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Coordinated Multi-cell Beamforming for Massive
MIMO: A Random Matrix Approach

Subhash Lakshminarayana, Member, IEEE , Mohamad Assaad, Member, IEEE, and Merouane Debbah, Senior
Member, IEEE

Abstract—We consider the problem of coordinated multi-cell
downlink beamforming in massive multiple input multiple output
(MIMO) systems consisting of N cells, Nt antennas per base
station (BS) and K user terminals (UTs) per cell. Specifically,
we formulate a multi-cell beamforming algorithm for massive
MIMO systems which requires limited amount of information
exchange between the BSs. The design objective is to minimize
the total transmit power across all the BSs subject to satisfying
the user signal to interference noise ratio (SINR) constraints.
With our algorithm, the BSs need to exchange parameters which
can be computed solely based on the channel statistics rather
than the instantaneous CSI. We make use of tools from random
matrix theory to formulate the decentralized algorithm. We also
characterize a lower bound on the set of target SINR values
for which the decentralized multi-cell beamforming algorithm is
feasible. We further show that the performance of our algorithm
asymptotically matches the performance of the centralized algo-
rithm with full CSI sharing. Finally, we investigate the impact of
imperfect CSI and pilot contamination effect on the performance
of the decentralized algorithm, and propose a heuristic extension
of the algorithm to accommodate these issues. Simulation results
illustrate that our algorithm closely satisfies the target SINR
constraints and achieves minimum power in the regime of massive
MIMO systems. In addition, it also provides substantial power
savings as compared to zero-forcing beamforming when the
number of antennas per BS is of the same orders of magnitude
as the number of UTs per cell.

Index Terms—Massive MIMO, coordinated beamforming, de-
centralized design, random matrix theory.

I. INTRODUCTION

Massive multiple input multiple output (MIMO) has been
identified as an essential ingredient in the design of next gener-
ation cellular systems, as it provides substantial improvement
in both spectral and energy efficiency [1]. It refers to the idea
of scaling up the number of antennas on the base station (BS)
to a few hundreds, serving many tens of user terminals (UTs)
on the same resource block. The basic idea is to exploit large
number of antennas to achieve greater spatial resolution and
array gain, resulting in a higher throughput and greater energy
efficiency.
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The idea of massive MIMO was first proposed in the
seminal work of [2]. The main finding of the paper was
that as the number of antennas on the BS grows without
bound, the effects of fast fading and interference vanish,
and the system performance is ultimately limited by only
pilot contamination [3]. The other attractive feature is that
simple signal processing techniques at the BS, such as the
use of eigen beamforming and matched filter were optimal
under this setting. Subsequently, massive MIMO systems was
also studied from an energy efficiency point of view and
shown to achieve dramatic improvement in this regard [4]. The
impact of channel estimation, pilot contamination, and antenna
correlation in massive MIMO systems was investigated in [5].
In particular, it was concluded that sophisticated beamforming
techniques such as regularized zero forcing (RZF) outperform
eigen beamforming in a massive MIMO setting when the
number of antennas is of the same orders of magnitude as
the number of users. Reference [6] addressed the question
of how to select the system parameters in a massive MIMO
system (number of antennas per BS, number of users, transmit
power etc.) to maximize the energy efficiency. The work in
[7] proposes a hierarchical interference mitigation scheme in
massive MIMO systems based on a two level precoding with
the objective of maximizing the system utility. Although all
these studies point to impressive gains in massive MIMO both
in terms of spectral efficiency and energy efficiency, construct-
ing such large dimensional arrays can result in significant
additional hardware cost of the analog front ends. Moreover,
extra physical dimensions are required in order reduce the
mutual coupling between the antenna elements.

Subsequently, it was proposed that in a multi-cellular envi-
ronment, the gains obtained by massive MIMO systems can be
replicated by using much lesser number of antennas if BSs are
allowed to cooperate with each other. In this context, [8] pro-
posed a TDD architecture based network MIMO like system
with BS cooperation and zero-forcing (ZF) beamforming, and
showed that massive MIMO performance can be achieved with
one order of magnitude fewer antennas per active user per cell.
These results motivate us to consider multi-cell cooperation
in massive MIMO systems. However, since massive MIMO
systems are inherently large, enabling BS cooperation in a
multi-cellular environment requires tremendous amount of
information exchange between them.

In order to address this issue, in this work, we propose
an optimal decentralized multi-cell beamforming algorithm
for massive MIMO systems that requires limited amount of
information exchange between the BSs. We primarily focus
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on the so called coordinated beamforming, in which BSs
formulate their beamforming vectors taking into account the
interference they cause to the neighboring cells [9]. This is
accomplished by exchanging the CSI information between
them. However, unlike network MIMO systems, no user data
exchange takes place between the BSs. The design objective
in this work is to minimize the total transmitted power subject
to satisfying the user signal to noise ratio (SINR) constraints.
Reference [9] provides an optimal centralized algorithm to
solve this problem. However, the centralized solution demands
high computational ability, and exchange of the fast fading
CSI co-efficient between the BSs. Such an algorithm requires
high capacity backhaul links, especially when implemented in
a massive MIMO setting.

In order to overcome the heavy backhaul requirement, we
propose in this work a decentralized approach to compute the
multi-cell beamforming vectors. In our algorithm, the BSs
must exchange parameters at the time scale of slow fading
coefficients rather than the instantaneous channel realizations
(fast fading coefficients). We use tools from random matrix
theory (RMT) to formulate our algorithm.

The multi-cell beamforming strategy involving exchange of
parameters based on channel statistics was first proposed in
[10] using tools from RMT. It was shown with the help of sim-
ulations that such an algorithm performs well for large system
dimensions. Similar ideas for multi-cell beamforming were
subsequently proposed in [11], [12] and theoretical arguments
for the asymptotic optimality of this algorithm were provided
in the special case of a two cell Wyner model, with symmetric
SINR constraints for all the UTs. However, the analyses in
[11], [12] rely on obtaining closed form expressions for the
system parameters (such as the uplink and downlink power),
and are not extendable to more practical channel models. In
this work, we provide a comprehensive design of the RMT
based decentralized beamforming under a massive MIMO
multi-cell setting with a distance based pathloss model. Fur-
ther, we provide arguments for asymptotic optimality of this
algorithm. Specifically, our main contributions are as follows:
• We propose a reduced overhead beamforming algorithm

(ROBF) in a massive MIMO multi-cell setting. In our
algorithm, the BSs require the knowledge of local CSI
(of the UTs they are serving and also the UTs present in
the other cells). In addition, the BSs have to compute
parameters that depend only on the channel statistics,
which they exchange between them to compute the
beamforming vectors.

• Using a large system analysis, we provide closed form
expression for the lower bound on the set of target SINR,
for which the decentralized multi-cell beamforming algo-
rithm is feasible.

• We prove that when the dimensions of the system become
large, the achieved SINR in the uplink and downlink
by the ROBF algorithm exactly match the target SINR.
Moreover, we also prove that when the dimensions of the
system become large, the performance of our algorithm in
terms of uplink and downlink transmit powers perfectly
match that of the optimal algorithm proposed in [9].

• Finally, we investigate the impact of CSI estimation and

pilot contamination on the performance of the ROBF
algorithm and propose a heuristic adaptation of the ROBF
algorithm that can provide better performance in the
presence of pilot contamination.

In addition, our work contains several novel ideas of combin-
ing RMT results with optimization theory and uplink-downlink
duality in MIMO systems, which are of independent interest.

It is worth noting that RMT results have been used exten-
sively to assess the performance of linear beamforming strate-
gies in multi-user MIMO systems [13], [14], [5], [8]. However,
all these works consider ”pre-defined” transmit strategies such
as eigen beamforming, zero forcing (ZF), regularized zero
forcing (RZF) etc., and use RMT as a tool for performance
analysis of these schemes in the large dimensional regime. In
contrast, in this work, we use RMT results for the purpose
of system design (as opposed to performance analysis), i.e.,
design of optimal beamforming vectors in MIMO multi-cell
systems1. Such an approach is novel and is facilitated by
combining RMT results with optimization theory. Moreover,
optimizing the system performance imposes additional techni-
cal difficulties in applying RMT results. For e.g., implementing
a power control algorithm (both in the uplink and downlink)
implies that the transmit powers explicitly depend on the
channels (and hence the randomness associated with the chan-
nel realization). Such dependency of transmit powers on the
channel realization makes it unsuitable to apply RMT results.
Our approach in this work is to first propose an algorithm
that depends only on the second order statistics of the channel
vectors (the path-loss in our case). Then, we apply such an
algorithm to the original system set-up, and prove that this
algorithm is optimal in the large system domain.

Although the theoretical results prove the optimality of
ROBF algorithm in the asymptotic regime, we provide nu-
merical results to show that the performance of ROBF algo-
rithm closely matches that of the centralized algorithm for
moderate system dimensions (when the number of antennas
are comparable to the number of UTs per cell), both in
terms of satisfying the user SINR targets and minimizing the
downlink transmission power. Moreover, these results indicate
that ROBF algorithm provides substantial trasnmit power
savings as compared to other beamforming strategies such as
zero-forcing n the regime where the number of antennas is
comparable to the number of UTs.

The rest of the paper is organized as follows. We provide
the system model and describe our reduced overhead multicell
beamforming in section II. In section III, we provide the
asymptotic analysis of the reduced overhead algorithm formu-
lated in the previous section. In Section IV, we investigate
the impact of imperfect CSI and pilot contamination on
the performance of the ROBF algorithm. We summarize the
simulation results in section V. Finally, we provide concluding
remarks in section VI. Appendix A provides some relevant
results from RMT which will be used in formulating our
algorithm. Appendices B, C, D, E, F, G and H provide the
proofs of some of the results stated in the paper.

1In an unrelated context, RMT results have also been used in the context
of system design in [15] and [16]
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Notations: Throughout this work, we use boldface lower-
case and uppercase letters to designate column vectors and
matrices, respectively. For a matrix X, X(p, q) denotes the
(p, q) entry of X. XT , XH , tr(X), ||X||, and ρ(X) denote
the transpose, the complex conjugate transpose, the trace,
the spectral norm and the spectral radius of the matrix X,
respectively. For two matrices X and Y, the notation X ≤ Y
denotes element wise inequality (X(p, q) ≤ Y(p, q) ∀p, q) and
similarly for vectors. We denote an identity matrix of size M
as IM and diag(x1, ..., xM ) is a diagonal matrix of size M with
the elements xi on its main diagonal. We use x ∼ CN (m,R)
to state that the vector x has a complex Gaussian distribution
with mean m and covariance matrix R. We will use the
notation a.s.−−→ to denote almost sure convergence. Let aN and
bN denote a pair of infinite sequences. We write aN � bN ,
iff aN − bN

a.s.−−→ 0. We denote the expectation of a random
variable by the notation E [.] Let Nt,K ∈ N+, we will use
the notation Nt,K →∞ to denote the following condition on
Nt and K, 0 < lim infK→∞

Nt
K ≤ lim supK→∞

Nt
K <∞.

II. SYSTEM MODEL AND ALGORITHM DESCRIPTION

A. System Model

We consider the problem of multi-cell beamforming across
N cells and K UTs per cell where each BS is equipped with
Nt antennas and each UT has a single antenna. Each BS
serves only the UTs in its cell. Let hi,j,k ∈ CNt denote the
channel from the BS i to the k-th UT in cell j. We consider
reciprocity between the uplink and downlink channels, and
hence the TDD mode of operation, as it is the preferred
mode of operation in massive MIMO systems [1]. We assume
that the elements of the channel vector are independent and
identically distributed (i.i.d.) with Gaussian distribution, i.e.,
hi,j,k ∼ CN (0, σi,j,kINt), the variance σi,j,k of the channel
depends upon the path loss model between BS i and UT(j, k).
Recent works on channel measurements indicate that i.i.d.
assumption is a reasonable model for massive MIMO arrays
[17]. We assume that the BSs have perfect CSI of the downlink
channels to all the users in the system (i.e., hi,n,k,∀n, k). Let
wi,j ∈ CNt denote the transmit downlink beamforming vector
for the j-th UT in cell i. Likewise, let ΛDL

i,j denote the received
SINR for the jth UT in cell i and γi,j the corresponding target
SINR. The received signal yi,j ∈ C for the jth UT in cell i,
is given by

yi,j = hHi,i,jwi,jxi,j +
∑

(n,k)6=(i,j)

hHn,i,jwn,kxn,k + zi,j

where xi,j ∈ C represents the information signal for the j-
th user in cell i and zi,j ∼ CN (0, N0) is the corresponding
additive white Gaussian complex noise. Under this model, the
achieved SINR in downlink for the UTi,j is given by

ΛDL
i,j =

|wH
i,jhi,i,j |2∑

(n,k) 6=(i,j) |wH
n,khn,i,j |2 +N0

. (1)

The denominator terms of (1) represent the intra-cell inter-
ference, inter-cell interference and the noise (in order as they

appear). The downlink sum power minimization problem can
be formulated as the following optimization problem given by2

min
wi,j ∀i,j

∑
i,j

wH
i,jwi,j (2)

s.t. ΛDL
i,j ≥ γi,j ∀i, j.

B. Algorithm Design

As show in [18], the optimization problem (2) can be
reformulated as a second order conic programming (SOCP)
problem and, strong duality holds for this problem. Following
the approach of [9], we solve this problem using duality
theory. Accordingly, we introduce the Lagrange multiplier
λi,j
Nt

associated with the downlink SINR constraints. The
Lagrangian is given by

L(w,λ) =
∑
i,j

wH
i,jwi,j −

∑
i,j

λi,j
Nt

[ |wH
i,jhi,i,j |2

γi,j

−
∑

(n,k) 6=(i,j)

|wn,khn,i,j |2 −N0

]
. (3)

Note that the Lagrange multiplier is scaled by the factor Nt
in order to ensure that the sum power in the system is finite,
when the dimensions of the system grow large (in terms of the
number of antennas on the BS and number of UTs). In fact,
the Lagrange multipliers λi,j

Nt
can be interpreted as the dual

uplink powers in the formulation of the dual uplink problem
obtained in the following manner.

Rearranging (3), we obtain

L(w,λ) =
∑
i,j

λi,jN0

Nt
−
∑
i,j

wH
i,jBi,jwi,j , (4)

where the matrix Bi,j is given by

Bi,j = I −
(

1 +
1

γi,j

)
λi,j
Nt

hi,i,jh
H
i,i,j

+
∑
n,k

λn,k
Nt

hi,n,kh
H
i,n,k

= I − λi,j
γi,jNt

hi,i,jh
H
i,i,j +

∑
(n,k)6=(i,j)

λn,k
Nt

hi,n,kh
H
i,n,k.

(5)

The dual uplink problem corresponding to the optimization in
(2) is formulated as

min
λi,j , ∀i,j

∑
i,j

λi,j
Nt

N0 (6)

s.t. ΛUL
i,j ≥ γi,j , ∀i, j

where the left hand side of the constraint equation represents
the uplink SINR given by

ΛUL
i,j =

λi,j
Nt
|ŵH

i,jhi,i,j |2∑
(n,k)6=(i,j)

λn,k
Nt
|ŵH

i,jhi,n,k|2 + ||ŵi,j ||22
where ŵi,j denotes the corresponding uplink receive filter.

2In order to keep the analysis simple, in this work we do not consider the
issue of max power constraint per BS.
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We now provide a brief description of the beamforming
algorithm presented in [9]. Before introducing the algorithm,
we define the following matrices.

Hi,n = [hi,n,1, . . . ,hi,n,K ] ∈ CNt×K

Hi = [Hi,1, . . . ,Hi,N ] ∈ CNt×NK

λi = [λi,1, . . . , λi,K ] ∈ CK×1
,

Λ = diag [λ1, . . . ,λN ] ∈ CNK×NK .

We also define the matrix Σλ
i = 1

Nt
HiΛHH

i ∈ CNt×Nt .

Algorithm 1 (Centralized Algorithm - CBF). Perform the
following steps.
• Starting from any initial λ0

i,j > 0 ∀i, j the uplink power
allocation is given by λi,j

4
= limt→∞ λti,j , where

λt+1
i,j =

1
1
Nt

(1 + 1
γi,j

)hHi,i,j(Σ
λt

i + INt)
−1hi,i,j

∀i, j

(7)

where Σλt

i = 1
Nt

HiΛ
tHH

i and Λt =

diag
[
λt1, . . . ,λ

t
N

]
.

• The optimal receive uplink receive filter is given by

ŵi,j =
1√
Nt

(∑
n,k

λn,k
Nt

hi,n,kh
H
i,n,k + I

)−1

hi,i,j . (8)

• The optimal transmit downlink beamforming vectors are
given by wi,j =

√
δi,j
Nt

ŵi,j , where δi,j is given as

δ = F−11N0.

Here,

δi = [δi,1, . . . , δi,K ] ∈ CK×1

δ = [δ1, . . . , δN ] ∈ CNK×1

1 ∈ [1, . . . , 1]T ∈ RNK×1

and the elements of the matrix F ∈ CNK×NK and the
submatrix Fi,j ∈ CK×K are given by,

F =

 F1,1 . . . F1,N

...
. . .

...
FN,1 . . . FN,N

 (9)

Fi,nj,k
4
=

{
1

γi,jNt
|ŵH

i,jhi,i,j |2, n = i, k = j
−1
Nt
|ŵH

n,khn,i,j |2, (n, k) 6= (i, j).
(10)

We remark that the scaling of
√
Nt in the expression for

the uplink receive filter (8), and in the definition of the scaling
factor δi,j ensure that the total power in the system is finite,
when the dimensions of the system grow large.

As mentioned before, the solution provided in [9] cannot
be implemented in a distributed manner. The computation of
dual uplink power (λi,j) and the scaling factors (δi,j) requires
a central station which has the global CSI knowledge. In what
follows, we overcome this problem.

We will now formulate our reduced overhead beamforming
algorithm. The main idea behind this algorithm is that under

the massive MIMO regime (i.e. when Nt and K become
large), the parameters in (7) and (10) can be approximated by
their asymptotic equivalents using results from RMT. More-
over, the computation of these parameters will only depend
on the second order statistics (path-loss), and not on the fast
fading component of the channel vectors. However, note that
RMT results are not directly applicable to this scenario. This
is due to the fact that the computation of λi,j in (7) explicitly
depend on the channel vectors (RMT results require that the
matrix Λ in (7) are independent of the channel matrices). This
imposes additional technical difficulties in the application of
RMT results in our scenario. Our approach in this work is to
first propose an algorithm that depends only on the second
order statistics of the channel vectors (the path-loss in our
case). Mathematically/theoretically, it is not ensured that it
achieves the optimal solution. However, we apply such an
algorithm to the original system set-up, and prove that this
algorithm is optimal in the large system domain.

We will hereby represent the dual uplink power, the uplink
and downlink beamforming vectors of the decentralized algo-
rithm by the notation µi,j , v̂i,j and vi,j , respectively, which are
the counterparts of λi,j , ŵi,j and wi,j of the CBF algorithm.

Algorithm 2 (Reduced Overhead Beamforming algorithm -
ROBF). Perform the following steps.

• Starting from any initial µ0
i,j > 0 ∀i, j the uplink power

allocation is given by µi,j
4
= limt→∞ µti,j , where

µt+1
i,j =

γi,j
σi,i,jm̄t

i

∀i, j (11)

and m̄t
i is evaluated as m̄t

i
4
= limp→∞ m̄t,p

i (initializing
with any m̄t,0

i > 0,∀i)

m̄t,p
i =

(
1

Nt

N∑
n=1

K∑
k=1

σi,n,kµ
t
n,k

1 + σi,n,kµtn,km̄
t,p−1
i

+ 1

)−1

.

(12)

• The optimal receive uplink receive filter is given by

v̂i,j =

√
1

Nt

(∑
n,k

µn,k
Nt

hi,n,kh
H
i,n,k + I

)−1

hi,i,j . (13)

• The optimal transmit downlink beamforming vectors are

given by vi,j =
√

δ̄i,j
Nt

v̂i,j . The scaling factor δ̄i,j is given
as

δ̄ = (I− Γ∆)−1ρ, (14)

where

δ̄i = [δ̄i,1, δ̄i,2, . . . , δ̄i,K ]T ∈ RK×1

δ̄ = [δ̄1, δ̄2, . . . , δ̄N ]T ∈ RNK×1

γi =

[
γi,1

σi,i,1Ḡi,i,1m̄2
i

, . . . ,
γi,K

σi,i,KḠi,i,Km̄2
i

]T
γ = [γ1, . . . ,γN ]T

Γ = diag(γ)
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and the matrix ∆ ∈ CNK×NK is defined as

∆ =

 ∆1,1 . . . ∆1,N

...
. . .

...
∆N,1 . . . ∆N,N

 (15)

where each submatrix ∆i,j ∈ CK×K is given by

∆i,n
j,k

4
=

{
0, n = i, k = j
1
Nt
Ḡn,i,jḠn,n,km̄

′
n, (n, k) 6= (i, j).

(16)

m̄′i can be evaluated from m̄i as

m̄′i =
m̄2
i

1− 1
Nt

∑N
n=1

∑K
k=1

(σi,n,kµn,km̄i)2

(1+σi,n,kµn,km̄i)2

(17)

and the term

Ḡi,n,k =
σi,n,k

(1 + µn,kσi,n,km̄i)
2 . (18)

The vector ρi =
[

N0

σi,i,1Ḡi,i,1m̄2
i
, . . . , N0

σi,i,KḠi,i,Km̄2
i

]T
and

ρ = [ρ1,ρ2, . . . ,ρN ]T ∈ RNK×1
.

We now provide some remarks on this algorithm.

Lemma 1. The iterative algorithm (11) converges to a fixed
point.

Proof. The proof is provided in Appendix B.

In section III , we characterize the solution provided by this
fixed point, and show that it is asymptotically optimal in the
sense that when the dimensions of the system grow large, the
achieved uplink and downlink SINR by this algorithm exactly
match the target SINR, and the allocated uplink and downlink
powers match the optimal solution.

In the rest of the paper, we address the decentralized beam-
forming algorithm by the acronym ROBF. We now discuss
the practical advantages of the ROBF algorithm over the CBF
algorithm.

C. ROBF Algorithm - Signaling Overhead and Complexity
Reduction

We now provide a brief discussion on the signaling overhead
and complexity reduction associated with the ROBF algorithm.
Signaling Overhead:
Recall that in the ROBF algorithm only the statistical infor-
mation (path loss) must be exchanged between the BSs where
as in the CBF algorithm, the fast fading co-efficients need
to be exchanged. Let us denote the channel coherence time
by τcoh units, and the long term time constant by τLT units
(over which the statistical properties of the channel change).
In has been demonstrated in some prior works related to
channel measurements, that in an urban setting the statistical
information of the channel can be viewed as constant roughly
for over 100 channel coherence intervals [19].

We now characterize the signaling overhead for the two
algorithms. For the CBF algorithm, exchanging full CSI would
imply NNtK complex channel coefficients of 2NNtK real
numbers every τcoh units of time. This would amount to

exchanging NNtK complex channel coefficients or 2NNtK
real co-efficients. Therefore, the rate of information exchange
for CBF algorithm would be

RCBF =
2NNtK

τcoh
real coefficients/sec.

For the ROBF algorithm, NK real numbers (path loss in-
formation assuming i.i.d. channel model) must be exchanged
every τLT units of time, and the resulting rate of information
exchange is given by

RROBF =
NNt
τLT

real coefficients/sec.

In order to get real feel of these numbers, assume N = 3, Nt =
100,K = 40, τLT = 22.6s, τcoh = 180ms [19]. Therefore,

RCBF = 1.3× 105 real coefficients/sec;

RROBF = 5.3 real coefficients/sec,

Therefore, the ratio of two quantities can be given by

RCBF

RROBF
= 2Nt

(
τLT

τcoh

)
≈ 104.

However, for correlated channel model, RROBF =
NNtK
τLT

real coefficients/sec. Therefore

RCBF

RROBF
= 2

(
τLT

τcoh

)
≈ 100.

Finally, note that the exact number of bits to be exchanged
depends on how these channel co-efficients are quantized
(which is beyond the scope of this paper).

Implementation Complexity:
An exact characterization of the complexity associated with
the ROBF algorithm is beyond the scope of this work. Nev-
ertheless, we provide a brief analysis of the same.
Computing the uplink power allocation
Recall that implementing the iterations for the computation
of the uplink power in the CBF algorithm requires matrix
inversion operations, where as the ROBF algorithm only
requires performing scalar operations. This tremendously re-
duces the computational complexity with respect to the ROBF
algorithm (the complexity of inverting a matrix is provided
next). Moreover, in the CBF algorithm the uplink power
must be evaluated for every channel realization (fast fading
CSI), where as the ROBF algorithm requires parameters to
be computed only once (at the time scale of changing of
slow fading CSI). Therefore, there is a huge reduction in the
computational complexity.

Formulation of the downlink beamforming vectors
Note that the downlink beamforming vector in the ROBF
algorithm (and also the CBF algorithm) is in the form of a
regularized zero forcing (RZF) beamforming, which requires
computation of a matrix inverse of dimension Nt × NK.
Therefore, its computational complexity scales as Nt(NK)2.
This can be computationally demanding especially in a mas-
sive MIMO setting. Fortunately, alternate schemes are being
developed to implement RZF based on truncated polyno-
mial expansion incur much less computational complexity
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as compared to matrix inversion, which are shown to have
performance very close to RZF beamforming [20].

The price to pay for the reduction in information exchange
between the BSs is that in the ROBF algorithm, the target
SINR values are not met perfectly for every channel realiza-
tion. In fact, the achieved SINR in the downlink fluctuates
around the target SINR. However, we will show through
simulations that even for practical values of the system di-
mensions, the fluctuations of the achieved SINR around the
target SINR value are small. In order to make sure that the
target SINR requirements are satisfied, one could solve the
optimization problem with ROBF algorithm by considering a
higher value target SINR (than the actual desired one) in order
to compensate for the fluctuations.

Next, we will show that the performance of ROBF algorithm
perfectly matches the CBF algorithm when the number of
antennas per BS and the number of UTs become large, i.e.,
in the regime of massive MIMO systems. We also provide
simulation results to examine the performance of the ROBF
algorithm.

III. ALGORITHM ANALYSIS

In this section, we provide extensive analysis of the ROBF
algorithm. In the rest of the paper, we will use the phrase
”large system” to refer to the regime when the number of
antennas per BS and the number of UTs per-cell become
large, i.e., Nt,K → ∞ while their ratio Nt

K tends to a
finite constant 0 < β < ∞, as considered in some past
works in this field [5]. However, we mention that our results
provide tight approximations for practical system dimensions
of massive MIMO systems. Specifically, we focus on the
following aspects:
• We first characterize a lower bound on the feasible SINR

targets for the ROBF algorithm.
• We prove that the uplink and the downlink SINR achieved

by the ROBF algorithm asymptotically converge to their
target value in the large system regime.

• We prove that the uplink and the downlink power allo-
cations yielded by the ROBF algorithm asymptotically
converge to the respective values of the CBF algorithm,
hence making the ROBF algorithm optimal in the large
system regime.

We first start with the characterization of feasible SINR targets
for the ROBF algorithm.

A. Feasible SINR targets for the ROBF algorithm

Throughout this subsection, we will use the notations γ to
denote the vector of target SINRs as follows:

γi = [γi,1, . . . , γi,K ]; γ = [γ1, . . . ,γN ].

Similarly, we define the vectors

λi = [λi,1, . . . , λi,K ]; λ = [λ1, . . . ,λN ],

µi = [µi,1, . . . , µi,K ]; µ = [µ1, . . . ,µN ].

We will now define the notion of feasible SINR target for
the ROBF algorithm. Feasible SINR target implies that the
following three conditions must be satisfied :

[C1] The iterations of the fixed point equation (11) must
converge to a finite value µ. This implies that given a
target SINR vector γ, there exists µ < ∞ that satisfies
the fixed point equation

γi,j = σi,i,jµi,jm̄i ∀i, j. (19)

Further from the property of the fixed point equation, for
a given γ there exists a unique µ satisfying (19) (if the
target SINR vector is feasible). Let us define such a pair
of vector by {γ,µ}.

[C2] For every pair of vectors {γ,µ} that satisfy (19), the
matrix I− Γ∆ must be invertible.

[C3] The elements of the vector (I−Γ∆)−1ρ must be positive

(in order for
√

δi,j
Nt

to be real).

We focus on the conditions [C1] and [C2] and defer [C3] to
the end of the section. We first state the main result of this
subsection and later on provide the proof.

Theorem 1. Every target SINR vector γ whose elements
satisfy the condition

1

Nt

K∑
k=1

γi,k
1 + γi,k

+
1

Nt

N∑
n=1
n6=i

K∑
k=1

σmax(n)
σn,n,k

γn,k

1 + σmax(n)
σn,n,k

γn,k
< 1. (20)

are feasible for the ROBF algorithm, where σmax(n) =.

We remark that in our result, the condition (20) is only a
sufficient condition. The proof of this theorem involves several
steps which will be illustrated in the rest of this subsection.
We proceed as follows.

First, we establish a relationship between the two conditions
[C1] and [C2].

Lemma 2. For every pair of vectors {γ,µ} that satisfy (19),
the matrix I− Γ∆ is invertible.

Proof. The proof can be found in Appendix C, part I.

Lemma 2 implies that the condition [C2] is automatically
satisfied for every pair of vectors {γ,µ} that satisfy the
condition [C1]. Following the result of Lemma 2, we consider
characterizing only the set of target SINR vectors γ that satisfy
the condition [C1].

The exact set of feasible target SINR vectors satisfying the
condition [C1] is difficult to be characterized in closed form.
Therefore, we only establish a lower bound on this set. In
order to do so, we consider a modified system in which the
inter-cell interference path loss coefficients are replaced by

σmax(n)
4
= sup

k
σi,n,k, ∀n 6= i. (21)

where i = 1, . . . , N. Therefore, in the modified system
σi,n,k = σmax(n).

Let us consider the ROBF algorithm applied to both the
original and the modified systems. The fixed point equation
for the computation of the uplink power allocation for the
original system must satisfy the following equations (we use
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the superscript ”org” to represent the original system):

γi,j = σi,i,jµ
org
i,jm̄

org
i ∀i, j, (22)

1

m̄org
i

=
1

Nt

K∑
k=1

σi,i,kµ
org
i,k

1 + σi,i,kµ
org
i,km̄

org
i

+
1

Nt

N∑
n=1

n 6=i

K∑
k=1

σi,n,kµ
org
n,k

1 + σi,n,kµ
org
n,km̄

org
i

+ 1. (23)

Similarly, the fixed point equation for the modified system must
satisfy the following equations (we use the superscript ”mod”
to represent the modified system):

γi,j = σi,i,jµ
mod
i,k m̄

mod
i (24)

1

m̄mod
i

=
1

Nt

σi,i,kµ
mod
i,k

1 + σi,i,kµ
mod
i,k m̄

mod
i

+
1

Nt

N∑
n=1

n 6=i

K∑
k=1

σmax(n)µmod
n,k

1 + σmax(n)µmod
n,k m̄

mod
i

+ 1. (25)

In what follows, we will consider the ROBF algorithm
applied to the modified system and characterize the feasible
SINR targets corresponding to this system. The set of feasible
target SINR of the ROBF algorithm applied to the modified
system will act as a lower bound on the set of feasible target
SINR of the ROBF algorithm applied to the original system.
Intuitively, this is not hard to see. In the modified system, the
path losses corresponding to the inter-cell interference links
are scaled up to σmax(n). Therefore, the modified system
represents a more interference limited regime as compared
to the original system. Hence, any SINR feasible for ROBF
applied to the modified system should be feasible for the ROBF
algorithm applied to the original system as well. We will later
on make rigorous arguments to prove that the above statement
in Lemma 3.

Proposition 2. The set of feasible SINR targets for the ROBF
algorithm applied to the modified system must satisfy for i =
1, . . . , N,

1

Nt

K∑
k=1

γi,k
1 + γi,k

+
1

Nt

N∑
n=1
n 6=i

K∑
k=1

σmax(n)
σn,n,k

γn,k

1 + σmax(n)
σn,n,k

γn,k
< 1. (26)

Proof. The proof is provided in Appendix C, part II.

We will now present the following Corollary.
Corollary 1:
In the large system regime, the set of feasible SINR targets
for the ROBF algorithm applied to the modified system must
satisfy for i = 1, . . . , N,

lim sup
Nt,K→∞

 1

Nt

K∑
k=1

γi,k
1 + γi,k

+
1

Nt

N∑
n=1
n 6=i

K∑
k=1

σmax(n)
σn,n,k

γn,k

1 + σmax(n)
σn,n,k

γn,k


< 1.
(27)

The arguments for the Corollary is also provided in Appendix
C, part II.

Finally, we will show that the feasibility condition of (26)
will act as a lower bound on the set of feasibile SINR targets
for the ROBF algorithm applied to the original system.

Lemma 3. Any target SINR feasible for the ROBF algorithm
applied to the modified system is feasible for the ROBF
algorithm applied to the original system. Hence the feasible
SINR targets for the modified system will act as a lower bound
for the feasible SINR target of the original system.

Proof. The proof is provided in Appendix C, part III.

Lastly, we establish the condition [C3]. This is rather
straight forward and can be seen by the following steps:
From Appendix C, we have established that for target SINR
values that satisfy the condition in Proposition 2, ρ(Γ∆) < 1.
Therefore, using series expansion for the matrix (I− Γ∆)−1

[21], we have

(I− Γ∆)−1ρ =
( ∞∑
j=1

(Γ∆)j
)
ρ. (28)

Since the elements of Γ∆ and ρ are positive, their sum will
also be positive. Therefore, the condition [C3] holds true.

We end this section by providing the feasibility conditions
in two special cases in which the feasibility conditions are
both necessary and sufficient:
Example 1: Single Cell Case
For the isolated single cell case, (27) reduces to the following

1

Nt

K∑
k=1

γk
1 + γk

< 1. (29)

When all the UTs are demanding the same SINR γk = γ ∀k,
the set of feasible SINR is given by γ <

(
K

min{Nt,K} − 1
)−1

.

The result can be interpreted as follows. In the case of a single
cell, as long as Nt ≥ K, any finite SINR target is supportable
by the ROBF algorithm (for the case when all γi,j are equal).
In other words, when Nt ≥ K, the BS has enough degrees
of freedom to sever all the UTs in the system. Note that (29)
matches the feasibility conditions derived in [18] for the case
of a single cell system.
Example 2: 2-Cell Wyner Model
Consider a perfectly symmetric multi-cell system in which the
path loss for the intra-cell links are equal to 1, and the path
loss of the inter-cell links are equal to ε. Every UT demands
the same SINR target given by γ. In this case, (27) reduces
to

K

Nt

(
γ

1 + γ
+

εγ

1 + εγ

)
< 1. (30)

This condition allows us to examine the dependency of the
feasible SINR target on various system parameters. In partic-
ular, we examine the dependency of the feasible γ on Nt by
a simple numerical example. We plot the downlink transmit
power (obtained by running the ROBF algorithm) as a function
of γ for different values of Nt in Figure 1. We consider
K = 50 UTs per cell and ε = 0.5 It can be seen that beyond
a certain cut off value of the target SINR, the downlink power
grows unbounded. This is precisely the value of the target
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Fig. 1. Downlink power Vs target SINR for K = 50 UTs per cell.

SINR at which the ROBF algorithm becomes infeasible. It can
be verified that the cut off value of γ is the one for which the
condition in (30) is not satisfied. Finally, note that higher the
number of transmit antennas per BS, higher is the cut off value
of the target SINR. Once again, this is due to the availability
of greater number of spatial degrees of freedom. In this cases
when Nt ≥ 2K, any finite target SINR is achievable (note that
2K is the total number of UTs in two cells). The feasibility
conditions for the special case of two cell Wyner model was
derived in [11] as well.

B. Convergence of the Uplink and Downlink SINR

Next we focus on the achieved SINR in the uplink and
downlink for the ROBF algorithm. We first start with the
analysis of the uplink of the ROBF algorithm. Before we
proceed, we make the following observations. Recall that the
achieved SINR in the uplink for the ROBF algorithm is given
by

ΛUL
i,j (µ) =

µi,j
Nt
|v̂Hi,jhi,i,j |2∑

(n,k) 6=(i,j)
µn,k
Nt
|v̂Hi,jhi,n,k|2 + ||v̂i,j ||22

. (31)

Note that in our notation ΛUL
i,j (µ), we have explicitly men-

tioned the achieved uplink SINR as a function of the pa-
rameters of the ROBF algorithm µ (slightly deviating from
the notation for the uplink SINR introduced in Section II).
Since the uplink receive filter in the ROBF algorithm (13) are
minimum mean square error (MMSE) form, the expression for
the achieved uplink SINR can be given in alternate form as

ΛUL
i,j (µ) =

µi,j
Nt

hHi,i,j(Σ
′µ
i + INt)

−1hi,i,j (32)

where Σµ
i =

∑
i,j

µi,j
Nt

hi,i,jh
H
i,i,j and Σ′

µ

i = Σµ
i −

µi,j
Nt

hi,i,jh
H
i,i,j . Similarly since the uplink receive filter (8) in

the CBF algorithm are MMSE, the achieved uplink SINR for
the CBF algorithm is given by

ΛUL
i,j (λ) =

λi,j
Nt

hHi,i,j(Σ
′λ
i + INt)

−1hi,i,j ∀i, j. (33)

Also, since the CBF algorithm is optimal,

ΛUL
i,j (λ) = γi,j ∀i, j. (34)

Also, recall that the downlink SINR for the ROBF algorithm
is given by

ΛDL
i,j (µ) =

|vHi,jhi,i,j |2∑
k 6=j |vHi,khi,i,j |2 +

∑
n 6=i,k |vHn,khn,i,j |2 +N0

.

(35)

We now provide the following convergence result:

Theorem 3. In the large system regime, the achieved uplink
and downlink SINR for the ROBF algorithm converge almost
surely to the target SINR γi,j . Mathematically stating

ΛUL
i,j(µ)

a.s.−−−−−−→
Nt,K→∞

γi,j ∀i, j, (36)

ΛDL
i,j(µ)

a.s.−−−−−−→
Nt,K→∞

γi,j ∀i, j. (37)

Proof. The details of the proof for the convergence of the
achieved uplink SINR (36) can be found in Appendix D.

Next we proceed to the convergence proof for the downlink
SINR (37). The proof utilizes the following lemma on the
convergence result for the downlink interference terms.

Lemma 4. The downlink interference term corresponding to
the intra-cell and inter-cell interference converge in the large
system regime to the following:∑

(n,k) 6=(i,j)

|vHn,khn,i,j |2 �
∑

(n,k)6=(i,j)

δ̄n,kḠn,i,jḠn,n,km̄
′
n

Nt
.

(38)

The lemma is proved in Appendix E. We now proceed
to the convergence of the downlink SINR. Using Lemma 4
and Lemma 11, it can be concluded that the downlink SINR
asymptotically converges to

ΛDL
i,j (µ)

a.s.−−−−−−→
Nt,K→∞

δ̄i,jσi,i,jḠi,i,jm̄
2
i

1
Nt

∑
(n,k)6=(i,j) δ̄n,kḠn,i,jḠn,n,km̄

′
n +N0

. (39)

It can be easily verified from (14) that the right hand side
of (39) is equal to the target SINR γi,j , thus completing the
proof.

C. Asymptotic optimality of the Uplink and Downlink Power
Allocation

We will now focus on the optimality of the uplink and
downlink power allocation of the ROBF algorithm in the large
system regime.

Consider the Lagrangian of the downlink minimization
problem in its two forms as in equations (3) and (4). Our
proof proceeds by plugging in the solution obtained by the
ROBF algorithm (v,µ) into the Lagrangian and examining
its properties in the large system regime.
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Lemma 5. The following results hold true for the Lagrangian
in the large system limit:

lim
Nt,K→∞

L(v,µ) = lim
Nt,K→∞

∑
i,j

vHi,jvi,j , (40)

lim
Nt,K→∞

L(v,µ) = lim
Nt,K→∞

∑
i,j

µi,jN0

Nt
. (41)

.

Proof. Please refer to Appendix F.

We can draw the following inference from the result of
Lemma 5.

Corollary 2: The uplink and downlink power allocations
yielded by the ROBF algorithm are equal in the asymptotic
limit:

lim
Nt,K→∞

∑
i,j

vHi,jvi,j = lim
Nt,K→∞

∑
i,j

µi,jN0

Nt
. (42)

We know that the uplink power allocation of the CBF algo-
rithm satisfies ∑

i,j

λi,jN0

Nt
= min

w
max
λ

L(w,λ) (43)

If we show that in the large system regime

lim
Nt,K→∞

∑
i,j

µi,jN0

Nt
= lim
Nt,K→∞

min
w

max
λ

L(w,λ), (44)

and the duality gap is zero, then this implies that the so-
lution provided by the ROBF is optimal in the asymp-
totic domain. In other words, the optimal downlink power
(which is the solution of the primal problem) is equal to
limNt,K→∞minw maxλ L(w,λ). In order to do so, we will
prove the following result:

Lemma 6. In the large system regime, the sum of uplink power
allocation of the ROBF algorithm converges to the sum of
uplink power allocation of the CBF algorithm.∑

i,j

µi,j
Nt
�
∑
i,j

λi,j
Nt

∀i, j. (45)

Proof. The result is proved in Appendix G.

Consequently, the solution provided by the ROBF algorithm
is optimal to limNt,K→∞maxw minλ L(w,λ). Also, from
the result of Corollary 2, it follows that the downlink power
allocation of the ROBF algorithm is also optimal in the large
system regime. This concludes the proof.

IV. IMPACT OF IMPERFECT CSI AND PILOT
CONTAMINATION ON THE PERFORMANCE OF ROBF

ALGORITHM

In this section, we investigate the impact of CSI estimation
errors and pilot contamination on the performance of the
ROBF algorithm. Throughout this section, we assume that
the slow fading co-efficient (path loss information) can be
accurately estimated at the BS (since they remain constant
for a long period of time, they are easy to estimate, see

for e.g. [22]). Further, for the fast fading co-efficients, we
assume reciprocity between uplink and downlink channels, and
consider the time division duplexing (TDD) model of channel
estimation, i.e., estimation via uplink pilots.

A comprehensive design of the optimal beamforming vec-
tors in the presence of CSI estimation errors and pilot con-
tamination issue is out of the scope of this paper. Alternately,
we take the following approach: First, we assume that the
BS treats the CSI estimate as the true CSI and implements
the ROBF algorithm directly. In this case, we derive the
asymptotic equivalent of the downlink SINR achieved by the
ROBF algorithm. Using numerical results, we investigate the
impact of CSI estimation errors and pilot contamination on
the performance of the ROBF algorithm both in terms of
the achieved SINR and downlink power. Then, exploiting
the fact that the BS has the accurate knowledge of the
slow fading co-efficient, we propose a heuristic adaptation of
the ROBF algorithm in the presence of imperfect CSI and
pilot contamination named as the modified ROBF (MROBF)
algorithm. We show that under the massive MIMO regime, an
algorithm in which parameters can be computed based on the
channel statistics (rather than the fast fading CSI) such as the
MROBF algorithm is more robust to CSI estimation and pilot
contamination effects.

A. CSI Estimation

We now describe the CSI training phase for the estimation
of the fast fading co-efficients. Let T be the length of the
channel coherence interval, a part of which is dedicated for
CSI estimation, and τ be the number of symbols used for
pilots. Therefore, the UTs in every cell i transmit τ mutually
orthogonal pilot symbols to their respective BSs during the
training phase. We represent the pilot sequences used by the
K UTs in each cell by the matrix

√
PTrΦ ∈ Cτ×K , (τ ≥ K).

The pilot sequences are repeated in each cell, hence leading
to the issue of pilot contamination. The matrix Φ satisfies
ΦHΦ = IK .

The signal received during the channel training phase de-
noted by Yi,Tr ∈ CNt×K can be written as

Yi,Tr = Hi,iΦ
T +

(∑
n6=i

Hi,n

)
ΦT + N, (46)

where Hi,n = [hi,n,1, . . . ,hi,n,K ] and N ∈ CNt×τ with i.i.d.
CN (0, 1) elements represents the noise during channel training
phase. The MMSE estimate of hi,n,k given Yi,Tr can be given
by [23]

ĥi,n,k = σ′i,n,k

(
N∑
b=1

hi,b,k +
nTr√
PTr

)
, (47)

where σ′i,n,k = σi,n,k

(∑N
b=1 σi,b,k + 1

PTr

)−1

. It can be veri-

fied that ĥi,n,k is distributed as

ĥi,n,k ∼ CN

0, σ2
i,n,k

(
N∑
b=1

σi,b,k +
1

PTr

)−1
 . (48)
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For notational simplicity, let us denote σ̂i,n,k =

σ2
i,n,k

(∑N
b=1 σi,b,k + 1

PTr

)−1

. Note that

σ̂i,n,k = σ′i,n,kσi,n,k. (49)

ROBF Algorithm With CSI Estimates

Throughout this subsection, we assume that the BSs assume
the CSI estimates to the true channel vector, and implement
the ROBF algorithm. Note however that the computation of
µi,j and δ̄i,j in (11) and (14) do not require the estimates of
the fast fading co-efficient, and hence they can be implemented
directly. The uplink receive filter with imperfect CSI denoted
by v̂est

i,j can be formulated as

v̂est
i,j =

√
1

Nt
Ψ−1
i ĥi,i,j (50)

where

Ψi =
∑
n,k

µi,k
Nt

ĥi,n,kĥ
H
i,n,k + INt . (51)

The dowlink beamforming vector denoted by vest
i,j can be then

computed as

vest
i,j =

√
δ̄i,j
Nt

v̂est
i,j . (52)

We now investigate the achieved SINR in the downlink
under the ROBF algorithm with imperfect CSI. The expression
for the dowlink SINR can be given as in (35), by replacing
vi,j with v̂est

i,j . The asymptotic equivalent of the dowlink SINR
can be obtained by analyzing it in the large system regime.

Theorem 4. The achieved SINR in the downlink by the ROBF
algorithm in the presence of imperfect CSI converges almost
surely to the right hand side of (56) in the large system regime,
where the term Ĝn,n,k is defined as

Ĝn,n,k =
1

1 + ξn,kσ̂n,n,km̄est
n

and ξi,k =

∑N
n=1 σi,n,kµn,k

σi,i,k
.

(53)

Further, m̄est
n can be computed as the solution to the fixed

point equation

m̄est
n =

(
1

Nt

K∑
k=1

ξn,kσ̂n,n,k
1 + ξn,kσ̂n,n,km̄est

n

+ 1

)−1

, (54)

and (m̄′n)est can be computed from m̄est
n as

(m̄′n)est =
(m̄est

n )2

1− 1
Nt

∑K
k=1

(σ̂n,n,kξn,km̄est
n )2

(1+σ̂n,n,kξn,km̄est
n )2

. (55)

Proof. The proof is provided in Appendix H.

B. Modified ROBF (MROBF) Algorithm

In this subsection, we propose a heuristic adaptation of
the ROBF algorithm addressed as Modified ROBF (MROBF)
algorithm which is designed to accommodate the effects of
imperfect CSI and pilot contamination.

First, note that naive application of the ROBF algorithm
may not yield good performance in the presence of imperfect
CSI and pilot contamination. The following reasoning provides
an intuitive understanding for this: Consider the interference
arising from the signal of UTn,k, (n 6= i, k 6= j) at the UTi,j
(which does not use the same pilot as UTi,j), i.e., the term
|wn,khn,i,j |2. Following the derivation of Appendix H, it can
be verified that this interference terms converges to

|wn,khn,i,j |2 �
δ̄n,k
Nt

σ̂n,n,kĜ
2
n,n,k(m̄′n)estBn,k. (60)

Now consider the interference arising from the signal of
UTn,j , (n 6= i) at the UTi,j (which reuses the same pilot
as UTi,j), i.e., the term |wn,jhn,i,j |2. It can be verified that
asymptotically, this interference terms converges to

|wn,jhn,i,j |2 � δ̄n,j
(
σn,i,jσ

′
n,n,jĜn,n,jm̄

est
n

)2

. (61)

We note that the two interference terms are significantly
different. In particular, (60) is scaled by a factor of 1

Nt
,

(and for large Nt, this has a very low value). However, the
term in (61) is not scaled. This is due to the fact that the
BS cannot distinguish between the channels of UTi,j and
UTn,j due to the pilot contamination effect. This implies that
naive application of the ROBF algorithm may significantly
underestimate the interference arising out of the UTs that reuse
the same pilots. The algorithm performance can be enhanced
by carefully accounting for these issues. This is indeed the
main intuition behind the MROBF algorithm.

In the MROBF algorithm, we consider that the BS does
not alter the structure of the beamforming vector, i.e., the BS
retains the RZF beamforming vector as in (52). Nevertheless,
the performance gain can still be obtained by redesigning the
uplink power allocation, and computation of δ̄. We redesign
the uplink power allocation on similar lines as that of the
ROBF algorithm.

First note that in the case of perfect CSI, the achieved
uplink SINR in the asymptotic limit is given by σi,i,jµi,jm̄i.
Further, the uplink power allocation is chosen to satisfy
γi,j = σi,i,jµi,jm̄i, or

µi,j =
γi,j

σi,i,jm̄i
∀i, j. (62)

We use a similar argument for the computation of the uplink
power allocation in the case of imperfect CSI. In order to
do so, consider the uplink SINR with uplink receive filter
formulated as in (50)

(ΛUL
i,j (µ))est =

µi,j
Nt
|v̂est
i,jhi,i,j |2∑

(n,k)6=(i,j)
µn,k
Nt
|v̂est
i,jhi,n,k|2 + ||v̂est

i,j ||22
.

(63)

Let us examine the uplink SINR in the large system domain.
Using the derivation similar to Appendix H, we can replace
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(ΛDL
i,j (µ))est �

δ̄i,j(σ̂i,i,jĜi,i,jm̄
est
i )2∑N

n=1
n 6=i

δ̄n,j

(
σn,i,jσ′n,n,jĜn,n,jm̄

est
n

)2

+ 1
Nt

∑N
n=1

∑K
k=1
k 6=j

δ̄n,kσ̂n,n,kĜ2
n,n,k(m̄′n)estBn,k

, (56)

where

Bn,k = σn,i,j + σ̂n,n,j(ξn,jσn,i,jσ
′
n,n,jĜn,n,jm̄

est
n )2 − 2µn,j(σn,i,jσ

′
n,n,j)

2Ĝn,n,jm̄
est
n . (57)

µi,j(σ̂i,i,jĜi,i,jm̄
est
i )2∑N

n=1
n 6=i

µn,j

(
σi,i,jσ′i,n,jĜi,i,jm̄

est
i

)2

+ 1
Nt

∑N
n=1

∑K
k=1
k 6=j

µn,kσ̂i,i,jĜ2
i,i,j(m̄

′
i)

estB′n,k + σ̂i,i,jĜ2
i,i,j(m̄

′
i)

est
, (58)

where

B′n,k = σi,n,k + σ̂i,i,k(ξi,kσi,n,kσ
′
i,i,kĜi,i,km̄

est
i )2 − 2µi,k(σi,n,kσ

′
i,i,k)2Ĝi,i,km̄

est
i . (59)

the individual terms of (63) by their asymptotic equivalents.
Therefore, we assume that in the large system domain, the
uplink SINR can be approximated by (58). For convenience,
let us denote that denominator of (58) by IUL

asymp. Following
the same approach as in (62), we compute the uplink power
allocation as the solution to the following set of equations:

µi,j =
γi,jIUL

asymp

(σ̂i,i,jĜi,i,jm̄
est
i )2

∀i, j. (64)

The µi,j that satisfies the set of equations (64) can be com-
puted using the following iterative method: Starting from any
initial µ0

i,j > 0 ∀i, j the uplink power allocation is given by
µi,j

4
= limt→∞ µti,j , where

µt+1
i,j =

γi,j(IUL
asymp)t

(σ̂i,i,jĜti,i,j(m̄
est
i )t)2

∀i, j. (65)

In (65), (IUL
asymp)t, Ĝti,i,j and (m̄est

i )t denote the respective
quantities computed at µti,j , ∀i, j. We observe that numerically
that the iterations of (65) converges to the solution of (64) (see
numerical results in Section V).

Finally, δ̄ can be computed as a solution to the following
linear equations

δ̄ = ∆−1γ (66)

where the matrix ∆ ∈ CNK×NK is defined as

∆ =

 ∆1,1 . . . ∆1,N

...
. . .

...
∆N,1 . . . ∆N,N

 (67)

where each submatrix ∆i,j ∈ CK×K is given by

∆i,n
j,k

4
=


(σ̂i,i,jĜi,i,jm̄

est
i )2, n = i, k = j

−
(
σn,i,jσ

′
n,n,jĜn,n,jm̄

est
n

)2

, n 6= i, k = j

−1
Nt
σ̂n,n,kĜ

2
n,n,k(m̄′n)estBn,k, n = i, k 6= j

and n 6= i, k 6= j.
(68)

V. NUMERICAL RESULTS

In this section, we present some numerical results to demon-
strate the performance of the ROBF algorithm in a massive
MIMO setting.

Fig. 2. Hexagonal cellular network consisting of 2 cells.

We consider a hexagonal cellular system consisting of 2
cells as shown in Figure 2. We use the distance dependent
path loss model in which the path loss from BS i to UTj,k is
given by

σi,j,k =
d0

di,j,k
β
,

where di,j,k represents the distance between BS i to UTj,k. β
represents the path loss exponent which is taken to be 3.6 in all
the simulation scenarios. d0 represents the channel attenuation
at reference point and is taken to 10−3.53. Location of the UTs
are obtained by generating uniform random numbers inside
each hexagonal cell. The distance dmin ≤ di,j,k ≤ dmax,
where dmin and dmax represent the minimum and the max-
imum distance between the UTs to the BSs of their respective
cells. In our simulation, dmin = 20 m and dmax = {250, 500}
m depending on the distance between the two BSs. The noise
power is taken to be −104 dBm over the operating bandwidth.
All numerical results are plotted by varying the positions of
the UTs inside the cell over 500 iterations.

First, we examine the performance of the ROBF algorithm
in satisfying the UT SINR constraints. Accordingly, we plot
the variation of the uplink and downlink SINR (averaged
across the UTs) as a function of the number of antennas per
BS for 1000 channel realizations in Figure 3. Herein, K = 50
UTs per cell and target SINR is 3 dB per UT. The horizontal
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line represents the target SINR which is 3 dB. The bubbles
represent the average achieved SINR values (averaged over the
channel realizations), and the vertical lines around this bubble
represent the variation of the achieved downlink SINR around
the average value. It can be observed that even for moderate
number of antennas, e.g. 60 antennas per BS (comparable to
the number of UTs), the target SINR constraints are satisfied
for almost every channel realization (since the fluctuations are
small). This implies that the ROBF algorithm nearly optimal
under this setting in terms of satisfying the SINR constraints.

Next, we investigate the downlink power of the ROBF
algorithm and compare it with the CBF algorithm and ZF
beamforming3 (denoted by

√
P ZF
i,jw

ZF
i,j , where wZF

i,j is unit
norm vector). Note that our simulation setting, the BS per-
forms ZF beamforming to null the interference UTs in both the
cells (and not merely the UTs in its own cells). After nulling
the interference, BS performs appropriate power allocation in
order to meet the target SINR constraint of the UTs

P ZF
i,j =

γi,jN0

|hi,i,jwZF
i,j |2

.

We plot the downlink power per UT (i.e. Sum downlink power
K ) as a

function of the number of antennas per BS in Figure 4. Herein,
K = 25 UTs per cell and target rate = 3 bits/s/Hz (log(1 +
γi,j)) per UT. The following conclusions can be drawn. First,
the downlink power expended by ROBF very closely matches
that of CBF, indicating that the ROBF is nearly optimal in
terms of minimizing the downlink power as well. Next, it can
be seen that for moderate number of antennas per BS, e.g.
50− 100 antennas, ROBF provides substantial power gains as
compared to ZF beamforming. This result highlights the gains
obtained by optimizing the power allocation (as compared to
naively nulling out interference to all the UTs in the system).
When Nt is very large, the scaling of 1

Nt
starts to play a

dominant role, and ROBF ceases to provide substantial gains
over ZF.

Finally, we examine the efficacy of ROBF algorithm in
terms of its ability to support greater number of UTs per cell.
This is accomplished by fixing the number of antennas per BS
to 60, and plotting the downlink power as a function of the
number of UTs per cell in Figure 5. It can be seen that beyond
a certain number of UTs, the downlink power corresponding to
the ZF beamforming becomes unbounded. In fact, this happens
at K = 30 UTs per cell (note that Nt = 2K at this point
indicating that the BS has used up all its degrees of freedom).
At the same time, the downlink power of the ROBF algorithm
grows unbounded at a much later stage, i.e. around 55 UTs per
cell. Moreover, we can also see that as D (distance between
the BSs) increases from 500 m to 1000 m, the transmit power
decreases as expected. This is due to the reduced effect of
inter-cell interference. Lastly, to quantify the transmit power

3Note that for eigen beamforming and RZF, after fixing the beamforming
direction, the power allocation needed to satisfy the SINR constraints does
not yield to a simple structure (as in the case of ZF). In order to avoid the
additional complexities associated with power allocation, only ZF is used
for comparison purposes. Nevertheless, we expect the gains of the ROBF
algorithm to hold true with respect to the other beamforming techniques as
well.

gains obtained by the ROBF algorithm over ZF, we zoom into
the previous plot in Figure 6. Once again, as noted before,
ROBF algorithm provides substantial power gains compared
to ZF, a gain of 5 dBm per UT for K = 25 UTs per cell.

Impact of Pilot Contamination Effect

We finally investigate the impact of pilot contamination
effect on the performance of the ROBF algorithm, and the
improvements obtained by the MROBF algorithm. We con-
sider an identical system set up as in the case of perfect CSI.
Since our main objective is to characterize the performance
loss due to the pilot contamination effect, we ignore the errors
associated with the CSI estimation process, i.e., PTr in (47) is
set to a very high value.

First, we compare the achieved SINR in the downlink by
the MROBF algorithm and the CBF algorithm in Figure 7.
For the implementation of CBF, we consider that Algorithm
1 is implemented with all the CSI values replaced by their
estimates (i.e. hi,n,k replaced by ĥi,n,k ∀i, n, k computed as
in (47)). It can be seen that the MROBF algorithm very closely
matches the target SINR values, where as the CBF algorithm
does not achieve the target SINR. This is due to the fact that in
the MROBF algorithm, parameters can be computed based on
the slow fading co-efficient, which can be estimated accurately
at the BS. However, the CBF algorithm requires knowledge of
the fast fading co-efficient, whose estimation suffers from the
pilot contamination effect (in addition to the CSI estimation
error that has been ignored in our numerical results).

Finally, we provide a comparison of the downlink power
reduction provided by the MROBF algorithm. Notice that the
CBF and ROBF do not achieve the target SINR. For the sake
of comparison, we devise an algorithm that achieves the target
SINR. One can think of retaining the uplink power allocation
of the ROBF algorithm, and only adapting the computation
of δ̄ as in (66), such that the target SINR is achieved in the
downlink. We address this algorithm by the name ROBF with
downlink adaptation. We plot the transmit power per UT as a
function of the target SINR for both the MROBF algorithm
and the ROBF with downlink adaptation in Figure 8. It can
be seen that the transmit power per UT is significantly lower
for the MROBF algorithm. Moreover, beyond a certain target
SINR value, the downlink power for the ROBF with downlink
adaptation becomes very high, implying that the target SINR
cannot be supported by this algorithm. In contrast, the MROBF
algorithm can support a greater range of target SINR values.
This is due to the fact that the ROBF with downlink adaptation
algorithm significantly under estimates the interference arising
out of the UTs which reuse the same pilot symbols, where as
the MROBF algorithm accurately accounts for this quantity.

VI. CONCLUSION

In this work, we have formulated a decentralized multi-
cell beamforming algorithm for massive MIMO systems using
only locally available CSI at the BSs, and some statistical
side information of the channel gains to other UTs. Our
algorithm incurs a lower burden in terms of the information
exchange between BSs. Further we proved theoretically that
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Settings identical to Figure 5.

this algorithm is asymptotically optimal for a large number of
BS antennas and UTs. We also characterized a lower bound on
the range of SINR values for which this algorithm is feasible.
We confirmed using numerical results that the algorithm is
nearly optimal in the regime of massive MIMO systems. It
also provides substantial power savings as compared to zero-
forcing beamforming when the number of antennas per BS is
of the same orders of magnitude as the number of UTs per cell.
Finally, we investigated the impact of CSI estimation errors
and pilot contamination on the performance of the ROBF
algorithm. Further, we proposed a heuristic modification of
the ROBF algorithm, and showed with the help of numerical
results that such an algorithm is more robust to the effects of
CSI estimation errors and pilot contamination (as compared to
an algorithm that uses fast fading CSI values to compute the
system parameters)
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APPENDIX A: SOME RELEVANT RESULTS

Lemma 7. ([24]) For two matrices X and Y, if 0 ≤ X ≤ Y,
then ρ(X) ≤ ρ(Y).

Lemma 8. (Equation 2.2, [25]) Let A be a Hermitian
invertible matrix of size N ×N , then for any vector x ∈ CN
and scalar τ ∈ C for which A + τxxH is invertible,

(
A + τxxH

)−1
= A−1 − A−1τxxHA−1

1 + τxHA−1x
,
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and

xH(A + τxxH)−1 =
xHA−1

1 + τxHA−1x
.

Lemma 9. (Lemma 2.6, [26]) Let x,y ∼ CN (0, 1
N IN ) ∈

CN , A ∈ CN×N Hermitian matrix, and that x and y are
mutually independent, and independent of A. Consider m ≥
2. Then there exists a constant Cm independent of N and A
such that

E
[∣∣xHAx− 1

N
tr(A)

∣∣m] ≤ Cm
Nm/2

||A||m.

This implies by the Markov inequality and the Borel Cantelli
lemma for ||A|| <∞, that

xHAx− 1

N
tr(A)

a.s.−−−−→
N→∞

0.

Additionally,
xHAy

a.s.−−−−→
N→∞

0.

Lemma 10. (Lemma 2.6, [25]) Let z ∈ C+ with v = Im(z)
and A and B are N ×N matrices with B being Hermitian,
τ ∈ R, and q ∈ CN , then

|tr
(
(B− zI)−1 − (B + τqqH − zI)−1)A

)
| ≤ ||A||

v
.

Theorem 5. ([25]) Consider the matrix BNt = XNtTNtX
H
Nt
,

where XNt = 1√
Nt

YNt ∈ CNt×NK with entries YNt(p, q) ∼
CN (0, 1), and the matrix TNt a non random diagonal matrix
given by TNt = diag(t1, . . . , tNK) ∈ RNK×NK . Let m(z) =
1
Nt

tr(BNt + zI)−1, z > 0, Then, m(z)− m̄(z)
a.s.−−−−−−→

Nt,K→∞
0,

where m̄(z) can be evaluated as the unique solution to the
fixed point equation

m̄(z) =

(
1

Nt

NK∑
i=1

ti
1 + tim̄(z)

+ z

)−1

.

Further from [14], under the same assumptions as Theorem
5, let m′(z) = 1

Nt
tr(BNt + zI)−2. Then,

m′(z)− m̄′(z) a.s.−−−−−−→
Nt,K→∞

0 (69)

where m̄′(z) can be evaluated as

m̄′(z) =
m̄2(z)

1− m̄2(z)
Nt

∑NK
i=1

t2i
(1+tim̄(z))2

. (70)

At this point, we remark that all the above results also hold
for a more general non-Gaussian vectors/ matrices satisfying
some moment conditions.

Lemma 11. (Lemma 1,[27]) Let aN , bN , xN and yN denote
four infinite sequences of complex random variables indexed
by N. If aN � bN and xN � yN and if |aN |, |y|−1

N

and/or |aN |, |y|−1
N are uniformly bounded above over N, then

aN/xN � bN/yN . The requirement of uniform bound can be
relaxed to boundedness almost surely.

APPENDIX B: PROOF OF THE FIXED POINT EQUATION

In order to prove the convergence of the iterative equation
(11), we use the arguments of standard function [28]. A
K−variate function g(x) = [g1(x), . . . , gK(x)] ∈ RK for
x ∈ CK is said to be standard if it fulfills the following
conditions:
• Positivity: g(x) > 0, for x ≥ 0.
• Scalability: For β > 1, βg(x) > g(βx).
• Monotonicity: For x′ ≥ x, g(x′) ≥ g(x).

Now consider the following iterative algorithm given by,

xt+1 = g(xt), t ≥ 1 (71)

If the K−variate function is standard, then it ensures the con-
vergence of (71) to its unique fixed point solution x = g(x),
if the solution exists.
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Consider the iterative equations in (11) which can be
represented as

µt+1
i,j = fi,j(µ

t) (72)

where µti = [µti,1, . . . , µ
t
i,K ]T and µt = [µti, . . . ,µ

t
n]T and

fi,j(µ
t)
4
=

γi,j
σi,i,jm̄t

i

∀i, j. (73)

Let us also define the NK− variate function

fi(µ
t)
4
= [fi,1(µt), . . . , fi,K(µt)]T ∈ RK

f(µt)
4
= [f1(µt), . . . , fN (µt)]T ∈ RNK . (74)

The existence of the fixed point to the equation µ = f(µ)
follows from Lemma 1. We will now prove that the NK−
variate function f(µ) is a standard function and hence the
iterations of (72) converges to its unique fixed point. In the
subsequent part of this proof, we will introduce the notation
m̄t
i(z) to denote the solution of the fixed point equation

m̄t
i(z) =

(
1

Nt

N∑
n=1

K∑
k=1

σi,n,kµ
t
n,k

1 + σi,n,kµtn,km̄
t
i(z)

+ z

)−1

. (75)

With this notation, the solution to the fixed point equation of
(12) can be written as m̄t

i(1). For notational convenience, we
will also drop the superscript t.
Positivity: The positivity result follows directly since m̄i(1)
is positive whenever µ ≥ 0. Hence fi,j(µ) > 0.
Scalability: Let us consider the difference between the
following quantities.

βfi,j(µ)− fi,j(βµ) =
βγi,j

σi,i,jm̄
(1)
i (1)

− γi,j

σi,i,jm̄
(2)
i (1)

=
γi,j
σi,i,j

(
β

m̄
(1)
i (1)

− 1

m̄
(2)
i (1)

)
(76)

where β > 1 and m̄(1)
i (1) and m̄(2)

i (1) are the unique solutions
to (12) evaluated at µ and βµ. In order to evaluate m̄(2)

i (1),
we go back to the definition m̄(2)

i (1) evaluated at βµ.

m̄
(2)
i (1) =

1

N
tr(HiβMHH

i + I)−1 � 1

β
m̄i

(
1

β

)
(77)

where M = diag[µ]. Clearly 1/β < 1. m̄
(2)
i (1) can be

evaluated as the solution to the fixed point equation (12)
evaluated at the point 1/β and then scaling the result by β.
From (76) and (77), it can be concluded that in order to prove
the scalability result, it is sufficient to show that m̄i(z) is a
decreasing function of z.

In order to prove the same, let us consider an extended
version of the channel matrix which is constructed as follows.
Defining, Ri,j,k = σi,j,kINt ∈ RNt×Nt and RL

i,j,k =

σi,j,kINtL ∈ RNtL×NtL. The matrix HL
i is constructed as

follows:

HL
i,j =

1√
L

[
R

1/2
i,j,1X

L
i,j , . . . ,R

1/2
i,j,KXL

i,j

]
∈ CNtL×KL

HL
i =

[
HL
i,1, . . . ,H

L
i,N

]
∈ CNtL×NKL (78)

where the matrix XL
i,j ∈ CNt×K , whose elements

XL
i,j(p, q) ∼ CN (0, 1

Nt
). Also, let us define the following,

λLi,j =
[
λi,j , . . . , λi,j

]T
∈ RL×1

λLi =
[
λLi,1, . . . ,λ

L
i,K

]T
∈ RKL×1

ΛL = diag
(
λL1 , . . . ,λ

L
N

)
∈ RNKL×NKL (79)

and let Qi(z) = (HiΛHH
i + zINtL)−1 and QL

i (z) =
(HL

i ΛL(HL)Hi + zINtL)−1. Let us denote

mL
i (z) =

1

NtL
tr(QL

i (z)). (80)

It can be verified that for any fixed N,Nt and K, the following
limit holds,

mL
i (z)− m̄i(z)

a.s.−−−−→
L→∞

0. (81)

Now consider the difference between the following two quan-
tities, for any z2 > z1 > 0 and for any positive L, we have

mL
i (z1)−mL

i (z2)

=
1

NtL
tr
(
QL
i (z1)−QL

i (z2)
)

(a)
> 0 (82)

where inequality (a) follows by the following identity: For
invertible matrices A and B,

A−1 −B−1 = −A−1(A−B)B−1. (83)

We will now show that for any fixed N,Nt and K, the
inequality in (82) of the random quantities (mL

i (z)) also hold
for their respective deterministic approximations (m̄i(z)). This
can be argued as follows. Consider the difference

mL
i (z1)−mL

i (z2) = mL
i (z1)− m̄i(z1)−mL

i (z2)

+ m̄i(z2) + m̄i(z1)− m̄i(z2). (84)

First note that since the matrix HL
i has bounded spectral norm

almost surely, it follows that, almost surely,

lim
L→∞

mL
i (z) > 0. (85)

From (85), further applying the result of (81) in the right hand
side of (84) and the inequality of (82), it follows that

m̄i(z1)− m̄i(z2) > 0. (86)

Thus, m̄i(z) is a decreasing function of z. We remark that the
strict positivity of the mL

i (z) in (85) is essential for the strict
positivity argument of (86).
Monotonicity: Consider µ′ ≥ µ. In this case, we denote
m̄

(1)
i (1) and m̄

(2)
i (1) as the solutions to the fixed point

equations in (12) evaluated at µ′ and µ respectively. As before,
let us consider the difference between the quantities,

fi,j(µ
′)− fi,j(µ) =

γi,j

σi,i,jm̄
(1)
i (1)

− γi,j

σi,i,jm̄
(2)
i (1)

. (87)

We now have to show that m̄(1)
i (1) ≤ m̄

(2)
i (1) in order

to prove the monotonicity result. This can be shown by
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constructing the extended matrices as in (78) and noting the
monotonicity property for the associated random quantities
and extending the result to their deterministic approximations
for any system dimensions. The proof is similar to the scala-
bility result and hence omitted here.

APPENDIX C: FEASIBILITY CONDITIONS

A. Part I: Proof of Lemma 2

Let us first consider the expression for the achieved uplink
SINR by the ROBF algorithm given by

Λi,j(µ) =

µi,j
Nt
|v̂Hi,jhi,i,j |2∑

(n,k) 6=(i,j)
µn,k
Nt
|v̂Hi,jhi,n,k|2 + ||v̂i,j ||22

. (88)

We examine the expression for the uplink SINR in the large
system regime. It can be shown that the expression for the
uplink SINR converges asymptotically to the following (the
proof of this is very similar to the convergence result of
the downlink interference and downlink SINR provided in
Lemma 4 and Appendix E, and hence omitted in order to
avoid repetition):

Λi,j(µ) � µi,jσi,i,jḠi,i,jm̄
2
i∑

(n,k)6=(i,j)
1
Nt
µn,kḠi,n,kḠi,i,jm̄′i + αiḠi,i,jm̄′i

=
µi,jσi,i,jm̄

2
i∑

(n,k)6=(i,j)
1
Nt
µn,kḠi,n,km̄′i + αim̄′i

. (89)

Let us we consider a slightly modified version of the expres-
sion (89) as follows:

µi,jσi,i,jm̄
2
i∑

n,k
1
Nt
µn,kḠi,n,km̄′i + αim̄′i

. (90)

We now examine the expression (90) in detail. Recall the
fixed point equation for the computation of m̄i in (12). Upon
rearranging the terms, we have

m̄i = 1− 1

Nt

∑
n,k

σi,n,kµn,km̄i

1 + σi,n,kµn,km̄i
. (91)

Substituting the expressions for Ḡi,n,k, m̄i and m̄′i in (90), we
get

(90) =
σi,i,jµi,j

(
1− 1

Nt

∑
n,k

(σi,n,kµn,km̄i)
2

(1+σi,n,kµn,km̄i)2

)
1 + 1

Nt

∑
n,k

σi,n,kµn,k
(1+σi,n,kµn,km̄i)2

. (92)

Multiplying and diving by m̄i in (92), we obtain

(90) =
σi,i,jµi,jm̄i

(
1− 1

Nt

∑
n,k

(σi,n,kµn,km̄i)
2

(1+σi,n,kµn,km̄i)2

)
m̄i + 1

Nt

∑
n,k

σi,n,kµn,km̄i
(1+σi,n,kµn,km̄i)2

=
σi,i,jµi,jm̄i

(
1− 1

Nt

∑
n,k

(σi,n,kµn,km̄i)
2

(1+σi,n,kµn,km̄i)2

)
1− 1

Nt

∑
n,k

σi,n,kµn,km̄i
1+σi,n,kµn,km̄i

+ 1
Nt

∑
n,k

σi,n,kµn,km̄i
(1+σi,n,kµn,km̄i)2

=
σi,i,jµi,jm̄i

(
1− 1

Nt

∑
n,k

(σi,n,kµn,km̄i)
2

(1+σi,n,kµn,km̄i)2

)
1− 1

Nt

∑
n,k

(σi,n,kµn,kmi)2

(1+σi,n,kµn,km̄i)2

= σi,i,jµi,jm̄i. (93)

We notice that that the expression at (93) is exactly in the
same form as the right hand side of the fixed point equation
(19). Therefore, we can rewrite (19) as follows:

γi,j =
µi,jσi,i,jḠi,i,jm̄

2
i∑

n,k
1
Nt
µn,kḠi,n,kḠi,i,jm̄′i + Ḡi,i,jm̄′i

∀i, j.

Rearranging, we have

1

γi,j
µi,jσi,i,jḠi,i,jm̄

2
i =

∑
n,k

µn,k
Nt

Ḡi,n,kḠi,i,jm̄
′
i

+ Ḡi,i,jm̄
′
i ∀i, j

=⇒ µi,j =
∑
n,k

γi,jµn,k
Nt

Ḡi,n,kḠi,i,jm̄
′
i

σi,i,jḠi,i,jm̄2
i

+
Ḡi,i,jm̄

′
i

σi,i,jḠi,i,jm̄2
i

∀i, j.

The equation in matrix form can be written as

µ = Γ(∆′)Tµ + κ (94)

where κi =
[

m̄′i
σi,i,1m̄2

i
, . . . ,

m̄′i
σi,i,Km̄2

i

]T
and κ =

[κ1, . . . , κN ]
T
. The matrix Γ is the same as the matrix

Γ defined in the description of the ROBF algorithm. The
matrix ∆′ is defined as follows.

∆′ =

 (∆′)1,1 . . . (∆′)1,N

...
. . .

...
(∆′)N,1 . . . (∆′)N,N

 (95)

where each submatrix (∆′)i,j ∈ CK×K is given by

(∆′)i,nj,k
4
=


1
Nt
Ḡi,i,jḠi,i,jm̄

′
i, n = i, k = j

1
Nt
Ḡi,i,jḠi,i,km̄

′
i, n = i, k 6= j

1
Nt
Ḡn,i,jḠn,n,km̄

′
n, n 6= i.

(96)

Notice that if the SINR targets are feasible for the uplink
solution, the linear equations in (94) must have a solution.
In other words, the matrix I − Γ(∆′)T must be invertible.
Problems with similar structure has been studied before in the
context of power allocation in wireless networks [29]. It has
been established that in such problems that invertibility of the
matrix is ensured if ρ(Γ(∆′)T ) < 1 (where ρ is the spectral
radius of the matrix) [29]. Now recall the matrix ∆ defined in
equation (16). Observe that the matrix ∆ and ∆′ only differ
in the diagonal element. Also, we can note that ∆ ≤ ∆′

(denotes element wise inequality, refer to the notations), and
hence Γ∆ ≤ Γ∆′. Hence, it follows from Lemma 7, that
ρ(Γ(∆)T ) ≤ ρ(Γ(∆′)T ) < 1.

Now recall the linear equations for computing δ̄ given by

δ̄ = Γ∆δ̄ + ρ.

It has been established in works before [30], the eigen values
of the matrices Γ∆ and Γ∆T are the same. For completeness,
this can be argued as follows,

|Γ∆− λI| = |Γ||∆− λΓ−1| = |Γ||
(
∆− λΓ−1

)T |
= |Γ||∆T − λΓ−1| = |Γ∆T − λI| = 0.
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From the above discussion, we conclude that the spectral ra-
dius of Γ∆ and Γ∆T are the same and, hence, if ρ(Γ∆) < 1
then ρ(Γ∆T ) < 1 and vice versa. Consequently, the matrix
I− Γ∆ is invertible. This proves the result of Lemma 2.

B. Part II: Feasible SINR targets for the modified system

Consider the equation (25). Rearranging (25), we obtain

1 =
1

Nt

K∑
k=1

σi,i,kµ
mod
i,k m̄

mod
i

1 + σi,i,kµ
mod
i,k m̄

mod
i

+
1

Nt

N∑
n=1

n 6=i

K∑
k=1

σmax(n)µmod
n,k

1 + σmax(n)µmod
n,k m̄

mod
i

+ m̄mod
i

=
1

Nt

K∑
k=1

γi,k
1 + γi,k

+
1

Nt

N∑
n=1

n 6=i

K∑
k=1

σmax(n)µmod
n,k m̄

mod
i

1 + σmax(n)µmod
n,k m̄

mod
i

+ m̄mod
i .

(97)

Equation (97) is true for all m̄mod
i , i = 1, . . . , N. Therefore,

by symmetry of the fixed point equation m̄mod
i = m̄mod, i =

1, . . . , N. Thus,

σmax(n)µmod
n,k m̄

mod
i = σmax(n)µmod

n,k m̄
mod =

σmax(n)

σn,n,k
γn,k.

(98)

Substituting (98) in (97) yields

1 =
1

Nt

K∑
k=1

γi,k
1 + γi,k

+
1

Nt

N∑
n=1

n 6=i

K∑
k=1

σmax(n)
σn,n,k

γn,k

1 + σmax(n)
σn,n,k

γn,k
+ m̄i.

(99)

Now recall (24). Rearranging, we obtain

µmod
i,j =

γi,j
σi,i,jm̄

mod
i

. (100)

The feasibility condition [C1] requires that µmod
i,j < ∞, ∀i, j

This implies from (100) that m̄mod
i > 0. Using this in (99),

we obtain the following condition on the target SINR for
feasibility:

1

Nt

K∑
k=1

γi,k
1 + γi,k

+
1

Nt

N∑
n=1

n 6=i

K∑
k=1

σmax(n)
σn,n,k

γn,k

1 + σmax(n)
σn,n,k

γn,k
< 1. (101)

1) Proof of Corollary 1: Let us rewrite (99) as

m̄i = 1− 1

Nt

K∑
k=1

γi,k
1 + γi,k

+
1

Nt

N∑
n=1

n 6=i

K∑
k=1

σmax(n)
σn,n,k

γn,k

1 + σmax(n)
σn,n,k

γn,k
.

(102)

The feasibility of the uplink problem in the asymptotic do-
main implies that lim supNt,K→∞ µmod

i,j < ∞. This in turn
implies that lim infNt,K→∞ m̄mod

i > 0 (strictly positive).

Thus, we consider (102) in the asymptotic regime, and take
lim infNt,K→∞ . This yields,

lim inf
Nt,K→∞

m̄i = lim inf
Nt,K→∞

[
1− 1

Nt

K∑
k=1

γi,k
1 + γi,k

− 1

Nt

N∑
n=1

n 6=i

K∑
k=1

σmax(n)
σn,n,k

γn,k

1 + σmax(n)
σn,n,k

γn,k

]
. (103)

= 1− lim sup
Nt,K→∞

[ 1

Nt

K∑
k=1

γi,k
1 + γi,k

− 1

Nt

N∑
n=1

n 6=i

K∑
k=1

σmax(n)
σn,n,k

γn,k

1 + σmax(n)
σn,n,k

γn,k

]
(104)

Since lim infNt,K→∞ m̄mod
i > 0, and (104), it follows that the

feasibility conditions are given by,

lim sup
Nt,K→∞

 1

Nt

K∑
k=1

γi,k
1 + γi,k

+
1

Nt

N∑
n=1

n 6=i

K∑
k=1

σmax(n)
σn,n,k

γn,k

1 + σmax(n)
σn,n,k

γn,k


< 1 ∀i.

(105)

C. Part III: Proof of Lemma 3

Let us denote µmod
i = [µmod

i,1 , . . . , µ
mod
i,K ]T and µmod =

[µmod
1 , . . . ,µmod

N ]T . The main idea behind this proof is the
following: Consider the pair of vector {γ,µmod} that satisfies
(24). We show that the when the power allocation µmod is used
in the original system, then

σi,i,jµ
mod
i,j m̄

mod1
i ≥ γi,j ∀i, j (106)

where m̄mod1
i satisfies

1

m̄mod1
i

=
1

Nt

σi,i,kµ
mod
i,k

1 + σi,i,kµ
mod
i,k m̄

mod1
i

+
1

Nt

N∑
n=1

n 6=i

K∑
k=1

σi,n,kµ
mod
n,k

1 + σi,n,kµ
mod
n,k m̄

mod1
i

+ 1, (107)

where (107) represents the fixed point equation calculated by
utilizing the power allocation µmod in the original system.
If (106) is true, then this implies that γ is a feasible SINR
target vector for the original system (since there exists a power
allocation µmod that can achieve this SINR target).

We prove this as follows: Firstly, it is easy to see that

σmax(n)µmod
n,k ≥ σi,n,kµmod

n,k ∀n, k (108)

since σmax(n) ≥ σi,n,k. Recall that the function
fi,j

4
=

γi,j
σi,i,jm̄i

is a standard function. From (108) and the
monotonicity property of standard functions, we have

γi,j
σi,i,jm̄

mod
i

≥ γi,j
σi,i,jm̄

mod1
i

. (109)

Rearranging (109) we have, σi,i,jm̄mod1
i ≥ σi,i,jm̄

mod
i . Multi-

plying by µmod
i,j , it follows that

σi,i,jµ
mod
i,j m̄

mod1
i ≥ σi,i,jµmod

i,j m̄
mod
i . (110)
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From (24), σi,i,jµmod
i,j m̄

mod
i = γi,j . Therefore, we can conclude

that

σi,i,jµ
mod
i,j m̄

mod1
i ≥ γi,j .

APPENDIX D: CONVERGENCE OF THE UPLINK SINR
In this Appendix, we prove the result of Lemma 3, statement

(36). Recall that the expression of uplink SINR for the ROBF
algorithm is given by (32). We make a variable change and
denote xi,i,j =

hi,i,j√
Nt
. This implies that

Λi,j(µ) = µi,jx
H
i,i,j(Σ

′µ
i + INt)

−1xi,i,j ∀i, j. (111)

Note that µi,j is independent of the elements of the chan-
nel matrix. Applying Lemma 9 to the quadratic term of
xHi,i,j(Σ

′µ
i + INt)

−1xi,i,j yields to,

E
[∣∣∣xHi,i,j(Σ′µi + INt)

−1xi,i,j −
1

Nt
tr(Σ′

µ

i + INt)
−1
∣∣∣k]

≤ C1

N
k
2
t

∀i, j (112)

for k ≥ 2, and constant C1 independent of Nt and K.
Additionally, from the result of Lemma 6.1, [31], we have

E
[∣∣∣ 1

Nt
tr(Σ′

µ

i + INt)
−1 − m̄i

∣∣∣k] ≤ C2

N
k
2
t

, ∀i, j (113)

for k ≥ 2 constant C2 independent of Nt and K. There-
fore, from (112), (113) and Holder’s inequality (|x + y|k ≤
2k−1(|x|k + |y|k)) we conclude that for some constant C3,

E
[∣∣∣xHi,i,j(Σ′µi + INt)

−1xi,i,j − m̄i

∣∣∣k] ≤ C3

N
k
2
t

, ∀i, j. (114)

From (111), we have, xHi,i,j(Σ
′µ
i + INt)

−1xi,i,j =
Λi,j(µi,j)
σi,i,jµi,j

.
Moreover, at the convergence of the fixed point equation (11),
m̄i =

γi,j
σi,i,jµi,j

. Substituting in (114) we have,

E
[∣∣∣Λi,j(µi,j)− γi,j∣∣∣k] ≤ C4

N
k
2
t

, ∀i, j (115)

where C4 = C3σi,i,jµi,j . Note that σi,i,j is bounded. More-
over for any target SINR γ satisfying the feasibility con-
ditions of (27), lim supNt,K→∞ µi,j is bounded. Therefore
lim supNt,K→∞ C4 is bounded as well. In order to prove con-
vergence results, we examine the properties of the supremum
over all the indices i, j.

E
[
sup
i,j

∣∣∣Λi,j(µi,j)− γi,j∣∣∣k] (a)

≤
∑
i,j

E
[∣∣∣Λi,j(µi,j)− γi,j∣∣∣k]

(b)

≤ NK
C4

N
k
2
t

=
C5

N
k
2−1
t

(116)

where C5 = C4Nβ (where β = K
Nt
, a finite value). Inequality

(a) follows from the linearity of expectation operation and
(b) follows from the bound in (115). Finally, we make use of
the following inequality (which can be shown easily, details
omitted here)

sup
i,j

E
[
|Λi,j(µi,j)− γi,j |k

]
≤ E

[
sup
i,j
|Λi,j(µi,j)− γi,j |k

]
.

(117)

From (116) and (117) we deduce,

sup
i,j

E
[
|Λi,j(µi,j)− γi,j |k

]
≤ C5

N
k
2−1
t

. (118)

By taking k to be sufficiently high (k ≥ 6 in this case), the
right hand side of (118) is summable. By Markov Inequality
((5.31) of [32]) and the Borel Cantelli lemma (Theorem 4.3
of [32]), it follows that Λi,j(µi,j)− γi,j

a.s.−−−−−−→
Nt,K→∞

0, ∀i, j.

APPENDIX E: CONVERGENCE PROOF OF THE DOWNLINK
INTERFERENCE

We only focus on the convergence of inter-cell interference
term (the convergence of the intra-cell interference follows in
a similar manner). Throughout this section, we will denote
Φn =

∑N
b=1

∑K
k=1

µb,k
Nt

hn,b,kh
H
n,b,k + I. Consider the inter-

cell interference term
∑
k |vHn,khn,i,j |2 (n 6= i). Substituting

for vn,k =

√
δ̄n,k
Nt

Φ−1
n hn,n,k, we obtain,∑

k

|vHn,khn,i,j |2 =
∑
k

δ̄n,k
N2
t

hHn,i,jΦ
−1
n hn,n,kh

H
n,n,kΦ−1

n hn,i,j .

(119)

Performing a change of variable xn,i,j = 1√
Nt

hn,i,j and
xn,n,k = 1√

Nt
hn,n,k, we obtain,∑

k

|vHn,khn,i,j |2

= xHn,i,jΦ
−1
n

∑
k

(
δ̄n,kxn,n,kx

H
n,n,k

)
Φ−1
n xn,i,j . (120)

We use Lemma 8 to remove the column xn,i,j from the matrix
Φn. Denoting Φ′n = Φn − µi,jxn,i,jxHn,i,j , we obtain∑

k

|vHn,khn,i,j |2

=
xHn,i,jΦ

′
n
−1
(∑

k δ̄n,kxn,n,kx
H
n,n,k

)
Φ′n
−1

xn,i,j

(1 + µi,jxHn,i,jΦ
′
n
−1xn,i,j)2

.

(121)

First, it can be easily verified that the denominator term in
(121) converges to

(1 + µi,jx
H
n,i,jΦ

′
n
−1

xn,i,j)
2 � (1 + µi,jσn,i,jm̄n)2. (122)

We now focus on the terms of the numerator of (121). Let us
denote the matrix A = Φ′n

−1
(∑

k δ̄n,kxn,n,kx
H
n,n,k

)
Φ′n
−1
.

Applying Lemma 9 on the term xHn,i,jAxn,i,j , we have∣∣∣∣xHn,i,jAxn,i,j −
σn,i,j
Nt

tr(A)

∣∣∣∣m ≤ Cm

N
m
2
t

||A||m. (123)

If ||A|| <∞, then we can conclude that

xHn,i,jAxn,i,j �
σn,i,j
Nt

tr(A). (124)

The proof of the fact that ||A|| is bounded is deferred till
the end of this section (see Subsection D at the end of this
appendix).
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Let us now focus on the term 1
Nt

tr(A). First, we perform
some straightforward manipulations.

1

Nt
tr(A) =

1

Nt
tr

(
Φ′n
−1

(∑
k

δ̄n,kxn,n,kx
H
n,n,k

)
Φ′n
−1

)
(a)
=

1

Nt
tr

((∑
k

δ̄n,kxn,n,kx
H
n,n,k

)
Φ′n
−2

)
(b)
=

1

Nt

∑
k

δ̄n,k

(
xHn,n,kΦ′n

−2
xn,n,k

)
, (125)

were (a) follows from tr(AB) = tr(BA) and (b) follows
by noting tr(

∑
i Ai) =

∑
i tr(Ai) and tr(xxHA) = xHAx.

Applying Lemma 8 to extract the column vector xn,n,k from
the matrix Φ′n

−1
, and denoting Φ′′n = Φ′n−µn,kxn,n,kxHn,n,k,

we obtain,

xHn,n,kΦ′n
−2

xn,n,k =
xHn,n,kΦ′′n

−2
xn,n,k

(1 + µn,kxHn,n,kΦ′n
−1xn,n,k)2

. (126)

Note that the denominator term of (126) converges to the
following:

(1 + µn,kx
H
n,n,kΦ′n

−1
xn,n,k)2 � (1 + σn,n,kµn,km̄n)2.

(127)

Let us focus on the numerator term
1
Nt

∑
k δ̄n,k

(
xHn,n,kΦ′n

−2
xn,n,k

)
. Using the fact that

K
Nt

is bounded, and applying the result of Theorem 5, eq.
(69), it can be shown that (the exact details of the derivation
are omitted)∑

k δ̄n,k

(
xn,n,kΦ′′n

−2
xHn,n,k

)
Nt

�
∑
k δ̄n,kσn,n,km̄

′
n

Nt
. (128)

From the results of (121) and (128), it can be concluded that∑
k

|vHn,khn,i,j |2 �
∑
k

δ̄n,kḠn,i,jḠn,n,km̄
′
n

Nt
, n 6= i.

(129)

D. Boundedness of ||A||
We will complete the proof by showing that ||A|| < ∞.

First, it can be easily noticed that the matrix A is Hermitian.
We now show that the matrix A is also positive semi-definite.
For any vector g ∈ CNt×1

, we examine gHAg.

gHΦ′n
−1

(∑
k

δ̄n,kxn,n,kx
H
n,n,k

)
Φ′n
−1

g

=
∑
k

δ̄n,kg
HΦ′n

−1
xn,n,kx

H
n,n,kΦ′n

−1
g (130)

Denoting y = Φ′n
−1

g,∑
k

δ̄n,kg
HyygH =

∑
k

δ̄n,k|gHy|2 ≥ 0 (131)

since δ̄n,k ≥ 0 and |gHy|2 ≥ 0. Therefore, the matrix A is
semi-definite. Next, we note that (since A is Hermitian and
positive semi-definite)

||A|| = λmax(A). (132)

Consider z, the eigen vector corresponding to the maximum
eigen value of the matrix A.

||A|| ≤ zHΦ′n
−1

(∑
k

δ̄n,kxn,n,kx
H
n,n,k

)
Φ′n
−1

z

=
∑
k

δ̄n,kz
HΦ′n

−1
xn,n,kx

H
n,n,kΦ′n

−1
z

=
∑
k

(
δ̄n,k
µn,k

)
µn,kz

HΦ′n
−1

xn,n,kx
H
n,n,kΦ′n

−1
z

Note that β = maxn,k
δ̄n,k
µn,k

is a bounded value. Substituting,
we have

||A|| ≤ β
∑
k

µn,kz
HΦ′n

−1
xn,n,kx

H
n,n,kΦ′n

−1
z

≤ β
∑
k

µn,kz
HΦ′n

−1
xn,n,kx

H
n,n,kΦ′n

−1
z + βzHΦ′n

−2
z.

where the last inequality follows by noting that βzHΦ′n
−2

z ≥
0. Therefore,

||A|| ≤ βzHΦ′n
−1

(∑
k

µn,kxn,n,kx
H
n,n,k + I

)
Φ′n
−1

z

= βzHΦ′n
−1

Φ′nΦ′n
−1

z

≤ βzHΦ′n
−1

z ≤ βλmax(Φ′n
−1

) <∞. (133)

APPENDIX F: CONVERGENCE OF THE LAGRANGIAN

First we start with the proof of (40). Consider the La-
grangian given in the form of (3). For simplicity of notations,
let us define

Ui,j
4
=
|vHi,jhi,i,j |2

γi,j

I
(1)
i,j

4
=
∑
k 6=j

|vHi,khi,i,j |2, Ī
(1)
i,j

4
=
∑
k 6=i

δ̄i,kḠi,i,jḠi,i,km̄
′
i

Nt

I
(2)
i,j

4
=
∑
n,k

|vHn,khn,i,j |2, Ī
(2)
i,j

4
=
∑
n,k

δ̄n,kḠn,i,jḠn,n,km̄
′
n

Nt

n 6= i. (134)

We examine the asymptotic convergence of the terms of the
Lagrangian, i.e., limNt,K→∞ L(v, µ). By using arguments
similar to the derivation of (128), the following can be shown:∑

i,j

µi,j
Nt

[
Ui,j
γi,j
− I(1)

i,j − I
(2)
i,j −N0

]
�

∑
i,j

µi,j
Nt

[
Ūi,j
γi,j
− Ī(1)

i,j − Ī
(2)
i,j −N0

]
. (135)

Therefore,

lim
Nt,K→∞

LDL(v, µ) � lim
Nt,K→∞

∑
i,j

vHi,jvi,j

+
∑
i,j

µi,j
Nt

[
Ūi,j
γi,j
− Ī(1)

i,j − Ī
(2)
i,j −N0

]
. (136)
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Following the argument of (14), we note that

Ūi,j
γi,j
− Ī(1)

i,j − Ī
(2)
i,j −N0 = 0 ∀i, j. (137)

From (135) and (137), we conclude that

lim
Nt,K→∞

LDL(v, µ) � lim
Nt,K→∞

∑
i,j

vHi,jvi,j . (138)

This completes the proof of (40).
Next, we proceed to the proof of (41). Consider the La-

grangian in the form of (4). Using (5), we can rewrite the
term

∑
i,j vHi,jBi,jvi,j as∑

i,j

vHi,jBi,jvi,j =
∑
i,j

[
vHi,jvi,j −

µi,j
γi,jNt

|vHi,jhi,i,j |2

+
∑

(n,k) 6=(i,j)

µn,k
Nt
|vHi,jhi,n,k|2

]
. (139)

Substituting for vi,j =
√

δ̄i,j
Nt

v̂i,j in (139), we obtain∑
i,j

vHi,jBi,jvi,j =
∑
i,j

δ̄i,j
Nt

[
v̂Hi,jv̂i,j

− µi,j
γi,jNt

|v̂Hi,jhi,i,j |2 +
∑

(n,k)6=(i,j)

µn,k
Nt
|v̂Hi,jhi,n,k|2

]
.

(140)

We now examine the asymptotic convergence of the terms on
the right hand side of (140). The following convergence results
can be shown (the details are omitted here as they follow from
steps similar to the proof of previous results).

v̂Hi,jv̂i,j �
σi,i,jm̄

′
i

(1 + µi,jσi,i,jm̄i)2
. (141)

µi,j
Nt
|v̂Hi,jhi,i,j |2 � µi,j

(
σi,i,jm̄i

1 + µi,jσi,i,jm̄i

)2

. (142)∑
(n,k) 6=(i,j)

µn,k
Nt
|v̂Hi,jhi,n,k|2 �

∑
(n,k) 6=(i,j)

µn,kσi,i,jσi,n,km̄
′
i

Nt(1 + µi,jσi,i,jm̄i)2(1 + µn,kσi,n,km̄i)2
. (143)

From (142) and using the fact that γi,i,j = σi,i,jµi,jm̄i, it
follows that

µi,j
γi,jN2

t

|v̂Hi,jhi,i,j |2 �
σi,i,jm̄i

(1 + µi,jσi,i,jm̄i)2
.. (144)

Additionally, similar to the proof of (135), it can be shown
that∑
i,j

δ̄i,j
Nt

[ 1

Nt
v̂Hi,jv̂i,j −

µi,j
γi,jN2

t

|v̂Hi,jhi,i,j |2∑
(n,k)6=(i,j)

µn,k
N2
t

|v̂Hi,jhi,n,k|2
]
�

∑
i,j

δ̄i,j
Nt

[ σi,i,jm̄
′
i

(1 + µi,jσi,i,jm̄i)2
− σi,i,jm̄i

(1 + µi,jσi,i,jm̄i)2

+
∑

(n,k) 6=(i,j)

µn,kσi,i,jσi,n,km̄
′
i

Nt(1 + µi,jσi,i,jm̄i)2(1 + µn,kσi,n,km̄i)2

]
.

(145)

Therefore, we conclude that

lim
Nt,K→∞

LUL(v, µ) � lim
Nt,K→∞

∑
i,j

µi,jN0

Nt

+
∑
i,j

δ̄i,j
Nt

[ σi,i,jm̄
′
i

(1 + µi,jσi,i,jm̄i)2
− σi,i,jm̄i

(1 + µi,jσi,i,jm̄i)2

+
∑

(n,k)6=(i,j)

µn,kσi,i,jσi,n,km̄
′
i

Nt(1 + µi,jσi,i,jm̄i)2(1 + µn,kσi,n,km̄i)2

]
.

(146)

Finally, we show the following result:

σi,i,jm̄
′
i

(1 + µi,jσi,i,jm̄i)2
− σi,i,jm̄i

(1 + µi,jσi,i,jm̄i)2

+
∑

(n,k)6=(i,j)

µn,kσi,i,jσi,n,km̄
′
i

Nt(1 + µi,jσi,i,jm̄i)2(1 + µn,kσi,n,km̄i)2
= 0.

(147)

The proof of this result is provided next. Consider the sum of
the first and last terms of (147).∑
n,k

µn,kσi,i,jσi,n,km̄
′
i

Nt(1 + µi,jσi,i,jm̄i)2(1 + µn,kσi,n,km̄i)2

+
σi,i,jm̄

′
i

(1 + µi,jσi,i,jm̄i)2

=
σi,i,jm̄

′
i

(1 + µi,jσi,i,jm̄i)2

1 +
1

Nt

∑
n,k

µn,kσi,n,k
(1 + µn,kσi,n,km̄i)2

 .

(148)

Multiplying and dividing the right hand side of (148) by m̄i,
we obtain

(148) =

σi,i,jm̄
′
i

m̄i(1 + µi,jσi,i,jm̄i)2

m̄i +
1

Nt

∑
n,k

µn,kσi,n,km̄i

(1 + µn,kσi,n,km̄i)2

 .

(149)

Recall the fixed point equation for the computation of m̄i in
(12). Upon rearranging the terms

m̄i = 1− 1

Nt

∑
n,k

σi,n,kµn,km̄i

1 + σi,n,kµn,km̄i
. (150)

Using m̄i for the terms inside the brackets of the right hand
side of (149), we have,

1− 1

Nt

∑
n,k

σi,n,kµn,km̄i

1 + σi,n,kµn,km̄i
+

1

Nt

∑
n,k

µm,nσi,n,km̄i

(1 + µn,kσi,n,km̄i)2

=1− 1

Nt

∑
n,k

(σi,n,kµn,km̄i)
2

(1 + σi,n,kµn,km̄i)2
. (151)

Rearranging the expression for m̄′i in (70), we have,

m̄2
i

m̄′i
= 1− 1

Nt

∑
n,k

(
σi,n,kµn,km̄i

1 + σi,n,kµn,km̄i

)2

. (152)

Using (151) and (152) in (149), it can be verified that

(149) =
σi,i,jm̄i

(1 + σi,n,kµn,km̄i)2
. (153)
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From (153), the result of (147) follows.
Finally, using (147) in (146) we conclude that

lim
Nt,K→∞

LUL(v, µ) � lim
Nt,K→∞

∑
i,j

µi,jN0

Nt
. (154)

This completes the proof of (41).

APPENDIX G: CONVERGENCE OF UPLINK POWER
ALLOCATION

The proof proceeds by an approach similar to [11] of
finding the upper and lower bounds of the optimal solution
and show that these bounds coincides asymptotically with
the solution obtained by the ROBF algorithm. Recall the
fixed point equation for the computation of the uplink power
allocation in the CBF algorithm in (7). It can be rewritten as

fi,j(β) =
1

1
γi,jNt

hHi,i,j(Σ
′β
i + INt)

−1hi,i,j
∀i, j (155)

Also recall from the arguments of [9] that fi,j(β) is a standard
function.

Let us denote µi,j(δi,j), as the solution provided by the
ROBF algorithm with target SINR γi,j + δi,j ∀i, j, where
δi,j ≥ 0 is a small positive constant (i.e. the solution pro-
vided by the fixed point equation (11) with γi,j replaced by
γi,j + δi,j , ∀i, j). We now examine the achieved SINR in the
uplink with a power allocation of µi,j(δi,j), i.e.,

Λi,j(µ(δ))

=
µi,j(δi,j)

Nt
hHi,i,j(Σ

′µi,j(δi,j)
i + αiINt)

−1hi,i,j . (156)

Similar to the result of Theorem 3 (convergence of the uplink
SINR), it can be proved that

Λi,j(µi,j(δi,j))− (γi,j + δi,j)
a.s.−−−−−−→

Nt,K→∞
0, ∀i, j. (157)

Since δi,j ≥ 0, we have

Λi,j(µi,j(δi,j))− γi,j
a.s.
≥ 0, ∀i, j (158)

Since the achieved SINR with an uplink power µi,j(δi,j) allo-
cation is asymptotically greater than γi,j , the power allocation
µi,j(δi,j) is a feasible solution to the uplink problem with
target SINR γi,j . From the monotonically property of the
standard function f(β), we can conclude that

µi,j(δi,j) ≥ λi,j ∀i, j. (159)

Similarly, let us define µi,j(−δi,j) as the solution to the
fixed point equation (11) with target SINR γi,j − δi,j , ∀i, j.
By similar argument as above, we have

Λi,j(µi,j(−δi,j))− (γi,j − δi,j)
a.s.−−−−−−→

Nt,K→∞
0, ∀i, j. (160)

Using the definition of almost sure convergence, we can write
that for εi,j > 0, there exists N ′ such that for all Nt > N ′,
we can have

|Λi,j(µi,j(−δi,j))− (γi,j − δi,j)| < εi,j . (161)

If we can select a value of εi,j < δi,j , then there exists a large
enough N ′′ such that for all Nt > N ′′, the following

µi,j(−δi,j)
Nt

hHi,i,j(Σ
′µi,j(−δi,j)
i + INt)

−1hi,i,j ≤ γi,j , ∀i, j
(162)

holds true. Equation (162) implies that

µi,j(−δi,j)≤
1

1
γi,jNt

hHi,i,j(Σ
′µi,j(−δi,j)
i + INt)

−1hi,i,j
, ∀i, j.

= fi,j(µ(−δ)). (163)

In other words, µ(−δ) an infeasible point for the standard
function fi,j(µ(−δ)).

Let us consider that we want to find a fixed point to

βi,j = fi,j(β) ∀i, j. (164)

The fixed point corresponding to this is the optimal uplink
power allocation of the CBF algorithm λi,j . We start with
an initial value of β0

i,j = µi,j(−δi,j). Let us consider the
iterations of βt+1

i,j = fi,j(β
t), with β0 = µ(−δ). Rewriting

the first iteration, we have,

β1
i,j = f(µ(−δ))

(a)

≥ µi,j(−δi,j) ∀i, j, (165)

where (a) follows from (163). Also note that this is true for all
i, j. Using the fact that the function f is standard and hence
monotonic, the sequence βti,j , t = 0, 1, 2, . . . , monotonically
increases and converges to λi,j . Therefore, it follows that

µi,j(−δi,j) ≤ λi,j . (166)

Therefore, from the above arguments, we conclude that

µi,j(−δi,j)
a.s.
≤ λi,j

a.s.
≤ µi,j(δi,j) ∀i, j. (167)

By taking δi,j arbitrarily small, we have

µi,j − λi,j
a.s.−−−−−−→

Nt,K→∞
0 ∀i, j. (168)

Similar to the proofs as before,∑
i,j µi,j

Nt
−
∑
i,j λi,j

Nt

a.s.−−−−−−→
Nt,K→∞

0 ∀i, j. (169)

APPENDIX H: IMPACT OF IMPERFECT CSI AND PILOT
CONTAMINATION

Recall the uplink receive filer with CSI estimate in (50).
First note that for the MMSE estimate of the form (47),
ĥi,n,k, n 6= i and ĥi,i,k are related as

ĥi,n,k =
σi,n,k
σi,i,k

ĥi,i,k (170)

Using (170) in (51), we have

Ψi =

N∑
n=1

K∑
k=1

µn,kĥi,n,kĥ
H
i,n,k + I

=

K∑
k=1

(∑N
n=1 σi,n,kµn,k
σi,i,kNt

)
ĥi,i,kĥ

H
i,i,k + I

=

K∑
k=1

ξi,kx̂i,i,kx̂
H
i,i,k + I (171)
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where

ξi,k =

∑N
n=1 σi,n,kµn,k

σi,i,k
. (172)

Additionally, let us denote

Ψi,j =

K∑
k=1,k 6=j

ξi,kx̂i,i,kx̂
H
i,i,k + INt

Ψi,j,l =

K∑
k=1,k 6=j,k 6=l

ξi,kx̂i,i,kx̂
H
i,i,k + INt . (173)

First, we focus on the asymptotic equivalent of the useful
signal term.

vest
i,j
H

hi,i,j =

√
δ̄i,j

Nt
ĥHi,i,jΨ

−1
i hi,i,j

=
√
δ̄i,jx̂

H
i,i,jΨ

−1
i xi,i,j (174)

First note that using Lemma 8, we can remove the column
x̂i,i,j from the matrix Ψ−1

i as follows:

(174) =

√
δ̄i,jx̂

H
i,i,jΨ

−1
i,j xi,i,j

1 + ξi,jx̂Hi,i,jΨ
−1
i,j x̂i,i,j

�

√
δ̄i,j σ̂i,i,jm̄

est
i

1 + ξi,j σ̂i,i,jm̄
est
i

, (175)

where m̄est
i can be computed as in (54). The result in (175)

can be derived as follows: First, we look at the numerator term

x̂Hi,i,jΨ
−1
i,j xi,i,j

= σ′i,i,j

(
N∑
b=1

xi,b,j +
nTr√
PTr

)H
Ψ−1
i,j xi,i,j

(a)
� σ′i,i,jσi,i,jm̄

est
i

(b)
= σ̂i,i,jm̄

est
i , (176)

where (a) follows from the results of Lemma 9, Theorem 5,
and noting that the column vectors xi,b,j ∀ b 6= i,nTr are
independent of xi,i,j . Step (b) follows using the relation in
(49). Similarly, the denominator term converges to

1 + ξi,jx̂
H
i,i,jΨ

−1
i,j x̂i,i,j � 1 + ξi,j σ̂i,i,jm̄

est
i .

We now investigate the asymptotic equivalent of the sum of
interference power at UTi,j from the BS of cell n, given by∑
k

|vest
n,k

H
hn,i,j |2 =

∑
k

δ̄n,k
N2
t

hHn,i,jΨ
−1
n ĥn,n,kĥ

H
n,n,kΨ−1

n hn,i,j

=
∑
k

δ̄n,kxn,i,jΨ
−1
n x̂n,n,kx̂

H
n,n,kΨ−1

n xn,i,j .

We note that the CSI estimate of UTi,j is contaminated from
the pilot signal of UTn,j , (n 6= i). Therefore, we first analyze
the interference signal from UTn,j , (n 6= i), as follows:

δ̄n,jx
H
n,i,jΨ

−1
n x̂n,n,jx̂

H
n,n,jΨ

−1
n xn,i,j

(a)
=

δ̄n,jx̂
H
n,n,jΨ

−1
n,jxn,i,jx

H
n,i,jΨ

−1
n,jx̂n,n,j

(1 + ξn,jx̂Hn,n,jΨ
−1
n,jx̂n,n,j)

2

(b)
�
δ̄n,j

(
σn,i,jσ

′
n,n,jm̄

est
n

)2
(1 + ξn,j σ̂n,n,jm̄est

n )2
(177)

where in (a), we have removed the column x̂Hn,n,j from the
matrix Ψ−1

n using Lemma 8, and the result of (b) is derived
similar to (175).

Next, we consider the sum of interference signals from rest
of the UTs in cell n, i.e.,∑

k 6=j

δ̄n,kx
H
n,i,jΨ

−1
n x̂n,n,kx̂

H
n,n,kΨ−1

n xn,i,j

= xn,i,jΨ
−1
n Bn,jΨ

−1
n xn,i,j , (178)

where Bn,j =
∑
k 6=j δ̄n,kx̂n,n,kx̂

H
n,n,k. Using Lemma 8, we

can decompose Ψ−1
n as

Ψ−1
n = Ψ−1

n,j −
ξn,jΨ

−1
n,jx̂n,n,jx̂

H
n,n,jΨ

−1
n,j

1 + ξn,jx̂Hn,n,jΨ
−1
n,jx̂n,n,j

. (179)

Using (179) in (178), we obtain

xHn,i,jΨ
−1
n Bn,jΨ

−1
n xn,i,j

= xHn,i,jΨ
−1
n,jBn,jΨ

−1
n,jxn,i,j (180)

+
ξ2
n,j(x

H
n,i,jΨ

−1
n,jx̂n,n,j)

2x̂Hn,n,jΨ
−1
n,jBn,jΨ

−1
n,jx̂n,n,j

(1 + ξn,jx̂Hn,n,jΨ
−1
n,jx̂n,n,j)

2
(181)

− 2Re
{ξn,j(x̂Hn,n,jΨ−1

n,jxn,i,j)x
H
n,i,jΨ

−1
n,jBn,jΨ

−1
n,jx̂n,n,j

1 + ξn,jx̂Hn,n,jΨ
−1
n,jx̂n,n,j

}
.

(182)

Consider the term (180). It can be proved that the spectral
norm of Ψ−1

n,jBn,jΨ
−1
n,j is bounded (following the steps in

(133)). Therefore, using

xn,i,jΨ
−1
n,jBn,jΨ

−1
n,jxn,i,j �

σn,i,j
Nt

tr(Ψ−1
n,jBn,jΨ

−1
n,j). (183)

Using some straightforward steps (similar to the derivation of
(125)), it can be shown that

1

Nt
tr(Ψ−1

n,jBn,jΨ
−1
n,j) =

1

Nt

∑
k 6=j

δ̄n,kx̂
H
n,n,kΨ−2

n,jx̂n,n,k.

(184)

The right hand side of (184) can be further analyzed as
follows:

(184) =
1

Nt

∑
k 6=j

δ̄n,kx̂
H
n,n,kΨ−2

n,j,kx̂n,n,k

(1 + ξn,kx̂Hn,n,kΨ−1
n,j,kx̂n,n,k)2

� 1

Nt

∑
k 6=j

δ̄n,kσ̂n,n,k(m̄′n)est

(1 + ξn,kσ̂n,n,km̄est
n )2

, (185)

where (m̄′n)est can be evaluated as in (55), and the result
of (185) has been derived following the approach of (128).
Similarly, it can be shown that

(181) �
∑
k 6=j

δ̄n,kξ
2
n,j(σn,i,jσ

′
n,n,jm̄

est
n )2σ̂n,n,j σ̂n,n,k(m̄′n)est

Nt(1 + ξn,j σ̂n,n,jm̄est
n )2(1 + ξn,kσ̂n,n,km̄est

n )2
,

(182) � −2
∑
k 6=j

σ2
n,i,j(σ

′
n,n,j)

2m̄est
n σ̂n,n,k(m̄′n)est

Nt(1 + ξn,j σ̂n,n,jm̄est
n )(1 + ξn,kσ̂n,n,km̄est

n )2
.

Combining the convergence results of the useful signal and the
interference signal terms derived in this Appendix, we obtain
(56).
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