Laurent Laurent

Ott Ott

QuickRanking: Fast Algorithm For Sorting And Ranking Data

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

QuickRanking: Fast Algorithm For Sorting And Ranking Data QuickRanking is an algorithm that allows in a same processing, to sort the data and to return their ranking, that is to say their rank in the sorting.

For faster processing, QuickRanking does not move data, but stores for each data, where the following data is. This method is explained in annex 1. The source code written in VBA is in annex 2.

To evaluate the effectiveness of QuickRanking, I have reproduced at annex 3 the source code for QuickSort, and in annex 4 an "enriched" version of QuickSort, called QuickSort_AndRank, which like QuickRanking, does not move the data directly but moves the references of the indices of the data. Hence a gain of time on the processing of the voluminous alphanumeric data because we move integers of 4 bytes and no more strings of character of varying lengths. This requires additional memory capacities, but therefore allows to use these reference tables to return an order of classification in addition to the sorting, just as QuickRanking does.

I have compared these three algorithms -QuickSort, QuickSort_AndRank, and QuickRanking -on lists of random data; the results are synthetised in a table in annex 5. My analysis is the following:

If the classification order is not necessary: -Sorting of digital data: QuickSort is the fastest algorithm except when the data at the beginning of the list are already classified, or if the minimum or maximum value is often represented. In these cases, QuickRanking takes the advantage. -Sorting of alphanumeric data: the more the number of characters of the data to be sorted is important, the more the algorithms work by reference, QuickSort_AndRank and QuickRanking, are effective. QuickSort must only be used if the memory capacity does not allow to use the other two algorithms which require more resources.

If the classification order is necessary:

-Sorting and classification of digital data: QuickSort_AndRank is more efficient than QuickRanking only on large lists of data. QuickRanking takes the advantage in other cases. Advantage emphasised when the data at the beginning of the list are already classified, when the list is made up of few different values, or when the minimum or maximum value is often represented. -Sorting and classification of alphanumeric data: QuickRanking is faster than QuickSort_AndRank. Advantage emphasised on the processing of large chains of characters.

Conclusion: ideally random list or highly classified list, large data or reduced size data, numeric or alphanumeric data, the reality is often between these extremes. In practice, QuickRanking may provide an interesting alternative to QuickSort...

Remarks:

-QuickRanking offers optional complementary analyzes to accelerate the processings on the lists where the data have many equalities, or when data are following. This option has not been used in the tests because they are based on random data. Annex 6 presents a function that determines, after analysis of a sample of data from the list, whether or not to enable this option.

-QuickRanking also allows you to reverse only the order of classification, without sorting all the data, which reduces the processing time. This method is useful for instance when you are looking for the first 10 elements of a list, or the nth item. However, the equalities are not managed in this method.

-The attached Excel file takes up these algorithms.

-In the tests presented, QuickSort and QuickSort_AndRank use a fixed pivot.

-The tests were done on a PC office automation in VBA in EXCEL. The results are given for information; the objective is to bring out a trend. These results need to be confirmed in other programming languages and with other operating systems. I am looking for volunteers, if you are tempted by the adventure: Laurent.ott8@orange.fr -Thanks to Christiane Bonin and Patrick for this translation.

Item : 0 1 2 3 4 5 6 7 8 9 10 11 Value : 3 9 5 2 15 7 8 20 17 0 5 90 Item : 0 1 2 3 4 5 6 7 8 9 10 11 Value : 3 9 5 2 15 7 8 20 17 0 5 90 Next item : 1 x Item : 0 1 2 3 4 5 6 7 8 9 10 11 Value : 3 9 5 2 15 7 8 20 17 0 5 90 Next item : 2 x 1 Item : 0 1 2 3 4 5 6 7 8 9 10 11 Value : 3 9 5 2 15 7 8 20 17 0 5 90 Next item : 2 4 1 0 x Annex 1: The operation principle of the algorithm QuickRanking Let's sort the 12 data in the table below to understand this sorting method, which to save processing time, does not move data, but stores for each date where the following data is:

Let us analyze the first two elements: Here we know that the item 0, which is worth 3, is the minimum value, and the item 1, which is worth 9, is the maximum value. Therefore the item following the item 0 is the item 1. We can store this information:

To simplify the reading of the table, the minimum value is represented in green and the maximum value is in orange.

To classify the item 2, which is worth 5: We read the minimum value, the item 0. The value 3 is less than 5, therefore we read the next item, the item 1, which is worth 9. Too large this time. Therefore 5 becomes the value that will follow 3 and 9 will be the value that follows 5. Which updates our table of "next item": Let's classify the item 3 which is worth 2, lower value to our former minimum value which was the item 0 of value 3. Therefore an exchange is made. And the item 0 will be the value which will follow the item 3. No change for the other data already analysed:

These arrows indicate the reading order of the table starting from the minimum reference, and in reading the "next item".

Let us go to item 4 which is worth 15, value superior to our old maximum value, the item 1 which is worth 9. Therefore an exchange is made. The item 4 will be the value which will follow the item 1. No change for the other data already analysed: 0 1 2 3 4 5 6 7 8 9 10 11 Value : 3 9 5 2 15 7 8 20 17 0 5 90 Next item : 2 x 1 0 Item : 0 1 2 3 4 5 6 7 8 9 10 11 Value : 3 9 5 2 15 7 8 20 17 0 5 90 Next item : 2 4 5 0 x 1 Item : 0 1 2 3 4 5 6 7 8 9 10 11 Value : 3 9 5 2 15 7 8 20 17 0 The item 5 is worth 7, superior value to our minimum value of reference item 3, which is worth 2. Therefore we read the next item, the item 0, which is worth 3. Always less than 7, so we read the next item: item 2, which is worth 5. We continue with the next item, 1, which is worth 9. This time we can break out of the loop and update the "Next item": the item following the figure 7 is therefore the item 1, and the new "next item" to the item 2 is no more 1 but 5: Same principles to classify the item 6 which is worth 8: After reading the values from the table starting from the minimum value item and using the "next item", we find that it is located between the item 5 which is worth 7 and the item 1 which is worth 9. Therefore its "next item" is the item 1, and "next item" of the item 5 is modified: 1 is replaced by 6.

Item :
Note: here a shortcut is possible to quickly sort the item 6. Actually 8 is superior or equal to the last value analysed, which was worth 7, and is inferior or equal to the value of the next item of the last value analysed, which is worth 9. Therefore the next item of the item 6 is the next item of the last value analysed. And the next item of the last value analysed becomes the item 6. This test is very efficient on the partially sorted lists or if there are many equalities, but is counter-productive on random lists. That is why this test is optional in QuickRanking in order not to run it on lists of data that you know being random, and thus save the processing time. Annex 6 presents a function that determines, after analysis of a sample of data from the list, whether or not to enable this option.

Continue the classification and if you get this table, is that you have understood:

To read the data in ascending order, it must be from the minimum reference, the item 9, the 0, and read the "next item ": item 3, which is worth 2, the item 0 which is worth 3, the item 2 which is worth 5, and so on... The data is sorted without any movement is made. Only problem: to know the classification of an element, it sometimes takes many readings. For example, to classify the item 12 which is worth 10, here is the path followed, either 8 readings, to find that the item 1 is the last inferior item:

You guess that with a table of several hundreds of elements, certain values to classify will require a number of impressive reading ... which soars the processing time.

Item : 9 3 0 2 10 5 6 1 4 8 7 11 Value : 0 2 3 5 5 7 8 9 15 17 20 90 Item : 9 3 0 2 10 5 6 1 4 8 7 11 Value : 0 2 3 5 5 7 8 9 15 17 20 We must arrive at a good compromise so that the time spent to generate this table, is profitable by the time gained by dichotomy research. I have adopted the principle to update the table when the number of readings of the "next item" is equivalent to the number of processed data.

A mathematical analysis should allow to find the formula for an optimal generation. I am open to your proposals.

Very Important Note : The search algorithm of dichotomous QuickRanking is different from conventional algorithms based on a loop of type " Do ... Loop While beginning ≤ end ", including a condition of equality to break out prematurely of the loop when the value sought is found.

To speed up processing QuickRanking proceeds in two steps:

-The first step is a loop " For… next " made of a number of times inferior to the number calculated by the formula Log(n) / Log(2) which gives the maximum number of loop that will have to be done to find the solution in a dichotomous search. This is sufficient to approach the solution. -The second step is a loop that runs from the last inferior solution and which, this time, researches the exact solution.

This approach allows you to limit the number of conditional tests, which are time-consuming processing, and, most important, allows QuickRanking to be faster than if it used a conventional dichotomous research.

Item : 0 1 2 3 4 5 6 7 8 9 10 11 Value : 3 9 5 2 15 7 8 20 17 0 5 90 Next item : 2 4 10 0 8 6 1 11 7 3 5 x Item : 0 1 2 3 4 5 6 7 8 9 10 11 Value : 3 9 5 2 15 7 8 20 17 0 5 QuickRanking sorts the data, but also returns a rank order.

Let's go back to the table already seen:

The reading of the next items gives the sorting of the elements: 0, 2, 3, 5, 5, 7, 8, 9, 15, 17, 20, 90. This reading also allows to obtain the rank order of the elements:

The first element is the item 9. In an annexed table that serves as a ranking order, we put 1 for the item 9.

The following item is item 3, we put 2 in the rank order of the item 3.

The following item is item 0, we put 3 in the rank order of the item 0. And so on to obtain this table : The item 0 is worth 3, it is the 3 rd element of the sorted list.

The item 1 is worth 9 it is the 8 th element of the sorted list. The item 2 is worth 5 it is the 4 th element of the ordered list... Inversely, you can know the value of the nth element of a list: List(rank(n)) List(rank(9)) = 15. The 9 th item in the list is worth 15.

The rank order is convenient to fill a table of this type: Annexe 5 : Comparison of the three algorithms.

Annex 6: analysis of a sample of the data in the list allows you to determine whether or not to enable the option of additional tests.

QuickRanking offers optional complementary analyses to accelerate the processing, based on the last analysised item -research of series and duplicates for immediate processing, research of series non-contiguous for a rapid update of the table of already classified items. These analyses are performing with partially classified lists or if there are many equalities, but are counterproductive with random lists. That is why these analyses are optional in QuickRanking in order not the run on lists of data that you know they are random, and thus save processing time.

The dilemma thus arises when you do not know in advance if the list of data to sort will be or not random lists.

Because in some cases activating the option will speed up incredibly the processing or, on the contrary will slow it down.

The solution I suggest, is to take at random a sample of data from the list, and analyse it with the selected option. QuickRanking will feed in his argument taken by reference, TauxTest, the rate of successful tests. If this number represents a significant percentage, in the TauxConformite argument of the function, it can be estimated that it must activate the option.

The larger the sample size, the more the test will be representative, but the longer time it will take. Thus, I have limited the size of the sample to 3% of the size of the original list. Conversely if the sample is less than 20 items, it is considered non-significant and the function reverses True without making a test. By default the size of the sample is 1/1000 of the list.

Annexe 3 :

 3 The Quicksort algorithm C.A.R. Hoare You can optimize this algorithm for processing digital data by replacing the variable declarations "Variant" with "Long".Annexe 4 : The QuickSort_AndRank algorithm (based on the Quicksort algorithm)To return a ranking order.

 To save time, an already classified data table must be kept: Which allows you to make a dichotomous search to find the closest value of the element that we want to classify, which is worth 10, in only 4 readings:This method takes all its power on a very large table. For example, on a table of 10,000 elements, 14 readings only allow you to find the searched item, or approximately Log (n) / Log (2), where n is the number of elements in the table. A comparison with the hundreds of required readings by reading one by one "next item".

		90
	Item :	5 6 1 4 8 7 11
	Value :	7 8 9 15 17 20 90
	Item :	5 6 1
	Value :	7 8 9
	Item :	6 1
	Value :	8 9

The generation of this data table already classified being time consuming, it will be carried out from time to time. But even incomplete, this table allows you to move rapidly to the nearest item and then go on to a regular processing by reading the "next item" one by one, until you find the correct item. Consider this table as a shortcut to quickly arrive close to the final destination, and not necessarily to the final destination.

 : the data equal have the same order Method 2 : order data equal respect the original order. Method : does not return sorting data but only the ranking without management equalities. (A1) : Comparison of ranking without sorting between Quicksort and QuickSort_AndRank. (A2) : Comparison of ranking without sorting between Quicksort and QuickRanking (B) : Comparison between QuickRanking and QuickSort_AndRank : B0 = Sorting without ranking, B1 = Sorting and ranking method 1, B2 = Sorting and ranking method 2, B3 = ranking only method 3. Quick Ranking does not use the additional analysis option. This option is not useful on random data.

	1,000,000 alphanumeric of 1 to 250 chars 13,59 8% Method 1 QuickSort 100,000 alphanumeric of 1,000 chars 1,92 13% Sorting Without Ranking
	71%	26%					
	1,70	12,53					
	1,74 1,78	12,81 13,11					QuickSort_AndRank
	1,32	11,18					
	1,12 -34%	10,75 -14%		Ranking	Without	Sorting	
	1,17 -33% 1,18 -34%	11,44 -11% 11,53 -12%	-12%	Method 1 Method 2	ranking ranking	Sorting and Sorting and	QuickRanking
	0,72 -45%	9,28 -17%	4,16 -16%	Méthod 3		Ranked only	

Item : 0 1 2 3 4 5 6 7 8 Value : 8 8 9 8 10 8 8 10 5 Next item : 1 2 4 0 7 3 5 x 6 Rank : 5 6 7 4 8 3 2 9 1 Item : 0 1 2 3 4 5 6 7 8 Value : 8 8 9 8 10 8 8 10 5 Next item : 1 2 4 0 7 3 5 x 6

Rank : 2 2 7 2 8 2 2 8 1

Item : 0 1 2 3 4 5 6 7 8 Value : 8 8 9 8 10 8 8 10 5 Next item : 1 2 4 0 7 3 5 x 6

Rank : 2 3 7 4 8 5 6 9 1

But the exercise may be more complicated in some cases, as in the table below:

The elements of value 8, item 0, 1, 3, 5 and 6, have an inconsistent ranking order. Nothing can justify that the item 6 is ranked 2nd whereas the item 5 is ranked 3 th .

In practice, either we attribute the same ranking to all equal values (Method 1):

Here there is a first, and 5 second ex-aequo. The element of value 9 (item 2) is 7 th.

Either we keep the original order to classify the equal values (Method 2):

Here each element has a separate row. There is no exaequo even for the elements of the same value. In case of equality, it is the element at inferior item that is prioritised.

QuickRanking can manage both ranking methods, as well as the ascending or descending order.

The function accepts four arguments, in addition to sort the table : -OrdreCroissant (Ascending order) : If it is True, the sorting is done by ascending order. If it is False, the sorting is descending. -ModeClassement (ranking mode) indicates the ranking mode to return: 0 for no ranking. The data are sorted only.

1 to classify the data by applying the same rank to equal data. 2 to classify the data by assigning a different rank to equal data, respecting their original position.

3 to return the ranking, without sorting the data or managing any equality. 4 to return the data list without duplicates. The data are sorted but are not ranked -NiveauTest, (level test) determines whether or not to perform additional testing, to accelerate the processings on the lists where the data have many equalities, or when the data follow, see annex 6.

If it is worth -1 (or True), additional tests are performed.

If it is worth 0 (or False), no additional test is performed.

If it is worth between 1 and 100: a sample of the data is analysed by activating additional tests. If these tests prove successful, that is to say that the success rate is higher than in past argument NiveauTest, then the option will be enabled (the argument then takes the value -1). -TauxTest, (rate test) will contain the percentage of effective additional tests (integer between 0 and 100). This argument is used by the "TesterNiveauQR" function to test whether or not to activate the option of additional tests. In principle this argument is not used in the regular calls to the function, except perhaps by curiosity.

By default, QuickRanking sorts the data in ascending order and rank them by applying the same rank to equal data (Method 1). The option of additional testing is activated when the efficiency rate is at least 15 %. ACM 4, 321-322, 1961.

QuickSort_AndRank (based on the Quicksort algorithm): Laurent Ott QuickRanking: Laurent Ott