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Abstract

We present a new method to calculate analytically the roots of the general complex polynomial of degree three. This

method is based on the approach of clever change of variable involving an arbitrary parameters. The advantage of this

method is that it gives the roots of the cubic polynomial as uniform formulae without multi-cases expressions. Also, it

gives a criterion to determine the multiple roots. In contrast, the reference method for this problem (Cardan-Tartaglia)

gives the roots of the cubic polynomial as multi-cases formulae according to the sign of its discriminant.
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1. Introduction

The calculation of polynomial roots is very important branch in linear algebra. It is useful, for example, for the

eigenvalues perturbation [1] and the solutions of system of nonlinear equations [2]. Moreover, it has many physical

applications, as the study of the singularities of the surfaces of refractive indices in crystal optics [3] and the diagonal

eigenvalues perturbation [4]. Another example is the calculation of the sound velocity anisotropy in cubic crystals [5],

or the diagonalization of Christoffel tensor to calculate the velocities of the three quasi-modes of the elastic waves in

anisotropic medium [6]. An explicit calculation for particulars case of 3 × 3 real symmetric matrix has studied, see

Ref. [7].

Cardan and Tartaglia gave a method to calculate the roots of the general polynomial of degree three as a linear

combination of two cubic roots [8]. But, the inconvenience of their method is that the coefficients of this linear

combination have a multi-cases formulae according to the sign of the discriminant of the cubic polynomial [9, 10].

Consequently, in the numerical implementations, we need to make a multiple conditions for the different executing

statements. Effectively, a limited number of multiple executing statements does not require an important time. Since

the calculation of the roots of cubic polynomial is repetitive and often required, then it will be important to use an

uniform formulae in order to avoid the multiple executing statements for each calculation.

In this paper, we present an uniform analytical formulae for the roots of the general complex cubic polynomial,

with a different method than that of Cardan-Tartaglia. Consequently, we can accelerate the numerical implementations

by averting the multiple executing statements. The difference between our formulae and these of Cardan-Tartaglia is

that we give an analytical expressions for the coefficients of the linear combination for the roots. Moreover, we present

a criterion to determine the case where a cubic polynomial has a multiple root.

Our method is based on the approach of clever change of variable involving an arbitrary parameters, which rests on

two principal ideas to diagonalize the general 3×3 complex matrix : Firstly, we construct one or several clever change

of variable involving an arbitrary parameters. So, the characteristic polynomial of this matrix becomes equivalent to

another polynomial equation in terms of a new variable, where the coefficients of the new polynomial equation depend

on the arbitrary parameters. Secondly, we choose these arbitrary parameters as required to make the form of the new

polynomial equation as the sum of a cube of certain monomial and a term independent of the unknown new variable.

Therefore, we can solve easily this new polynomial equation and consequently deduce the solution of the original

equation, which is the eigenvalues of the general 3 × 3 complex matrix.

In the sequel, we apply this approach to calculate the roots of the general complex cubic polynomial. In fact,

we construct a particular matrix such that its characteristic polynomial will coincide with this cubic polynomial.

Consequently, the eigenvalues of this particular matrix become identical to the roots of this cubic polynomial.
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The rest of the paper is orginazed as follows. In section 2, we derive the approach of clever change of variable

involving an arbitrary parameters. Consequently in section 3, we apply it on the general complex cubic polynomial.

2. Approach of clever change of variable involving an arbitrary parameters

Let M be the general 3 × 3 complex matrix :

M :=





m1 m2 m3

m4 m5 m6

m7 m8 m9




.

In this section, we aim to calculate the spectrum of M with this approach. We detail it by following four steps. The

first step consists in taking a change of variable for the eigenvalues of M as follows :

Proposition 2.1. An eigenvalue p of matrix M can be written in terms of two parameters ã and b̃ as follows :

p =
1

2



ã − b̃ + m1 + m5 + m3m8m−1
2 ∓

√

(

ã − b̃ − m1 + m5 + m3m8m−1
2

)2
+ 4 (m2m4 + m3m7)



 , (1)

where ã can be chosen arbitrary and b̃ is governed by the following equation :

A + Bb̃ + Cb̃2
+ D

√

∆p + Eb̃

√

∆p +
1

2

(

b̃2
√

∆p − b̃3
)

= 0. (2)

Here the terms of Eq. (2) depend on parameter ã as follows :

A =
ã3

2
+ e1ã2

+ e2ã + e3, B = −3ã2

2
− 2e1ã − e2, C =

3ã

2
+ e1,

D =
ã2

2
+

(

e1 +
c1

2

)

ã + e4, E = −ã −
(

e1 +
c1

2

)

, ∆p = b̃2
+ 2 (c1 − ã) b̃ + ã2 − 2c1ã + c2, (3)

where, the coefficients of Eq. (3) are defined in terms of the components of M as follows :

c1 := m1 − m5 −
m3m8

m2

, c2 := c2
1 + 4 (m2m4 + m3m7) ,

e1 :=
3

2
(m1 − c1) − 1

2
Tr (M) , e2 :=

3

2
(m1 − c1)2

+
3

8
(c2 − c1)2 − (m1 − c1) Tr (M) +

1

4

{

[Tr (M)]2 − Tr
(

M2
)}

,

e3 :=
1

8

[

(2m1 − c1)3
+ 3 (2m1 − c1) c2

]

− 1

4

[

(2m1 − c1)2
+ c2

]

Tr (M) +
1

4
(2m1 − c1)

{

[Tr (M)]2 − Tr
(

M2
)}

− det (M) ,

e4 :=
1

8

[

3 (2m1 − c1)2
+ c2

]

− 1

2
(2m1 − c1) Tr (M) +

1

4

{

[Tr (M)]2 − Tr
(

M2
)}

. (4)

Tr (M) and det (M) stand respectively for the trace and the determinant of matrix M.

Proof :

Firstly, we decompose the matrix M as the sum of two matrix M1 and M2 as follows :

M =





ã 0 0

0 b̃ −m0

0 0 0





︸           ︷︷           ︸

M1

+





m1 − ã m4 m7

m2 m5 − b̃ m8 + m0

m3 m6 m9





︸                                ︷︷                                ︸

M2

, (5)

where m0 is chosen such that M2 has an eigenvector with this form v0 := [0, y0, z0]. Indeed, we find that if we take

y0/z0 = −m3/m2 and m0 = (m5 − b̃ − k0)m3/m2 − m6, then the eigenvalue k0 of M2 relative to v0 will be given by :

k0 = −m3m8m−1
2 + m9. (6)
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Since we have from Eq. (6) one eigenvalue of M2, then we deduce that the two other eigenvalues of M2 are given by :

k =
1

2



−ã − b̃ + m1 + m5 + m3m8m−1
2 ∓

√

(

ã − b̃ − m1 + m5 + m3m8m−1
2

)2
+ 4(m2m4 + m3m7)



 . (7)

Secondly, we search an eigenvector for M with the form v+ v0, where v := [x, y, z] is an eigenvector of M2 relative to

k. So, we obtain from Eq. (5) that the vectorial equation

M (v0 + v) = p (v0 + v) ; p ∈ C.

is equivalent to the following system :

(S)






x (ã + k) = xp,

b̃ (y0 + y) − m0 (z0 + z) + k0y0 + ky = p (y0 + y) ,

k0z0 + kz = p (z0 + z) .

We remark that if we take p = ã+ k, then the second and third equations of (S) are verified from the fact that v0 and v

are respectively two eigenvectors of M2 relative to its eigenvalues k0 and k. So, (S) is equivalent to the single equation

p = ã + k. Consequently, Eq. (7) implies that p depnds only on ã − b̃ like in Eq. (1). Therefore, by inserting Eq. (1) in

the characteristic equation of M which is given by

p3 − Tr (M) p2
+

1

2
{[Tr (M)]2 − Tr

(

M2
)

}p − det(M) = 0, (8)

we can choose arbitrary among ã and b̃ one parameter as required, while the other parameter will be the unique

unknown of Eq. (8), as well as p is an eigenvalue of M. To end the proof, we develop Eq. (8) to deduce Eq. (2). �

Notice that the choice of the sign before the square root in Eq. (1) leads finally to the same result. So, in the sequael

we consider the positive sign.

In the second step, we aim to simplify Eq. (2) satisfied by the unknown b̃, where ã can be chosen as required. So,

we derive from Eq. (2) two equations of b̃ given by the following two propositions :

Proposition 2.2. For fixed ã, b̃ satisfies the following equation :

d1 + d2b̃ + d3b̃2
+ d4

√

∆p − d3b̃

√

∆p = 0, (9)

where the coefficients of Eq. (9) are given by :

d1 := d3ã2
+ n1ã + n9, d2 := −2d3ã − n1, d3 := m2m4 + m3m7, d4 := d3ã + n10.

Here n1, n9 and n10 are defined in terms of the coefficients of Eq. (4) as follows :

n1 :=
c1c2

2
+ c1e2 + c2c1 − 2c1e4 − e3, n9 := c1e3 + c2e4, n10 := e3 + c1e4. (10)

Proof :

On one hand we multiply Eq. (2) by b̃ and on the other hand we multiply it by
√

∆p. Consequently, we sum the

obtained equations to deduce Eq. (9). �

Proposition 2.3. For fixed ã, b̃ satisfies the following equation :

f1 + f2b̃ + f3b̃2
+ f4

√

∆p + f3b̃

√

∆p = 0, (11)

where the coefficients of Eq. (11) are given by :

f1 := f3ã2
+ n2ã + n3, f2 := −2 f3ã − n2,

f3 := (m5 − m1) m3m7 + (m9 − m1) m2m4 − m2m6m7 − m3m4m8, f4 := − f3ã + n8.

Here n2 and n3 are defined in terms of the coefficients of Eq. (4) as follows :

n2 := c2d3 − 2c2
1e4 − 2c1e3 − 2d3e2, n3 := c2e3 − 2d3e3 + c1e2e4, n8 := c1e3 + e2e4 − 2d3e4. (12)
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Proof :

Similary to the proof of proposition 2.2, on one hand we multiply Eq. (2) by 2d3 and on the other hand we multiply

Eq. (9) by
√

∆p. Consequently, we susbtract the obtained equations to deduce Eq. (11). �

Now, we show that equations (9) and (11) are together equivalent to equations (13) and (14) given by the following

corollary :

Corollary 2.4. For fixed ã, b̃ satisfies the following equations :

r1 + r2b̃ + r3

√

∆p − 2b̃

√

∆p = 0, (13)

r4 + r5b̃ + r6

√

∆p + 2b̃2
= 0, (14)

where the coefficients of Eq. (14) are given by :

r1 := −r2ã + n6, r2 := −n1

d3

+
n2

f3
, r3 := 2ã + n7,

r4 := 2ã2
+ n4ã + n5, r5 := −4ã − n4, r6 :=

n10

d3

+
n8

f3
(15)

Here, the coefficients of Eq. (15) are defined in terms of the coefficients of Eq. (4) and Eq. (10) as follows :

n4 :=
n1

d3

+
n2

d3

, n5 :=
n9

d3

+
n3

f3
, n6 :=

n9

d3

− n3

f3
, n7 :=

n10

d3

− n9 − 2d3e4

f3
.

Proof :

Equations (13) and (14) are given respectively by subtracting and summing Eq. (9) and Eq. (11). �

In the third step, we make the following change of variable for the unknown b̃ :

l := −
(

b̃ + o

√

∆p

)

(16)

in order to find a polynomial equation of b̃, where o is an arbitrary parameter can be chosen as required :

Proposition 2.5. Let o ∈ C. Then l verifies the following equation :

2l3 +Cll
2
+ Bll + Dl = 0, (17)

where the coefficients of Eq. (17) are given by :

Bl := l3o2 − 2 (l1ã + l4) o + 6ã2 − 2l2ã + l5, Cl := −l1o + 6ã − l2,

Dl := −l6o3
+ (l3ã − l7) o2 −

(

l1ã2
+ 2l4ã + l8

)

o + 2ã3 − l2ã2
+ l5ã + l9.

Here Bl, Cl and Dl are defined in terms of the coefficients of Eq. (4), Eq. (10) and Eq. (12) as follows :

l1 := 2
n1

d3

− n4 + r6, l2 := r6 − n4 − 2
n10

d3

, l3 := n5 − 2c2 + 2c1r6 +
r6n1 − n4n10

d3

,

l4 := 2
n9

d3

− n5 − c1r6, l5 := n5 +
n4n10 − r6n1

d3

, l6 := 2c1n5 + c2n4 +
n1 (n5 − 2c2) − (4c1 + n4) n9

d3

,

l7 := 2c1n5 + c2 (n4 + r6) +
(n5 − 2c2) n10 − r6n9

d3

, l8 := c2r6 +
n4n9 − n1n5

d3

, l9 :=
n5n10 − r6n9

d3

.

Proof :

We have from Eq. (16) that

b̃ = −
(

o

√

∆p + l

)

. (18)
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We take the square of Eq. (18) and we replace ∆p by its value given by Eq. (3). So, by inserting Eq. (18) in the obtained

equation, we deduce that :

b̃2
=

(

1 − o2
)−1

{[

2ol − 2 (c1 − ã) o3
] √

∆p +

(

ã2 − 2c1ã + c2

)

o2
+ l2 − (c1 − ã) o2l

}

. (19)

Then, inserting Eq. (18) and Eq. (19) in Eq. (14), we obtain that :

√

∆p =

(

1 − o2
)

(r4 − r5l) + 2
[(

ã2 − 2c1ã + c2

)

o2 − 2 (c1 − ã) o2l + l2
]

(

1 − o2
)

(r5o − r6) + 2
[

2 (c1 − ã) o3 − 2ol
] . (20)

Finally, Eq. (16) implies the following equation b̃ + o
√

∆p + l = 0. So, we take the square of it and afterwards insert

Eq. (18) within. Therefore, to complete the proof, it is enough to insert Eq. (19) and Eq. (20) in the obtained equation

and consequently to develop it. �

Since o is an arbitrary parameter, then we can choose o as required to solve equation (17) of the unknown l :

Lemma 2.6. If o verifies the following polynomial equation of degree two :

(

l21 − 6l3
)

o2
+ 2 (l1l2 + 6l4) o + l22 − 6l5 = 0, (21)

then l = −ã + rl, where

rl =
l1o + l2

6
+ msl,

for m ∈
{

−1 ; 1−
√
−3

2
; 1+

√
−3

2

}

. Here sl is given by :

sl :=
3

√
(

l1o + l2

6

)3

− 1

2

(

l6o3 + l7o2 + l8o − l9
)

.

Proof :

Equation (17) can be rewritten as follows

l3 + 3
Cl

6
l2 + 3

Bl

6
l +

(
Cl

6

)3

+ sl −

(

l2
1
− 6l3

)

o2
+ 2 (l1l2 + 6l4) o + l2

2
− 6l5

12
ã = 0. (22)

The condition C2
l
= 6Bl, which is equivalent to Eq. (21), allows us to factorise Eq. (22) as follows :

(

l +
Cl

6

)3

+ s3
l =

(

l +
Cl

6
+ sl

) [(

l +
Cl

6

)2

− sl

(

l +
Cl

6

)

+ s2
l

]

= 0. (23)

So, Eq. (23) can be solved easily, wich ends the proofs. �

Lemma 2.6 gives the expressions for the set of solutions of l. Then, we deduce from the change of variable (18) the

following polynomial equation of b̃, which will be useful to give an explicit formulae for the set of solutions of b̃ :

Corollary 2.7. If o verifies Eq. (21), then b̃ verifies the following equation

(

1 − o2
)

b̃2
+ 2

[

rl − ã + o2 (ã − c1)
]

b̃ + (rl − ã)2 − o2
(

ã2 − 2c1ã + c2

)

= 0, (24)

where

rl ∈ Sl :=






l1o + l2

6
− sl ;

l1o + l2

6
+

1 −
√
−3

2
sl ;

l1o + l2

6
+

1 +
√
−3

2
sl





.
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Proof :

We have from Eq. (16) that

√

∆p = −
1

o

(

b̃ + l
)

. (25)

The proof ends by taking the square of Eq. (25) and afterwards replacing ∆p by its value given by Eq. (3) in the

obtained equation. �

Finally, in the fourth step, we can determine the set of solutions of b̃ by solving the nonlinear system constructed

by Eq. (24) and one of the following equations (9), (11), (13) or (14). Then, we can solve this nonlinear system by

choosing ã as required to simplify the calculation. Consequently, we deduce from Eq. (1) the spectrum of M :

Corollary 2.8. The spectrum of matrix M is given by :

p =
1

2





(

1 +
1

o

)
d3r2

l
+ n10 (1 − o) rl − n9o (1 − o) − d3c2o2

(1 − o) (n10 + n1o) − 2d3c1o2 + d3 (1 + o) rl

+ 2m1 − c1 −
rl

o



 , (26)

where rl ∈ Sl and o verifies Eq. (21).

Proof :

Inserting Eq. (25) in both Eq. (9) and Eq. (24). Then, by substituting b̃2 from one obtained equation in the other, we

deduce that :

b̃ = ã −
d3r2

l
+ (1 − o) n10rl − n9o (1 − o) − d3c2o2

(1 − o) (n10 + n1o) − 2d3c1o2 + d3 (1 + o) rl

. (27)

Finally, to deduce Eq. (26), we insert Eq. (25) in Eq. (1) and afterwards we insert Eq. (27) in the obtained equation. �

Moreover, in order to rationalize the denumerator of Eq. (26) (see the proof of theorem 3.3), we calculate b̃ and

consequently deduce the spectrum of M by another way than corollary 2.8 :

Corollary 2.9. The spectrum of matrix M is given by :

p =
1

2

[(

1 +
1

o

)

n6o2 − n5o + (r6 − n7o) rl

(n4 − n7) o + r2o2 + r6 + 2orl

+ 2m1 − c1 −
rl

o

]

, (28)

where rl ∈ Sl and o verifies Eq. (21).

Proof :

We insert Eq. (25) in both Eq. (9) and Eq. (11). Then, by substituting b̃2 from one obtained equation in the other, we

deduce that :

b̃ = ã − n6o2 − n5o + (r6 − n7o) rl

(n4 − n7) o + r2o2 + r6 + 2orl

. (29)

Finally, to deduce Eq. (28), we insert Eq. (25) in Eq. (1) and afterwards we insert Eq. (29) in the obtained equation. �

3. Application on the cubic polynomial

Let (P) be the general complex polynomial of degree three :

(P) : x3
+ bx2

+ cx + d = 0; b, c, d ∈ C.

Now, we aim to calculate analytically the roots of (P) by applying the results of section 2. So, we introduce the

following definitions which will be useful to find the expressions for the roots of (P) :

6



Definition 3.1. We associate to (P) the following quantities in terms of its coefficients :

∆l := 2c3
(

8b6
+ 132b3d + 36d2

+ c3
+ 33b2c2 − 66bcd

)

+ 12b4c
(

d2 − 7c3
)

− b2c2d
(

24b3
+ 291d

)

+ d3
(

144bc − 2b3 − 27d
)

,

∆o := −4b3d + b2c2
+ 18bcd − 4c3 − 27d2,

and

do := 4b4c2 − 4b3cd − 14b2c3
+ b2d2

+ 28bc2d + c4 − 12cd2.

Definition 3.2. We associate to (P) the following quantities in terms of these given by definition 3.1 :

δl := (d − bc)
√

∆o

(

4b2c2 − 4bcd + 2c3
+ d2

)

+

√
−3

9
∆l,

and

A1 := −2
√
−3

3

(

4b3c − 2db2 − 13bc2
+ 15dc

)

+ 2c
√

∆o,

A2 := 8b5c2 − 8b4cd − 40b3c3
+ 2b3d2

+ 116b2c2d + 23bc4 − 99bcd2 − 21c3d + 27d3 −
√
−3

(

8b2c2 − 10bcd + c3
+ 3d2

) √

∆o.

Theorem 3.3. The set of solutions for equation (P) is given in terms of two cubic roots R1 and R1 as follows :

x =

3
√

4

2
m exp

{√
−1

[

arg
(

A1
3
√

δl

)

− arg (−doR1)
]}

R1 +

3
√

4

2
m2 exp

{√
−1

[

arg

(

A2
3

√

δ2
l

)

− arg
(

d2
oR2

)]}

R2 −
b

3
, (30)

for m ∈
{

−1 ; 1−
√
−3

2
; 1+

√
−3

2

}

. Where, R1 and R1 are given by :

R1 :=
3

√ √
3

9

√

−∆o +
2b3 − 9cb + 27d

27
,

R2 :=
3

√ √
3

9

√

−∆o −
2b3 − 9cb + 27d

27
.

Here, ∆o, do, δl, A1 and A2 are given by definitions 3.1 and 3.2.

Proof :

Firstly, we construct the following matrix

A :=





−b 1 d−1c

0 0 1

−d 0 0




,

which has (P) as its characteristic polynomial. Consequently, the roots of (P) are identical to the spectrum of A, which

can be calculated from corollaries 2.8 and 2.9. But, these corollaries require firstly to make explicitly o and rl relative

to matrix A. Then, by applying lemma 2.6 on matrix A, we deduce that

o = d−1
o

[

b2c3 − c4 − 3cd2
+ b2d2 − 2b3cd ± c(d − bc)

√

−3∆o

]

, (31)

because Eq. (21) is a polynomial equation for o of degree two. In the sequel, we take the positive sign before c(d −
bc)
√
−3∆o in Eq. (31). Also, by applying lemma 2.6 on matrix A, we deduce that

rl = lo − m
3
√

4d−1
o c

√

∆o
3
√

δl.
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Here, lo is defined as follows :

lo := d−1
o



2b4cd + b3c3 − b3d2 − 5b2c2d − 4bc4
+ 6bcd2

+ 5c3d +

√
−3

3
c
(

b2c − 2bd − c2
) √

∆o



 .

Secondly, since we have the expressions of o and rl relative to matrix A, then by applying corollaries 2.8 and 2.9 on

matrix A, we deduce that the roots of (P) are given by :

x =
1

2





(

1 +
1

o

) −cr2
l
+ d (1 − o) rl + bdo (1 − o) + c

(

b2 − 4c
)

o2

(1 − o) [d + (bc − d)o] − 2bco2 − c (1 + o) rl

− b − rl

o





=
1

2





(

1 +
1

o

)
bd(bc − d) + cd

(

b2 − 2c
)

− d
(

2c2 − bd
)

o−1
+ do−1

(

do−1 − d + 2bc
)

rl

2b2c2 − 4bcd − 2c3 + d2 − 2
(

c3 − bcd + d2
)

o−1 + d2o−2 − 2c(d − bc)o−1rl

− b − rl

o




. (32)

So, we aim to simplify formula (32). In fact, we deduce from (32) that

−cr2
l
+ d (1 − o) rl + bdo (1 − o) + c

(

b2 − 4c
)

o2

(1 − o) [d + (bc − d)o] − 2bco2 − c (1 + o) rl

=

bd(bc − d) + cd
(

b2 − 2c
)

− d
(

2c2 − bd
)

o−1
+ do−1

(

do−1 − d + 2bc
)

rl

2b2c2 − 4bcd − 2c3 + d2 − 2
(

c3 − bcd + d2
)

o−1 + d2o−2 − 2c(d − bc)o−1rl

. (33)

But, we have the following property, which allows us to remove the cube root derived from rl in the denominator of

the fractions of Eq. (33) :

A
B =

C
D ⇒

A
B =

C
D =

MA +NC
MB +ND ; ∀A,B,C,D,M,N ∈ C∗. (34)

By applying property (34) on Eq. (33) forM = 2o−1c(d − bc) and N = −c (1 + o), we just obtain a square root in

the consequent denominator. Therefore, it becomes easy to rationalize it and consequently to deduce that Eq. (32) is

equivalent to the following equation :

x = −
3
√

4

8

mdoA1
3
√
δl − m2 3

√
4A2

3

√

δ2
l

d2
o

− b

3
. (35)

Thirdly, in order to simplify d2
o in the denominator of Eq. (35), we can prove that :

(

A1
3
√

δl

)3
= (−4doR1)3 ⇔A1

3
√

δl = exp
{√
−1

[

arg
(

A1
3
√

δl

)

− arg (−4doR1)
]}

(−4doR1) ,

(

A2
3

√

δ2
l

)3

=

(
3
√

42d2
oR2

)3
⇔A2

3

√

δ2
l
= exp

{√
−1

[

arg

(

A2
3

√

δ2
l

)

− arg
(

3
√

42d2
oR2

)]}
3
√

42d2
oR2.

(36)

Then, by inserting Eq. (36) in Eq. (35), we deduce Eq. (30). �

Finally, we introduce the following criterion, which allows us to determine where (P) has a double root :

Criterion 3.4. (P) has a double root if and only if

[

−doA1 + (m1 + m2)
3
√

4A2
3
√

δl

] 3
√
δl

d2
o

= 0,

for m1 , m2 in

{

−1 ; 1−
√
−3

2
; 1+

√
−3

2

}

. Where, the double root is that relative to m1 and m2.

Proof :

It is an immediate result from Eq. (35). �
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