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THE DISTANCE-DEPENDENT TWO-POINT FUNCTION OF QUADRANGULATIONS: A NEW DERIVATION BY DIRECT RECURSION

We give a new derivation of the distance-dependent two-point function of planar quadrangulations by solving a new direct recursion relation for the associated slice generating functions. Our approach for both the derivation and the solution of this new recursion is in all points similar to that used recently by the author in the context of planar triangulations.

Introduction

The distance-dependent two-point function of a family of maps is, so to say, the generating function of these maps with two marked "points" (e.g. vertices or edges) at a prescribed graph distance from each other. It informs us about the distance profile between pairs of points picked at random on a random map in the ensemble at hand. In the case of planar maps, explicit expressions for the distance-dependent two-point function of a number of map families were obtained by several techniques [START_REF] Bouttier | Geodesic distance in planar graphs[END_REF][START_REF] Francesco | Geodesic distance in planar graphs: an integrable approach[END_REF][START_REF] Bouttier | Planar maps and continued fractions[END_REF][START_REF] Ambjørn | Trees and spatial topology change in causal dynamical triangulations[END_REF][START_REF] Bouttier | On the two-point function of general planar maps and hypermaps[END_REF][START_REF] Fusy | The two-point function of bicolored planar maps[END_REF], all based on the relationship which exists between the two-point function and generating functions for either some particular decorated trees, or equivalently for some particular pieces of maps called slices. This relationship is itself a consequence of the existence of some now well-understood bijections between maps and trees or slices [START_REF] Schaeffer | Conjugaison d'arbres et cartes combinatoires aléatoires[END_REF][START_REF] Bouttier | Planar maps as labeled mobiles[END_REF].

In a recent paper [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF], we revisited the distance-dependent two-point function of planar triangulations (maps whose all faces have degree 3) and showed how to obtain its expression from the solution of some direct recursion relation on the associated slice generating functions. The solution of the recursion made a crucial use of some old results by Tutte in his seminal paper [START_REF] Tutte | A census of planar triangulations[END_REF] on triangulations. In this paper, we extend the analysis of [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF] to the case of planar quadrangulations (maps which all faces of degree 4) by showing that a similar recursion may be written and solved by the same treatment as for triangulations.

The paper is organized as follows: we start in Section 2 by giving the basic definitions (Sect. 2.1) and by recalling the relation which exists between the distance-dependent twopoint function of planar quadrangulations and the generating functions of particular slices (Sect. 2.2). We then derive in Section 3 a direct recursion relation for the slice generating functions, based on the definition of a particular dividing line drawn on the slices (Sect. 3.1) and on a decomposition of the slices along this line (Sect. 3.2). Section 4 shows how to slightly simplify the recursion by reducing the problem to slice generating functions for simple quadrangulations, i.e. quadrangulations without multiple edges (Sect. 4.1). This allows to make the recursion relation fully tractable by giving an explicit expression for its kernel (Sects. 4.2 and 4.3). Section 5 is devoted to solving the recursion relation, first in the case of simple quadrangulations (Sect. 5.1), then for general ones (Sect. 5.2), leading eventually to some explicit expression for the distance-dependent two-point function. We conclude in Section 6 with some final remarks.

2. The two-point function and slice generating functions 2.1. Basic definitions. As announced, the aim of this paper is to compute the distancedependent two-point function of planar quadrangulations. Recall that a planar map is a connected graph embedded on the sphere. The map is pointed if it has a marked vertex (the pointed vertex) and rooted if it has a marked oriented edge (the root-edge). In this latter case, the origin of the root-edge is called the root-vertex. A planar quadrangulation is a planar map whose all faces have degree 4. For k ≥ 1, we define the distance-dependent twopoint function G k ≡ G k (g) of planar quadrangulations as the generating function of pointed rooted quadrangulations whose pointed vertex and root-vertex are at graph distance k from each other. The quadrangulations are enumerated with a weight g per face. Note that, since planar quadrangulations are bipartite maps, the graph distances from a given vertex to two neighboring vertices have different parities, hence their difference is ±1. In particular, in quadrangulations enumerated by G k , the endpoint of the root-edge is necessarily at distance k -1 or k + 1 from the pointed vertex.

A quadrangulation with a boundary is a rooted planar map whose all faces have degree 4, except the root-face, which is the face lying on the right of the root-edge, which has arbitrary degree. Note that this degree is necessarily even as the map is clearly bipartite. The faces different from the root-face are called inner faces and form the bulk of the map while the edges incident to the root-face (visited, say clockwise around the bulk) form the boundary of the map, whose length is the degree of the root-face.

As in [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF], we may compute G k by relating it to the generating function of slices, which are particular instances of quadrangulations with a boundary, characterized by the following properties: let 2 ( ≥ 1) be the length of the boundary, we call apex the vertex reached from the root-vertex by making elementary steps along the boundary clockwise around the bulk. The map at hand is a slice if (see figure 1):

• the graph distance from the root-vertex to the apex is . Otherwise stated, the left boundary of the slice, which is the portion (of length ) of boundary between the root-vertex and the apex clockwise around the bulk is a shortest path between its endpoints within the map; • the distance from the endpoint of the root-edge to the apex is -1. Otherwise stated, the right boundary of the slice, which is the portion (of length -1) of boundary between the endpoint of the root-edge and the apex counterclockwise around the bulk is a shortest path between its endpoints within the map; • the right boundary is the unique shortest path between its endpoints within the map; • the left and right boundaries do not meet before reaching the apex.

R 1 = Figure 2.
A schematic picture of a map enumerated by R 1 , referred to in this paper as a bundle between its two boundary vertices. We indicated only those edges which connect the extremities of the root-edge to emphasize the fact that their number may be arbitrarily large.
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. The one-to-one correspondence between pointed rooted quadrangulations whose root-edge has its extremities at respective distance k and k -1 from the pointed vertex (in red) and a slice with left-boundary length = k. On the left, we have drawn (in green) the leftmost shortest paths (starting with the root-edge itself) from the the root-vertex to the pointed vertex. Cutting along this path builds the slice on the right.

We call R k ≡ R k (g) (k ≥ 1) the generating function of slices with 1 ≤ ≤ k, enumerated with a weight g per inner face. Note that the root-edge-map, which is the map reduced to the single root-edge and a root-face of degree 2 is a slice with = 1 and contributes a term 1 to all R k for k ≥ 1. The generating function R 1 deserves some special attention: by definition, R 1 enumerates slices with = 1, hence with a boundary of length 2. The right boundary has length 0 and the apex is the endpoint of the root edge while the left boundary, of length 1, connects both extremities of the root-edge (which are necessarily distinct). This connection is also performed by the root-edge itself, and the map forms in general what we shall call a a bundle between the extremities of the root-edge (see figure 2). The function R 1 is thus the generating function of bundles between adjacent vertices.

2.2.

Relation between G k and R k . We may now easily relate G k to R k via the following argument: consider a pointed rooted quadrangulation enumerated by G k . As already mentioned, the endpoint of the root-edge is necessarily at distance k -1 or k +1 from the pointed vertex, which divides the maps at hand into two categories. Assume that the map belongs to the first category, for which the distance is k -1. Then we may draw the leftmost shortest path from the root-vertex to the pointed vertex, choosing as first step the root-edge itself (see figure 3). Cutting along this shortest path creates a map with a boundary of length 2k which is easily seen to be a slice of left-boundary length k, which is moreover not reduced to the root-edge-map when k = 1. Such slices are enumerated by R k -R k-1 (since we must suppress from R k the slices with 1 ≤ ≤ k -1) for k ≥ 2 and by R 1 -

1 for k = 1. This yield a contribution R k -R k-1 -δ k,1
to G k from the first category, where we take the usual convention that R 0 = 0. The second category corresponds to maps whose root-edge has its endpoint at distance k + 1 from the pointed vertex. By reversing the orientation of the root-edge, they are in bijection with maps of the first category, up to a change
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The decomposition of slices leading to eq. ( 2). If not reduced to the root-edge-map (weight 1), the slice with 1 ≤ ≤ k is decomposed by removing the face immediately on the left of the root-edge (weight g), whose intermediate vertices are at distance ( -1, -2) (in which case the second vertex lies on the right boundary), ( -1, ) or ( + 1, ). Cutting along the leftmost shortest paths from these vertices to the apex produces two sub-slices enumerated by

R k R k-1 , R 2 k and R k R k+1 respectively.
hence are enumerated by R k+1 -R k (since δ k+1,1 = 0 for k ≥ 1). To summarize, we have the relation

(1) G k = (R k -R k-1 -δ k,1 ) + (R k+1 -R k ) = R k+1 -R k-1 -δ k,1 , k ≥ 1
which the convention R 0 = 0. As for the slice generating functions R k (k ≥ 1), they satisfy the now well-known equation [START_REF] Bouttier | Geodesic distance in planar graphs[END_REF] (see below for its derivation)

(2)

R k = 1 + g R k (R k-1 + R k + R k+1 ) , k ≥ 1
with R 0 = 0. In particular, it is interesting to introduce the quantity R ∞ = lim k→∞ R k which is the generating function of slices with arbitrary left-boundary length ≥ 1. From (2), this quantity is directly obtained as the solution of (3) 2) may be viewed as a recursion on k (giving R k+1 from the knowledge of R k and R k-1 ) but this recursion requires at initial data the knowledge of R 1 . In the present case, it can be shown [START_REF] Bouttier | Census of planar maps: from the one-matrix model solution to a combinatorial proof[END_REF] that

R ∞ = 1 + 3g R 2 ∞ which satisfies R ∞ = 1 + O(g). Equation (
R 1 = R ∞ -g R 3 ∞ and
(2) allows one in principle to determine R k for all k. Getting an explicit expression for R k by this approach is a different story and so far, no real constructive way to solve (2) was proposed. Instead, the method used so far was to first guess the expression for R k and then verify that it solves [START_REF] Bouttier | Geodesic distance in planar graphs[END_REF]. This led to the explicit formula for R k given in [START_REF] Bouttier | Geodesic distance in planar graphs[END_REF], and eventually to G k . Another approach to determine R k was elaborated in [START_REF] Bouttier | Planar maps and continued fractions[END_REF] where it was shown that the R k 's appear as coefficients in a suitable continued fraction expansion for a standard generating function of quadrangulations with a boundary. In this paper, we present a new direct recursion relation for R k which we shall then solve explicitly in a constructive way.

To end this section, let us briefly recall for completeness the derivation of (2). Consider a map enumerated by R k not reduced to the root-edge-map and consider the face directly on the left of the root-edge. If the left-boundary length of the slice is (1 ≤ ≤ k), the sequence of distances to the apex of the four successive vertices 1 of the face, clockwise 1 In all generality, it may happen that the four vertices are not distinct, in which case we must more precisely consider the four successive corners around the face, the distance to the apex of a corner being around the face starting from the root-vertex is either 4). Note that each of these paths of length 3 has exactly two "descending steps" (i.e. steps for which the distance decreases by 1). We may now draw, starting from the two intermediate vertices, the leftmost shortest paths from these vertices to the apex. This divides the slice into two slices (see figure 4) whose two root-edges correspond precisely to the two descending steps. For the sequence → -1 → -2 → -1, the respective left-boundary lengths of the two slices are and -1 with max( , ) = . Demanding ≤ k is equivalent to demanding ≤ k and -1 ≤ k -1 so that the slice pairs are enumerated by R k R k-1 , which explains the first of the three quadratic terms in [START_REF] Bouttier | Geodesic distance in planar graphs[END_REF]. The two other terms come from the two other possible distance sequences, while the first term 1 corresponds to the edge-root-map. This explains (2).
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A direct recursion relation for slice generating functions

3.1. Definition of the dividing line. We shall now derive a new direct recursion for R k . More precisely, our recursion is best expressed in terms of the generating function (4)

T k ≡ R k -R 1 , k ≥ 1
which enumerates slices with left-boundary length satisfying 2 ≤ ≤ k (in particular T 1 = 0). As in [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF], our recursion is based on a decomposition of the map along a particular dividing line which we define now. Consider a slice with left-boundary length ≥ 3. The dividing line is a sequence of edges which are alternatively of type -2 → -1 and -1 → -2. It forms a simple open curve which connects the right and left boundaries of the slice, hence separates the apex from the root-vertex. To construct the line, we proceed as follows: consider the vertices v 0 and v 0 of the right boundary at respective distance -2 and -3 from the apex and consider the face directly on the left of the right-boundary edge linking v 0 to v 0 (see figure 5). Call w 0 and w 0 the two other vertices incident to this face (so that the sequence clockwise around the face is v 0 → w 0 → w 0 → v 0 ). The four the distance to the apex of the incident vertex. Our statements may be straightforwardly adapted to these cases. vertices are necessarily distinct as otherwise, we could find a shortest path from v 0 to the apex lying strictly to the left of the right boundary, in contradiction with the fact that the right-boundary is the unique shortest path from the endpoint x 0 of the root-edge to the apex. Moreover, the distance from w 0 to the apex (which is a priori -3 or -1) cannot be equal to -3 as this would again imply the existence of a shortest path from v 0 to the apex, hence also from x 0 to the apex, lying strictly to the left of the right boundary. The clockwise sequence of labels is thus necessarily

-1 -1 -1 v p -2 v 0 -2 -1 x p -2 -2 -1 -1 -1 v p -2 v 0 -2 -1 x p -2 -2 x 0 x 0 (a) (b)
-2 → -1 → -2 → -3.
In particular, w 0 cannot be equal to x 0 since w 0 has a neighbor at distance -2 which does not lie on the right boundary. We conclude that there exists a path of two steps going from v 0 to a nearest neighbor w 0 at distance -1 distinct from x 0 and then to a next-nearest neighbor w 0 at distance -2 distinct from v 0 . Let us pick the leftmost such path of two steps, i.e. going from v 0 to a nearest neighbor x 1 at distance -1 distinct from x 0 and then to a next-nearest neighbor v 1 at distance -2 distinct from v 0 . We may now draw the leftmost shortest path P 1 from x 1 to the apex, starting with the edge x 1 → v 1 , and call v 1 the vertex at distance -3 along P 1 . Considering the face immediately on the left of the edge of P 1 from v 1 to v 1 , and calling w 1 and w 1 the two other incident vertices, again the four vertices v 1 , w 1 , w 1 , v 1 around the face are necessarily distinct as otherwise, P 1 would not be a leftmost shortest path, and, for the same reasons as above, w 1 and w 1 are necessarily at respective distances -1 and -2 from the apex. In particular, w 1 cannot be equal to x 1 as otherwise, x 1 would have a neighbor w 1 at distance -2 distinct from v 0 2 and strictly to the left of v 1 , a contradiction. To summarize, this proves the existence of a path of two steps going from v 1 to a nearest neighbor at distance -1 distinct from x 1 and then to a next-nearest neighbor at distance -2 distinct from v 1 . Again we pick the leftmost such path and call x 2 and v 2 the corresponding vertices (see figure 5), then drawn the leftmost shortest path P 2 from x 2 to the apex (starting with the edge x 2 → v 2 ). Continuing this way, we build by simple concatenation of the right-boundary edge from x 0 to v 0 and of all the elementary two-step paths a path connecting x 0 to v 0 to x 1 to v 1 to x 2 to v 2 and so on, where all the x i 's are at distance -1 from the apex and all the v i 's at distance -2. As explained below, this path cannot form a loop so it defines an open simple curve which necessarily reaches, after p iterations of the process (p ≥ 1), the vertex v p lying on the left boundary at distance -2 from the apex: this path defines our dividing line. Note that two situations may occur according to whether x p itself belongs to the left boundary or not (see figure 6).

By construction, the dividing line is thus a simple open curve connecting x 0 to v p by visiting alternatively vertices at distance -1 and -2 from the apex. The line therefore 2 The fact that w 1 is itself distinct from v 0 is because otherwise, the edge w 1 → v 1 would lie strictly to the left of the right boundary and connect v 0 to a vertex at distance -3, which is forbidden. separates two domains in the slice, an upper part containing the apex and a lower part containing the root-vertex. Clearly, since a path from the apex to the lower part must cross the dividing line, all the the vertices strictly inside the lower part are at distance at least -1 from the apex. By construction, the dividing line satisfies moreover the following property (illustrated in figure 7):
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Property 1.
• Two vertices of the dividing line cannot be linked by an edge lying strictly inside the lower part. • Two vertices of the dividing line at distance -2 cannot have a common neighbor strictly inside the lower part.

The first statement is clear as the existence of an edge linking two vertices of the dividing line and inside the lower part would produce at some iteration of the dividing line construction an acceptable two-step path lying to the left of the chosen one. As for the second statement, the common vertex would necessarily be at distance -1 and again an acceptable two-step path would lie to the left of the chosen one. Note that, by contrast, pairs of vertices of the dividing line at distance -1 may have a common neighbor strictly inside the lower part.

The fact that the concatenation of our two-step paths cannot form a loop may be understood via arguments similar to those discussed in [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF]. The proof is as follows: assume that the line forms a loop and consider the first vertex v i , i ≥ 0 (or respectively x j , j > 0) at which a double point arrises, i.e. v i+m = v i for some m > 1 (respectively x j+m = x j ). Note that m = 1 is not possible from our construction of the two-step paths. Note also that the connection cannot occur at x 0 as this vertex has only one neighbor, v 0 , at distance -2. If the connection occurs from the left (see figure 8), then the two-step path

v i → x i+m → v i+m-1 (respectively v j-1 → x j → v j+m-1 ) lies on the left of the chosen path v i → x i+1 → v i+1 (respectively v j-1 → x j → v j
) and should thus have been chosen instead of this latter path. This is a contradiction. If the connection occurs from the right, we use the property that, by construction, each vertex v n of the dividing line at distance -2 from the apex has a neighbor on P n , therefore on its right, at distance -3 from the apex (see figure 8). Then a loop closing from the right encloses at least one vertex at distance -3 (for instance the neighbor of v i+m , respectively of v j+m-1 ) which is de facto surrounded by a frontier made of vertices at distance -2 and -1, a contraction. We conclude that the dividing line cannot form a loop and necessarily ends on the left boundary. As a final remark, we considered so far slices whose left-boundary length satisfies ≥ 3. When dealing with T k , we also need to consider slices with = 2. For such slices, we define the dividing line as made of the single right-boundary edge linking the endpoint x 0 of the root-edge to the apex v 0 .
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Decomposition of slices.

As in [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF], the dividing line allows us to decompose slices enumerated by T k in a way which leads to a direct recursion relating T k to T k-1 . As in previous section, the sequence of vertices along the dividing line will be denoted by (x 0 , v 0 , x 1 , v 1 , • • • , x p , v p ) with p ≥ 0, where the vertices x i (respectively v i ) are at distance -1 (respectively -2) from the apex, being the left-boundary length of the slice (and the constraint that p = 0 if and only if = 2). The decomposition is as follows: as already mentioned, the dividing line separates the slice into two domains, a lower part which contains the root-vertex and a complementary upper part (empty if and only if = 2). For ≥ 3, this upper part may be decomposed into slices by drawing the leftmost shortest path P i from each vertex x i (0 ≤ i ≤ p) to the apex (the path starting with the edge of the dividing line linking x i to v i ). Note that P 0 is the right boundary while P p sticks to the left boundary from v p to the apex. The paths P i decompose the upper part in p slices of left-boundary lengths between 2 and k -1, hence enumerated by T k-1 , with a slice associated to each step v i-1 → x i (1 ≤ i ≤ p) along the dividing line (the root-edge of this slice being the edge of the dividing line linking v i-1 to x i , oriented from x i to v i-1 -se figure 9).

More interesting is the decomposition of the lower part. We start by looking at the connections of the root-vertex to the dividing line: the root vertex, at distance from the apex, is, in all generality, adjacent to a number of vertices x i of the dividing line. These include x 0 plus possibly a number of other x i 's, for instance x p in the situation (b) of figure 6. Note that these connections are in general achieved by a bundle (whose boundary if formed by the extremal edges performing the connection from the root-vertex to

x i ). Now ≤ k -2 -2 T k-1 R 1 -1 W 2,1 T k-1 -1 W 1,2 W 2,2 W 2,2 y (2) j y (1) j v j x i Figure 9.
The decomposition of a slice on both sides of the dividing line (see text). In the upper part, a slice enumerated by T k-1 is created for each black-white edge of the dividing line (represented in red, supposedly oriented toward the left -here black and white vertices are represented by filled or empty red circles). In the lower part, a first bundle (enumerated by R 1 ) between the extremities of the root-edge is completed by a sequence of blocks (here represented alternatively in grey and yellow). Each block has its right and left frontiers of lengths 1 or 2 and is enumerated by W 1,1 , W 1,2 , W 2,1 or W 2,2 accordingly. In the present illustration, we have one (2, 1) block, one (1, 2) block and two (2, 2) blocks.

the root-vertex is also in all generality, connected to a number of vertices v j of the dividing line by two-step paths whose intermediate vertex y j lies strictly inside the lower domain (and is at distance -1 from the apex). These include for instance v p in the situation (a) of figure 6. The connection from the root-vertex to y j and from y j to v j is achieved in general by a pair of bundles. Moreover several intermediate vertices y

(1)

j , y (2) 
j , • • • , y (m) 
j may exist for the same v j (see figure 9). Now for each connection from the root-vertex to some x i , we cut along the leftmost edge performing this connection and for each two-step-path connection from the root-vertex to some v j via some y j , we cut along the leftmost two-step path performing the connection. If several intermediate vertices y

(1) j , y (2) j , • • • , y (m) j
exist, we make one cut for each occurrence of such a vertex (see figure 9). These cuts divide the lower part into a sequence of connected domains whose left and right frontiers correspond to the performed cuts and have length 1 if the corresponding cut leads to some x i or 2 if the corresponding cut leads to some v j . The domains may thus be classified in four categories:

(1, 1), (1, 2), (2, 1) or (2, 2) according to their right-and left-frontier length respectively (for instance, the type (1, 2) corresponds to a right-frontier length 1 and a left-frontier length 2). To be precise, the decomposition of the lower part may be characterized by some sequence a 0 , a 1 , • • • , a n , n ≥ 1 (with a i , ∈ {1, 2}) corresponding to the successive encountered frontier lengths for the cut domains. To each elementary step a i → a i+1 of the sequence is attached a block of type (a i , a i+1 ).

The beginning of the sequence requires some special attention. Indeed, in the cutting, a first bundle from the root-vertex to x 0 is delimited, enumerated by R 1 (see figure 9), Ignoring this first bundle, the effective right frontier of the first block is therefore a two-step path from the root-vertex to y 0 = x 0 , then to v 0 . We thus should start our sequence with a 0 = 2 (note that the root vertex may be also connected to v 0 by two-step paths lying strictly inside the lower part, in which case a 1 = 2 too). The sequence ends either with a n = 2 if the dividing line is in the situation (a) of figure 6 or with a n = 1 if the dividing line is in the situation (b) of figure 6.

T k-1 R 1 W 1,1 T k-1 h 2i (T k-1 ) i-1 T k-1 R 1 W 1,2 T k-1 h 2i (T k-1 ) i -2 T k-1 R 1 W 2,1 T k-1 h 2i (T k-1 ) i -1 R 1 T k-1 T k-1 R 1 W 2,2 T k-1 h 2i (T k-1 ) i -2 R 1 T k-1
Let us now discuss the weight that should be attached to each block of the sequence if we wish to compute T k . Consider first a block of type (1, 1) (see figure 10): it has an overall boundary of length 2i ≥ 4 made of its right frontier (a single edge of length 1), its left frontier (a single edge of length 1 which is in general the leftmost edge of a bundle) and a portion of length 2i -2 of the dividing line which goes from some x j to x j+i-1 , hence contains i -1 edges of type v m → x m+1 , giving rise to i -1 slices in the upper part, hence producing a weight T i-1 k-1 . As for the block itself in the lower part, we may decide to cut out the bundle to which belongs the left frontier of the block, giving rise to a weight R 1 . The remaining part (which has now as left frontier the rightmost edge of the bundle) is enumerated by some generating function h 2i = h 2i (g) for particular quadrangulations with a boundary of length 2i satisfying special constraints which we will discuss below (see Property 2). At this stage, let us just mention that we decide to choose as root-edge for these quadrangulation the edge starting from the root-vertex counterclockwise around the domain.

To summarize, the weight attached to a (1, 1) block is

W 1,1 = R 1 i≥2 h 2i T i-1 k-1 .
If we now consider a block of type (1, 2) of the lower domain, it has an overall boundary of length 2i ≥ 4 made of its right frontier (a single edge of length 1), its left frontier (a two-step path of length 2 which is in general part of a pair of bundles) a portion of length 2i -3 of the dividing line which goes from some x j to v j+i-2 , hence contains i -2 edges of type v m → x m+1 , giving rise to i -2 slices in the upper domain, hence a weight T i-2 k-1 . As for the part in the lower domain, we again decide to cut out the pair of bundles to which belongs the left frontier of the block, giving rise to a weight R 2 1 . The remaining part is again enumerated by h 2i since the remaining quadrangulation of boundary length i is precisely of the same type as above. The weight attached to a (1, 2) block is therefore

W 1,1 = R 2 1 i≥2 h 2i T i-2 k-1 .
Repeating the argument for (2, 1) and (2, 2) blocks, we find (see figure 10)

W 2,1 = W 1,1 W 2,2 = W 1,2 ,
so that W a,a actually depends only on the second index a (this is because both the number of bundles on the left side of the block and the number of created slices in the upper part for a fixed i depend only on a -see figure 10). To get T k , we must sum over all possible sequences a 0 , a 1 , • • • , a n . Since a 0 = 2 is fixed and all the other a i 's are free (including a n ) and since the weights W a,a depends only on a , we immediately deduce the contribution

R 1 a 0 =2 a 1 ,••• ,an∈{1,2} n-1 i=0 W ai,ai+1 = R 1   R 1 i≥2 h 2i T i-1 k-1 + R 2 1 i≥2 h 2i T i-2 k-1   n
for a sequence of length n, where we re-introduced the weight R 1 for the bundle from the root-vertex to x 0 . Recall that n ≥ 1 since we have at least one block. Note also that slices with = 2 contribute to all values of n via the i = 2 term of the second sum in the parenthesis above 3 . Summing over all n ≥ 1, we arrive at the desired recursion relation

T k = R 1 R 1 i≥2 h 2i T i-1 k-1 + R 2 1 i≥2 h 2i T i-2 k-1 1 -R 1 i≥2 h 2i T i-1 k-1 + R 2 1 i≥2 h 2i T i-2 k-1
or in short ( 5)

T k = R 2 1 (T k-1 + R 1 ) Φ(T k-1 ) 1 -R 1 (T k-1 + R 1 ) Φ(T k-1 ) , Φ(T ) ≡ Φ(T, g) = i≥2 h 2i (g) T i-2 .
To end the section, it remains to characterize the quadrangulations with a boundary of length 2i (i ≥ 2) enumerated by h 2i ≡ h 2i (g), where g is the weight per face. By construction, the boundary of these quadrangulations is a simple curve and we may for convenience decide to color the boundary vertices alternatively in black and white, the root-vertex being black (thus the v i 's at hand are also black and the x j and y (α) j are white). The maps enumerated by h 2i are further characterized by the following property (see figure 11): Property 2.

• In the maps enumerated by h 2i , two vertices of the boundary cannot be linked by an edge lying strictly inside the map. • In the maps enumerated by h 2i , two black vertices of the boundary cannot have a common (white) adjadent vertex strictly inside the map.

3 For = 2, we have a i = 2 for all i (0 ≤ i ≤ n) and all the blocks have boundary length 4, hence are enumerated by R 2 1 h 4 . In particular with have For pairs of vertices belonging to the dividing line, these properties are a direct consequence of Property 1. For pairs involving the other vertices (i.e. the root vertex or the intermediate vertices y j ), these properties are a direct consequence of the block decomposition. As in [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF], it is remarkable that, while, in the decomposition, boundary vertices of the domains enumerated by h 2i play different roles, the characterization of these domains via Property 2 turns out to be symmetric for all boundary vertices.

T 2 = R 1 n≥1 (R 2 1 h 4 ) n = R 3 1 h 4 /(1 -R 2 1 h 4 ),

Simple quadrangulations

4.1. From general to simple quadrangulations. As in [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF], we may slightly simplify our recursion by eliminating R 1 from our problem. At the level of maps, it amounts to restrict our analysis to simple quadrangulations (with a boundary), i.e. quadrangulations without multiple edges. We thus define simple analogs of R k and T k , namely the generating function r k ≡ r k (G) of simple slices with left-boundary length in the range 1 ≤ ≤ k and t k ≡ t k (G) for simple slices with 2 ≤ ≤ k, with a weight G per inner face. Similarly, we define h2i ≡ h2i (G) as the generating function, with a weight G per inner face, of simple quadrangulations with a boundary of length 2i forming a simple curve (i.e. which does not cross itself), and which satisfy Property 2. As it is well-known, we may pass from simple quadrangulations to general quadrangulations by a substitution in the generating functions. Indeed, a general quadrangulation is obtained from a simple one by replacing each edge of the simple quadrangulation by a bundle, as we defined it. Since the generating function for bundles is R 1 , the generating functions R k , T k , and h 2i may in practice be obtained from r k , t k , and h2i by a substitution as follows: consider a quandrangulation with F inner faces, E inner edges and 2L edges on the boundary. We have the relation 4F = 2E + 2L so that

E = 2F -L .
In the case of maps enumerated by R k (respectively T k ), we must, starting from maps enumerated by r k (respectively t k ), put a weight R 1 to each inner edge as well as to each of the L = edges of the left boundary and finally to the root edge. No weight R 1 is assigned to the edges of the right boundary as bundles cannot be present there since the right boundary is the unique shortest path between its extremities. We must thus assign a global weight

R E+L+1 1 = R 1 × R 2F
1 (note that, written this way, the weight is independent of ). In other words, we must assign a weight R 2 1 per face and a global factor R 1 , which yields the relations

(6) R k (g) = R 1 r k (G) , T k (g) = R 1 t k (G) ,
with the correspondence

(7) G = g R 2 1 .
Note that the relation

T k = R k -R 1 translates into t k = r k -1
consistent with the fact that there is a unique simple slice with = 1, the root-edge-map, hence r 1 = 1. As for h 2i , it is obtained by assigning a weight R 1 to all the inner edges of the maps enumerated by h2i . Again, because of Property 2, there cannot be multiple edges on the boundary. We must thus assign a global weight

R E 1 = R 2F -L 1 = R 2F -i 1
since L = i in this case. In other word, we must again assign an extra weight R 2 1 per face and now a global factor R -i 1 , which yields [START_REF] Brown | Enumeration of quadrangular dissections of the disk[END_REF] h 2i (g) = R -i 1 h2i (G) with the correspondence [START_REF] Bouttier | Planar maps and continued fractions[END_REF]. Introducing the quantity ( 9)

Φ(t) ≡ Φ(t, G) = i≥2 h2i (G) t i-2 ,
we deduce from ( 8)

Φ(T ) = R -2 1 Φ(t) , T = R 1 t
with the implicit correspondence [START_REF] Bouttier | Planar maps and continued fractions[END_REF]. Finally, the recursion ( 5) translates into the simpler relation ( 10)

t k = (t k-1 + 1) Φ(t k-1 ) 1 -(t k-1 + 1) Φ(t k-1 )
(with t 1 = 0) where, as promised, R 1 is no longer present. As in [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF], we note that there is no straightforward analog of the relation (1) for simple quadrangulations. This is because closing a slice into a planar quadrangulations by identifying its right and left boundaries as in figure 3 may in general create multiple edges. The recourse to simple slices in this paper should therefore simply be viewed as a non-essential but convenient way to slightly simplify our recursion by temporarily removing the R 1 factors.

An equation for Φ(t).

In order to solve [START_REF] Fusy | The two-point function of bicolored planar maps[END_REF], and eventually (5), we need some more explicit expression for Φ(t). Such expression may be obtained by first noting that Φ(t) is fully determined by the following equation:

(11) Φ(t) = G + G t (t + 1) Φ(t) 1 -(t + 1) Φ(t) - h4 
1 -h4 which may equivalently be written as

t(1 + t) Φ2 (t) + (G(1 + t)(1 -t + g 4 ) -t) Φ(t) + G(t -g 4 ) = 0 , g 4 ≡ h4 1 -h4 .
Let us first prove [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF] and then show how to get Φ(t) out of it. From the definition (9), t 2 Φ(t) enumerates simple quandrangulations with a boundary of arbitrary length 2i (i ≥ 2) forming a simple curve and satisfying Property 2, with a weight G per inner face and a weight √ t per boundary edge. The quadrangulation may be reduced to a single face (with a boundary of length 4), leading to a first contribution t 2 G to t 2 Φ(t), hence (after dividing by t 2 ) to the first term in [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF]. In all the other cases, we may look at the face immediately on the left of the root-edge and call v and w its black and white incident vertices other than the extremities of the root-edge (recall that we decided for convenience to bi-color the map in black and white, the root-vertex being black). The (black) vertex v cannot lie on the boundary as otherwise, w (which could not lie in this case on the boundary because of the first requirement of Property 2) would be a common neighbor to v and to the root-vertex, thus violating the second requirement of Property 2. So v lies strictly inside the map. As for the (white) vertex w, it may lie on the boundary (see figure 12-case (a)) or not (case

G v w G v w (a) (b) 
Figure 12. The decomposition of a map enumerated by Φ(t) (and not reduced to a single face). The map is decomposed by removing the face (in gray -weight G) on the left of the root-edge and cutting along all the connections of the black vertex v (incident to the gray face and strictly inside the map) to boundary vertices by either simple edges or by two-step paths. The white vertex w (incident to the gray face and different from the root-edge extremities) may lie on the boundary (case (a)) or not (case (b)). In this latter case, it cannot be connected to other black boundary vertices than the root-vertex.

G v w h4 h4 h4

Figure 13. A schematic picture of those maps which have the structure of figure 12 but which do not contribute to Φ(t) since their boundary length is 2 (hence less than 4).

(b)). In this latter case, w cannot be connected to a vertex of the boundary other than the root-vertex as otherwise, the second requirement of Property 2 would again be violated. On the other hand, the vertex v is connected by simple edges to a number of white vertices of the boundary (including the endpoint of the root-edge as well as w in case (a)), and may be connected by two-step paths to black vertices of the boundary (including the root-vertex in case (b)). Let us draw all these connections and cut the map along them. After cutting, the face to the left of the root edge gets disconnected and contributes a weight t G to t 2 Φ(t) in case (a) and a weight √ t G in case (b). The rest of the map forms a sequence of blocks. As we did before in the slice decomposition, we may consider the sequence a 0 , a 1 , • • • , a n (n ≥ 1) of the lengths 1 or 2 of the (counterclockwise) successive connections of v to boundary vertices (with 1 for a simple edge connection to a white vertex and 2 for a two-step-path connection to a black vertex). We have a 0 = 1 since the first connection is from v to the white endpoint of the root-edge while a n = 1 in case (a) and a n = 2 in case (b). Now the m-th block has a boundary of total arbitrary length 2j for some j ≥ 2, with 2ja m-1a m edges on the original boundary of the map. It must thus be given a weight w(a m-1 , a m ) with

w(a, a ) = j≥2 h2j ( √ t) 2j-a-a = ( √ t) 4-a-a Φ(t)
Considering both cases (a) and (b), the contribution to t 2 Φ(t) of sequences of n blocks (together with that of the face on the left of the root-edge) is therefore

Φ(t) n    a 0 =1,an =1 a 2 ,••• ,a n-1 ∈{1,2} t G n m=1 ( √ t) 4-am-1-am + a 0 =1,an=2 a 2 ,••• ,a n-1 ∈{1,2} √ t G n m=1 ( √ t) 4-am-1-am    = t G Φ(t) n    an=1 a 2 ,••• ,a n-1 ∈{1,2} n m=1 t 2-am + an =2 a 2 ,••• ,a n-1 ∈{1,2} n m=1 t 2-am    = t G Φ(t) n a1,a2,••• ,an∈{1,2} n m=1 t 2-am = t G Φ(t) n (t + 1) n .
To go from the first to the second line, we simply use the fact that a 0 = a n for sequences of the first sum and a 0 = a n -1 for sequences of the second sum. Summing over n ≥ 1 yields the contribution [START_REF] Jacquard | A bijective census of nonseparable planar maps[END_REF] t G (t + 1) Φ(t) 1 -(t + 1) Φ(t) to t 2 Φ(t), hence (after dividing by t 2 ) to the second term in [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF]. So far in our decomposition, we did not enforce the condition that, in Φ(t), the length 2i of the maps must satisfy i ≥ 2. In our block sequences, there is a situation where this length happens to be 2 (i.e. i = 1) (see figure 13): it corresponds to a situation of case (b) with a first block of boundary length 4 whose boundary vertices are v, w and the two extremities of the root-edge (and with exactly 1 edge on the original boundary of the whole map), completed by arbitrarily many blocks of size 4 whose boundaries are made of two-step-paths from v to the root-vertex (these blocks do not contribute to the original boundary length). These maps, made of n ≥ 1 blocks enumerated by h4 contribute

t G n≥1 ( h4 ) n = t G h4 1 -h4
to [START_REF] Jacquard | A bijective census of nonseparable planar maps[END_REF] and must be subtracted to properly recover t 2 Φ(t). This explains (after dividing by t 2 ) the third term in [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF].

An expression for Φ(t).

We shall now extract from (11) a tractable expression for Φ(t). The first step consists in getting from the equation an expression for h4 = h4 (G) as a function of the face weight G. Here we use the following standard trick: from (11), we may write

(13) h4 = t(t + 1) Φ2 (t) -(G(t + 1)(t -1) + t) Φ(t) + G t t(t + 1) Φ2 (t) -(G(t + 1)t + t) Φ(t) + G (t + 1)
which, upon differentiating with respect to t (recall that h4 does not depend on t), yields 0 = d h4 dt

⇒ 0 = Φ (t) t (t + 1) 2 Φ2 (t) -2(t + 1) Φ(t) + 1 -G -G + Φ(t) (t + 1) 2 Φ2 (t) -2(t + 1) Φ(t) + 1 -G -G 1 -(t + 1) Φ(t) 2 .
This equation is satisfied in particular if we let t vary on a line t = t(G) where each of the two terms between brackets in the above expression vanishes. Canceling these two terms and solving for G and Φ yields the following two possible solutions

G = t(G) (1 + t(G)) 3 and Φ(t(G)) = t(G) (1 + t(G)) 2 or G = 1 t(G)(1 + t(G)) and Φ(t(G)) = 1 t(G)
which select two lines t = t(G) where we know the value of Φ. Plugging these values in [START_REF] Kuba | A note on naturally embedded ternary trees[END_REF] 

yields h4 = t(G)(1 -t(G)) 1 + t(G) -t(G) 2
for the first choice and h4 = 1 + G for the second choice. This latter result is clearly not satisfactory (recall that h4 enumerates simple quandrangulations with a boundary of length 4 satisfying Property 2, with a weight G per face) so we are left with the first choice. In other words we deduce from our particular solution the parametric expression for h4 :

(14) h4 = C(1 -C) 1 + C -C 2 , where G = C (1 + C) 3
(here C = t(G) should be viewed as a simple parametrization of G) which implicitly determines h4 as a function of G.

Inverting the relation between G and C, we get

(15) C = n≥1 1 2n + 1 3n n G n .
Note that we implicitly assume that 0 ≤ G ≤ 4/27 for C to be well-defined as above, which in turns implies that C lies in the range 0 ≤ C ≤ 1/2. This is consistent with the fact that the number of simple quandrangulations grows exponentially with the number F of faces as (27/4) F [START_REF] Brown | Enumeration of quadrangular dissections of the disk[END_REF]. Now a Lagrange inversion yields the following formula

[G p ] h4 = p-1 n=0 (-1) n ω n+2 -ω -n-2 √ 5 (n + 1)(3p)! p(p -1 -n)!(2p + 1 + n)! , ω = 1 + √ 5 2
(involving Fibonacci numbers) for the number of simple quandrangulations with a boundary of length 4, with p inner faces, satisfying Property 2. The first terms of this expansion read

(16) h4 = G + G 2 + 3G 3 + 11G 4 + 46G 5 + 209G 6 + • • •
with coefficients which may easily be verified by direct inspections of the maps at hand. (see figure 14). This sequence appears in [START_REF] Kuba | A note on naturally embedded ternary trees[END_REF] in the context of the enumeration of naturally embedded ternary trees. This should not come as a surprise since bijections exist between such trees and simple quadrangulations [START_REF] Jacquard | A bijective census of nonseparable planar maps[END_REF][START_REF] Bouttier | Distance statistics in quadrangulations with no multiple edges and the geometry of minbus[END_REF].

With the parametrization [START_REF] Schaeffer | Conjugaison d'arbres et cartes combinatoires aléatoires[END_REF], equation ( 11) may be rewritten as a quadratic equation ( 17)

t(t + 1)(1 + C) 3 Φ2 (t)+ C(1+C -C 2 ) -t(1+3C +2C 2 +2C 3 ) -t 2 C Φ(t) + C(t -C + C 2 ) = 0 whose discriminant reads ∆ = (C -t) 2 (1 + C 2 -C(t -1)) 2 -4C 2 (1 + C)(t + 1) . 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 G G 2 3G 3 11G 4 46G 5
Figure 14. A direct inspection of the maps enumerated by h4 and with up to 5 inner faces. To obtain all the acceptable maps, each of the maps presented here must also be reflected along its two diagonals (and re-rooted at its bottom edge). According to the symmetry of the map at hand, the number of distinct maps obtained by these reflections is 1, 2 or 4 as indicated. Summing these numbers yields respectively 1, 1, 3, 11 and 46 distinct maps with 1, 2, 3, 4 and 5 inner faces, explaining the first five terms of (16).

A look at the second factor suggests introducing the quantity4 Y (t), solution of (18)

Y 2 (t) + (1 + C 2 -C(t -1)) Y (t) + C 2 (1 + C)(t + 1) = 0
whose two solutions Y ± (t) are related by the following involution (obtained by eliminating t between the equation (18) for Y (t) = Y + (t) and the same equation for Y

(t) = Y -(t)): (19) Y ± (t) = C(1 + C)((1 + C) 2 + Y ∓ (t)) Y ∓ (t) -C(1 + C) .
For both determinations, we have the relation (directly read off (18)):

(20) t = (1 + C + Y (t))(C 2 + Y (t)) C(Y (t) -C -C 2 ) .
Plugging this value in (17) allows to rewrite the equation for Φ(t) as

Φ(t) - C(1 + C + C 2 + Y (t)) (1 + C + Y (t))((1 + C) 2 + Y (t)) × Φ(t) - C(Y (t) -C(1 + C))(Y (t) + C 2 (1 + C)) (1 + C) 3 Y (t)(C 2 + Y (t)) = 0 .
This gives a priori two possible expressions for Φ(t) as a function of Y (t) but it is easily seen that the two formulas get interchanged by the involution (19). We may therefore decide to choose the expression coming from the first factor, namely

Φ(t) = C(1 + C -C 2 + Y (t)) (1 + C + Y (t))((1 + C) 2 + Y (t)) (21) 
provided we pick the correct determination of Y (t). This determination is fixed by the small t behavior Φ(t) = h4 + O(t) with the formula [START_REF] Schaeffer | Conjugaison d'arbres et cartes combinatoires aléatoires[END_REF] for h4 . This selects the determination (recall that 0

≤ C ≤ 1/2) (22) Y (t) = 1 2 C(t -1) -1 -C 2 + (1 + C 2 -C(t -1)) 2 -4C 2 (1 + C)(t + 1)
(indeed, we then have Y (0) = -C 2 and we recover for Φ(0) the correct expression ( 14) for h4 while the other determination would yield Y (0) = -C -1 in which case Φ(t) would diverge for t → 0). Finally, from (20), the expression (21) may be simplified into

(23) Φ(t) = C 2 Y (t)(1 + C + Y (t)) + 1 t + 1 .
Equations ( 23), ( 22) and ( 15), which implicitly fix Φ(t) = Φ(t, G) in terms of G, are very reminiscent of similar expressions for triangulations (see [START_REF] Tutte | A census of planar triangulations[END_REF][START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF])

5. Solution of the recursion 5.1. Solution for simple quadrangulations. We are now ready to solve [START_REF] Fusy | The two-point function of bicolored planar maps[END_REF]. Again, as in [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF], the idea is to rewrite this recursion in terms of the variable Y (t). More precisely, let us define

Y k ≡ Y (t k ) , Φk ≡ Φ(t k ) .
From (20), we have the relations (24)

t k = (1 + C + Y k )(C 2 + Y k ) C(Y k -C -C 2 ) , t k-1 = (1 + C + Y k-1 )(C 2 + Y k-1 ) C(Y k-1 -C -C 2 ) .
Our recursion (10) reads (25)

t k = (t k-1 + 1) Φk-1 1 -(t k-1 + 1) Φk-1 with, from (23), Φk-1 = C 2 Y k-1 (1 + C + Y k-1 ) + 1 t k-1 + 1 .
Inserting this expression in (25) and plugging the value (24) of t k-1 , we obtain t k as a function of Y k-1 , namely:

t k = Y k-1 (C 2 -C -1 -Y k-1 ) C((1 + C) 2 + Y k-1
) .

Equating this formula with that of (24) for t k , we obtain the following relation between Y k and Y k-1 :

(

1 + C + Y k-1 + Y k ) C 2 (1 + C) 2 -C(1 + C)Y k-1 + (1 + C) 2 Y k + Y k-1 Y k = 0 .
To choose which factor to cancel, we note that, for G → 0, t k and t k-1 tend to 0 and thus Y k and Y k-1 tend to -C 2 → 0 so the first factor does not vanish. The correct choice is therefore to cancel the second factor and we arrive at the remarkably simple recursion relation for Y k :

(26)

Y k = C(1 + C) Y k-1 -C 2 (1 + C) 2 Y k-1 + (1 + C) 2 .
As recalled in [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF], solving such a recursion relation is a standard exercise. To solve more generally the equation

Y k = f (Y k-1 ) , f (Y ) ≡ a Y + b c Y + d ,
we introduce the two fixed points α and β of the function f (i.e. the two solutions of f (Y ) = Y ). Then the quantity

W k = Y k -α Y k -β satisfies W k = x W k-1 , hence W k = x k-1 W 1 , x ≡ c β + d c α + d . The desired Y k is recovered via Y k = (α -β W k )/(1 -W k ) (note
that α and β are supposed to be distinct, as will be verified a posteriori).

In our case, we may take

a = C(1 + C) , b = -C 2 (1 + C) 2 , c = 1 , d = (1 + C) 2 so that α = 1 2 (1 + C) 1 -4C 2 -1 β = 1 2 (1 + C) -1 -4C 2 -1 x = 1 - √ 1 -4C 2 2C (in particular, α = β for C = 1/2, i.e. x = 1). The last formula is inverted into C = x 1 + x 2
and the first two may then be rewritten as

α = -x 2 1 + x + x 2 (1 + x 2 ) 2 β = - 1 + x + x 2 (1 + x 2 ) 2 .
The initial condition reads

t 1 = 0 ⇒ Y 1 = -C 2 ⇒ W 1 = -C 2 -α -C 2 -β = x 3 so that W k = x k-1 W 1 = x k+2 and Y k = -x 2 1 + x + x 2 (1 + x 2 ) 2 1 -x k 1 -x k+2 .
Plugging this expression in (24) gives

t k = x 1 + x 2 (1 -x k-1 )(1 -x k+4 ) (1 -x k+1 )(1 -x k+2 )
and eventually

r k = t k + 1 = 1 + x + x 2 1 + x 2 (1 -x k )(1 -x k+3 ) (1 -x k+1 )(1 -x k+2 )
.

From the connection ( 14) between G and C and that just above between C and x, we deduce the relation between G and x:

G = x (1 + x 2 ) 2 (1 + x + x 2 ) 3 .
Note the that the condition x = 1 is satisfied for 0 ≤ G < 4/27. All the expressions above are invariant under x → 1/x, so we may always choose x such that 0 ≤ x < 1.

As a final remark, we note that t ∞ ≡ lim k→∞ t k = x/(1 + x 2 ) = C (the quantity t ∞ enumerates simple slices with arbitrary left-boundary length ≥ 2). Recall that the parameter C is nothing but the particular value t(G) of t used in Section 4.3 to determine h4 as a function of G. The line used in Section 4.3 is thus in fact the line t = t ∞ (G). The value Φ(t(G)) = t(G)/(1 + t(G)) 2 that we found may then be undestood as a direct consequence of our recursion relation. Indeed, letting k → ∞ in our recursion, we may write t ∞ (G) = (t ∞ (G) + 1) Φ(t ∞ (G))/(1 -(t ∞ (G) + 1) Φ(t ∞ (G))), which, by inversion, reproduces the above value of Φ(t(G)) when t(G) = t ∞ (G). 5.2. Solution for general quadrangulations. Recall the correspondence of eqs. ( 6) and ( 7) between simple and general quadrangulations:

R k (g) = R 1 r k (G) , G = g R 2 1
and the expression that we just found for r k :

r k = r ∞ (1 -x k )(1 -x k+3 ) (1 -x k+1 )(1 -x k+2 ) , r ∞ ≡ 1 + x + x 2 1 + x 2 .
with 0 ≤ x < 1. This immediately leads to the expression

(27) R k = R ∞ (1 -x k )(1 -x k+3 ) (1 -x k+1 )(1 -x k+2 ) , R ∞ ≡ R 1 r ∞ .
In particular, the prefactor R ∞ being such that R ∞ = lim k→∞ R k , it may be interpreted as the generating function of slices with arbitrary left-boundary length ≥ 1. The above definition of R ∞ (via R ∞ ≡ R 1 r ∞ ) therefore matches precisely that of Section 2.2, hence our notation. Note also the relation g R 2 ∞ = G r 2 ∞ . As explained in Section 2.2, the value of R ∞ may be obtained directly as the solution of the quadratic equation (3) (satisfying R ∞ = 1 + O(g)), namely (28)

R ∞ = 1 - √ 1 -12g 6g .
To fully express R k in terms of g, it remains to connect the parameter x in (27) to g. Recall the formulas

G = C (1 + C) 3 C = x 1 + x 2 r ∞ = 1 + x + x 2 1 + x 2 = 1 + C and therefore g R 2 ∞ = G r 2 ∞ = C 1 + C = x 1 + x + x 2
or equivalently (29)

x

+ 1 x + 1 = 1 g R 2 ∞
with R ∞ as in (28). Putting (28) and (29) together, we arrive at the following parametrization (30)

R ∞ = 1 + 4x + x 2 1 + x + x 2 g = x(1 + x + x 2 ) (1 + 4x + x 2 ) 2 .
The expressions ( 27) and (30) precisely reproduce the result of [START_REF] Bouttier | Geodesic distance in planar graphs[END_REF] for R k . Again demanding 0 ≤ x < 1 amounts to demanding 0 ≤ g < 1/12, in agreement with the fact that the number of quadrangulations with F faces growths exponentially like 12 F . From (1), we obtain our final formula for the distance-dependent two-point function

G k = (1 -x) 3 (1 + x) 2 (1 + 4x + x 2 ) x k-1 (1 -x 2k+3 ) (1 + x + x 2 )(1 -x k )(1 -x k+1 )(1 -x k+2 )(1 -x k+3 ) -δ k,1
with g = x(1 + x + x 2 ) (1 + 4x + x 2 ) 2 .

Conclusion

To conclude, we notice, as in [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF], that the decomposition of a slice enumerated by T k may itself be repeated recursively inside the sub-slices enumerated by T k-1 and so on. This produces (by concatenation of the dividing lines of the same "level") a number of nested lines joining the two boundaries of the slice, each line visiting a succession of vertices alternatively at distance -2 and -1 from the apex for some ranging from 3 to the left-boundary length (supposedly being at least 3) of the slice at hand. These "concentric" lines may be viewed as boundaries of the successive balls centered around the apex and with radius -2 between 1 and -2 (for some appropriate definition of the balls). More precisely, each ball has also in general several closed boundaries within the slice encircling connected domains whose vertices are at distance larger than the radius of the ball. Each of the concentric lines corresponds therefore to a particular boundary, that which separates the apex from the root-vertex of the slice. If we complete the ball of radius -2 by the interiors of its closed boundaries, we obtain what can be called the hull of radius -2 of the slice. The concentric lines are thus hull boundaries and the statistics of their lengths may in principle be studied by our formalism 5 .

Finally, since our approach by recursion was successful in the case of both triangulations and quadrangulations, we may hope that a similar scheme could be applied to more general families of maps, for instance maps with prescribed face degrees.

Figure 1 .

 1 Figure 1. A example of slice with a boundary of length 2 = 10, hence with left-boundary length = 5, thus contributing to R k for all k ≥ 5.

Figure 5 .

 5 Figure 5. The construction of the dividing line (see text for details).

Figure 6 .

 6 Figure 6. The two possible ways for the dividing line to connect to the left boundary.

Figure 7 .

 7 Figure 7. A schematic picture of the properties of the dividing line emphasized in Property 1. Vertices at distance -2 (resp. -1) are colored in black (resp. in white).
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Figure 8 .

 8 Figure 8. A schematic picture of the dividing line (top, in red) made of its succession of vertices x i at distance -1 and v i at distance -2, with a vertex at distance -3 attached to the right of each v i . The lower part of the figure illustrates the contradictions which would occur if the dividing line were making a loop (see the arguments in the text).

Figure 10 .

 10 Figure 10. Computation of the weights W 1,1 , W 1,2 , W 2,1 and W 2,2 . For instance, the top-left situation corresponds to maps enumerated by W 1,1 for which we may extract a bundle (enumerated by R 1 ) along the left frontier. The remaining part, of length 2i (here i = 3) is enumerated by h 2i and gives rise to i -1 black-white (from right to left) edges on the dividing line, hence i -1 factors T k-1 . The other situations are represented with i = 4 (for W 1,2 , and W 2,1 ) and i = 5 (for W 2,2 ).

Figure 11 .

 11 Figure 11. A schematic representation of the two forbidden connections within maps enumerated by h 2i , as dictated by Property 2.

Here we use a trick in all points similar to that used by Tutte in[START_REF] Tutte | A census of planar triangulations[END_REF].

Note that by closing slices as in figure[START_REF] Bouttier | Planar maps as labeled mobiles[END_REF], balls and hulls for slices also correspond to balls and hulls for planar quadrangulations.