk]

≤ P
[
∃r s.a. path starting at 0 s.t. |r| ≥ Ak and TG

n
(r) ≤ ACk

]

+ P[TG
n
(0, kx) > ACk] +

∑

r s.a. path from 0
s.t. |r| ≤ Ak

P

[∑

e∈r

tG(e)− tG
n
(e) ≥ εk

]

≤ P [∃r s.a. path starting at 0 s.t. |r| ≥ Ak and TH− (r) ≤ ACk]

+ P[TG(0, kx) > ACk] + (2d)Ak P

[
Ak∑

i=1

tG(ei)− tG
n
(ei) ≥ εk

]
,

where (ei, i = 1, . . . , Ak) is a collection of distinct edges. Since H−({0}) < pc(d),
we know that we can choose C ∈ (0, +∞) (depending on d and H) such that there
exist finite and positive constants D, E (depending also on d and H) satisfying, for
all k ∈ N∗,

P [∃r s.a. path starting at 0 s.t. |r| ≥ k and TH− (r) ≤ Ck] ≤ De−Ek

(see Proposition 5.8 in [19]). Since the support of G is included in [0, R] for some
finite R, we know that TG(0, kx) ≤ Rk‖x‖1, thus we choose A large enough (de-
pending on F , d and C) so that

P[TG(0, kx) > ACk] = 0 .
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If we prove that there exists n0(G, (Gn), ε) such that for all n ≥ n0,

(33)
∑

k>0

(2d)Ak P

[
Ak∑

i=1

tG(ei)− tG
n
(ei) ≥ εk

]
< +∞ ,

then for all n ≥ n0 we have
∑

k P[TG
n
(0, kx) ≤ TG(0, kx) − εk] < +∞. By Borel-

Cantelli’s lemma we obtain that for all n ≥ n0, a.s., for all k ≥ k0(n) large enough,

TG
n
(0, kx) > TG(0, kx)− εk ,

thus for all n ≥ n0 we get

µG
n
(x) ≥ µG(x) − ε .

We conclude that limn→∞µG
n
(x) ≥ µG(x). It remains to prove (33). For any

α > 0, by Markov’s inequality we have

(2d)Ak P

[
Ak∑

i=1

tG(ei)− tG
n
(ei) ≥ εk

]

≤
(

2d exp

(−αε

A

)
E
[
exp

(
α(tG(e)− tG

n
(e))

)])Ak

.

By Lemma 2.10 we have limn→∞ tG
n
(e) = tG(e) a.s. Since tG

n
(e), tG(e) ≤ R we

obtain by a dominated convergence theorem that

lim
n→∞

E
[
exp

(
α(tG(e)− tG

n
(e))

)]
= 1 .

We choose α(ε) large enough so that

2d ≤ exp
(αε

4A

)
,

and then n0(G, (Gn), ε) large enough so that for all n ≥ n0, we have

E
[
exp

(
α(tG(e)− tG

n
(e))

)]
≤ exp

( αε

4A

)
.

Thus for all n ≥ n0, we have

(2d)AkP

[
Ak∑

i=1

tG(ei)− tG
n
(ei) ≥ εk

]
≤ exp

(
−αε

2A

)
,

so (33) is proved.

6. Continuity of the Cheeger constant, proof of Theorem 1.1

The definition of the objects used in this section are given in section 2.2. The
main step in the proof of Theorem 1.1 is the following lemma:

Lemma 6.1. For every p > pc(2), lim
p′→p

sup
x∈S1

|βp′(x)− βp(x)| = 0 .

Proof. Let x ∈ S1. Let pc(2) < p0 ≤ p ≤ q, and define δ = q − p. We couple the
percolations with different parameters in the usual way using uniform variables.
We extend the definition of ỹC to any y ∈ Rd. For a path r ∈ R(x, y), let us define
bp(r) = |{e ∈ ∂+r : e is p− open}|. For x, y ∈ Cp, we define bp(x, y) = inf{bp(r) :
r ∈ R(x, y), r is p− open}.
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Step (i). By Lemma 2.2 there exist C, C′, α > 0 (depending on p0) such that
∀p ≥ p0, ∀n,

(34) P

[
∃γ ∈

⋃

x∈Z2

R(0, x) : |γ| > n , bp(γ) ≤ αn

]
≤ Ce−C′n.

Let Fp0 be the event {0 ∈ Cp0} ∩ {nx ∈ Cp0}. On the event Fp0 , by [4, Lemma
2.5], we have bp(0, nx) ≤ 3DCp(0, nx) ≤ 3DCp0 (0, nx), thus using (12) we know

that there exist positive constants Â, B̂, β (depending only on p0) such that for all
p > p0, for all x ∈ S1,

(35) P [Fp0 ∩ {bp(0, nx) ≥ 3βn}] ≤ Â exp(−B̂n) .

For any p-open path γ, γ is also q-open. However some additional right-boundary
edges may be open. To bound the difference between bq(γ) and bp(γ), note that
if |γ| < α′n by [4, Lemma 2.5] |∂+γ| < 3α′n. We can bound bq(γ) − bp(γ) by
Cramér’s theorem. For every fixed path γ such that |γ| < α′n, for every ε > 0 and
δ < ε,

(36) P [bq(γ)− bp(γ) > 3εα′n] ≤ e−3α′n(ε log ε
δ +(1−ε) log 1−ε

1−δ ).

Fix α′ = 3β/α. Since there are at most 4α′n paths of length smaller than α′n
containing 0, we obtain that for all p0 ≤ p < q, for all x ∈ S1,

P
[
bq(0̃Cq , ñxCq ) > bp(0̃Cp , ñxCp) + 3εα′n

]

≤ P[F c
p0

] + Qp[Fp0 ∩ {bp(0, nx) > 3βn}]
+ P [Fp0 ∩ {∃γ ∈ R(0, nx) : |γ| > α′n , bp(γ) ≤ 3βn}]
+ P [Fp0 ∩ {∃γ ∈ R(0, nx) : |γ| ≤ α′n , bq(γ) > bp(γ) + 3εα′n}]
≤ (1− θ2

p0
) + Âe−B̂n + Ce−C′α′n

+ 4α′ne−3α′n(ε log ε
δ +(1−ε) log 1−ε

1−δ ) .

For every p0 > pc(d), for every ε > 0, there exists δ(ε) > 0 and p2(ε) > 0 such that
for every x ∈ S1, for every p0 ≤ p < q satisfying q − p < δ, we have

P
[
bq(0̃Cq , ñx

Cq ) > bp(0̃Cp , ñx
Cp) + 3εα′n

]
≤ 1− p2(ε) ,

thus for every p0 > pc(d), for every ε > 0, there exists δ(ε) > 0 such that for every
x ∈ S1, for every p0 ≤ p < q satisfying q − p < δ, we have

βq(x) < βp(x) + 3α′ε.

Step (ii). Given a q-open path γ, γ may not be p-open. Thus we use the results
of Section 3 to modify the path to a p-open path which does not gain too many
extra right-boundary edges. We mimic the proof of Lemma 4.2. Fix ε > 0. Choose
α(ε) and p(ε) as in (17) and (18).

• If p is fixed and we let q goes to p, we choose p0 = p, q1 ∈ (p0, p0 + δ1(p)) as
defined in Lemma 3.5, and we consider only values of q such that q ∈ [p0, q1].
Then we choose N = N ′(p0, q1, p(ε)) as given in Lemma 3.5.
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• If q is fixed and we let p goes to q, we choose p0 ∈ (pc(d), q] such that
q− p0 ≤ δ0(q) as defined in Lemma 3.5, and we consider only values of p in
the interval [p0, q]. Then we choose N = N(p0, q, p(ε)) as given in Lemma
3.5.

Let x ∈ S1, we denote by ⌊nx⌋ the point y of Zd which minimizes ‖nx−y‖1 (with a
deterministic rule to break ties). Let F ′ be the following good event: the N -boxes
containing 0 and ⌊nx⌋ and all the adjacent boxes are good and belong to an infinite
cluster of good boxes. By the FKG inequality and the stochastic comparison, we
have

(37) P(F ′) ≥ θ18
site,p(ε) .

Fix α′′ = 6β/α = 2α′ as defined in step (i). We have

P

[
bp(0̃Cp0 , ⌊̃nx⌋

Cp0

) > bq(0̃Cp0 , ⌊̃nx⌋
Cp0

) + 12α′′C̃dρdεn

]

≤ P[F c] +
∑

y,z

P
(
Ey,z ∩ {bp(y, z) > bq(y, z) + 12α′′C̃dρdεn}

)
,(38)

where the sum is over every y in the same (3N)-box as 0 and z in the same (3N)-
box as ⌊nx⌋, and Ey,z is the event that y ∈ Cp0 , z ∈ Cp0 and the N -boxes containing
y and z are good and belong to an infinite cluster of good boxes. For any such
(y, z), on Ey,z, let γy,z ∈ R(y, z) be a q-open right-most path from y to z such
that bq(y, z) = bq(γy,z), and let Γy,z be the lattice animal of N -boxes it visits. For
short, we write γ for γy,z. As previously we define

γa = {e ∈ γ : e is p-open}
γb = {e ∈ γ : e is p-closed} .

By Lemma 3.2, on the event Ey,z, there exists a path γ′ with the following proper-
ties:

(1) γ′ is a path from y to z which is p-open;
(2) γ′ \ γ is a collection of simple paths (and also right-most) that intersect

γ′ ∩ γ only at their endpoints thus γ′ is a right-most path (see [4, Lemma
2.6]);

(3) |γ′ \ γ| ≤ ρd

(
Nd|γb|+ N

∑
C∈Bad: C∩Γ6=∅

|C|
)

.

Note that

bp(γ′) ≤ bq(γ′) ≤ bq(γ) + 3|γ′ \ γ|.

Moreover, since a simple path is also a right-most path, we have for all y, z ∈ Cp0 ,

(39) bq(y, z) ≤ 3DCp0 (y, z) .

Using Equation (39), Proposition 2.3, Antal and Pizstora’s estimate (10), Cramér’s
theorem again and Lemma 3.6, for all x ∈ S1 and for all n large enough (in particular
such that ‖y − z‖1 ≤ ‖⌊nx⌋‖ + 12N ≤ 2n and ‖y − z‖1 ≥ ‖⌊nx⌋‖ − 12N ≥ n/2),
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we have

P
(
Ey,z ∩ {bp(y, z) > bq(y, z) + 12α′′C̃dρdεn}

)

≤ P[Ey,z ∩ {bq(y, z) > 6βn}]
+ P [Ey,z ∩ {∃γ ∈ R(y, z) : |γ| > α′′n , bp0 (γ) ≤ bq(γ) ≤ 6βn}]
+ P

[
Ey,z ∩ {∃γ ∈ R(y, z) : γ is q-open, |γ| ≤ α′′n , |γ′ \ γ| > 4α′′C̃dρdεn}

]

≤ P
(
β‖y − z‖1 ≤ 2βn ≤ DCp0 (y, z) <∞

)
+ Ce−C′α′′n

+ P

[
∃γ : γ starts at y, γ is q-open, |γ| ≤ α′′n , |γb| >

2α′′C̃dεn

Nd

]

+ P


∃Γ ∈ Animals, |Γ| ≥ n

N
,

∑

C∈Bad: C∩Γ6=∅

|C| ≥ ε|Γ|




≤ Âe−B̂‖y−z‖1 + Ce−C′α′′n

+ 4αne
−3α′′n

(
2C̃dε

Nd log
2C̃dε

δNd +(1−
2C̃dε

Nd ) log
1−2C̃dε/Nd

1−δ

)
+ P(n)

≤ Âe−B̂n/2 + Ce−C′α′′n

+ 4αne
−3α′′n

(
2C̃dε

Nd log
2C̃dε

δNd +(1−
2C̃dε

Nd ) log
1−2C̃dε/Nd

1−δ

)
+ 2− n

N +1 .

(40)

Combining Equations (37), (38) and (40), we conclude that for every fixed ε > 0 and
every fixed p > pc(d) (thus p0, q1 and N are fixed), there exists δ(ε, p) ∈ (0, q1 − p]
and p3(ε, p) > 0 such that for every q > p satisfying q− p < δ, for every x ∈ S1, for
every n large enough, we have

P
[
bp(0̃Cp , ñx

Cp) > bq(0̃Cq , ñx
Cq ) + 12α′′C̃dρdεn

]
≤ 1− p3 ,

thus for every ε > 0 and for every p > pc(d), there exists δ(ε, p) > 0 such that for
every q > p satisfying q − p < δ, for every x ∈ S1,

βp(x) < βq(x) + 12α′′C̃dρdε.

Similarly, for every fixed ε > 0 and every fixed q > pc(d) (thus p0 and N are fixed),
there exists δ′(ε, q) ∈ (0, q−p0] and p4(ε, q) > 0 such that for every p < q satisfying
q − p < δ′, for every x ∈ S1, for every n large enough, we have

P
[
bp(0̃Cp , ñx

Cp) > bq(0̃Cq , ñx
Cq ) + 12α′′C̃dρdεn

]
≤ 1− p4 ,

thus for every ε > 0 and for every q > pc(d), there exists δ′(ε, q) > 0 such that for
every p < q satisfying q − p < δ, for every x ∈ S1,

βp(x) < βq(x) + 12α′′C̃dρdε.

This ends the proof of Lemma 6.1. �

Proof of Theorem 1.1.
(i) Proof of the continuity of the Cheeger constant limn→∞ nϕn(p). Let p > pc(2).
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For any rectifiable Jordan curve λ, with Leb(int(λ)) = 1,

lenβp(λ) = sup
N≥1

sup
0≤t0<...<tN ≤1

N∑

i=1

βp

(
λ(ti)− λ(ti−1)

‖λ(ti)− λ(ti−1)‖2

)
‖λ(ti)− λ(ti−1)‖2.

By Lemma 6.1 for every ε > 0 there exists a δ > 0 such that for every q > pc(2)
satisfying |p− q| < δ we have supx∈S1 |βq(x)− βp(x)| < ε, thus

(41) |lenβp(λ) − lenβq (λ)| ≤ εlen‖·‖2
(λ).

The infimum in Theorem 2.3 is achieved (by compactess of the set of Lipschitz
curves), so let us denote by λp (resp. λq) a Jordan curve such that Leb(int(λp)) = 1

and lenβp(λp) =
√

2θp limn→∞ nϕn(p) (resp. Leb(int(λq)) = 1 and lenβq (λq) =√
2θq limn→∞ nϕn(q)). All norms in R2 are equivalent thus we know that len‖·‖2

(λp) <
∞ and len‖·‖2

(λq) < ∞. From (41) we deduce that for every ε > 0 there exists
δ > 0 such that if |p− q| < δ then

√
2θp lim

n→∞
nϕn(p) = lenβp(λp) ≥ lenβq(λp)− εlen‖·‖2

(λp)

≥
√

2θq lim
n→∞

nϕn(q)− εlen‖·‖2
(λp)(42)

and
√

2θp lim
n→∞

nϕn(p) ≤ lenβp(λq) ≤ lenβq (λq) + εlen‖·‖2
(λq)

≤
√

2θq lim
n→∞

nϕn(q) + εlen‖·‖2
(λq) .(43)

Let βmin
q = infx∈S1 βq(x), for all q. By Lemma 6.1 again we know that for every q

satisfying |p− q| < δ we have βmin
q ≥ βmin

p − ε, which is positive for ε small enough

(βmin
p is not zero since βp is a norm), thus

len‖·‖2
(λq) ≤ lenβq (λq)

βmin
q

≤ lenβq (λq)

βmin
p − ε

.

Thanks to Equation (43) we obtain

(44)
√

2θp lim
n→∞

nϕn(p) ≤
√

2θq lim
n→∞

nϕn(q)

(
1 +

ε

βmin
p − ε

)
.

Combining (42) and (44) we obtain that

lim
q→p

√
2θq lim

n→∞
nϕn(q) =

√
2θp lim

n→∞
nϕn(p) .

Since p 7→ θp is continuous on (pc(2), 1], this conludes the first part of the proof.

(ii) Proof of the continuity of the Wulff shape. Next we prove that p 7→ Ŵp is
continuous for the Hausdorff distance. Fix η > 0 and p > pc(2) and let ε =
ε(η, p) > 0 be small enough such that

(45) ε ≤ βmin
p

2
min (η, 1) .

As previously let δ > 0 satisfy supx∈S1 |βq(x) − βp(x)| < ε for all q > pc(2) such
that |p − q| < δ. For every x ∈ Wq we have by definition of Wq that for every
n̂ ∈ S1, n̂ · x ≤ βq(n̂). Thus for all q > pc(2) such that |p− q| < δ,

n̂ · x ≤ βq(n̂) ≤ βp(n̂) + ε ≤ (1 + η)βp(n̂),
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where the last inequality comes from (45), thus x ∈ (1 + η)Wp. We obtain that
for all p > pc(2), for all η > 0, there exists δ > 0 such that for every q > pc(2)
satisfying |p− q| < δ,

(46) Wq ⊂ (1 + η)Wp.

For every q > pc(2) satisfying |p− q| < δ, we also have βmin
q ≥ βmin

p − ε ≥ βmin
p /2 ≥

ε/η by (45), thus by the same method we obtain that for every x ∈ Wp, for every
n̂ ∈ S1,

n̂ · x ≤ βp(n̂) ≤ βq(n̂) + ε ≤ (1 + η)βq(n̂),

thus

(47) Wp ⊂ (1 + η)Wq .

For every x ∈Wp, ‖x‖2 = x·x/‖x‖2 ≤ βp(x) ≤ βmax
p , where βmax

p = supx∈S1 βp(x) <
∞, thus ‖(1 + η)x− x‖2 ≤ ηβmax

p . Similarly, for all q > pc(2) satisfying |p− q| < δ,
‖x‖2 ≤ βmax

q ≤ 2βmax
p and ‖(1 + η)x − x‖2 ≤ 2ηβmax

p . With (46) and (47), we
conclude that for every p > pc(2), for every η > 0, there exists δ > 0 such that for
every q > pc(2) satisfying |p− q| < δ,

dH(Wp, Wq) ≤ 2ηβmax
p ,

thus limq→p dH(Wp, Wq) = 0. This implies that limq→p Leb(Wq) = Leb(Wp), and

since Ŵp =
Wp√

Leb(Wp)
we deduce from (46) and (47) by a similar argument that

limq→p dH(Ŵp, Ŵq) = 0. This concludes the proof of Theorem 1.1. �

Remark 6.2. To deduce the continuity of the Wulff crystal from Lemma 6.1, we
can also consider a more general setting. Consider β∗

p the dual norm of βp, defined
by

∀x ∈ Rd , β∗
p(x) = sup{x · y : βp(y) ≤ 1} .

Then β∗
p is a norm, and what we did is equivalent to deduce from Lemma 6.1 the

same result concerning β∗
p :

(48) lim
q→p

sup
x∈S1

|β∗
q (x)− β∗

p(x)| = 0 .

Notice that Wp, the Wulff crystal associated to βb, is in fact the unit ball associated
to β∗

b , then (48) implies the continuity of p 7→ Wp according to the Hausdorff
distance.
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