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CONTINUITY OF THE TIME AND ISOPERIMETRIC

CONSTANTS IN SUPERCRITICAL PERCOLATION

OLIVIER GARET, RÉGINE MARCHAND, EVIATAR B. PROCACCIA,
AND MARIE THÉRET

Abstract. We consider two different objects on super-critical Bernoulli per-
colation on Zd : the time constant for i.i.d. first-passage percolation (for
d ≥ 2) and the isoperimetric constant (for d = 2). We prove that both objects
are continuous with respect to the law of the environment. More precisely
we prove that the isoperimetric constant of supercritical percolation in Z2 is
continuous in the percolation parameter. As a corollary we prove that nor-
malized sets achieving the isoperimetric constant are continuous with respect
to the Hausdroff metric. Concerning first-passage percolation, equivalently we
consider the model of i.i.d. first-passage percolation on Zd with possibly infi-
nite passage times: we associate with each edge e of the graph a passage time
t(e) taking values in [0, +∞], such that P[t(e) < +∞] > pc(d). We prove the
continuity of the time constant with respect to the law of the passage times.
This extends the continuity property previously proved by Cox and Kesten
[8, 10, 18] for first passage percolation with finite passage times.

1. Introduction

We first introduce briefly the studied objects, then state the corresponding re-
sults, and finally say a few words about the proofs. We consider super-critical bond
percolation on Zd, with parameter p > pc(d), the critical parameter for this per-
colation. The a.s. existence of a unique infinite cluster C∞ is well known in this
model. We study two different objects defined on C∞: the time constant for an
independent first passage percolation and the isoperimetric (or Cheeger) constant.

1.1. First passage percolation. First-passage percolation on Zd was introduced
by Hammersley and Welsh [16] as a model for the spread of a fluid in a porous
medium. To each edge of the Zd lattice is attached a nonnegative random vari-
able t(e) which corresponds to the travel time needed by the fluid to cross the
edge. When the passage times are independent identically distributed variables
with common distribution F , Cox and Durrett [9] showed that, under some mo-
ment conditions, the time that is needed to travel from 0 to nx is nµF (x) + o(n),
where µF is a semi-norm associated to F .

A natural extension is to replace the Zd lattice by a random environment given
by the infinite cluster C∞ of a super-critical Bernoulli percolation model. This is
equivalent to allow t(e) to be equal to +∞.

The existence of a time constant in first-passage percolation on the Zd lattice was
first proved by Garet and Marchand in [12], in the case where (t(e)11t(e)<+∞) is a
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stationary integrable ergodic field. Recently, Cerf and Théret [6] focused of the case
where (t(e)11t(e)<+∞) is an independent field, and managed to prove the existence
of an appropriate time constant µ(x), without any assumption of integrability.

In the following, we adopt the settings of Cerf and Théret: the passage times
are independent random variables with a common distribution F taking its values
in [0, +∞].

1.2. Isoperimetric constant. Isoperimetry in super critical percolation is also a
well studied subject. For a finite graph ג = (V ,(ג) E(ג)), the isoperimetric constant
is defined as

ϕג = min

{ |∂A|
|A| : A ⊂ V ,(ג) 0 < |A| ≤ |V |(ג)

2

}
,

where ∂A is the edge boundary of A, ∂A = {e = (x, y) ∈ E(ג) : x ∈ A, y /∈
A, or x /∈ A, y ∈ A}.

We consider the isoperimetric constant ϕn(p) of C∞ ∩ [−n, n]d, the intersection
of the infinite component of super-critical percolation of parameter p with the box
[−n, n]d. In several papers (e.g. [2],[20], [21],[3]) it was shown that there exist
constants c, C > 0 such that c < nϕn(p) < C, with probability tending rapidly
to 1. This led Benjamini to conjecture the existence of limn→∞ nϕn(p). In [23],
Rosenthal and Procaccia prove that the variance of nϕn(p) is smaller than Cn2−d,
which implies nϕn(p) is concentrated around it’s mean for d ≥ 3. In [4], Biskup,
Louidor, Procaccia and Rosenthal prove the existence of limn→∞ nϕn(p) for d = 2.
In addition a shape theorem is obtained: any set yielding the isoperimetric constant

converges in the Hausdorff metric to the normalized Wulff shape Ŵp, with respect
to a specific norm given in an implicit form. For additional background and a wider
introduction on Wulff construction in this context the reader is referred to [4].

1.3. Main results. The goal of this paper is to prove that the objects we have
just defined are continuous with respect to the law of the environment. Concerning
the isoperimetric constant, we restrict ourselves to the case d = 2, and we prove
the continuity of the Wulff shape.

Theorem 1.1. For d = 2,

p ∈ (pc(2), 1] 7→ lim
n→∞

nϕn(p)

is continuous. Moreover
p ∈ (pc(2), 1] 7→ Ŵp

is continuous for the Hausdorff distance between non-empty compact sets of Rd.

Concerning first passage percolation, we consider a general dimension d ≥ 2 and
we prove the continuity of the map F 7→ µF . More precisely, let (Gn)n∈N and G
be probability measures on [0, +∞]. We say that Gn converges weakly towards

G when n goes to infinity, and we write Gn
d→ G, if for any continuous bounded

function f : [0, +∞] 7→ [0, +∞) we have

lim
n→∞

∫

[0,+∞]
f dGn =

∫

[0,+∞]
f dG .

It is well known that Gn
d→ G if and only if limn→∞ Gn([t, +∞]) = G([t, +∞])

for all t ∈ [0, +∞) such that G is continuous at t. Our main result concerning
first-passage percolation is the continuity of the time constants µG with respect
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to the law G of the passage time of an edge, uniformly in the direction. Let
Sd−1 = {x ∈ Rd : ‖x‖2 = 1}.
Theorem 1.2. Let G, (Gn)n∈N be probability measures on [0, +∞] such that for

every n ∈ N, Gn([0, +∞)) > pc(d) and G([0, +∞)) > pc(d) . If Gn
d→ G, then

lim
n→∞

sup
x∈Sd−1

|µGn(x) − µG(x)| = 0 .

This result extends the continuity of the time constant in classical first-passage
percolation proved by Cox and Kesten [8, 10, 18] to first-passage percolation with
possibly infinite passage times. We can quite easily deduce from Theorem 1.2 the
following continuity of the asymptotic shapes when they exist, i.e., when µG is a
norm:

Corollary 1.3. Let G, (Gn)n∈N be probability measures on [0, +∞] such that for
every n ∈ N, Gn([0, +∞)) > pc(d), G([0, +∞)) > pc(d) and G({0}) < pc(d). If

Gn
d→ G, then

lim
n→∞

dH(BµGn
,BµG ) = 0 ,

where Bµ is the unit ball for the norm µ and dH is the Hausdorff distance between
non-empty compact sets of Rd.

Particularly, when Gp = pδ1 + (1 − p)δ+∞, the functional µGp governs the as-
ymptotic distance in the infinite cluster of a supercritical Bernoulli percolation (see
[12, 13, 14]). We get the following corollary:

Corollary 1.4. For p > pc(d), let us denote by Bp the unit ball for the norm that
is associated to the cheminal distance in supercritical bond percolation. Then,

p ∈ (pc(d), 1] 7→ Bp

is continuous for the Hausdorff distance between non-empty compact sets of Rd.

As a key step of the proof of Theorem 1.2, we study the effect of truncations of
the passage time on the time constant. Let G be a probability measure on [0, +∞]
such that G([0, +∞)) > pc(d). For every K > 0, we set

GK = 1[0,K)G + G([K, +∞])δK ,

i.e., GK is the law of the truncated passage time tK
G (e) = min(tG(e), K). We have

the following control on the effect of these truncations on the time constants:

Theorem 1.5. Let G be a probability measure on [0, +∞] such that G([0, +∞)) >
pc(d). Then

∀x ∈ Zd lim
K→∞

µGK (x) = µG(x) .

We even have the finer uniform control:

Theorem 1.6. Let G0 be a probability measure on [0, +∞] and p0 ∈ [0, 1] such
that G0({0}) < pc(d) < p0. Then there exists a function Ψ, that depends on
(G0, p0, M0), such that lim+∞ Ψ = 0 and for every K ≥ M0 and every probability
measure G with G � G0 and G([0, M0]) ≥ p0 we have

∀x ∈ Zd 0 ≤ µGK (x) − µG(x) ≤ (µG(x) + ‖x‖1) Ψ(K).
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As a consequence of these results, we can approximate the time constants for
the chemical distance in supercritical percolation on Zd by the time constants for
some finite passage times:

Corollary 1.7. Let p > pc(d), and consider G = pδ1 + (1 − p)δ+∞. Then GK =
pδ1 + (1− p)δK for all K ≥ 1 and

∀x ∈ Zd lim
K→∞

µGK (x) = µG(x) .

1.4. Idea of the proofs. Obviously, the two main theorems of the paper, Theo-
rems 1.1 and 1.2, state results of the same nature. Beyond this similarity, they are
linked by their proofs, that share a common structure and a common renormali-
sation step. The idea of the delicate part of both proofs is inspired by Cox and
Kesten’s method in [10]. Consider that some edges of Zd are "good" (i.e. open, or of
passage time smaller than some constant), and the others are bad, for a given law
of the environment (a parameter p for the percolation, or a given law G of passage
times), and look at a path of good edges in this setting. Then change a little bit
your environment : decrease p to p− ε, or increase the passage times of the edges.
Some edges of the chosen path become bad. To recover a path of good edges, you
have to bypass these edges. The most intuitive idea is to consider the cluster of bad
edges around each one of them, and to bypass the edge by a short path along the
boundary of this cluster. This idea works successfully in Cox and Kesten’s paper.
Unfortunately in our setting the control we have on these boundaries, or on the
number of new bad edges we create, is not good enough. This is the reason why we
cannot perform our construction of a modified good path at the scale of the edges.
Thus we need to use a coarse graining argument to construct the bypasses at the
scale of good blocks.

In section 2, we give more precise definitions of the studied objects and state
some preliminary results. In Section 3, we present the renormalization process
and the construction of modified paths that will be useful to study both the time
constant and the isoperimetric constant. Sections 4 and 5 are devoted to the study
of first-passage percolation. In Section 4, we use the renormalization argument to
study the effect of truncating the passage times on the time constant. We then use
it in Section 5 to prove the continuity of the time constant. Finally Section 6 is
devoted to the proof of the continuity of the isoperimetric constant, using again the
renormalization argument.

2. Definitions and preliminary results

In this section we give a formal definition of the objects we briefly presented in
the introduction. We also present the coupling that will be useful in the rest of the
paper, and prove the monotonicity of the time constant.

2.1. Lattice and passage times. Let d ≥ 2. We consider the graph whose
vertices are the points of Zd, and we put an edge between two vertices x and
y if and only if the Euclidean distance between x and y is equal to 1. We de-
note this set of edges by Ed. We denote by 0 the origin of the graph. For

x = (x1, . . . , xd) ∈ Rd, we define ‖x‖1 =
∑d

i=1 |xi|, ‖x‖2 =
√∑d

i=1 x2
i and

‖x‖∞ = max{|xi| : i ∈ {1, . . . , d}}.
Let (t(e), e ∈ Ed) be a family of i.i.d. random variables taking values in [0, +∞]

with common distribution G. We emphasize that +∞ is a possible value for the
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passage times, on the contrary to what is assumed in classical first-passage perco-
lation. The random variable t(e) is called the passage time of e, i.e., it is the time
needed to cross the edge e. If x, y are vertices in Zd, a path from x to y is a sequence
r = (v0, e1, . . . , en, vn) of vertices (vi)i=0,...,n and edges (ei)i=1,...,n for some n ∈ N

such that v0 = x, vn = y and for all i ∈ {1, . . . , n}, ei is the edge of endpoints vi−1

and vi. We define the length |r| of a path r as its number of edges and we define
the passage time of r by T (r) =

∑
e∈r t(e). We obtain a random pseudo-metric T

on Zd in the following way (the only possibly missing property is the separation of
distinct points):

∀x, y ∈ Zd , T (x, y) = inf{T (r) : r is a path from x to y} ∈ [0, +∞] .

Since different laws appear in this article, we put subscript G on our notations to
emphasize the dependance with respect to the probability measure G : tG(e), TG(r)
and TG(x, y).

As we are interested in the asymptotic behavior of the pseudo-metric TG, we will
only consider laws G on [0, +∞] such that G([0, +∞)) > pc(d). Here and in the
following, pc(d) denotes the critical parameter for bond Bernoulli percolation on
(Zd,Ed). Thus there a.s. exists a unique infinite cluster CG,∞ in the super-critical
percolation (1{tG(e)<∞}, e ∈ Ed) that only keeps edges with finite passage times.
Our generalized first-passage percolation model with time distribution G is then
equivalent to standard i.i.d. first-passage percolation (where the passage time of
an edge e is the law of tG(e) conditioned to be finite) on a super-critical Bernoulli
percolation performed independently (where the parameter for an edge to be closed
is G({+∞})).

For instance, if we take G = pδ1+(1−p)δ+∞ with p > pc(d), the pseudo-distance
TG is the chemical distance in supercrtitical bond percolation with parameter p.

2.2. Definition of the time constant. As announced in the introduction, we
follow the approach by Cerf and Théret in [6], which requires no integrability con-
dition on the restriction of G to [0, +∞). We collect in this subsection the definition
and properties of the time constants obtained in their paper.

To get round the fact that the times TG can take infinite values, we introduce

some regularized times T̃ C
G, for well chosen sets C. These regularized passage times

have better integrability properties.
Let C be a subgraph of (Zd,Ed). Typically, C will be the infinite cluster of an

embedded supercritical Bernoulli bond percolation. For every x ∈ Zd, we define the
random vertex x̃C as the vertex of C which minimizes ‖x−x̃C‖1, with a deterministic

rule to break ties. We then define the passages times T̃ C
G by

∀x, y ∈ Zd , T̃ C
G(x, y) = TG(x̃C , ỹC) .

Let G be a probability measure on [0, +∞] such that G([0, +∞)) > pc(d), and let
M > 0 be such that G([0, M ]) > pc(d). We denote by CG,M the a.s. unique infinite
cluster of the percolation (1{tG(e)≤M}, e ∈ Ed), i.e. the percolation obtained by

keeping only edges with passage times less than M . For any x, y ∈ Zd, the (level

M) regularized passage time T̃
CG,M

G (x, y) is then

T̃
CG,M

G (x, y) = TG(x̃CG,M , ỹCG,M ) .

The parameter M only plays a role in the choice of x̃CG,M and ỹCG,M . Once these

points are chosen, the optimization in T̃
CG,M

G (x, y) is on all paths between x̃CG,M
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and ỹCG,M , paths using edges with passage time larger than M included. But as
x̃CG,M ∈ CG,M and ỹCG,M ∈ CG,M , we know that exists a path using only edges with
passage time less than M between these two points. To be more precise, we denote
by DC(x, y) the chemical distance (or graph distance) between two vertices x and
y on C:

∀x, y ∈ Zd , DC(x, y) = inf{|r| : r is a path from x to y , r ⊂ C} ,

where inf ∅ = +∞. The event that the vertices x and y are connected in C is
denoted by {x C←→ y}. Then, for any x, y ∈ Zd,

T̃
CG,M

G (x, y) ≤ MDCG,M (x̃CG,M , ỹCG,M ) .

The regularized passage time T̃
CG,M

G enjoys then the same good integrability prop-
erties as the chemical distance on a supercritical percolation cluster (see [1]):

Proposition 2.1 (Moments of T̃ , [6]). Let G be a probability measure on [0, +∞]
such that G([0, +∞)) > pc(d). For every M ∈ [0, +∞) such that G([0, M ]) > pc(d),
there exist positive constants C1, C2 and C3 such that

∀x ∈ Zd , ∀l ≥ C3‖x‖1 , P
[
T̃

CG,M

G (0, x) > l
]
≤ C1e−C2l .

This result implies in particular that the times T̃
CG,M

G (0, x) are integrable. A
classical application of a subadditive ergodic theorem gives the existence of a time
constant:

Proposition 2.2 (Convergence to the time constant, [6]). Let G be a probability
measure on [0, +∞] such that G([0, +∞)) > pc(d). There exists a deterministic
function µG : Zd → [0, +∞) such that for every M ∈ [0, +∞) satisfying G([0, M ]) >
pc(d), we have the following properties:

∀x ∈ Zd µG(x) = inf
n∈N∗

E
[
T̃

CG,M

G (0, nx)
]

n
= lim

n→+∞

E
[
T̃

CG,M

G (0, nx)
]

n
,(1)

∀x ∈ Zd lim
n→∞

T̃
CG,M

G (0, nx)

n
= µG(x) a.s. and in L1,(2)

∀x ∈ Zd lim
n→∞

T̃
CG,∞

G (0, nx)

n
= µG(x) in probability ,(3)

∀x ∈ Zd lim
n→∞

TG(0, nx)

n
= θ2

GδµG(x) + (1 − θ2
G)δ+∞ in distribution,(4)

where θG = P[0 ∈ CG,∞].

Note that even if the definition (1) of the time constants µG(x) requires to intro-

duce a parameter M in the definition of the regularized passage times T̃
CG,M

G (0, nx),
these time constants µG(x) do not depend on M . Note also that if instead of tak-
ing the x̃CG,M in the infinite cluster CG,M of edges with passage time less than M ,
we take the x̃CG,∞ in the infinite cluster CG,∞ of edges with finite passage time,
the almost sure convergence is weakened into the convergence in probability (3).
Without any regularization, the convergence in (4) is only in law.

As in the classical first-passage percolation model, the function µG can be ex-
tended, by homogeneity, into a pseudo-norm on Rd (the only possibly missing prop-
erty of µG is the strict positivity):



CONTINUITY OF THE TIME AND ISOPERIMETRIC CONSTANTS 7

Proposition 2.3 (Properties of µG, [6]). Let G be a probability measure on [0, +∞]
such that G([0, +∞)) > pc(d). Then either µG is identically equal to 0 or µG(x) > 0
for all x 6= 0, and we know that

µG = 0 ⇐⇒ G({0}) ≥ pc(d) .

Proposition 2.1 gives strong enough integrability properties of T̃
CG,M

G (0, x) to
ensure that the convergence to the time constants is uniform in the direction:

Proposition 2.4 (Uniform convergence, [6]). Let G be a probability measure on
[0, +∞] such that G([0, +∞)) > pc(d). Then for every M ∈ [0, +∞) such that
G([0, M ]) > pc(d), we have

lim
n→∞

sup
x∈Zd , ‖x‖1≥n

∣∣∣∣∣
T̃

CG,M

G (0, x)− µG(x)

‖x‖1

∣∣∣∣∣ = 0 a.s.

When µG > 0, this uniform convergence is equivalent to the so called shape

theorem, that we briefly present now. We define BG,t (resp. B̃
CG,M

G,t , B̃
CG,∞

G,t ) as the
set of all points reached from the origin within a time t :

BG,t = {z ∈ Zd : TG(0, z) ≤ t} ,

(resp. T̃
CG,M

G , T̃
CG,∞

G ), and when µG is a norm we denote by BµG its closed unit
ball. Roughly speaking, the shape theorem states that the rescaled set BG,t/t

(respectively B̃
CG,M

G,t /t, B̃
CG,∞

G,t /t) converges towards BµG . The convergence holds in

a sense that depends on the regularity of times considered (see [6] for more precise
results).

2.3. Definition of the Cheeger constant. We collect in this subsection the
definitions and properties of the Cheeger constant obtained in [4]. The connection
in this paper between the time constant and the Cheeger constant is made possible
due to the representation of the Cheeger as the solution of a continuous isoperimetric
problem with respect to some norm. To define this norm we first require some
definitions. For uniformity of notations we remark that Bernoulli percolation can
be viewed as a special case of FPP, with law Gp = pδ1 +(1−p)δ∞. We denote by Cp

the infinite cluster CGp,1. For a path r = (v0, e1, . . . , en, vn), and i ∈ {2, . . . , n− 1},
an edge e = (xi, z) is said to be a right-boundary edge if z is a neighbor of xi between
xi+1 and xi−1 in the clockwise direction. The right boundary ∂+r of r is the set of
right-boundary edges. A path is called right-most if it uses every edge at most once
in every orientation and it doesn’t contain right-boundary edges. See Figure 1; the
solid lines represent the path, dashed lines represent the right-boundary edges, and
the curly line is a path in the medial graph which shows the orientation (See [4] for a
thorough discussion). For x, y ∈ Z2, let R(x, y) be the set of right-most paths from
x to y. For a path r ∈ R(x, y), define b(r) = |{e ∈ ∂+r : e is open}|. For x, y ∈ Cp

we define the right boundary distance, b(x, y) = inf{b(r) : r ∈ R(x, y), open}. The
next result yields uniform convergence of the right boundary distance to a norm on
R2.

Theorem 2.5 ([4] Theorem 2.1). For any p > pc(2) and any x ∈ R2, the limit

βp(x) := lim
n→∞

b(0̃Cp , ñxCp)

n
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Figure 1. A right most path

is a Pp-a.s. constant, 0 <
x 6=0

βp(x) < ∞. The limit also exists in L1 and the

convergence is uniform on {x ∈ R2 : ‖x‖2 = 1}. Moreover, βp is a norm on R2.

We will require an integrability condition for the right boundary distance, similar
to the one cited in Proposition 2.1.

Lemma 2.6 ([4] Lemma 3.2). There exist constants C, C′, α > 0 such that ∀x, y ∈
Z2, if t > α‖y − x‖1, then

Pp[∃γ ∈ R(x̃Cp , ỹCp) : open, |γ| > t] ≤ Ce−C′t.

The connection between the Cheeger constant and the norm βp goes through a
continuous isoperimetric problem. For a continuous curve λ : [0, 1] → R2, and a
norm ρ, let the ρ-length of λ be

lenρ(λ) = sup
N≥1

sup
0≤t0<...<tN ≤1

N∑

i=1

ρ(λ(ti)− λ(ti−1)).

A curve λ is said to be rectifiable if lenρ(λ) < ∞ for any norm ρ. A curve λ is
called a Jordan curve if λ is rectifiable, λ(0) = λ(1) and λ is injective on [0, 1). For
any Jordan curve λ, we can define its interior int(λ) as the unique finite component
of R2 \ λ. Denote by Leb the Lebesgue measure on R2.

Theorem 2.7 ([4] Theorem 1.6). For every p > pc(2),

lim
n→∞

nϕn(p) = (
√

2θp)−1 inf{lenβp(λ) : λ is a Jordan curve, Leb(int(λ)) = 1}.

Moreover one obtains a limiting shape for the sets that achieve the minimum in
the definition of ϕn(p). This limiting shape is given by the Wulff construction [24].
Denote by

(5) Wp =
⋂

n̂:‖n̂‖2=1

{x ∈ R2 : n̂ · x ≤ βp(n̂)},

where · denotes the Euclidean inner product, and let

Ŵp =
Wp√

Leb(Wp)
.
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The set Ŵp is a minimizer for the isoperimetric problem associated with the norm
βp. By Theorem 2.7 and (5) both parts of Theorem 1.1 follow the continuity of
p 7→ βp. Denote by U(n) be the set of minimizers of ϕn(p).

Theorem 2.8 ([4] Theorem 1.7). For every p > pc(2),

max
U∈U(n)

inf
ξ∈R

2:

ξ+Ŵp/
√

2 ⊆ B(1)

dH(n−1U , ξ + Ŵp/
√

2) −→
n→∞

0,

and

max
U∈U(n)

∣∣∣∣
|U |

(θp|B(n)|/2)
− 1

∣∣∣∣ −→n→∞
0,

hold for Pp almost every realization of ω, where θp = Pp(0 ∈ Cp).

2.4. Coupling. To understand how µG depends on G, it is useful to consider pas-
sage times (tG(e)) with common distribution G, that also have good coupling prop-
erties. For any probability measure G on [0, +∞], we denote by G the function

G : [0, +∞)→ [0, 1]

t 7→ G([t, +∞]),

which characterizes G. For two probability measures G1, G2 on [0, +∞], we define
the following stochastic domination relation:

G1 � G2 ⇔ ∀t ∈ [0, +∞) G1(t) ≥ G2(t).

This is to have this equivalence that we choose to characterize a probability measure
G by G instead of the more standard distribution function t 7→ G([0, t]).

Given a probability measure G on [0, +∞], we define the two following pseudo-
inverse functions for G:

∀t ∈ [0, 1] , Ĝ(t) = sup{s ∈ [0, +∞) : G(s) ≥ 1− t} and

G̃(t) = sup{s ∈ [0, +∞) : G(s) > 1− t} .

These pseudo-inverse functions can be used to simulate random variable with dis-
tribution G:

Lemma 2.9. Let U be a random variable with uniform law on (0, 1). If G is a

probability measure on [0, +∞], then Ĝ(U) and G̃(U) are random variables taking

values in [0, +∞] with distribution G, and G̃(U) = Ĝ(U) a.s.

Proof. The function Ĝ has the following property

(6) ∀t ∈ [0, 1] , ∀s ∈ [0, +∞) , Ĝ(t) ≥ s ⇐⇒ G(s) ≥ 1− t .

Then for all s ∈ [0, +∞), we have P[Ĝ(U) ≥ s] = P[U ≥ 1 − G(s)] = G(s),

thus Ĝ(U) has distribution G. The function G̃ does not satisfy the property (6).

However, Ĝ(t) 6= G̃(t) only for t ∈ [0, 1] such that G−1({1 − t}) contains an open

interval, thus the set {t ∈ [0, 1] : Ĝ(t) 6= G̃(t)} is at most countable. This implies

that Ĝ(U) = G̃(U) a.s., thus G̃(U) has the same law as Ĝ(U). �

In the following, we will always build the passage times of the edges with this
lemma. Let then (u(e), e ∈ Ed) be a family of i.i.d. random variables with uniform
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law on (0, 1). For any given probability measure G on [0, +∞], the family of i.i.d
passage times with distribution G will always be

(7) ∀e ∈ Ed , tG(e) = Ĝ(u(e)) .

Of course the main interest of this construction is to obtain couplings between laws.
In particular, if G1 and G2 are probability measures on [0, +∞],

G1 � G2 ⇒ tG1(e) ≤ tG2(e) for all edges e.

In particular in the case of Bernoulli percolation, if p ≤ q, Gq = qδ1 + (1− q)δ∞ �
Gp = pδ1 + (1 − p)δ∞ thus Cp ⊂ Cq. Moreover, we have the following pleasant
property:

Lemma 2.10. Let G, (Gn)n∈N be probability measures on [0, +∞]. We define the

passage times tG(e) and tGn(e) as in equation (7). If Gn
d→ G, then

a.s. , ∀e ∈ Ed , lim
n→∞

tGn(e) = tG(e) .

Proof.

(i) Let us prove that if Gn � G for all n, then

∀t ∈ [0, 1] lim
n→∞

Ĝn(t) = Ĝ(t) .(8)

Consider t ∈ [0, 1], let x = Ĝ(t) and xn = Ĝn(t). Since Gn � G, we have Gn ≥ G

thus xn ≥ x. Suppose that lim
n→+∞

xn := x > x. Up to extraction, we suppose

that limn→+∞ xn = x. Choose β ∈ (x, x) such that G is continuous at β, thus

limn→∞ Gn(β) = G(β). On one hand, by the definition of Ĝ and the monotonicity
of G, we have G(β) < 1− t. On the other hand, β < xn for all n large enough, thus
Gn(β) ≥ 1−t for all n large enough, and we conclude that G(β) = limn→∞ Gn(β) ≥
1− t, which is a contradiction, and (8) is proved.

(ii) Similarly, if Gn � G for all n, then ∀t ∈ [0, 1] lim
n→∞

Ĝn(t) = G̃(t) .

(iii) We define Gn = min{G,Gn} (resp. Gn = max{G,Gn}), and we denote
by Gn (resp. Gn) the corresponding probability measure on [0, +∞]. Notice that

Gn
d→ G and Gn

d→ G. Fix an edge e. Then Gn � G for all n, and (i) implies that

a.s. lim
n→∞

tGn
(e) = tG(e) .

As Gn � G for all n and tG(e) = G̃(u(e)) almost surely, (ii) implies that

a.s. lim
n→∞

tG
n
(e) = tG(e) .

Finally, as Gn � Gn � Gn for all n, we know by coupling that tG
n
(e) ≤ tGn(e) ≤

tGn
(e), which gives the desired convergence.

�

2.5. Stabilization of the point x̃. We need to establish the monotonicity of the
time constant in first-passage percolation. Since we work with different probability
measures, the fact that, in the regularization process, the point x̃CG,M depends on
G may be disturbing. We get round this problem by considering an alternative
probability measure H :
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Lemma 2.11. Let G and H be probability measures on [0, +∞] such that G � H.
For all M ∈ [0, +∞) satisfying H([0, M ]) > pc(d), we have

µG(x) = inf
n∈N∗

E
[
T̃

CH,M

G (0, nx)
]

n
= lim

n→∞
T̃

CH,M

G (0, nx)

n
a.s. and in L1.

Proof. Since G � H we get by coupling that tG(e) ≤ tH(e) for all e ∈ Ed. Let M ∈
[0, +∞) satisfying H([0, M ]) > pc(d), then G([0, M ]) > pc(d) and CH,M ⊂ CG,M .

The proof of the convergence of T̃
CH,M

G (0, nx)/n is a straightforward adaptation of

the proof of the convergence of T̃
CG,M

G (0, nx)/n: by the subadditive ergodic theorem,

there exists a function µ′
G,H : Rd → [0, +∞) such that for all x ∈ Zd we have

µ′
G,H(x) = inf

n∈N∗

E
[
T̃

CH,M

G (0, nx)
]

n
= lim

n→∞
T̃

CH,M

G (0, nx)

n
a.s. and in L1 .

It remains to prove that µ′
G,H = µG. For any x ∈ Zd, for any ε > 0, we have

P
[∣∣∣T̃ CH,M

G (0, nx)− T̃
CG,M

G (0, nx)
∣∣∣ > nε

]

≤ P
[
TG(0̃CG,M , 0̃CH,M ) + TG(ñxCG,M , ñxCH,M ) > nε

]

≤ 2P
[
TG(0̃CG,M , 0̃CH,M ) > nε/2

]
.(9)

Since 0̃CG,M ∈ CG,M ⊂ CG,∞ and 0̃CH,M ∈ CH,M ⊂ CG,M ⊂ CG,∞, the time

TG(0̃CG,M , 0̃CH,M ) is finite a.s. thus the right hand side of inequality (9) goes to
0 as n goes to infinity. This concludes the proof of Lemma 2.11. �

2.6. Monotonicity of the time constant in first-passage percolation. As
a simple consequence of the coupling built in section 2.4 and the stabilization of
the points x̃ proposed in section 2.5, we obtain the monotonicity of the function
G 7→ µG.

Lemma 2.12. Let G, H be probability measures on [0, +∞]. we have

G � H =⇒ µG ≤ µH .

Proof. By construction of µG and µH , it suffices to prove that µG(x) ≤ µH(x) for
all x ∈ Zd. By coupling, since G � H , we have tG(e) ≤ tH(e) for every edge e.
Using Lemma 2.11 the conclusion is immediate, since we have a.s.

µG(x) = lim
n→∞

T̃
CH,M

G (0, nx)

n
≤ lim

n→∞
T̃

CH,M

H (0, nx)

n
= µH(x) .

�

3. Renormalization

In this section we present the renormalization process and the construction of
modified paths that will be useful to study both the time constant and the isoperi-
metric constant.
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3.1. Definition of the renormalization process. Let G be a probability mea-
sure on [0, +∞], and fix M0 such that G([0, M0]) > pc(d). Denote as before by CG,M0

the a.s. unique infinite cluster of the supercritical Bernoulli field {1tG(e)≤M0
: e ∈

Ed}. We call this field the M0-percolation and its clusters the M0-clusters.
We use a renormalization process in the spirit of the work of Antal and Pisz-

tora [1]. For a large integer N , that will be apropriately chosen later, we chop Zd

into disjoint N -boxes as follows: we set BN to be the box [−N, N ]d∩Zd and define
the family of N -boxes by setting, for i ∈ Zd,

BN (i) = τi(2N+1)(BN ),

where τb stands for the shift in Zd with vector b ∈ Zd. We will also refer to the
box BN (i) as the N -box with coordinate i. The coordinates of N -boxes will be
denoted in bold and considered as macroscopic sites, to distinghish them from the
microscopic sites in the initial graph Zd. We also introduce larger boxes: for i ∈ Zd,

B′
N (i) = τi(2N+1)(B3N ).

As in [1], we say that a connected cluster C is a crossing cluster for a box B, if
for all d directions there is an open path contained in C ∩ B joining the the two
opposite faces of the box B.

Let C′
G,M0

= (Zd, {e ∈ Ed : tg(e) ≤ M0}) be the graph whose edges are opened

for the Bernoulli percolation (1tG(e)≤M0
, e ∈ Ed). We recall that CG,M0 is the infinite

cluster of C′
G,M0

, and we have DCG,M0 (x, y) = DC′
G,M0 (x, y) for every vertices x and

y in CG,M0 , and DCG,M0 (x, y) = +∞ if x or y are not in CG,M0 . Let us recall the
following result, obtained by Antal and Pisztora [1, Theorem 1.1], that says that

the chemical distance DC′
G,M0 can’t be too large when compared to ‖ · ‖1 or ‖ · ‖∞

(or any other equivalent norm): there exist positive constants Â, B̂, β such that

(10) ∀x ∈ Zd P(β‖x‖1 ≤ DC′
G,M0 (0, x) < +∞) ≤ Â exp(−B̂‖x‖1) ,

and

(11) ∀x ∈ Zd P(β‖x‖∞ ≤ DC′
G,M0 (0, x) < +∞) ≤ Â exp(−B̂‖x‖∞) .

In fact Antal and Pisztora proved (10), but different norms being equivalent in Rd,
we can obtain (11) by changing the constants.

Definition 3.1. We say that the macroscopic site i is good (or that the box BN (i)
is good) if the following events occur:

(i) There exists a unique M0-cluster C in B′
N (i) which has more than N ver-

tices;
(ii) This M0-cluster C is crossing for each of the 3d N -boxes included in B′

N (i);
(iii) For all x, y ∈ B′

N (i), if ‖x−y‖∞ ≥ N and x and y belong to this M0-cluster

C, then DC′
G,M0 (x, y) ≤ 3βN .

We call this cluster C the crossing M0-cluster of the good box BN (i).

Otherwise, BN (i) is said to be bad.
On the macroscopic grid Zd, we consider the same standard nearest neighbour

graph structure as on the microscopic initial grid Zd. Moreover we say that two
macroscopic sites i and j are ∗-neighbors if and only if ‖i − j‖∞ = 1. If C is a
connected set of macroscopic sites, we define its exterior vertex boundary

∂vC = {i ∈ Zd\C : i has a neighbour in C}.
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For a bad macroscopic site i, denote by C(i) the connected cluster of bad macro-
scopic sites containing i: the set ∂vC(i) is then a ∗-connected set of good macro-
scopic sites. For a good macroscopic site i, we define ∂vC(i) to be {i}.

3.2. Modification of a path. Let K ≥M0 and N be fixed. Let now γ be a path
in Zd, starting from the origin. To γ, we associate the connected set Γ ⊂ Zd of
N -boxes it visits: this is a lattice animal containing the origin, i.e. a connected
finite set of Zd containing the origin.We decompose γ into two parts, namely γa =
{e ∈ γ : tG(e) < K} and γb = {e ∈ γ : tG(e) ≥ K}. We denote by Bad the
(random) set of bad connected components of the macroscopic percolation given
by the states of the N -boxes.The idea is to remove from γ the edges with passage
time larger than K, and to look for bypasses for these edges using only edges with
passage time less than M0.

Lemma 3.2. Assume that 0 ∈ CG,M0 , that x ∈ CG,M0 , that the N -boxes containing
0 and x are good and let γ be a path between 0 and x. Then there exists in CG,M0a
path γ′ between 0 and x that has the following properties :

(1) γ′ \ γ is a collection of disjoint self avoiding paths that intersect γ′ ∩ γ only
at their endpoints;

(2) |γ′ \ γ| ≤ ρd


N

∑

C∈Bad: C∩Γ6=∅

|C|+ Nd|γb|


, where ρd is a constant de-

pending only on the dimension d.

See Figure 2.

Figure 2. The paths γ and γ′ (bad blocks are colored in dark gray).

Before proving Lemma 3.2, we need a simpler estimate on the cardinality of a
path inside a set of good blocks.

Lemma 3.3. There exists a constant ρ̂d, depending only on d, such that for every
fixed N , for every n ∈ N∗, if (BN (i))i∈I is a ∗-connected set of n good N -blocks, if
x ∈ BN(j) for j ∈ I and x is in the crossing M0-cluster of BN (j), if y ∈ BN(k) for
k ∈ I and y is in the crossing M0-cluster of BN (k), then there exists a path from
x to y in C′

G,M0
of length at most equal to ρ̂d(Nn + Nd).
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Proof of Lemma 3.3. Since (BN (i))i∈I is a ∗-connected set of good blocks, the def-
inition of good boxes ensures that there exists a M0-cluster C in C′

G,M0
∩ ∪i∈I{e ∈

B′
N (i)} which is crossing for every N -box included in ∪i∈IB′

N (i) (see Proposi-
tion 2.1 in Antal and Pisztora [1]). Since x and y are in C, there exists a path
γ = (γ1, . . . , γp) from x to y in C′

G,M0
∩ ⋃

i∈I{e ∈ B′
N (i)}. Let (ϕi)1≤i≤r be the

path of macroscopic sites corresponding to the path of good blocks visited by γ
(ϕ may not be injective). Notice that r ≤ 3dn. We now extract a sequence of
points along γ. Let Ψ(1) = 1 and j(1) = 1. If Ψ(1), . . . , Ψ(k) and j(1), . . . , j(k)
are defined, if the set {i ≥ Ψ(k) : ‖ϕi − ϕΨ(k)‖∞ ≥ 2} is non empty we define
Ψ(k + 1) = inf{i ≥ Ψ(k) : ‖ϕi−ϕΨ(k)‖∞ ≥ 2} and we choose j(k + 1) ≥ j(k) such
that γj(k+1) ∈ BN (ϕΨ(k+1)); if the set {i ≥ Ψ(k) : ‖ϕi − ϕΨ(k)‖∞ ≥ 2} is empty
we stop the process. We obtain a sequence (γj(k), k = 1, . . . , r′) of points, with
r′ ≤ r. By construction, for all k ∈ {1, . . . , r′− 1}, we have ‖γj(k+1)− γj(k)‖∞ ≥ N
and

‖ϕΨ(k+1) −ϕΨ(k+1)−1‖∞ = ‖ϕΨ(k+1)−1 −ϕΨ(k)‖∞ = 1 ,

thus γj(k) ∈ B′
N (ϕΨ(k+1)−1) and γj(k+1) ∈ B′

N (ϕΨ(k+1)−1). For all k ∈ {1, . . . , r′−
1}, BN (ϕΨ(k+1)−1) is a good box, and γj(k) and γj(k+1) belong to the crossing M0-
cluster of BN(ϕΨ(k+1)−1), thus there exists a path from γj(k) to γj(k+1) in C′

G,M0

of length at most 3βN . By glueing these paths, we obtain a path from x = γj(1)

to γj(r′) in C′
G,M0

of length at most 3βNr′ ≤ 3d+1βNn. Finally, since y and γj(r′)

belong to the crossing M0-cluster of B′
N (ϕΨ(r′)),there exists a path from γj(r′) to

y in C′
G,M0

of length at most |{e ∈ B′
N (ϕΨ(r′))}| ≤ 2d 3dNd. �

Proof of Lemma 3.2. To the path γ, we associate the sequence ϕ0 = (ϕ0(j))1≤j≤r0

of N -boxes it visits. Note that ϕ is not necessarily injective, and that the previously
defined lattice animal Γ is equal to ϕ0({1, . . . , r0}).

From the sequence ϕ0, we extract the subsequence (ϕ1(j))1≤j≤r1 , with r1 ≤ r0,
of N -boxes B such that γ ∩ B contains at least one edge with passage time larger
than K (more precisely, we keep the indices of the boxes B that contain the smallest
extremity, for the lexicographic order, of an edge of γ with passage time larger than
K). Notice that r1 ≤ |γb|. The idea is the following:

(1) If ϕ1(j) is good, we add to γ all the edges in B with passage time less than
M0: there will be enough such edges in the good N -box to find a by-pass
for the edge of γ with too large passage time.

(2) If ϕ1(j) is bad, we will look for such a by-pass in the exterior vertex bound-
ary ∂vC(ϕ1(j))) of the connected component of bad boxes of ϕ1(j).

In both cases, we use Lemma 3.3. We recall that if i is good, then ∂vC(i) =
{i}. Note that some ∂vC(ϕ1(j))) may coincide or be nested one in another or
overlap. In order to define properly the modification of our path, we need thus to
extract a subsequence once again. We first consider the ∗-connected components
(Sϕ2(j))1≤j≤r2 , with r2 ≤ r1, of the union of the (∂vC(ϕ1(j)))1≤j≤r1 , by keeping
only the smallest index for each connected component. Next, in case of nesting,
we only keep the largest connected component. We denote by (Sϕ3(j))1≤j≤r3 , with
r3 ≤ r2, the remaining hypersurfaces of good N -boxes. Finally it may happen that
γ visits several times the same Sϕ3(j) for some j: in this situation we can and must
remove the loops that γ makes between its different visits in Sϕ3(j). Thus by a
last extraction we obtain (Sϕ4(j))1≤j≤r4 , where Sϕ4(1) = Sϕ3(1) and for all k ≥ 1,
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ϕ4(k + 1) is the infimum of the indices (ϕ3(j))1≤j≤r3 such that γ visits Sϕ3(j) after
it exits Sϕ4(k) for the last time (if such a j exists).

Note that the path γ must visit each (Sϕ4(j))1≤j≤r4 . We now cut γ in several
pieces. Let Ψin(1) = min{k ≥ 1 : γk ∈ ∪i∈Sϕ4(1)

BN (i)} and Ψout(1) = max{k ≥
Ψin(1) : γk ∈ ∪i∈Sϕ4(1)

BN(i)}. By recurrence, for all 2 ≤ j ≤ r4, we define

Ψin(j) = min{k ≥ Ψout(j − 1) : γk ∈ ∪i∈Sϕ4(j)
BN (i)} and Ψout(j) = max{k ≥

Ψin(j) : γk ∈ ∪i∈Sϕ4(j)
BN (i)}. For all 1 ≤ j ≤ r4 − 1, let γj be the part of γ from

γΨout(j) to γΨin(j+1). By construction γj contains no edge with passage time larger
than K, and has at least N vertices in B′

N (i) for some i ∈ Sϕ4(j) (resp. in B′
N (k) for

some k ∈ Sϕ4(j+1)), thus γj ∩B′
N (i) (resp. γj ∩B′

N (k)) is included in the crossing
M0-cluster of B′

N (i) (resp. B′
N (k)). This implies that for all 2 ≤ j ≤ r4 − 1, we

can apply Lemma 3.3 to state that there exists a path γ′
j from γΨin(j) to γΨout(j)

in C′
G,M0

of length at most ρ̂d(Nd + N |Sϕ4(j)|). To do the same in Sϕ4(1), we
have to study more carefully the beginning of the path γ. If 0 is in Sϕ4(1), then
Ψin(1) = 1 and γΨin(1) = 0. As 0 ∈ CG,M0 and BN (0) is good, 0 is in the crossing
M0-cluster of BN (0), and applying Lemma 3.3 we obtain the existence of a path
γ′

1 from x = γΨin(1) to γΨout(1) in C′
G,M0

of length at most ρ̂d(Nd + N |Sϕ4(1)|). In

this case we define γ0 = ∅. If 0 is not in Sϕ4(1), denote by γ0 the portion of γ
from 0 to γΨin(1). The same reasoning as before ensures that γΨin(1) belongs to the
crossing M0-cluster of B′

N (i) for some i ∈ Sϕ4(1), and we can again apply Lemma
3.3 to obtain the existence of a path γ′

1 from γΨin(1) to γΨout(1) in C′
G,M0

of length

at most ρ̂d(Nd + N |Sϕ4(1)|). This reasoning can be readily transposed for the end
of the path γ, thus we obtain the existence of a path γ′

r4
from γΨin(r4) to γΨout(r4)

in C′
G,M0

of length at most ρ̂d(Nd + N |Sϕ4(r4)|), and we denote by γr4 the portion

of γ from γΨout(r4) to x (γr4 = ∅ if γΨout(r4) = x).
We can glue together the paths γ0, γ′

1, γ1, γ′
2, . . . , γ′

r4
, γr4 in this order to obtain a

path γ′ from 0 to x in C′
G,M0

. Up to cutting parts of these paths, we can suppose that

each γ′
i is a self-avoiding path, that the γ′

i are disjoint and that each γ′
i intersects

only γi−1 and γi, and only with its endpoints.
Finally we need an estimate on |γ′ r γ|. Obviously γ′ r γ ⊂ ∪r4

i=1γ′
i, thus

|γ′ r γ| ≤
r4∑

i=1

ρ̂d(Nd + N |Sϕ4(j)|)

≤ r4ρ̂dNd + ρ̂dN

r4∑

i=1

|Sϕ4(j)|

≤ 2ρ̂dNd|γb|+ ρ̂dN
∑

C∈Bad: C∩Γ6=∅

|∂vC| .

To conclude, we just have to remark that |∂vC| ≤ 2d|C|.
�

4. Truncated passage times

This section is devoted to the proof of Theorems 1.5 and 1.6.
Let us denote by M(G0, p0, M0) the set of probability measure on [0, +∞] such

that G � G0 and G([0, M0]) ≥ p0 for a fixed p0 > pc(d). For G ∈ M(G0, p0, M0),
denote as before by CG,M0 the a.s. unique infinite cluster of the supercritical
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Bernoulli field {1tG(e)≤M0
: e ∈ Ed}. We call this field the M0-percolation and its

clusters the M0-clusters.

4.1. Estimation for the passage time of the modified path.

Lemma 4.1. Let G be in M(G0, p0, M0). There exists a positive constant ρ′
d

(depending only on d and M0) such that the following holds: Assume that 0 ∈ CG,M0 ,
that x ∈ CG,M0 and that the N -boxes containing 0 and x are good, then

TG(0, x) ≤ TGK (0, x)

(
1 +

ρ′
dNd

K

)
+ ρ′

dN
∑

C∈Bad: C∩Γ6=∅

|C|,

where Γ is the lattice animal of N -boxes visited by an optimal path between 0 and
x for the passage times with distribution GK .

Proof. As 0 ∈ CG,M0 and x ∈ CG,M0 , the quantities TG(0, x) and TGK (0, x) are
bounded by M0 times the chemical distance in CG,M0 between 0 and x, and are
thus finite. Let γ be an optimal path between 0 and x for TGK (0, x), and consider
the modification γ′ given by Lemma 3.2. Since γ′ is a path between 0 and x, we
have

TG(0, x) ≤
∑

e∈γ′

tG(e) =
∑

e∈γ∩γ′

tG(e) +
∑

e∈γ′\γ

tG(e)

≤
∑

e∈γa

tG(e) + M0 |γ′ \ γ| .

On one hand, since γ is an optimal path between 0 and x for TGK (0, x), we have
∑

e∈γa

tG(e) =
∑

e∈γa

tGK (e) ≤
∑

e∈γ

tGK (e) = TGK (0, x) .

On the other hand, using the estimate on the cardinality of γ′ \ γ given in Lemma
3.2, and noticing that the number of edges in γb is less than TGK (γ)/K, we obtain

|γ′ \ γ| ≤ ρd


NdTGK (γ)

K
+ N

∑

C∈Bad: C∩Γ6=∅

|C|


 .

�

Lemma 4.2. For every p < 1, there exists an integer N(p0) such that for each
G ∈ M(G0, p0, M0), the field (11{BN (i) good})i∈Zd stochastically dominates a family
of independent Bernoulli random variables with parameter p.

Proof. Obviously, the states of (BN (i))i∈Zd have a finite range of dependance and
are identically distributed. Then, by the Liggett–Schonmann–Stacey Theorem [19],
it is sufficient to check that limN→+∞ P(BN good) = 1.

Consider first the properties (i) and (ii) of the Definition 3.1. When d ≥ 3, the
fact that limN→+∞ P(BN satisfies (i) and (ii)) = 1 follows from the Pisztora coarse
graining argument (see Pisztora [22] or the coarse graining section in Cerf [5]).
When d = 2, see Couronné and Messikh [7]. It remains to study the property (iii)
in the Definition 3.1. Using Antal and Pisztora’s estimate (10), we have for all N
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and i

P[BN (i) does not satisfy (iii)]

≤
∑

x∈B′
N

(i)

∑

y∈B′
N

(i)

1‖x−y‖∞≥NP

[
x

C′
G,M0←→ y , DC′

G,M0 (x, y) ≥ 3βN

]

≤
∑

x∈B′
N

(i)

∑

y∈B′
N

(i)

1‖x−y‖∞≥NP

[
x

C′
G,M0←→ y , DC′

G,M0 (x, y) ≥ β‖x− y‖∞

]

≤
∑

x∈B′
N

(i)

∑

y∈B′
N

(i)

1‖x−y‖∞≥N Âe−B̂‖x−y‖∞

≤ (3N)d.(3N)dÂe−B̂N

that goes to 0 when N goes to infinity. �

Lemma 4.3. There exists a constant C̃d, depending only on d, such that for every
path γ of Zd, for every N ∈ N∗, if Γ is the animal of N-blocks that γ visits, then

|Γ| ≤ C̃d

(
1 +
|γ|+ 1

N

)
− 1 .

Proof. Let γ = (γi)i=1,...,n be a path of Zd for a n ∈ N∗ (γi is the i-th vertex of γ,
n = |γ|+1), and fix N ∈ N∗. Let Γ be the animal of N-blocks that γ visits. We will
include Γ in a bigger set of blocks whose size can be controlled. Let p(1) = 1 and i1

be the macroscopic site such that γ1 ∈ BN (i1). If p(1), . . . , p(k) and i1, . . . , ik are
constructed, define p(k + 1) = inf{j ∈ {p(k), . . . , n} : γj /∈ B′

N (ik)} if this set is
not empty and let ik+1 be the macroscopic site such that γp(k+1) ∈ BN (ik+1), and
stop the process if for every j ∈ {p(k), . . . , n} , γj ∈ B′

N (ik). We obtain two finite
sequences (p(1), . . . , p(r)) and (i1, . . . , ir). First notice that

Γ ⊂
r⋃

k=1

B′
N (ik)

by construction, thus |Γ| ≤ 3dr−1. Moreover for every k ∈ {1, . . . , r−1}, ‖γp(k+1)−
γp(k)‖1 ≥ N , thus p(k1)− p(k) ≥ N . This implies that N(r− 1) ≤ p(r)− p(1) ≤ n,
and we conclude that

|Γ| ≤ 3d
(

1 +
n

N

)
− 1 .

�

Lemma 4.4. Suppose that G0({0}) < pc(d). For every ε > 0 there exists p1(ε) > 0
and A(ε) > 0 such that for every K ≥ M0, for each G ∈ M(G0, p0, M0), for all x
large enough,

P

(
T̃

CG,M0

G (0, x) ≤ T̃
CG,M0

GK (0, x)

(
1 +

A(ε)

K

)
+ ε‖x‖1

)
≥ p1(ε).

Proof. Let ε > 0 be fixed. Let psite
c (d) be the critical parameter for independent

Bernoulli site percolation on Zd. Choose α = α(ε) > 0 and then p = p(ε) ∈
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(psite
c (d), 1), such that

7d exp(−αε) ≤ 1

3
,(12)

p +
eα7d(1 − p)

1− eα7d(1− p)
≤ 3

2
.(13)

Let finally N = N(ε) be large enough to have the stochastic comparison of Lemma 4.2
with this parameter p.

Since GK
0 ({0}) = G0({0}) < pc(d), there exist positive constants A′, B′, β′ such

that for all k ∈ N∗ (see Proposition 5.8 in Kesten [18]):
(14)

P
[
∃r s.a. path starting at 0 s.t. |r| ≥ k and TGK

0
(r) ≤ β′k

]
≤ A′ exp(−B′k).

Obviously, for each G ∈ M(G0, p0, M0), we also have

(15) P [∃r s.a. path starting at 0 s.t. |r| ≥ k and TGK (r) ≤ β′k] ≤ A′ exp(−B′k).

Let K ≥ M0. Fix a large x. Let Ex be the following good event: 0 ∈ CG,M0

and x ∈ CG,M0 and DCG,M0 (0, x) ≤ β‖x‖1 and the N -boxes containing 0 and x are
good. Note that the FKG inequality and Antal and Pisztora’s estimate (10) ensure
that

(16) P1(x)
def
= P(Ex) ≥ P(0 ∈ CG,M0)2(1− Â exp(−B̂‖x‖1))p2.

From now on, we only work on the event Ex. As 0 ∈ CG,M0 and x ∈ CG,M0 ,

we have T̃
CG,M0

G (0, x) = TG(0, x) and T̃
CG,M0

GK (0, x) = TGK (0, x) ≤ M0DCG,M0 (0, x).
Equation (15) implies the existence of a geodesic γx for TGK (0, x). Note that

{
Ex, |γx| ≥

βM0

β′ ‖x‖1

}
⊂ {|γx| ≥

βM0

β′ ‖x‖1, TGK (γx) ≤ βM0‖x‖1}

∪ {Ex, TGK (γx) > βM0‖x‖1}

⊂ {|γx| ≥
βM0

β′ ‖x‖1, TGK (γx) ≤ βM0‖x‖1}

∪ {β‖x‖1 ≤ DC′
G,M0 (0, x) < +∞}

Then, (10) and (15) imply the existence of positive constants A′′, B′′ such that all
x ∈ Zd:

P

(
Ex, |γx| ≥

βM0

β′ ‖x‖1

)
≤ A′′ exp(−B′′‖x‖1).

Thus we set β′′ = βM0

β′ > 0 and if E′
x denotes the event Ex ∩{|γx| ≤ β′′‖x‖1}, then

(17) P2(x)
def
= P(E′

x) ≥ P(Ex)−A′′ exp(−B′′‖x‖1).

Denote by Γx the lattice animal of the N -boxes visited by this geodesic. Note
that by construction, on the event Ex, we have |Γx| ≥ ‖x‖1/N . On the other hand
Lemma 4.3 implies that |Γx| ≤ C̃d(1 + (|γx| + 1)/N) − 1 ≤ 2C̃d|γx|/N at least
for x large enough (remember that |γx| ≥ ‖x‖1). Denote by Animals the set of
lattice animals containing 0, and Animalsn the subset of those having size n. Using
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Lemma 4.1, we have for x large enough

P3(x)
def
=P

(
E′

x, T̃
CG,M0

G (0, x) ≥ T̃
CG,M0

GK (0, x)

(
1 +

ρ′
dN(ε)d

K

)
+ 2 ε C̃d ρ′

d β′′‖x‖1

)

≤P


E′

x,
∑

C∈Bad: C∩Γx 6=∅

|C| ≥ ε|Γx|




≤P


∃Γ ∈ Animals, |Γ| ≥ ‖x‖1

N
,

∑

C∈Bad: C∩Γ6=∅

|C| ≥ ε|Γ|


 def

= P4(‖x‖1)(18)

≤
∑

n≥ ‖x‖1
N

∑

Γ∈Animalsn

P


 ∑

C∈Bad: C∩Γ6=∅

|C| ≥ ε|Γ|




≤
∑

n≥ ‖x‖1
N

∑

Γ∈Animalsn

Pp


 ∑

C∈Bad: C∩Γ6=∅

|C| ≥ ε|Γ|


 .

For the last inequality, we use the coupling Lemma 4.2 to replace the locally de-
pendent states of our N -boxes by an independent Bernoulli site percolation with
parameter p chosen in (13). From now on, we work with this Bernoulli site perco-
lation with parameter p. Denote by C(0) the connected component of closed sites
containing 0 (with the convention that if 0 is open, then C(0) = ∅). Let (C̃(i))i∈Zd

be independent and identically distributed random sets of Zd with the same law as
C(0). Fix a set Γ = (Γ(i))1≤i≤n of sites; we first prove that, for the independent
Bernoulli site percolation, the following stochastic comparison holds:

(19)
∑

C∈Bad: C∩Γ6=∅

|C| �
n∑

i=1

|C̃(i)|.

The idea is to build algorithmically the real clusters from the sequence of pre-
clusters (C̃(i))i∈Zd , as in the work of Fontes and Newman [11], proof of Theorem 4.
Note however that in our sum (19), each visited cluster is only counted once, while
they count each cluster the number of times it is visited, which explains the differ-
ence between our stochatic domination and their one. We proceed by induction on
j ∈ {1, . . . , n} to build a new family (C(i))1≤i≤n such that

Aj
def
=

⋃

C∈Bad: C∩{Γ(i): 1≤i≤j}6=∅

C
law⊂

j⋃

i=1

C(i) ⊂
j⋃

i=1

(Γ(i) + C̃(i)).

Set C(1) = Γ(1) + C̃(1). Assume now that (C(i))1≤i≤j are built for some j < n:

• if Γ(j + 1) ∈ Aj , then Aj+1 = Aj , so we set C(j + 1) = ∅;
• if Γ(j + 1) ∈ ∂vAj (the exterior vertex boundary of Aj), then it is a good

site, so we set C(j + 1) = ∅;
• otherwise, the conditional distribution of the bad cluster C containing the

site Γ(j + 1), given Aj , is that of the percolation cluster of Γ(j + 1) in a
site percolation model where Zd is replaced by Zd\(Aj ∪∂vAj); thus, it has
the same law as the connected component of Γ(j + 1) in

C(j + 1)=
(
Γ(j + 1) + C̃(j + 1)

)
\ (Aj ∪ ∂vAj) ,
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which ends the construction and proves (19). As the number of lattice animals
containing 0 with size n is bounded from above by (7d)n (see Kesten [17], p 82. or
Grimmett [15], p.85), we have, by the Markov inequality,

P4(‖x‖1) ≤
∑

n≥ ‖x‖1
N

(7d)n exp(−αεn) (Ep(exp(α|C(0)|)))n .

But

Ep(exp(α|C(0)|)) = p +
∑

k≥1

exp(αk)P(|C(0)| = k) ≤ p +
∑

k≥1

exp(αk)Pp(|C(0)| ≥ k)

≤ p +
∑

k≥1

exp(αk)(7d)k(1− p)k = p +
eα7d(1− p)

1− eα7d(1− p)
.

With the choices (12) and (13) we made for α and p, this ensures that

(20) P4(‖x‖1) ≤
∑

n≥ ‖x‖1
N

2−n ≤ 2− ‖x‖1
N +1.

To conclude, note that with (16), (17), (18) and (20), we get

P

(
T̃

CG,M0

G (0, x) ≥ T̃
CG,M0

GK (0, x)

(
1 +

ρ′
dN(ε)d

K

)
+ 2 ε C̃d ρ′

d β′′‖x‖1

)

≤ 1− P2(x) + P3(x) ≤ 1− P2(x) + P4(‖x‖1) ≤ 1− p1(ε),

for a well-chosen p1(ε) > 0 and every x large enough. �

4.2. Proof of Theorem 1.5 and Theorem 1.6. Suppose that G0({0}) < pc(d).
For any ε > 0, consider p1(ε) and A(ε) as given by Lemma 4.4, and define, for

K ≥ M0, Ψ(K) = infε>0
A(ε)

K + ε. It is easy to see that limK→+∞ Ψ(K) = 0. Fix

ε > 0, δ > 0, K ≥M0 and x ∈ Zd. Now consider G ∈ M(G0, p0, M0).
With the convergence (2) in Proposition 2.2 and Lemma 4.4, we can choose n

large enough such that

P

(
µG(x)− δ ≤ T̃

CG,M0

G (0, nx)

n

)
≥ 1− p1(ε)

3
,

P

(
T̃

CG,M0

GK (0, nx)

n
≤ µGK (x) + δ

)
≥ 1− p1(ε)

3
,

P

(
T̃

CG,M0

G (0, nx) ≤ T̃
CG,M0

GK (0, nx)

(
1 +

A(ε)

K

)
+ εn‖x‖1

)
≥ p1(ε).

For every ε > 0, for every δ > 0, on the intersection of these 3 events, that has
positive probability, we obtain

∀G ∈ M(G0, p0, M0), K ≥M0, x ∈ Zd

µG(x) − δ ≤ (µGK (x) + δ)

(
1 +

A(ε)

K

)
+ ε‖x‖1,

and by letting δ going to 0 we get

∀ε > 0, G ∈M(G0, p0, M0), K ≥M0, x ∈ Zd µG(x) ≤ µGK (x)

(
1 +

A(ε)

K

)
+ε‖x‖1.
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It follows that for every ε > 0,

0 ≤ µGK (x) − µG(x) ≤ µGK

A(ε)

K
+ ε‖x‖1

≤ (µG(x) + ‖x‖1)

(
A(ε)

K
+ ε

)
,

thus, by optimizing ε,

0 ≤ µGK (x) − µG(x) ≤ (µG(x) + ‖x‖1)Ψ(K) ,

so Theorem 1.6 is proved.
Let us prove Theorem 1.5. If G({0}) ≥ pc(d), then µGK (x) = µG(x) = 0, so

there is nothing to prove. Otherwise, take G = G0 and simply consider M0 large
enough so that G([0, M0]) > pc(d) and take p0 = G([0, M0]). Now, since G ∈
M(G0, p0, M0), we can apply Theorem 1.5 and use the fact that limK→+∞ Ψ(K) =
0.

5. Continuity of the time constant, Theorem 1.2

We state now two properties that will be proved in the next sections.

Lemma 5.1. Suppose that G, (Gn)n∈N are probability measures on [0, +∞] such

that G([0, +∞)) > pc(d) and Gn([0, +∞)) > pc(d) for all n ∈ N. If Gn
d→ G and

Gn � G for all n, then

∀x ∈ Zd , lim
n→+∞

µGn(x) ≤ µG(x) .

Lemma 5.2. Suppose that G, (Gn)n∈N are probability measures on [0, R] for some

common and finite R ∈ [0, +∞). If Gn
d→ G, then

∀x ∈ Zd , lim
n→∞

µGn(x) = µG(x) .

5.1. Proof of Theorem 1.2. We follow the general structure of Cox and Kesten’s
proof of the continuity of the time constant in first-passage percolation with fi-
nite passage times in [10]. We first deduce Theorem 1.2 from Theorem 1.5 and
Lemmas 5.1 and 5.2.

Proof of Theorem 1.2. Let G, (Gn)n∈N be probability measures on [0, +∞]. We
first prove that for all fixed x ∈ Zd, we have

(21) lim
n→∞

µGn(x) = µG(x) .

We define Gn = min{G,Gn} (resp. Gn = max{G,Gn}), and we denote by Gn

(resp. Gn) the corresponding probability measure on [0, +∞]. Then Gn ≤ G ≤ Gn

(resp. Gn ≤ Gn ≤ Gn), thus by Lemma 2.12 we have µG
n
(x) ≤ µG(x) ≤ µGn

(x).

To conclude that (21) holds, it is sufficient to prove that

(i) lim
n→∞

µG
n
(x) ≥ µG(x) and (ii) lim

n→+∞
µGn

(x) ≤ µG(x) .

Notice that Gn
d→ G and Gn

d→ G. Inequality (ii) is obtained by a straightforward
application of Lemma 5.1. For any K ∈ [0, +∞), we define GK = 1[0,K)G +

G([K, +∞])δK (resp. GK
n = 1[0,K)Gn + Gn([K, +∞])δK), the distribution of
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tK
G (e) = min(tG(e), K) (resp. tK

G
n
(e) = min(tG

n
(e), K)). Using Lemmas 2.12 and

5.2, since GK
n

d→ GK , we obtain for all K

lim
n→∞

µG
n
(x) ≥ lim

n→∞
µGK

n
(x) = µGK (x) ,

and by Theorem 1.5 we have limK→∞ µGK (x) = µG(x). This concludes the proof
of (i), and of (21).

By homogeneity, (21) also holds for all x ∈ Qd. We know that |µGn(x) −
µGn(y)| ≤ µGn(e1)‖x− y‖1, where e1 = (1, 0, . . . , 0). Moreover limn→∞ µGn(e1) =
µG(e1), thus for all n ≥ n0 large enough we have |µGn(x)−µGn(y)| ≤ 2µG(e1)‖x−
y‖1 for all x, y ∈ Rd. This implies that for any fixed ε > 0, there exists η > 0 such
that for all x, y ∈ Rd such that ‖x− y‖1 ≤ η, we have

sup{|µG(x) − µG(y)|, |µGn(x)− µGn(y)|, n ≥ n0} ≤ ε .

There exists a finite set (y1, . . . , ym) of rational points of Rd such that

Sd−1 ⊂
m⋃

i=1

{x ∈ Rd : ‖yi − x‖1 ≤ η} .

Thus lim
n→+∞

sup
x∈Sd−1

|µGn(x)−µG(x)| ≤ 2ε+ lim
n→+∞

max
i=1,...,m

|µGn(yi)−µG(yi)| = 2ε.

Since ε was arbitrary, Theorem 1.2 is proved. �

We prove Lemmas 5.1 and 5.2 in the next sections, using a bound on sequences
of probability measures.

5.2. Bound on sequences of probability measures.

Lemma 5.3. Suppose that G and (Gn)n∈N are probability measures on [0, +∞]

such that Gn
d→ G.

(i) If G([0, +∞)) > pc(d) and Gn([0, +∞)) > pc(d) for all n ∈ N, then there
exists a probability measure H+ on [0, +∞] such that Gn � H+ for all n
and H+([0, +∞)) > pc(d).

(ii) If G({0}) < pc(d) and Gn({0}) < pc(d) for all n ∈ N, then there exists
a probability measure H− on [0, +∞] such that Gn � H− for all n and
H−({0}) < pc(d).

Proof. (i) We define Ĥ+ = supn∈N Gn, and H+(x) = inf{Ĥ+(y) : y < x} for all

x ∈ [0, +∞). Then Ĥ+ and H+ are non-increasing functions defined on [0, +∞)
and they take values in [0, 1]. By construction H+ is left continuous and H+ ≥ Gn,

for all n ∈ N. Moreover we have Ĥ+(x) = H+(x) = 1 for all x ≤ 0. Thus there
exists a probability measure H+ on [0, +∞] such that H+(t) = H+([t, +∞]) for all
t ∈ [0, +∞). It remains to prove that H+([0, +∞)) > pc(d). Since G([0, +∞)) >
pc(d), i.e. lim+∞ G < 1− pc(d), there exist A ∈ [0, +∞) and ε > 0 such that G is
continuous at A and G(A) ≤ 1−pc(d)−2ε. Moreover Gn

d→ G and G is continuous
at A, thus there exists n0 such that for all n ≥ n0 we have Gn(A) ≤ G(A) + ε ≤
1 − pc(d) − ε. For any i ∈ {1, . . . , n0 − 1}, Gi([0, +∞)) > pc(d) thus there exists
Ai < +∞ such that Gi(Ai) < 1 − pc(d). Fix A′ = max(A, A0, . . . , An0−1) < +∞.
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We conclude that

Ĥ+(A′) = max

(
G0(A′), . . . ,Gn0−1(A′), sup

n≥n0

Gn(A′)

)

≤ max

(
G0(A0), . . . ,Gn0−1(An0−1), sup

n≥n0

Gn(A)

)
< 1− pc(d) ,

thus H+([0, +∞)) = 1− lim+∞ H+ > pc(d).
(ii) We define H− = infn∈N Gn. Then H− is non-increasing, defined on [0, +∞) and
it takes values in [0, 1]. Fix t0 ∈ [0, +∞). Let us prove that H− is left continuous at
t0. By definition of H−, for any ε > 0, there exists n0 such that H−(t0) ≥ Gn0 (t0)−ε.
Since Gn0 is left continuous, there exists η > 0 such that for all t ∈ (t0 − η, t0] we
have Gn0 (t) ≤ Gn0 (t0) + ε. Thus for all t ∈ (t0 − η, t0], we obtain

H
−(t) ≤ Gn0 (t) ≤ Gn0(t0) + ε ≤ H

−(t0) + 2ε ,

thus H− is right continuous. By construction H− ≤ Gn, for all n ∈ N. Moreover
H−(t) = 1 for all t ≤ 0. Thus there exists a probability measure H− on [0, +∞]
such that H−(t) = H−([t, +∞]) for all t ∈ [0, +∞). It remains to prove that
H−({0}) < pc(d). Since G({0}) < pc(d), there exists η > 0 such that G([0, η)) <
pc(d), i.e., G(η) > 1 − pc(d). Let ε > 0 such that G(η) ≥ 1 − pc(d) + 2ε. There
exists δ ∈ [0, η) such that G is continuous at δ. Then limn→∞ Gn(δ) = G(δ), thus
there exists n0 such that for all n ≥ n0, Gn(δ) ≥ G(δ) − ε ≥ 1 − pc(d) + ε. For
any i ∈ {1, . . . , n0 − 1}, there exists δi > 0 such that Gi(δi) > 1 − pc(d). Fix
δ′ = min(δ, δ0, . . . , δn0−1) > 0. We conclude that

H−(δ′) = min

(
G0(δ′), . . . ,Gn0−1(δ′), inf

n≥n0

Gn(δ′)

)

≥ min

(
G0(δ0), . . . ,Gn0−1(δn0−1), inf

n≥n0

Gn(δ)

)
> 1− pc(d) ,

and

H−({0}) = 1− lim
t→0,t>0

H−(t) ≤ 1− H(δ′) < pc(d) .

�

5.3. Upper bound on limn→∞ µGn. This section is devoted to the proof of Lemma 5.1.
We follow the structure of Cox and Kesten’s proof of Lemma 1 in [10].

Proof of Lemma 5.1. We take H+ as given in Lemma 5.3 (i), and we fix M ∈
[0, +∞) such that H+([0, M ]) > pc(d). We work with the stabilized points x̃CH+,M .

We consider a point x ∈ Zd, and k ∈ N∗. For any path r from 0̃CH+,M to k̃x
CH+,M

,
using Lemma 2.10 we have a.s.

TG(r) =
∑

e∈r

tG(e) = lim
n→+∞

∑

e∈r

tGn(e) ≥ lim
n→+∞

T̃
CH+,M

Gn
(0, kx) .

Taking the infimum over any such path r, we obtain

T̃
CH+,M

G (0, kx) ≥ lim
n→+∞

T̃
CH+,M

Gn
(0, kx) .
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Conversely, since G � Gn, thanks to the coupling of the laws we get T̃
CH+,M

G (0, kx) ≤
T̃

CH+,M

Gn
(0, kx) for all n, thus

∀k ∈ N∗ , a.s., lim
n→∞

T̃
CH+,M

Gn
(0, kx) = T̃

CH+,M

G (0, kx) .

Since for all n we have T̃
CH+,M

Gn
(0, kx) ≤ T̃

CH+,M

H+ (0, kx) that is integrable by Propo-
sition 2.1, the dominated convergence theorem implies that, for all k ∈ N∗,

(22) lim
n→∞

E
[
T̃

CH+,M

Gn
(0, kx)

]
= E

[
T̃

CH+,M

G (0, kx)
]

.

By Lemma 2.11, we know that µG(x) = infk∈N∗ E
[
T̃

CH+,M

G (0, kx)
]

/k. For any

ε > 0, there exists K(G, ε) such that

(23) µG(x) ≥
E
[
T̃

CH+,M

G (0, Kx)
]

K
− ε ,

and using (22) we know that there exists n0(ε, K) such that for all n ≥ n0 we have

(24)
E
[
T̃

CH+,M

G (0, Kx)
]

K
≥

E
[
T̃

CH+,M

Gn
(0, Kx)

]

K
− ε .

Since µGn(x) = infk∈N∗ E
[
T̃

CH+,M

Gn
(0, kx)

]
/k, combining equations (23) and (24),

we obtain that for any ε > 0, for all n large enough,

µG(x) ≥ µGn(x) − 2ε .

This concludes the proof of Lemma 5.1. �

Remark 5.4. The domination we use to prove (22) is free, since whatever the prob-

ability measure H+ on [0, +∞] we consider, the regularized times T̃
CH+,M

H+ (0, x) are
always integrable. In [8], Cox considered the (non regularized) times TGn(0, x) for
probability measures Gn on [0, +∞). By Lemma 5.3 it is easy to obtain TGn(0, x) ≤
TH(0, x) for some probability measure H on [0, +∞). However, without further as-
sumption, TH(0, x) may not be integrable. This is the reason why Cox supposed
that the family (Gn, n ∈ N) was uniformly integrable. In [9], Cox and Kesten cir-
cumvent this problem by considering some regularized passage times that are always
integrable. There is no straigthtforward generalization of their regularized passage

times to the case of possibly infinite passage times, but the T̃ introduced in [6] plays
the same role.

5.4. Compact case. This section is devoted to the proof of Lemma 5.2. Of course,
Lemma 5.2 can be seen as a particular case of the continuity result by Cox and
Kesten. But, as noted by Kesten in his Saint-Flour course [18], the Cox–Kesten way
makes use of former results by Cox in [9] and is not the shortest path to a proof in
the compact case. In [18] Kesten also gave a sketch of a shorter proof in the compact
case. We thought the reader would be pleased to have a self-contained proof, so we
present a short but full proof of Lemma 5.2, quite inspired by Kesten [18].

Proof of Lemma 5.2. Let G, (Gn)n∈N be probability measures on [0, R], and con-
sider x ∈ Zd. As in the proof of Theorem 1.2, we have Gn � Gn, where Gn =
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max(G,Gn), thus µGn ≤ µGn
. Applying Lemma 5.1, we know that

lim
n→+∞

µGn
(x) ≤ µG(x) .

If µG(x) = 0, then limn→∞ µGn(x) = limn→∞ µGn
(x) = µG(x) = 0 and the proof

is complete. We suppose from now on that µG(x) > 0, thus x 6= 0. Since the
passage times tG(e) are finite, it is well known that µG(x) > 0 for x 6= 0 if and only
if G({0}) < pc(d) (see Theorem 6.1 in [18], or Proposition 2.3 in a more general
setting). We want to prove that limn→∞µG

n
(x) ≥ µG(x), where Gn = min(G,Gn).

Notice that x̃CG
n

,M = x̃CG,M = x for any M ≥ R, thus we do not need to introduce

regularized times T̃ . In what follows we note s.a. for self avoiding. Since Gn
d→ G,

we have limn→∞ Gn({0}) ≤ G({0}) < pc(d), thus we consider only n large enough
so that Gn({0}) < pc(d). Applying Lemma 5.3 (ii) to the sequence of functions Gn,
we obtain the existence of a probability measure H− on [0, +∞] (in fact on [0, R])
such that H− � Gn for all n and H−({0}) < pc(d). Thanks to the coupling, we
know that tH− (e) ≤ tG

n
(e) ≤ tG(e) for every edge e, thus we obtain that for all

A ∈ N∗, for all C ∈ [0, +∞),

P[TG
n
(0, kx) ≤ TG(0, kx)− εk]

≤ P
[
∃r s.a. path starting at 0 s.t. |r| ≥ Ak and TG

n
(r) ≤ ACk

]

+ P[TG
n
(0, kx) > ACk] +

∑

r s.a. path from 0

s.t. |r| ≤ Ak

P

[∑

e∈r

tG(e)− tG
n
(e) ≥ εk

]

≤ P [∃r s.a. path starting at 0 s.t. |r| ≥ Ak and TH− (r) ≤ ACk]

+ P[TG(0, kx) > ACk] + (2d)Ak P

[
Ak∑

i=1

tG(ei)− tG
n
(ei) ≥ εk

]
,

where (ei, i = 1, . . . , Ak) is a collection of distinct edges. Since H−({0}) < pc(d),
we know that we can choose C ∈ (0, +∞) (depending on d and H) such that there
exist finite and positive constants D, E (depending also on d and H) satisfying, for
all k ∈ N∗,

P [∃r s.a. path starting at 0 s.t. |r| ≥ k and TH− (r) ≤ Ck] ≤ De−Ek

(see Proposition 5.8 in [18]). Since the support of G is included in [0, R] for some
finite R, we know that TG(0, kx) ≤ Rk‖x‖1, thus we choose A large enough (de-
pending on F , d and C) so that

P[TG(0, kx) > ACk] = 0 .

If we prove that there exists n0(G, (Gn), ε) such that for all n ≥ n0,

(25)
∑

k>0

(2d)Ak P

[
Ak∑

i=1

tG(ei)− tG
n
(ei) ≥ εk

]
< +∞ ,

then for all n ≥ n0 we have
∑

k P[TG
n
(0, kx) ≤ TG(0, kx) − εk] < +∞. By Borel-

Cantelli’s lemma we obtain that for all n ≥ n0, a.s., for all k ≥ k0(n) large enough,

TG
n
(0, kx) > TG(0, kx)− εk ,
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thus for all n ≥ n0 we get

µG
n
(x) ≥ µG(x) − ε .

We conclude that limn→∞µG
n
(x) ≥ µG(x). It remains to prove (25). For any

α > 0, by Markov’s inequality we have

(2d)Ak P

[
Ak∑

i=1

tG(ei)− tG
n
(ei) ≥ εk

]

≤
(

2d exp

(−αε

A

)
E
[
exp

(
α(tG(e)− tG

n
(e))

)])Ak

.

By Lemma 2.10 we have limn→∞ tG
n
(e) = tG(e) a.s. Since tG

n
(e), tG(e) ≤ R we

obtain by a dominated convergence theorem that

lim
n→∞

E
[
exp

(
α(tG(e)− tG

n
(e))

)]
= 1 .

We choose α(ε) large enough so that

2d ≤ exp
(αε

4A

)
,

and then n0(G, (Gn), ε) large enough so that for all n ≥ n0, we have

E
[
exp

(
α(tG(e)− tG

n
(e))

)]
≤ exp

( αε

4A

)
.

Thus for all n ≥ n0, we have

(2d)AkP

[
Ak∑

i=1

tG(ei)− tG
n
(ei) ≥ εk

]
≤ exp

(
−αε

2A

)
,

so (25) is proved. �

6. Isoperimetry of planar percolation

This section is devoted to the proof of Theorem 1.1. The definition of the objects
used in this section are given in section 2.3. The main step in the proof of Theorem
1.1 is the following lemma.

Lemma 6.1. For every p > pc(2),

lim
p′→p

sup
x∈S1

|βp′(x)− βp(x)| = 0 .

Proof. Right continuity:
First we couple Pp and Pp+δ by sprinkling i.e. first sample Pp, then add edges

with an independent probability δ/(1−p), abbreviate the coupling Qp,δ. We extend
the definition of ỹC to any y ∈ Rd. By Lemma 2.6 there exist C, C′, α > 0 such
that ∀x ∈ S1, if t > αn, then

(26) Pp[∃γ ∈ R(0̃Cp , ñx
Cp) : open, |γ| > t] ≤ Ce−C′t.

For any path γ open in Pp, γ is also open in Pp+δ. However some additional right-
boundary edges may be open. To bound the difference, note that if |γ| < αn by [4,
Lemma 2.5] |∂+γ| < 3αn. For a path r ∈ R(x, y), let us define bp(r) = |{e ∈ ∂+r :
e is Pp − open}|. By the independence of the extra edges in the coupling Qp,δ, we



CONTINUITY OF THE TIME AND ISOPERIMETRIC CONSTANTS 27

can bound bp+δ(γ)−bp(γ) by Cramér’s theorem. For every fixed path γ such that
|γ| < αn, for every ε > 0,

(27) Qp,δ [bp+δ(γ)− bp(γ) > 3εαn] ≤ e−3αn(ε log ε
δ +(1−ε) log 1−ε

1−δ ).

Since there are at most 4αn paths of length smaller than αn containing 0, by
choosing δ small enough we obtain for every x ∈ S1

Qp,δ

[
∃γ ∈ R(0̃Cp , ñxCp) : Pp − open, bp+δ(γ)− bp(γ) > 3εαn

](28)

≤ Qp,δ

[
∃γ ∈ R(0̃Cp , ñx

Cp) : Pp − open, |γ| ≤ αn, bp+δ(γ)− bp(γ) > 3εαn
]

+ Pp[∃γ ∈ R(0̃Cp , ñx
Cp) : open, |γ| > αn]

≤
∑

y∈Zd : ‖0−y‖2≤n

Qp,δ [∃γ : γ starts at y, |γ| ≤ αn, bp+δ(γ)− bp(γ) > 3εαn]

+ Pp[‖0̃Cp − 0‖2 > n] + Ce−C′αn

≤ Knd4αne−3αn(ε log ε
δ +(1−ε) log 1−ε

1−δ ) + ĈeĈ′n + Ce−C′αn

≤ C̃e−C̃′n

where K is a constant depending only on the dimension and Ĉ, Ĉ′, C̃, C̃′ are con-
stants depending also on p. Thus for every ε > 0 there exists a δ > 0 such that for
every δ ≤ δ0, for every x ∈ S1,

βp+δ(x) < βp(x) + 3αε.

Left continuity: We couple Pp and Pp−δ by reverse sprinkling i.e. first sample

Pp and then remove each open edge independently with probability δ
p , abbreviate

the coupling Q′
p,δ. Given a Pp-open path γ ∈ R(0̃Cp−δ , ñx

Cp−δ ), γ may not be open
in Pp−δ. Thus we use the results of Section 3 to modify the path to an open path
in Pp−δ which does not gain too many extra right-boundary edges. We have to
change a little bit our point of view, since we are not dealing with passage times
and truncated passage times anymore, but with edges that are open for Pp or Pp−δ

respectively. The definition of good and bad boxes (see Definition 3.1) is now
associated to the Pp−δ-open clusters, i.e., we say that a macroscopic site i is good
(or that the box BN (i) is good) if the following events occur:

• There exists a unique Pp−δ-open cluster in B′
N(i) which has more than N

vertices;
• This Pp−δ-open cluster is crossing for each of the 3d N -boxes included in

B′
N (i);

• For all x, y ∈ B′
N (i), if ‖x−y‖∞ ≥ N and x and y belong to this Pp−δ-open,

then DC′
p−δ (x, y) ≤ 3βN ,

where C′
p−δ is the subgraph of Zd whose edges are Pp−δ-open. Otherwise, BN (i)

is said to be bad. In order to use the notations of Lemma 3.2, define Gp−δ =
(p− δ)δ1 + (1− p + δ)δ∞ and choose any 1 < K = M0 <∞. Let x ∈ S1, we denote
by ⌊nx⌋ the point y of Zd which minimizes ‖nx− y‖1 (with a deterministic rule to
break ties). For every path γ from 0 to ⌊nx⌋, let Γ = Γ(γ) be the lattice animal of
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N -boxes it visits. Thus we define

(29)
γa = {e ∈ γ : tGp−δ

(e) <∞} = {e ∈ γ : e is open in Pp−δ}
γb = {e ∈ γ : tGp−δ

(e) =∞} = {e ∈ γ : e is closed in Pp−δ} .

We now mimic the proof of Lemma 4.4. Fix ε > 0, and choose N = N(ε)
as in this proof (see bellow (13)). Let E be the following good event: 0 ∈ Cp−δ,
⌊nx⌋ ∈ Cp−δ and the N -boxes containing 0 and ⌊nx⌋ are good. Let γ ∈ R(0, ⌊nx⌋)
such that γ is Pp-open. By Lemma 3.2, on the event E, there exists a path γ′ with
the following properties:

(1) γ′ is a path from 0 to ⌊nx⌋ which is Pp−δ-open;
(2) γ′ \ γ is a collection of simple paths (and also right-most) that intersect

γ′ ∩ γ only at their endpoints thus γ′ is a right-most path (see [4, Lemma
2.6]);

(3) |γ′ \ γ| ≤ ρd

(
Nd|γb|+ N

∑
C∈Bad: C∩Γ6=∅

|C|
)

.

Note that

(30) bp−δ(γ′) ≤ bp(γ′) ≤ bp(γ) + 3|γ′ \ γ|.
For x, y ∈ Cp (resp. x, y ∈ Cp−δ), we define bp(x, y) = inf{bp(r) : r ∈

R(x, y),Pp − open} (resp. bp−δ(x, y) = inf{bp−δ(r) : r ∈ R(x, y),Pp−δ − open}).
For a fixed α (to be chosen later), abbreviate

Aε = E ∩ {∃γ ∈ R(0, ⌊nx⌋) : Pp − open, bp−δ(γ′) > bp(γ) + 12αC̃dρdεn},

Sε =
{
∀γ ∈ R(0̃Cp−δ , ñx

Cp−δ ) : Pp − open, |γ| ≤ αn
}

,

Bε =

{
∀γ ∈ R(0̃Cp−δ , ñx

Cp−δ ) : Pp − open, |γb| ≤
2C̃dαεn

Nd

}
,

Cε =



∃γ ∈ R(0̃Cp−δ , ñxCp−δ ) : Pp − open, 2d

∑

C∈Bad: C∩Γ(γ) 6=∅

|C| > 2C̃dαεn

N



 .

We have

Q′
p,δ

(
|bp(0̃Cp , ñx

Cp)− bp−δ(0̃Cp−δ , ñx
Cp−δ )| > 12αC̃dρdεn

)

≤ Pp−δ(Ec) + Q′
p,δ(Aε)

≤ Pp−δ(Ec) + Q′
p,δ(E ∩ Sc

ε) + Q′
p,δ(Bc

ε ∩ Sε ∩ E) + Q′
p,δ(Bε ∩ Sε ∩Aε)

≤ Pp−δ(Ec) + Q′
p,δ(E ∩ Sc

ε) + Q′
p,δ(Bc

ε ∩ Sε ∩ E) + Q′
p,δ(E ∩Bε ∩ Sε ∩Cε)

(31)

where the last inequality is due to (30). By the FKG inequality, we have

Pp−δ(Ec) ≤ 1− θ2
p−δ p(ε)2 ,

where p(ε) is the probability that a box is good (as chosen in (13)). When ε goes
to 0, p(ε) goes to one, so for ε small enough we can suppose that p(ε) ≥ 1/2, and
we get

(32) Pp−δ(Ec) ≤ 1− θ2
p−δ/4 < 1 .

By Lemma 2.6 there exist C, C′, α > 0 (we choose this α in the definition of the
previous events), depending on p but not on δ, such that for every x ∈ S1 if t > αn,
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then
Q′

p−δ[E ∩ {∃γ ∈ R(0̃Cp , ñx
Cp) : Pp − open, |γ| > t}] ≤ Ce−C′t.

Thus

Q′
p,δ(E ∩ Sc

ε) = Q′
p,δ[E ∩ {∃γ ∈ R(0̃Cp , ñxCp) : Pp−δ − open, |γ| > t}]

< Ce−C′αn .(33)

If γ is a path from 0 to ⌊nx⌋, then |Γ| ≥ n/N and by Lemma 4.3 we have |Γ| ≤
C̃d(1 + (|γ| + 1)/N) − 1 ≤ 2C̃d|γ|/N , at least for n large enough, thus by (20) we
have

Q′
p,δ(E ∩Bε ∩ Sε ∩Cε)

≤ Q′
p,δ


∃Γ ∈ Animals, |Γ| ≥ n

N
,

∑

C∈Bad: C∩Γ6=∅

|C| ≥ ε|Γ|


 def

= P4(n)

≤ 2− n
N +1 .(34)

Finally, by the independence of the inverse sprinkling and again Cramér’s theorem
(see (27)), for every ε > 0,

Q′
p,δ [Bc

ε ∩ Sε ∩ E]

≤ Q′
p,δ

(
∃γ : Pp − open, γ starts at 0, |γ| ≤ αn, |γb| >

2C̃dαεn

Nd

)

≤ 4αne
−3αn

(
2C̃dε

Nd log
2C̃dε

δNd +(1− 2C̃dε

Nd ) log
1−2C̃dε/Nd

1−δ

)
.(35)

For a fixed ε, and thus a fixed large N(ε), we can choose δ ≤ δ0 small enough to
control this term. Combining (31), (32), (33), (35) and (34), we deduce that for
every ε > 0 there exists δ0(ε) > 0 and p2(ε) > 0 such that for every δ ≤ δ0, for
every x ∈ S1, for every n large enough,

Q′
p,δ

(
|bp(0̃Cp , ñx

Cp)− bp−δ(0̃Cp−δ , ñx
Cp−δ )| > 12αC̃dρdεn

)
≤ 1− p2(ε) ,

thus for every ε > 0 there exists δ0(ε) > 0 such that for every δ ≤ δ0, for every
x ∈ S1,

βp−δ(x) < βp(x) + 12αC̃dρdε.

This ends the proof of Lemma 6.1. �

We can now prove the main theorem of this section

Proof of Theorem 1.1. First consider the limit limn→∞ nϕn(p). Let p > pc(2). For
any rectifiable Jordan curve λ, with Leb(int(λ)) = 1,

lenβp(λ) = sup
N≥1

sup
0≤t0<...<tN ≤1

N∑

i=1

βp(λ(ti)− λ(ti−1)),

and

βp(λ(ti)− λ(ti−1)) = βp

(
λ(ti)− λ(ti−1)

‖λ(ti)− λ(ti−1)‖2

)
‖λ(ti)− λ(ti−1)‖2.

By Lemma 6.1 for every ε > 0 there exists a δ > 0 such that for every q > pc(2)
satisfying |p− q| < δ we have supx∈S1 |βq(x)− βp(x)| < ε, thus

(36) |lenβp(λ) − lenβq (λ)| ≤ εlen‖·‖2
(λ).
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The infimum in Theorem 2.7 is achieved (by compactess of the set of Lipschitz
curves), so let us denote by λp (resp. λq) a Jordan curve such that Leb(int(λp)) = 1

and lenβp(λp) =
√

2θp limn→∞ nϕn(p) (resp. Leb(int(λq)) = 1 and lenβq (λq) =√
2θq limn→∞ nϕn(q)). All norms in R2 are equivalent thus we know that len‖·‖2

(λp) <
∞ and len‖·‖2

(λq) <∞. From (36) we deduce that for every ε > 0 there exists an
δ > 0 such that if |p− q| < δ then

√
2θp lim

n→∞
nϕn(p) = lenβp(λp)

≥ lenβq (λp)− εlen‖·‖2
(λp)

≥
√

2θq lim
n→∞

nϕn(q)− εlen‖·‖2
(λp)(37)

and
√

2θp lim
n→∞

nϕn(p) ≤ lenβp(λq)

≤ lenβq (λq) + εlen‖·‖2
(λq)

≤
√

2θq lim
n→∞

nϕn(q) + εlen‖·‖2
(λq) .(38)

Let βmin
q = infx∈S1 βq(x), for all q. By Lemma 6.1 again we know that for every q

satisfying |p− q| < δ we have βmin
q ≥ βmin

p − ε, which is positive for ε small enough

(βmin
p is not zero since βp is a norm), thus

len‖·‖2
(λq) ≤ lenβq (λq)

βmin
q

≤ lenβq (λq)

βmin
p − ε

.

Thanks to Equation (38) we obtain

(39)
√

2θp lim
n→∞

nϕn(p) ≤
√

2θq lim
n→∞

nϕn(q)

(
1 +

ε

βmin
p − ε

)
.

Combining (37) and (39) we obtain that

lim
q→p

√
2θq lim

n→∞
nϕn(q) =

√
2θp lim

n→∞
nϕn(p) .

Since p 7→ θp is continuous on (pc(2), 1], this conludes the first part of the proof.

Next we prove that p 7→ Ŵp is continuous for the Hausdorff distance. Fix η > 0
and p > pc(2) and let ε = ε(η, p) > 0 be small enough such that

(40) ε ≤ βmin
p

2
min (η, 1) .

As previously let δ > 0 satisfy supx∈S1 |βq(x) − βp(x)| < ε for all q > pc(2) such
that |p − q| < δ. For every x ∈ Wq we have by definition of Wq that for every
n̂ ∈ S1, n̂ · x ≤ βq(n̂). Thus for all q > pc(2) such that |p− q| < δ,

n̂ · x ≤ βq(n̂) ≤ βp(n̂) + ε ≤ (1 + η)βp(n̂),

where the last inequality comes from (40), thus x ∈ (1 + η)Wp. We obtain that
for all p > pc(2), for all η > 0, there exists δ > 0 such that for every q > pc(2)
satisfying |p− q| < δ,

(41) Wq ⊂ (1 + η)Wp.
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For every q > pc(2) satisfying |p− q| < δ, we also have βmin
q ≥ βmin

p − ε ≥ βmin
p /2 ≥

ε/η by (40), thus by the same method we obtain that for every x ∈ Wp, for every
n̂ ∈ S1,

n̂ · x ≤ βp(n̂) ≤ βq(n̂) + ε ≤ (1 + η)βq(n̂),

thus

(42) Wp ⊂ (1 + η)Wq .

For every x ∈Wp, ‖x‖2 = x·x/‖x‖2 ≤ βp(x) ≤ βmax
p , where βmax

p = supx∈S1 βp(x) <
∞, thus ‖(1 + η)x− x‖2 ≤ ηβmax

p . Similarly, for all q > pc(2) satisfying |p− q| < δ,
‖x‖2 ≤ βmax

q ≤ 2βmax
p and ‖(1 + η)x − x‖2 ≤ 2ηβmax

p . With (41) and (42), we
conclude that for every p > pc(2), for every η > 0, there exists δ > 0 such that for
every q > pc(2) satisfying |p− q| < δ,

dH(Wp, Wq) ≤ 2ηβmax
p ,

thus limq→p dH(Wp, Wq) = 0. This implies that limq→p Leb(Wq) = Leb(Wp), and

since Ŵp =
Wp√

Leb(Wp)
we deduce from (41) and (42) by a similar argument that

limq→p dH(Ŵp, Ŵq) = 0. This concludes the proof of Theorem 1.1. �

Remark 6.2. To deduce the continuity of the Wulff crystal from Lemma 6.1, we
can also consider a more general setting. Consider β∗

p the dual norm of βp, defined
by

∀x ∈ Rd , β∗
p(x) = sup{x · y : βp(y) ≤ 1} .

Then β∗
p is a norm, and what we did is equivalent to deduce from Lemma 6.1 the

same result concerning β∗
p :

(43) lim
q→p

sup
x∈S1

|β∗
q (x)− β∗

p(x)| = 0 .

Notice that Wp, the Wulff crystal associated to βb, is in fact the unit ball associated
to β∗

b , then (43) implies the continuity of p 7→ Wp according to the Hausdorff
distance.
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