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THE DISTANCE-DEPENDENT TWO-POINT FUNCTION OF

QUADRANGULATIONS: A NEW DERIVATION BY DIRECT

RECURSION

EMMANUEL GUITTER

Abstract. We give a new derivation of the distance-dependent two-point function of
planar quadrangulations by solving a new direct recursion relation for the associated

slice generating functions. Our approach for both the derivation and the solution of this

new recursion is in all points similar to that used recently by the author in the context
of planar triangulations.

1. Introduction

The distance-dependent two-point function of a family of maps is, so to say, the generating
function of these maps with two marked “points” (e.g. vertices or edges) at a prescribed
graph distance from each other. It informs us about the distance profile between pairs
of points picked at random on a random map in the ensemble at hand. In the case of
planar maps, explicit expressions for the distance-dependent two-point function of a number
of map families were obtained by several techniques [2, 9, 7, 1, 5, 10], all based on the
relationship which exists between the two-point function and generating functions for either
some particular decorated trees, or equivalently for some particular pieces of maps called
slices. This relationship is itself a consequence of the existence of some now well-understood
bijections between maps and trees or slices [14, 3].

In a recent paper [11], we revisited the distance-dependent two-point function of planar
triangulations (maps whose all faces have degree 3) and showed how to obtain its expres-
sion from the solution of some direct recursion relation on the associated slice generating
functions. The solution of the recursion made a crucial use of some old results by Tutte in
his seminal paper [15] on triangulations. In this paper, we extend the analysis of [11] to the
case of planar quadrangulations (maps which all faces of degree 4) by showing that a similar
recursion may be written and solved by the same treatment as for triangulations.

The paper is organized as follows: we start in Section 2 by giving the basic definitions
(Sect. 2.1) and by recalling the relation which exists between the distance-dependent two-
point function of planar quadrangulations and the generating functions of particular slices
(Sect. 2.2). We then derive in Section 3 a direct recursion relation for the slice generating
functions, based on the definition of a particular dividing line drawn on the slices (Sect. 3.1)
and on a decomposition of the slices along this line (Sect. 3.2). Section 4 shows how to
slightly simplify the recursion by reducing the problem to slice generating functions for
simple quadrangulations, i.e. quadrangulations without multiple edges (Sect.4.1). This allows
to make the recursion relation fully tractable by giving an explicit expression for its kernel
(Sects. 4.2 and 4.3). Section 5 is devoted to solving the recursion relation, first in the case
of simple quadrangulations (Sect. 5.1), then for general ones (Sect. 5.2), leading eventually
to some explicit expression for the distance-dependent two-point function. We conclude in
Section 6 with some final remarks.

2. The two-point function and slice generating functions

2.1. Basic definitions. As announced, the aim of this paper is to compute the distance-
dependent two-point function of planar quadrangulations. Recall that a planar map is a
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Figure 1. A example of slice with a boundary of length 2` = 10, hence
with left-boundary length ` = 5, thus contributing to Rk for all k ≥ 5.

connected graph embedded on the sphere. The map is pointed if it has a marked vertex (the
pointed vertex) and rooted if it has a marked oriented edge (the root-edge). In this latter
case, the origin of the root-edge is called the root-vertex. A planar quadrangulation is a
planar map whose all faces have degree 4. For k ≥ 1, we define the distance-dependent two-
point function Gk ≡ Gk(g) of planar quadrangulations as the generating function of pointed
rooted quadrangulations whose pointed vertex and root-vertex are at graph distance k from
each other. The quadrangulations are enumerated with a weight g per face. Note that, since
planar quadrangulations are bipartite maps, the graph distances from a given vertex to two
neighboring vertices have different parities, hence their difference is ±1. In particular, in
quadrangulations enumerated by Gk, the endpoint of the root-edge is necessarily at distance
k − 1 or k + 1 from the pointed vertex.

A quadrangulation with a boundary is a rooted planar map whose all faces have degree 4,
except the root-face, which is the face lying on the right of the root-edge, which has arbitrary
degree. Note that this degree is necessarily even as the map is clearly bipartite. The faces
different from the root-face are called inner faces and form the bulk of the map while the
edges incident to the root-face (visited, say clockwise around the bulk) form the boundary
of the map, whose length is the degree of the root-face.

As in [11], we may compute Gk by relating it to the generating function of slices, which
are particular instances of quadrangulations with a boundary, characterized by the following
properties: let 2` (` ≥ 1) be the length of the boundary, we call apex the vertex reached
from the root-vertex by making ` elementary steps along the boundary clockwise around the
bulk. The map at hand is a slice if (see figure 1):

• the graph distance from the root-vertex to the apex is `. Otherwise stated, the left
boundary of the slice, which is the portion (of length `) of boundary between the
root-vertex and the apex clockwise around the bulk is a shortest path between its
endpoints within the map;

• the distance from the endpoint of the root-edge to the apex is `−1. Otherwise stated,
the right boundary of the slice, which is the portion (of length ` − 1) of boundary
between the endpoint of the root-edge and the apex counterclockwise around the
bulk is a shortest path between its endpoints within the map;

• the right boundary is the unique shortest path between its endpoints within the
map;

• the left and right boundaries do not meet before reaching the apex.
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R1 =

Figure 2. A schematic picture of a map enumerated by R1, referred to in
this paper as a bundle between its two boundary vertices. We indicated only
those edges which connect the extremities of the root-edge to emphasize the
fact that their number may be arbitrarily large.

` = k `−1k k−1
distance

Figure 3. The one-to-one correspondence between pointed rooted quad-
rangulations whose root-edge has its extremities at respective distance k
and k − 1 from the pointed vertex (in red) and a slice with left-boundary
length ` = k. On the left, we have drawn (in green) the leftmost shortest
paths (starting with the root-edge itself) from the the root-vertex to the
pointed vertex. Cutting along this path builds the slice on the right.

We call Rk ≡ Rk(g) (k ≥ 1) the generating function of slices with 1 ≤ ` ≤ k, enumerated
with a weight g per inner face. Note that the root-edge-map, which is the map reduced
to the single root-edge and a root-face of degree 2 is a slice with ` = 1 and contributes a
term 1 to all Rk for k ≥ 1. The generating function R1 deserves some special attention: by
definition, R1 enumerates slices with ` = 1, hence with a boundary of length 2. The right
boundary has length 0 and the apex is the endpoint of the root edge while the left boundary,
of length 1, connects both extremities of the root-edge (which are necessarily distinct). This
connection is also performed by the root-edge itself, and the map forms in general what we
shall call a a bundle between the extremities of the root-edge (see figure 2). The function
R1 is thus the generating function of bundles between adjacent vertices.

2.2. Relation between Gk and Rk. We may now easily relate Gk to Rk via the following
argument: consider a pointed rooted quadrangulation enumerated by Gk. As already men-
tioned, the endpoint of the root-edge is necessarily at distance k−1 or k+1 from the pointed
vertex, which divides the maps at hand into two categories. Assume that the map belongs
to the first category, for which the distance is k−1. Then we may draw the leftmost shortest
path from the root-vertex to the pointed vertex, choosing as first step the root-edge itself
(see figure 3). Cutting along this shortest path creates a map with a boundary of length 2k
which is easily seen to be a slice of left-boundary length k, which is moreover not reduced
to the root-edge-map when k = 1. Such slices are enumerated by Rk −Rk−1 (since we must
suppress from Rk the slices with 1 ≤ ` ≤ k − 1) for k ≥ 2 and by R1 − 1 for k = 1. This
yield a contribution Rk −Rk−1− δk,1 to Gk from the first category, where we take the usual
convention that R0 = 0. The second category corresponds to maps whose root-edge has
its endpoint at distance k + 1 from the pointed vertex. By reversing the orientation of the
root-edge, they are in bijection with maps of the first category, up to a change k → k + 1,
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Figure 4. The decomposition of slices leading to eq. (2). If not reduced
to the root-edge-map (weight 1), the slice with 1 ≤ ` ≤ k is decomposed
by removing the face immediately on the left of the root-edge (weight g),
whose intermediate vertices are at distance (`− 1, `− 2) (in which case the
second vertex lies on the right boundary), (` − 1, `) or (` + 1, `). Cutting
along the leftmost shortest paths from these vertices to the apex produces
two sub-slices enumerated by RkRk−1, R2

k and RkRk+1 respectively.

hence are enumerated by Rk+1 − Rk (since δk+1,1 = 0 for k ≥ 1). To summarize, we have
the relation

(1) Gk = (Rk −Rk−1 − δk,1) + (Rk+1 −Rk) = Rk+1 −Rk−1 − δk,1 , k ≥ 1

which the convention R0 = 0.
As for the slice generating functions Rk (k ≥ 1), they satisfy the now well-known equation

[2] (see below for its derivation)

(2) Rk = 1 + g Rk(Rk−1 +Rk +Rk+1) , k ≥ 1

with R0 = 0. In particular, it is interesting to introduce the quantity R∞ = limk→∞Rk
which is the generating function of slices with arbitrary left-boundary length ` ≥ 1. From
(2), this quantity is directly obtained as the solution of

(3) R∞ = 1 + 3g R2
∞

which satisfies R∞ = 1+O(g). Equation (2) may be viewed as a recursion on k (giving Rk+1

from the knowledge of Rk and Rk−1) but this recursion requires at initial data the knowledge
of R1. In the present case, it can be shown [4] that R1 = R∞ − g R3

∞ and (2) allows one in
principle to determine Rk for all k. Getting an explicit expression for Rk by this approach
is a different story and so far, no real constructive way to solve (2) was proposed. Instead,
the method used so far was to first guess the expression for Rk and then verify that it solves
(2). This led to the explicit formula for Rk given in [2], and eventually to Gk. Another
approach to determine Rk was elaborated in [7] where it was shown that the Rk’s appear as
coefficients in a suitable continued fraction expansion for a standard generating function of
quadrangulations with a boundary. In this paper, we present a new direct recursion relation
for Rk which we shall then solve explicitly in a constructive way.

To end this section, let us briefly recall for completeness the derivation of (2). Consider
a map enumerated by Rk not reduced to the root-edge-map and consider the face directly
on the left of the root-edge. If the left-boundary length of the slice is ` (1 ≤ ` ≤ k),
the sequence of distances to the apex of the four successive vertices1 of the face, clockwise

1In all generality, it may happen that the four vertices are not distinct, in which case we must more
precisely consider the four successive corners around the face, the distance to the apex of a corner being
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Figure 5. The construction of the dividing line (see text for details).

around the face starting from the root-vertex is either `→ `− 1→ `− 2→ `− 1 (if ` ≥ 2),
`→ `− 1→ `→ `− 1 or `→ `+ 1→ `→ `− 1 (see figure 4). Note that each of these paths
of length 3 has exactly two “descending steps” (i.e. steps for which the distance decreases
by 1). We may now draw, starting from the two intermediate vertices, the leftmost shortest
paths from these vertices to the apex. This divides the slice into two slices (see figure 4)
whose two root-edges correspond precisely to the two descending steps. For the sequence
` → ` − 1 → ` − 2 → ` − 1, the respective left-boundary lengths of the two slices are `′

and `′′ − 1 with max(`′, `′′) = `. Demanding ` ≤ k is equivalent to demanding `′ ≤ k and
`′′ − 1 ≤ k − 1 so that the slice pairs are enumerated by Rk Rk−1, which explains the first
of the three quadratic terms in (2). The two other terms come from the two other possible
distance sequences, while the first term 1 corresponds to the edge-root-map. This explains
(2).

3. A direct recursion relation for slice generating functions

3.1. Definition of the dividing line. We shall now derive a new direct recursion for Rk.
More precisely, our recursion is best expressed in terms of the generating function

(4) Tk ≡ Rk −R1 , k ≥ 1

which enumerates slices with left-boundary length ` satisfying 2 ≤ ` ≤ k (in particular
T1 = 0). As in [11], our recursion is based on a decomposition of the map along a particular
dividing line which we define now. Consider a slice with left-boundary length ` ≥ 3. The
dividing line is a sequence of edges which are alternatively of type ` − 2 → ` − 1 and
`− 1→ `− 2. It forms a simple open curve which connects the right and left boundaries of
the slice, hence separates the apex from the root-vertex. To construct the line, we proceed
as follows: consider the vertices v0 and v′0 of the right boundary at respective distance `− 2
and ` − 3 from the apex and consider the face directly on the left of the right-boundary
edge linking v0 to v′0 (see figure 5). Call w0 and w′0 the two other vertices incident to this
face (so that the sequence clockwise around the face is v0 → w0 → w′0 → v′0). The four

the distance to the apex of the incident vertex. Our statements may be straightforwardly adapted to these
cases.
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Figure 6. The two possible ways for the dividing line to connect to the left boundary.

vertices are necessarily distinct as otherwise, we could find a shortest path from v0 to the
apex lying strictly to the left of the right boundary, in contradiction with the fact that the
right-boundary is the unique shortest path from the endpoint x0 of the root-edge to the
apex. Moreover, the distance from w0 to the apex (which is a priori `− 3 or `− 1) cannot
be equal to ` − 3 as this would again imply the existence of a shortest path from v0 to the
apex, hence also from x0 to the apex, lying strictly to the left of the right boundary. The
clockwise sequence of labels is thus necessarily `− 2→ `− 1→ `− 2→ `− 3. In particular,
w0 cannot be equal to x0 since w0 has a neighbor at distance `− 2 which does not lie on the
right boundary. We conclude that there exists a path of two steps going from v0 to a nearest
neighbor w0 at distance ` − 1 distinct from x0 and then to a next-nearest neighbor w′0 at
distance ` − 2 distinct from v0. Let us pick the leftmost such path of two steps, i.e. going
from v0 to a nearest neighbor x1 at distance `−1 distinct from x0 and then to a next-nearest
neighbor v1 at distance `− 2 distinct from v0. We may now draw the leftmost shortest path
P1 from x1 to the apex, starting with the edge x1 → v1, and call v′1 the vertex at distance
`− 3 along P1. Considering the face immediately on the left of the edge of P1 from v1 to v′1,
and calling w1 and w′1 the two other incident vertices, again the four vertices v1, w1, w

′
1, v
′
1

around the face are necessarily distinct as otherwise, P1 would not be a leftmost shortest
path, and, for the same reasons as above, w1 and w′1 are necessarily at respective distances
` − 1 and ` − 2 from the apex. In particular, w1 cannot be equal to x1 as otherwise, x1
would have a neighbor w′1 at distance `− 2 distinct from v0

2 and strictly to the left of v1, a
contradiction. To summarize, this proves the existence of a path of two steps going from v1
to a nearest neighbor at distance `− 1 distinct from x1 and then to a next-nearest neighbor
at distance ` − 2 distinct from v1. Again we pick the leftmost such path and call x2 and
v2 the corresponding vertices (see figure 5), then drawn the leftmost shortest path P2 from
x2 to the apex (starting with the edge x2 → v2). Continuing this way, we build by simple
concatenation of the right-boundary edge from x0 to v0 and of all the elementary two-step
paths a path connecting x0 to v0 to x1 to v1 to x2 to v2 and so on, where all the xi’s are
at distance ` − 1 from the apex and all the vi’s at distance ` − 2. As explained below, this
path cannot form a loop so it defines an open simple curve which necessarily reaches, after
p iterations of the process (p ≥ 1), the vertex vp lying on the left boundary at distance
`− 2 from the apex: this path defines our dividing line. Note that two situations may occur
according to whether xp itself belongs to the left boundary or not (see figure 6).

By construction, the dividing line is thus a simple open curve connecting x0 to vp by
visiting alternatively vertices at distance ` − 1 and ` − 2 from the apex. The line therefore

2The fact that w′1 is itself distinct from v0 is because otherwise, the edge w′1 → v′1 would lie strictly to

the left of the right boundary and connect v0 to a vertex at distance `− 3, which is forbidden.
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Figure 7. A schematic picture of the properties of the dividing line em-
phasized in Property 1. Vertices at distance `− 2 (resp. `− 1) are colored
in black (resp. in white).

separates two domains in the slice, an upper part containing the apex and a lower part
containing the root-vertex. Clearly, since a path from the apex to the lower part must cross
the dividing line, all the the vertices strictly inside the lower part are at distance at least `−1
from the apex. By construction, the dividing line satisfies moreover the following property
(illustrated in figure 7):

Property 1.

• Two vertices of the dividing line cannot be linked by an edge lying strictly inside the
lower part.

• Two vertices of the dividing line at distance ` − 2 cannot have a common neighbor
strictly inside the lower part.

The first statement is clear as the existence of an edge linking two vertices of the di-
viding line and inside the lower part would produce at some iteration of the dividing line
construction an acceptable two-step path lying to the left of the chosen one. As for the
second statement, the common vertex would necessarily be at distance ` − 1 and again an
acceptable two-step path would lie to the left of the chosen one. Note that, by contrast,
pairs of vertices of the dividing line at distance `− 1 may have a common neighbor strictly
inside the lower part.

The fact that the concatenation of our two-step paths cannot form a loop may be un-
derstood via arguments similar to those discussed in [11]. The proof is as follows: assume
that the line forms a loop and consider the first vertex vi, i ≥ 0 (or respectively xj , j > 0)
at which a double point arrises, i.e. vi+m = vi for some m > 1 (respectively xj+m = xj).
Note that m = 1 is not possible from our construction of the two-step paths. Note also
that the connection cannot occur at x0 as this vertex has only one neighbor, v0, at dis-
tance ` − 2. If the connection occurs from the left (see figure 8), then the two-step path
vi → xi+m → vi+m−1 (respectively vj−1 → xj → vj+m−1) lies on the left of the chosen path
vi → xi+1 → vi+1 (respectively vj−1 → xj → vj) and should thus have been chosen instead
of this latter path. This is a contradiction. If the connection occurs from the right, we use
the property that, by construction, each vertex vn of the dividing line at distance `− 2 from
the apex has a neighbor on Pn, therefore on its right, at distance ` − 3 from the apex (see
figure 8). Then a loop closing from the right encloses at least one vertex at distance ` − 3
(for instance the neighbor of vi+m, respectively of vj+m−1) which is de facto surrounded by
a frontier made of vertices at distance `− 2 and `− 1, a contraction. We conclude that the
dividing line cannot form a loop and necessarily ends on the left boundary.
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Figure 8. A schematic picture of the dividing line (top, in red) made of
its succession of vertices xi at distance `− 1 and vi at distance `− 2, with
a vertex at distance ` − 3 attached to the right of each vi. The lower part
of the figure illustrates the contradictions which would occur if the dividing
line were making a loop (see the arguments in the text).

As a final remark, we considered so far slices whose left-boundary length ` satisfies ` ≥ 3.
When dealing with Tk, we also need to consider slices with ` = 2. For such slices, we define
the dividing line as made of the single right-boundary edge linking the endpoint x0 of the
root-edge to the apex v0.

3.2. Decomposition of slices. As in [11], the dividing line allows us to decompose slices
enumerated by Tk in a way which leads to a direct recursion relating Tk to Tk−1. As
in previous section, the sequence of vertices along the dividing line will be denoted by
(x0, v0, x1, v1, · · · , xp, vp) with p ≥ 0, where the vertices xi (respectively vi) are at distance
` − 1 (respectively ` − 2) from the apex, ` being the left-boundary length of the slice (and
the constraint that p = 0 if and only if ` = 2). The decomposition is as follows: as already
mentioned, the dividing line separates the slice into two domains, a lower part which contains
the root-vertex and a complementary upper part (empty if and only if ` = 2). For ` ≥ 3, this
upper part may be decomposed into slices by drawing the leftmost shortest path Pi from
each vertex xi (0 ≤ i ≤ p) to the apex (the path starting with the edge of the dividing line
linking xi to vi). Note that P0 is the right boundary while Pp sticks to the left boundary
from vp to the apex. The paths Pi decompose the upper part in p slices of left-boundary
lengths between 2 and k− 1, hence enumerated by Tk−1, with a slice associated to each step
vi−1 → xi (1 ≤ i ≤ p) along the dividing line (the root-edge of this slice being the edge of
the dividing line linking vi−1 to xi, oriented from xi to vi−1 – se figure 9).

More interesting is the decomposition of the lower part. We start by looking at the
connections of the root-vertex to the dividing line: the root vertex, at distance ` from the
apex, is, in all generality, adjacent to a number of vertices xi of the dividing line. These
include x0 plus possibly a number of other xi’s, for instance xp in the situation (b) of figure
6. Note that these connections are in general achieved by a bundle (whose boundary if
formed by the extremal edges performing the connection from the root-vertex to xi). Now
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Figure 9. The decomposition of a slice on both sides of the dividing line
(see text). In the upper part, a slice enumerated by Tk−1 is created for
each black-white edge of the dividing line (represented in red, supposedly
oriented toward the left - here black and white vertices are represented by
filled or empty red circles). In the lower part, a first bundle (enumerated
by R1) between the extremities of the root-edge is completed by a sequence
of blocks (here represented alternatively in grey and yellow). Each block
has its right and left frontiers of lengths 1 or 2 and is enumerated by W1,1,
W1,2, W2,1 or W2,2 accordingly. In the present illustration, we have one
(2, 1) block, one (1, 2) block and two (2, 2) blocks.

the root-vertex is also in all generality, connected to a number of vertices vj of the dividing
line by two-step paths whose intermediate vertex yj lies strictly inside the lower domain
(and is at distance ` − 1 from the apex). These include for instance vp in the situation
(a) of figure 6. The connection from the root-vertex to yj and from yj to vj is achieved in

general by a pair of bundles. Moreover several intermediate vertices y
(1)
j , y

(2)
j , · · · , y(m)

j may

exist for the same vj (see figure 9). Now for each connection from the root-vertex to some
xi, we cut along the leftmost edge performing this connection and for each two-step-path
connection from the root-vertex to some vj via some yj , we cut along the leftmost two-step

path performing the connection. If several intermediate vertices y
(1)
j , y

(2)
j , · · · , y(m)

j exist,

we make one cut for each occurrence of such a vertex (see figure 9). These cuts divide the
lower part into a sequence of connected domains whose left and right frontiers correspond
to the performed cuts and have length 1 if the corresponding cut leads to some xi or 2 if the
corresponding cut leads to some vj . The domains may thus be classified in four categories:
(1, 1), (1, 2), (2, 1) or (2, 2) according to their right- and left-frontier length respectively (for
instance, the type (1, 2) corresponds to a right-frontier length 1 and a left-frontier length 2).
To be precise, the decomposition of the lower part may be characterized by some sequence
a0, a1, · · · , an, n ≥ 1 (with ai,∈ {1, 2}) corresponding to the successive encountered frontier
lengths for the cut domains. To each elementary step ai → ai+1 of the sequence is attached
a block of type (ai, ai+1).

The beginning of the sequence requires some special attention. Indeed, in the cutting, a
first bundle from the root-vertex to x0 is delimited, enumerated by R1 (see figure 9), Ignoring
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Figure 10. Computation of the weights W1,1, W1,2, W2,1 and W2,2. For
instance, the top-left situation corresponds to maps enumerated by W1,1 for
which we may extract a bundle (enumerated by R1) along the left frontier.
The remaining part, of length 2i (here i = 3) is enumerated by h2i and gives
rise to i−1 black-white (from right to left) edges on the dividing line, hence
i − 1 factors Tk−1. The other situations are represented with i′ = 4 (for
W1,2, and W2,1) and i′′ = 5 (for W2,2).

this first bundle, the effective right frontier of the first block is therefore a two-step path from
the root-vertex to y0 = x0, then to v0. We thus should start our sequence with a0 = 2 (note
that the root vertex may be also connected to v0 by two-step paths lying strictly inside the
lower part, in which case a1 = 2 too). The sequence ends either with an = 2 if the dividing
line is in the situation (a) of figure 6 or with an = 1 if the dividing line is in the situation
(b) of figure 6.

Let us now discuss the weight that should be attached to each block of the sequence if
we wish to compute Tk. Consider first a block of type (1, 1) (see figure 10): it has an overall
boundary of length 2i ≥ 4 made of its right frontier (a single edge of length 1), its left frontier
(a single edge of length 1 which is in general the leftmost edge of a bundle) and a portion of
length 2i − 2 of the dividing line which goes from some xj to xj+i−1, hence contains i − 1
edges of type vm → xm+1, giving rise to i − 1 slices in the upper part, hence producing a
weight T i−1k−1. As for the block itself in the lower part, we may decide to cut out the bundle
to which belongs the left frontier of the block, giving rise to a weight R1. The remaining
part (which has now as left frontier the rightmost edge of the bundle) is enumerated by some
generating function h2i = h2i(g) for particular quadrangulations with a boundary of length
2i satisfying special constraints which we will discuss below (see Property 2). At this stage,
let us just mention that we decide to choose as root-edge for these quadrangulation the edge
starting from the root-vertex counterclockwise around the domain.

To summarize, the weight attached to a (1, 1) block is

W1,1 = R1

∑

i≥2
h2i T

i−1
k−1 .
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If we now consider a block of type (1, 2) of the lower domain, it has an overall boundary
of length 2i ≥ 4 made of its right frontier (a single edge of length 1), its left frontier (a
two-step path of length 2 which is in general part of a pair of bundles) a portion of length
2i− 3 of the dividing line which goes from some xj to vj+i−2, hence contains i− 2 edges of

type vm → xm+1, giving rise to i − 2 slices in the upper domain, hence a weight T i−2k−1. As
for the part in the lower domain, we again decide to cut out the pair of bundles to which
belongs the left frontier of the block, giving rise to a weight R2

1. The remaining part is again
enumerated by h2i since the remaining quadrangulation of boundary length i is precisely of
the same type as above. The weight attached to a (1, 2) block is therefore

W1,1 = R2
1

∑

i≥2
h2i T

i−2
k−1 .

Repeating the argument for (2, 1) and (2, 2) blocks, we find (see figure 10)

W2,1 = W1,1 W2,2 = W1,2 ,

so that Wa,a′ actually depends only on the second index a′ (this is because both the number
of bundles on the left side of the block and the number of created slices in the upper part
for a fixed i depend only on a′ – see figure 10). To get Tk, we must sum over all possible
sequences a0, a1, · · · , an. Since a0 = 2 is fixed and all the other ai’s are free (including an)
and since the weights Wa,a′ depends only on a′, we immediately deduce the contribution

R1

∑

a0=2

a1,··· ,an∈{1,2}

n−1∏

i=0

Wai,ai+1 = R1


R1

∑

i≥2
h2i T

i−1
k−1 +R2

1

∑

i≥2
h2i T

i−2
k−1



n

for a sequence of length n, where we re-introduced the weight R1 for the bundle from the
root-vertex to x0. Recall that n ≥ 1 since we have at least one block. Note also that slices
with ` = 2 contribute to all values of n via the i = 2 term of the second sum in the parenthesis
above3.

Summing over all n ≥ 1, we arrive at the desired recursion relation

Tk =
R1

(
R1

∑
i≥2 h2i T

i−1
k−1 +R2

1

∑
i≥2 h2i T

i−2
k−1

)

1−
(
R1

∑
i≥2 h2i T

i−1
k−1 +R2

1

∑
i≥2 h2i T

i−2
k−1

)

or in short

(5) Tk =
R2

1(Tk−1 +R1) Φ(Tk−1)

1−R1(Tk−1 +R1) Φ(Tk−1)
, Φ(T ) ≡ Φ(T, g) =

∑

i≥2
h2i(g)T i−2 .

To end the section, it remains to characterize the quadrangulations with a boundary of length
2i (i ≥ 2) enumerated by h2i ≡ h2i(g), where g is the weight per face. By construction, the
boundary of these quadrangulations is a simple curve and we may for convenience decide
to color the boundary vertices alternatively in black and white, the root-vertex being black

(thus the vi’s at hand are also black and the xj and y
(α)
j are white). The maps enumerated

by h2i are further characterized by the following property (see figure 11):

Property 2.

• In the maps enumerated by h2i, two vertices of the boundary cannot be linked by an
edge lying strictly inside the map.

• In the maps enumerated by h2i, two black vertices of the boundary cannot have a
common (white) adjadent vertex strictly inside the map.

3For ` = 2, we have ai = 2 for all i (0 ≤ i ≤ n) and all the blocks have boundary length 4, hence are
enumerated by R2

1 h4. In particular with have T2 = R1
∑

n≥1(R2
1h4)n = R3

1 h4/(1 − R2
1 h4), in agreement

with (5) for k = 2, since T1 = 0 and Φ(0) = h4.
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h2i

××

Figure 11. A schematic representation of the two forbidden connections
within maps enumerated by h2i, as dictated by Property 2.

For pairs of vertices belonging to the dividing line, these properties are a direct conse-
quence of Property 1. For pairs involving the other vertices (i.e. the root vertex or the
intermediate vertices yj), these properties are a direct consequence of the block decomposi-
tion. As in [11], it is remarkable that, while, in the decomposition, boundary vertices of the
domains enumerated by h2i play different roles, the characterization of these domains via
Property 2 turns out to be symmetric for all boundary vertices.

4. Simple quadrangulations

4.1. From general to simple quadrangulations. As in [11], we may slightly simplify
our recursion by eliminating R1 from our problem. At the level of maps, it amounts to
restrict our analysis to simple quadrangulations (with a boundary), i.e. quadrangulations
without multiple edges. We thus define simple analogs of Rk and Tk, namely the generating
function rk ≡ rk(G) of simple slices with left-boundary length ` in the range 1 ≤ ` ≤ k and
tk ≡ tk(G) for simple slices with 2 ≤ ` ≤ k, with a weight G per inner face. Similarly, we

define h̃2i ≡ h̃2i(G) as the generating function, with a weight G per inner face, of simple
quadrangulations with a boundary of length 2i forming a simple curve (i.e. which does not
cross itself), and which satisfy Property 2. As it is well-known, we may pass from simple
quadrangulations to general quadrangulations by a substitution in the generating functions.
Indeed, a general quadrangulation is obtained from a simple one by replacing each edge of
the simple quadrangulation by a bundle, as we defined it. Since the generating function for
bundles is R1, the generating functions Rk, Tk, and h2i may in practice be obtained from
rk, tk, and h̃2i by a substitution as follows: consider a quandrangulation with F inner faces,
E inner edges and 2L edges on the boundary. We have the relation 4F = 2E + 2L so that

E = 2F − L .

In the case of maps enumerated by Rk (respectively Tk), we must, starting from maps
enumerated by rk (respectively tk), put a weight R1 to each inner edge as well as to each of
the L = ` edges of the left boundary and finally to the root edge. No weight R1 is assigned to
the edges of the right boundary as bundles cannot be present there since the right boundary
is the unique shortest path between its extremities. We must thus assign a global weight
RE+L+1

1 = R1 ×R2F
1 (note that, written this way, the weight is independent of `). In other

words, we must assign a weight R2
1 per face and a global factor R1, which yields the relations

(6) Rk(g) = R1 rk(G) , Tk(g) = R1 tk(G) ,

with the correspondence

(7) G = g R2
1 .
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Note that the relation Tk = Rk −R1 translates into

tk = rk − 1

consistent with the fact that there is a unique simple slice with ` = 1, the root-edge-map,
hence r1 = 1. As for h2i, it is obtained by assigning a weight R1 to all the inner edges of
the maps enumerated by h̃2i. Again, because of Property 2, there cannot be multiple edges
on the boundary. We must thus assign a global weight RE1 = R2F−L

1 = R2F−i
1 since L = i in

this case. In other word, we must again assign an extra weight R2
1 per face and now a global

factor R−i1 , which yields

(8) h2i(g) = R−i1 h̃2i(G)

with the correspondence (7). Introducing the quantity

(9) Φ̃(t) ≡ Φ̃(t, G) =
∑

i≥2
h̃2i(G) ti−2 ,

we deduce from (8)

Φ(T ) = R−21 Φ̃(t) , T = R1 t

with the implicit correspondence (7).
Finally, the recursion (5) translates into the simpler relation

(10) tk =
(tk−1 + 1) Φ̃(tk−1)

1− (tk−1 + 1) Φ̃(tk−1)

(with t1 = 0) where, as promised, R1 is no longer present. As in [11], we note that there is
no straightforward analog of the relation (1) for simple quadrangulations. This is because
closing a slice into a planar quadrangulations by identifying its right and left boundaries as
in figure 3 may in general create multiple edges. The recourse to simple slices in this paper
should therefore simply be viewed as a non-essential but convenient way to slightly simplify
our recursion by temporarily removing the R1 factors.

4.2. An equation for Φ̃(t). In order to solve (10), and eventually (5), we need some more

explicit expression for Φ̃(t). Such expression may be obtained by first noting that Φ̃(t) is
fully determined by the following equation:

(11) Φ̃(t) = G+
G

t

{
(t+ 1)Φ̃(t)

1− (t+ 1)Φ̃(t)
− h̃4

1− h̃4

}

which may equivalently be written as

t(1 + t)Φ̃2(t) + (G(1 + t)(1− t+ g4)− t) Φ̃(t) +G(t− g4) = 0 , g4 ≡
h̃4

1− h̃4
.

Let us first prove (11) and then show how to get Φ̃(t) out of it. From the definition (9),

t2 Φ̃(t) enumerates simple quandrangulations with a boundary of arbitrary length 2i (i ≥ 2)
forming a simple curve and satisfying Property 2, with a weight G per inner face and a
weight

√
t per boundary edge. The quadrangulation may be reduced to a single face (with

a boundary of length 4), leading to a first contribution t2G to t2 Φ̃(t), hence (after dividing
by t2) to the first term in (11). In all the other cases, we may look at the face immediately
on the left of the root-edge and call v and w its black and white incident vertices other than
the extremities of the root-edge (recall that we decided for convenience to bi-color the map
in black and white, the root-vertex being black). The (black) vertex v cannot lie on the
boundary as otherwise, w (which could not lie in this case on the boundary because of the
first requirement of Property 2) would be a common neighbor to v and to the root-vertex,
thus violating the second requirement of Property 2. So v lies strictly inside the map. As
for the (white) vertex w, it may lie on the boundary (see figure 12-case (a)) or not (case
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G

vw

G

v

w

(a) (b)

Figure 12. The decomposition of a map enumerated by Φ̃(t) (and not
reduced to a single face). The map is decomposed by removing the face
(in gray – weight G) on the left of the root-edge and cutting along all the
connections of the black vertex v (incident to the gray face and strictly
inside the map) to boundary vertices by either simple edges or by two-step
paths. The white vertex w (incident to the gray face and different from the
root-edge extremities) may lie on the boundary (case (a)) or not (case (b)).
In this latter case, it cannot be connected to other black boundary vertices
than the root-vertex.

G

vwh̃4

h̃4 h̃4

Figure 13. A schematic picture of those maps which have the structure of
figure 12 but which do not contribute to Φ̃(t) since their boundary length
is 2 (hence less than 4).

(b)). In this latter case, w cannot be connected to a vertex of the boundary other than the
root-vertex as otherwise, the second requirement of Property 2 would again be violated. On
the other hand, the vertex v is connected by simple edges to a number of white vertices of
the boundary (including the endpoint of the root-edge as well as w in case (a)), and may be
connected by two-step paths to black vertices of the boundary (including the root-vertex in
case (b)). Let us draw all these connections and cut the map along them. After cutting, the

face to the left of the root edge gets disconnected and contributes a weight tG to t2 Φ̃(t) in
case (a) and a weight

√
tG in case (b). The rest of the map forms a sequence of blocks. As we

did before in the slice decomposition, we may consider the sequence a0, a1, · · · , an (n ≥ 1) of
the lengths 1 or 2 of the (counterclockwise) successive connections of v to boundary vertices
(with 1 for a simple edge connection to a white vertex and 2 for a two-step-path connection
to a black vertex). We have a0 = 1 since the first connection is from v to the white endpoint
of the root-edge while an = 1 in case (a) and an = 2 in case (b). Now the m-th block has
a boundary of total arbitrary length 2j for some j ≥ 2, with 2j − am−1 − am edges on the
original boundary of the map. It must thus be given a weight w(am−1, am) with

w(a, a′) =
∑

j≥2
h̃2j(
√
t)2j−a−a

′
= (
√
t)4−a−a

′
Φ̃(t)
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Considering both cases (a) and (b), the contribution to t2 Φ̃(t) of sequences of n blocks
(together with that of the face on the left of the root-edge) is therefore

(
Φ̃(t)

)n



∑

a0=1,an=1

a2,··· ,an−1∈{1,2}

tG

n∏

m=1

(
√
t)4−am−1−am +

∑

a0=1,an=2

a2,··· ,an−1∈{1,2}

√
tG

n∏

m=1

(
√
t)4−am−1−am




= tG
(

Φ̃(t)
)n



∑

an=1
a2,··· ,an−1∈{1,2}

n∏

m=1

t2−am +
∑

an=2
a2,··· ,an−1∈{1,2}

n∏

m=1

t2−am




= tG
(

Φ̃(t)
)n ∑

a1,a2,··· ,an∈{1,2}

n∏

m=1

t2−am

= tG
(

Φ̃(t)
)n

(t+ 1)n .

To go from the first to the second line, we simply use the fact that a0 = an for sequences of
the first sum and a0 = an − 1 for sequences of the second sum. Summing over n ≥ 1 yields
the contribution

(12) tG
(t+ 1)Φ̃(t)

1− (t+ 1)Φ̃(t)

to t2 Φ̃(t), hence (after dividing by t2) to the second term in (11). So far in our decomposition,

we did not enforce the condition that, in Φ̃(t), the length 2i of the maps must satisfy i ≥ 2.
In our block sequences, there is a situation where this length happens to be 2 (i.e. i = 1) (see
figure 13): it corresponds to a situation of case (b) with a first block of boundary length 4
whose boundary vertices are v, w and the two extremities of the root-edge (and with exactly
1 edge on the original boundary of the whole map), completed by arbitrarily many blocks of
size 4 whose boundaries are made of two-step-paths from v to the root-vertex (these blocks
do not contribute to the original boundary length). These maps, made of n ≥ 1 blocks

enumerated by h̃4 contribute

tG
∑

n≥1
(h̃4)n = tG

h̃4

1− h̃4

to (12) and must be subtracted to properly recover t2 Φ̃(t). This explains (after dividing by
t2) the third term in (11).

4.3. An expression for Φ̃(t). We shall now extract from (11) a tractable expression for

Φ̃(t). The first step consists in getting from the equation an expression for h̃4 = h̃4(G) as a
function of the face weight G. Here we use the following standard trick: from (11), we may
write

(13) h̃4 =
t(t+ 1)Φ̃2(t)− (G(t+ 1)(t− 1) + t)Φ̃(t) +Gt

t(t+ 1)Φ̃2(t)− (G(t+ 1)t+ t)Φ̃(t) +G (t+ 1)

which, upon differentiating with respect to t (recall that h̃4 does not depend on t), yields

0 =
dh̃4
dt

⇒ 0 = Φ̃′(t)
{
t
(

(t+ 1)2Φ̃2(t)− 2(t+ 1)Φ̃(t) + 1−G
)
−G

}

+

{
Φ̃(t)

(
(t+ 1)2Φ̃2(t)− 2(t+ 1)Φ̃(t) + 1−G

)
−G

(
1− (t+ 1)Φ̃(t)

)2}
.
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This equation is satisfied in particular if we let t vary on a line t = t(G) where each of the
two terms between brackets in the above expression vanishes. Canceling these two terms
and solving for G and Φ̃ yields the following two possible solutions

G =
t(G)

(1 + t(G))3
and Φ̃(t(G)) =

t(G)

(1 + t(G))2

or

G =
1

t(G)(1 + t(G))
and Φ̃(t(G)) =

1

t(G)

which select two lines t = t(G) where we know the value of Φ̃. Plugging these values in (13)
yields

h̃4 =
t(G)(1− t(G))

1 + t(G)− t(G)2

for the first choice and h̃4 = 1 + G for the second choice. This latter result is clearly not
satisfactory (recall that h̃4 enumerates simple quandrangulations with a boundary of length
4 satisfying Property 2, with a weight G per face) so we are left with the first choice. In

other words we deduce from our particular solution the parametric expression for h̃4:

(14) h̃4 =
C(1− C)

1 + C − C2
, where G =

C

(1 + C)3

(here C = t(G) should be viewed as a simple parametrization of G) which implicitly deter-

mines h̃4 as a function of G.
Inverting the relation between G and C, we get

(15) C =
∑

n≥1

1

2n+ 1

(
3n

n

)
Gn .

Note that we implicitly assume that 0 ≤ G ≤ 4/27 for C to be well-defined as above, which
in turns implies that C lies in the range 0 ≤ C ≤ 1/2. This is consistent with the fact that
the number of simple quandrangulations grows exponentially with the number F of faces as
(27/4)F [8]. Now a Lagrange inversion yields the following formula

[Gp]h̃4 =

p−1∑

n=0

(
(−1)nωn+2 − ω−n−2√

5

)
(n+ 1)(3p)!

p(p− 1− n)!(2p+ 1 + n)!
, ω =

1 +
√

5

2

(involving Fibonacci numbers) for the number of simple quandrangulations with a boundary
of length 4, with p inner faces, satisfying Property 2. The first terms of this expansion read

(16) h̃4 = G+G2 + 3G3 + 11G4 + 46G5 + 209G6 + · · ·

with coefficients which may easily be verified by direct inspections of the maps at hand.
(see figure 14). This sequence appears in [13] in the context of the enumeration of naturally
embedded ternary trees. This should not come as a surprise since bijections exist between
such trees and simple quadrangulations [12, 6].

With the parametrization (14), equation (11) may be rewritten as a quadratic equation

(17)
t(t+ 1)(1 + C)3Φ̃2(t)+

{
C(1+C−C2)− t(1+3C+2C2+2C3)− t2 C

}
Φ̃(t)

+ C(t− C + C2) = 0

whose discriminant reads

∆ = (C − t)2
{

(1 + C2 − C(t− 1))2 − 4C2(1 + C)(t+ 1)
}
.
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1

1 1 1

1

1 1 1

1 1

2

2 2 2

2 2 2 2 2 2

2

2

4 4 4 4 4

4

4

G G2 3G3

11G4

46G5

Figure 14. A direct inspection of the maps enumerated by h̃4 and with
up to 5 inner faces. To obtain all the acceptable maps, each of the maps
presented here must also be reflected along its two diagonals (and re-rooted
at its bottom edge). According to the symmetry of the map at hand, the
number of distinct maps obtained by these reflections is 1, 2 or 4 as indi-
cated. Summing these numbers yields respectively 1, 1, 3, 11 and 46 distinct
maps with 1, 2, 3, 4 and 5 inner faces, explaining the first five terms of (16).

A look at the second factor suggests introducing the quantity4 Y (t), solution of

(18) Y 2(t) + (1 + C2 − C(t− 1))Y (t) + C2(1 + C)(t+ 1) = 0

4Here we use a trick in all points similar to that used by Tutte in [15].
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whose two solutions Y±(t) are related by the following involution (obtained by eliminating t
between the equation (18) for Y (t) = Y+(t) and the same equation for Y (t) = Y−(t)):

(19) Y±(t) =
C(1 + C)((1 + C)2 + Y∓(t))

Y∓(t)− C(1 + C)
.

For both determinations, we have the relation (directly read off (18)):

(20) t =
(1 + C + Y (t))(C2 + Y (t))

C(Y (t)− C − C2)
.

Plugging this value in (17) allows to rewrite the equation for Φ̃(t) as
(

Φ̃(t)− C(1 + C + C2 + Y (t))

(1 + C + Y (t))((1 + C)2 + Y (t))

)

×
(

Φ̃(t)− C(Y (t)− C(1 + C))(Y (t) + C2(1 + C))

(1 + C)3Y (t)(C2 + Y (t))

)
= 0 .

This gives a priori two possible expressions for Φ̃(t) as a function of Y (t) but it is easily seen
that the two formulas get interchanged by the involution (19). We may therefore decide to
choose the expression coming from the first factor, namely

(21) Φ̃(t) =
C(1 + C − C2 + Y (t))

(1 + C + Y (t))((1 + C)2 + Y (t))

provided we pick the correct determination of Y (t). This determination is fixed by the small

t behavior Φ̃(t) = h̃4 + O(t) with the formula (14) for h̃4. This selects the determination
(recall that 0 ≤ C ≤ 1/2)

(22) Y (t) =
1

2

{
C(t− 1)− 1− C2 +

√
(1 + C2 − C(t− 1))2 − 4C2(1 + C)(t+ 1)

}

(indeed, we then have Y (0) = −C2 and we recover for Φ̃(0) the correct expression (14) for h̃4
while the other determination would yield Y (0) = −C − 1 in which case Φ̃(t) would diverge
for t→ 0).

Finally, from (20), the expression (21) may be simplified into

(23) Φ̃(t) =
C2

Y (t)(1 + C + Y (t))
+

1

t+ 1
.

Equations (23), (22) and (15), which implicitly fix Φ̃(t) = Φ̃(t, G) in terms of G, are very
reminiscent of similar expressions for triangulations (see [15, 11])

5. Solution of the recursion

5.1. Solution for simple quadrangulations. We are now ready to solve (10). Again, as
in [11], the idea is to rewrite this recursion in terms of the variable Y (t). More precisely, let
us define

Yk ≡ Y (tk) , Φ̃k ≡ Φ̃(tk) .

From (20), we have the relations

(24) tk =
(1 + C + Yk)(C2 + Yk)

C(Yk − C − C2)
, tk−1 =

(1 + C + Yk−1)(C2 + Yk−1)

C(Yk−1 − C − C2)
.

Our recursion (10) reads

(25) tk =
(tk−1 + 1) Φ̃k−1

1− (tk−1 + 1) Φ̃k−1
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with, from (23),

Φ̃k−1 =
C2

Yk−1(1 + C + Yk−1)
+

1

tk−1 + 1
.

Inserting this expression in (25) and plugging the value (24) of tk−1, we obtain tk as a
function of Yk−1, namely:

tk =
Yk−1(C2 − C − 1− Yk−1)

C((1 + C)2 + Yk−1)
.

Equating this formula with that of (24) for tk, we obtain the following relation between Yk
and Yk−1:

(1 + C + Yk−1 + Yk)
(
C2(1 + C)2 − C(1 + C)Yk−1 + (1 + C)2Yk + Yk−1Yk

)
= 0 .

To choose which factor to cancel, we note that, for G→ 0, tk and tk−1 tend to 0 and thus Yk
and Yk−1 tend to −C2 → 0 so the first factor does not vanish. The correct choice is therefore
to cancel the second factor and we arrive at the remarkably simple recursion relation for Yk:

(26) Yk =
C(1 + C)Yk−1 − C2(1 + C)2

Yk−1 + (1 + C)2
.

As recalled in [11], solving such a recursion relation is a standard exercise. To solve more
generally the equation

Yk = f(Yk−1) , f(Y ) ≡ a Y + b

c Y + d
,

we introduce the two fixed points α and β of the function f (i.e. the two solutions of f(Y ) =
Y ). Then the quantity

Wk =
Yk − α
Yk − β

satisfies Wk = xWk−1, hence

Wk = xk−1W1 , x ≡ c β + d

cα+ d
.

The desired Yk is recovered via Yk = (α− βWk)/(1−Wk) (note that α and β are supposed
to be distinct, as will be verified a posteriori).

In our case, we may take

a = C(1 + C) , b = −C2(1 + C)2 , c = 1 , d = (1 + C)2

so that

α =
1

2
(1 + C)

(√
1− 4C2 − 1

)

β =
1

2
(1 + C)

(
−
√

1− 4C2 − 1
)

x =
1−
√

1− 4C2

2C

(in particular, α 6= β for C 6= 1/2, i.e. x 6= 1). The last formula is inverted into

C =
x

1 + x2

and the first two may then be rewritten as

α = −x2 1 + x+ x2

(1 + x2)2

β = −1 + x+ x2

(1 + x2)2
.
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The initial condition reads

t1 = 0 ⇒ Y1 = −C2 ⇒ W1 =
−C2 − α
−C2 − β = x3

so that

Wk = xk−1W1 = xk+2

and

Yk = −x2 1 + x+ x2

(1 + x2)2
1− xk

1− xk+2
.

Plugging this expression in (24) gives

tk =
x

1 + x2
(1− xk−1)(1− xk+4)

(1− xk+1)(1− xk+2)

and eventually

rk = tk + 1 =
1 + x+ x2

1 + x2
(1− xk)(1− xk+3)

(1− xk+1)(1− xk+2)
.

From the connection (14) between G and C and that just above between C and x, we deduce
the relation between G and x:

G =
x (1 + x2)2

(1 + x+ x2)3
.

Note the that the condition x 6= 1 is satisfied for 0 ≤ G < 4/27. All the expressions above
are invariant under x→ 1/x, so we may always choose x such that 0 ≤ x < 1.

As a final remark, we note that t∞ ≡ limk→∞ tk = x/(1 + x2) = C (the quantity t∞
enumerates simple slices with arbitrary left-boundary length ` ≥ 2). Recall that the pa-

rameter C is nothing but the particular value t(G) of t used in Section 4.3 to determine h̃4
as a function of G. The line used in Section 4.3 is thus in fact the line t = t∞(G). The

value Φ̃(t(G)) = t(G)/(1 + t(G))2 that we found may then be undestood as a direct con-
sequence of our recursion relation. Indeed, letting k → ∞ in our recursion, we may write
t∞(G) = (t∞(G) + 1)Φ̃(t∞(G))/(1− (t∞(G) + 1)Φ̃(t∞(G))), which, by inversion, reproduces

the above value of Φ̃(t(G)) when t(G) = t∞(G).

5.2. Solution for general quadrangulations. Recall the correspondence of eqs. (6) and
(7) between simple and general quadrangulations:

Rk(g) = R1 rk(G) , G = g R2
1

and the expression that we just found for rk:

rk = r∞
(1− xk)(1− xk+3)

(1− xk+1)(1− xk+2)
, r∞ ≡

1 + x+ x2

1 + x2
.

with 0 ≤ x < 1. This immediately leads to the expression

(27) Rk = R∞
(1− xk)(1− xk+3)

(1− xk+1)(1− xk+2)
, R∞ ≡ R1 r∞ .

In particular, the prefactor R∞ being such that R∞ = limk→∞Rk, it may be interpreted
as the generating function of slices with arbitrary left-boundary length ` ≥ 1. The above
definition of R∞ (via R∞ ≡ R1 r∞) therefore matches precisely that of Section 2.2, hence
our notation. Note also the relation g R2

∞ = Gr2∞.
As explained in Section 2.2, the value of R∞ may be obtained directly as the solution of

the quadratic equation (3) (satisfying R∞ = 1 +O(g)), namely

(28) R∞ =
1−√1− 12g

6g
.
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To fully express Rk in terms of g, it remains to connect the parameter x in (27) to g. Recall
the formulas

G =
C

(1 + C)3
C =

x

1 + x2
r∞ =

1 + x+ x2

1 + x2
= 1 + C

and therefore

g R2
∞ = Gr2∞ =

C

1 + C
=

x

1 + x+ x2

or equivalently

(29) x+
1

x
+ 1 =

1

g R2∞

with R∞ as in (28). Putting (28) and (29) together, we arrive at the following parametriza-
tion

(30) R∞ =
1 + 4x+ x2

1 + x+ x2
g =

x(1 + x+ x2)

(1 + 4x+ x2)2
.

The expressions (27) and (30) precisely reproduce the result of [2] for Rk. Again demanding
0 ≤ x < 1 amounts to demanding 0 ≤ g < 1/12, in agreement with the fact that the number
of quadrangulations with F faces growths exponentially like 12F .

From (1), we obtain our final formula for the distance-dependent two-point function

Gk =
(1− x)3(1 + x)2(1 + 4x+ x2)xk−1(1− x2k+3)

(1 + x+ x2)(1− xk)(1− xk+1)(1− xk+2)(1− xk+3)
− δk,1

with g =
x(1 + x+ x2)

(1 + 4x+ x2)2
.

6. Conclusion

To conclude, we notice, as in [11], that the decomposition of a slice enumerated by Tk
may itself be repeated recursively inside the sub-slices enumerated by Tk−1 and so on. This
produces (by concatenation of the dividing lines of the same “level”) a number of nested lines
joining the two boundaries of the slice, each line visiting a succession of vertices alternatively
at distance `′ − 2 and `′ − 1 from the apex for some `′ ranging from 3 to the left-boundary
length ` (supposedly being at least 3) of the slice at hand. These “concentric” lines may be
viewed as boundaries of the successive balls centered around the apex and with radius `′− 2
between 1 and `− 2 (for some appropriate definition of the balls). More precisely, each ball
has also in general several closed boundaries within the slice encircling connected domains
whose vertices are at distance larger than the radius of the ball. Each of the concentric
lines corresponds therefore to a particular boundary, that which separates the apex from the
root-vertex of the slice. If we complete the ball of radius `′ − 2 by the interiors of its closed
boundaries, we obtain what can be called the hull of radius `′−2 of the slice. The concentric
lines are thus hull boundaries and the statistics of their lengths may in principle be studied
by our formalism5.

Finally, since our approach by recursion was successful in the case of both triangulations
and quadrangulations, we may hope that a similar scheme could be applied to more general
families of maps, for instance maps with prescribed face degrees.

5Note that by closing slices as in figure (3), balls and hulls for slices also correspond to balls and hulls for
planar quadrangulations.
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