

Long time series of soil moisture obtained using neural networks: application to AMSR-E and SMOS

N. Rodriguez-Fernandez (1), Y. Kerr(1), JP. Wigneron(3), A. al Yaari(3),
R. de Jeu(2). R. van der Schalie (2), P. Richaume(1), H. Dolman(2),
M. Drusch(4), S. Mecklenburg(4)

(1) CESBIO, (2) VUA (3) INRA, (4) ESA

Nemesio.rodriguez@cesbio.cnes.fr

 Global Climate Observing System has endorsed soil moisture (SM) as an Essential Climate Variable

Liu et al. 2011,

- AMSR-E and ASCAT rescaled using GLDAS-Noah model
- Liu et al. 2012:
 - SMMR, SSM/I, TMI scaled to AMSR-E
 - ERS scaled to ASCAT

- Active and passive rescaled using GLDAS-Noah
- Wagner et al. 2012.
 - Windsat added, Reference GLDAS and ERA-Interim models

New devoted sensors: SMOS, SMAP

SMOS

- Full polarization
- Multi-angular (0-60º)

CESBID

• L-Band (1.4 GHz) : lower sensitivity to vegetation

Best strategy to add SMOS to a long term SM record? First step: **the ESA AMSR-E / SMOS fusion project.**

• "From ASMR-E to SMOS" : optimizing the LPRM algorithm and apply it to SMOS data (led by VUA) \rightarrow poster 17, van der Schalie et al.

Van der Schalie et al. (in press)

•"From SMOS to ASMR-E": Local multi-linear regression equations (led by INRA) poster 15, Al Yaari et al. (in press)

 $\ln (SSM) = \frac{b_2}{\ln (\Gamma_{pH}(\theta))} + \frac{b_1}{\ln (\Gamma_{pv}(\theta))} + \frac{b_0}{\ln (\theta)} (\theta) \qquad \Gamma_p(\theta) : \text{Soil reflectivity}$

• "From SMOS to ASMR-E" : Global non-linear regressions using neural networks (led by CESBIO)

Application of LPRM to SMOS observations

•Goal: To apply the Land Parameter Retrieval Model (LPRM) to the SMOS L-band observations and update the C- and X-band LPRM parameters (See poster ID:196, by Robin van der Schalie)

•Advantage of LPRM: intensely tested and evaluated method that uses a single parameterization globally and minimizes the the use of ancillary data inputs

•First results show high correlations between SMOS LRPM against AMSRE LPRM, SMOS Level 3, MERRA soil moisture and ERA-land soil moisture over all area's except for: Dense tropical forest and boreal areas

Mean soil moisture - SMOS LPRM (Asc)

Local multi-linear regressions: Methodology

6

Results (Calibration)

Regression coefficients:

b₀, b₁, b₂ (Oct2010-Sept2011)

The spatial patterns of the coefficients can be distinguished

In agreement with land cover type!

Results (AMSR-reg product evaluation against model 2003 - 2009)

Non-linear global regression using neural networks

• Neural networks are powerful non-linear regression tools:

- Universal approximators (Cybenko 1989)
- Can correct the reference data (Jimenez et al. 2013)
- They use the synergy of multi-sensor data (Aires et al. 2006)

 NN tested to invert SM from radiometer observations at small scale

- Liou et al. 2001, Del Frate et al. 2003, Angiuli et al. 2008,
- AMSR-E : Inversion of SM in the North of Italy, Uses the polarization ratio as input. Santi et al. 2014

NNs have shown good performances in previous global studies

- SSM/I, ERS, AVHRR : Aires et al. 2005, Kolassa et al., Jimenez et al. 2013
- SMOS (MODIS and ASCAT): Rodriguez-Fernandez et al. 2015

- The NN captures the temporal variability of SM in ECMWF models or SMOS L3 data
- A NN retrieval can be done in daily bases
- The temporal dynamics are best reproduced when adding passive (SMOS) and active data (ASCAT) or a local normalization of the TBs (in agreement with Kolassa et al. 2013)
- The NN SM exhibit good statistics when compared to in situ measurements

A SM product very similar to the current operational one but in near-real-time

11

- Instead of merging a posteriori different SM datasets, one can create a new SM dataset using neural networks (NN)
- Two approaches
 - Using a common soil moisture reference for both instruments
 - Using SMOS L3 SM as reference to train the AMSR-E NN

Training the NN on a model can be a problem for some applications

- If using as reference the model from someone else is a problem for you, the same method can be used with your own model
- The SMOS operational algorithm :
 - has been developed specifically for the first satellite designed to measure soil moisture: SMOS
 - is independent of land surface models
 - has been extensively validated against other global datasets and in situ measurements (Albergel et al. 2012, Jackson et al. 2010, Albitar et al. 2012, Al Yaari et al. 2014, Leroux et al. 2012...)

Training the ASMR-E NN on SMOS L3 SM

SM SMOS

AMSR-E NN SM vs SMOS L3 SM: consistent datasets !

4I2+4Tb+T; TrainL3; Site: SCAN.050.05phillipsburgydraprobe-Analog-(2.5-Volt); Pt:181555

Inversion of the AMSR-E data in the 2003-2010 period

The AMSR-E NN trained on SMOS shows high correlation with AMSR-E LPRM

 The correlation of NN and LPRM wrt MERRA show similar spatial patterns and values

• The AMSR-E NN trained on SMOS SM shows a lower STD with respect to MERRA model simulations than AMSR-E LPRM

SM05

	SM	STD	R	Bias	
		$\mathrm{m}^3/\mathrm{m}^3$		$\mathrm{m}^3/\mathrm{m}^3$	
	AMMA-0.05-0.05 Npt= 672				
	NN	0.028	0.760	0.011	
In situ	ERA	0.053	0.765	0.134	
LPRM	LPRM	0.049	0.804	0.031	
MERR	MERRA	0.049	0.556	0.125	
ERA	CARBOAFRICA-0.05-0.05; Npt=				
NN	NN	0.019	0.652	-0.016	
	ERA	0.059	0.787	0.104	
	LPRM	0.027	0.786	0.001	
	MERRA	0.033	0.670	0.049	
In situ	DAHRA-0.05-0.05; Npt= 706				
LPRM	NN	0.032	0.793	0.022	
MERR	ERA	0.070	0.801	0.083	
ERA	LPRM	0.057	0.796	0.033	
NN	MERRA	0.051	0.681	0.082	

		\mathbf{SM}	STD	R	Bias
•	In situ		$\mathrm{m}^3/\mathrm{m}^3$		$\mathrm{m}^3/\mathrm{m}^3$
•		OZNET	Γ-0.00-0.0)5; Npt=	= 747
•	MERR	NN	0.058	0.755	-0.035
		ERA	0.055	0.785	0.107
•	ININ	LPRM	0.069	0.756	0.046
		MERRA	0.060	0.743	0.069

Some examples: Europe

In situ LPRM MERRA

ERA NN

In situ

LPRM

ERA NN

In situ

LPRM

ERA NN

In situ

LPRM

ERA NN

MERRA

MERRA

MERRA

In Europe models perform better than remote sensing retrievals

SM	STD	R	bias	
MOL-RAO- $0.08-0.08$; Npt= 1885				
NN	0.051	0.648	0.002	
ERA	0.043	0.776	0.165	
LPRM	0.069	0.498	0.261	
MERRA	0.048	0.693	0.086	
REMED	HUS-0.0	0-0.05; N	Npt = 111	
NN	0.066	0.622	-0.003	
ERA	0.079	0.674	0.158	
LPRM	0.098	0.627	0.133	
MERRA	0.057	0.633	0.107	
SMOSM	ANIA-0.	05-0.05;	Npt = 60	
NN	0.073	0.550	-0.096	
ERA	0.061	0.681	0.081	
LPRM	0.108	0.566	0.223	
MERRA	0.061	0.689	0.036	

- Two methods:
 - Training on ECMWF a NN for SMOS and another for AMSR-E
 - If a SM dataset trained with a land surface model from someone else is a problem for you, it is possible to use this method training the NNs with your own model !
 - Training a NN with AMSR-E Tb's as input and SMOS L3 SM as reference

• Coherent results in the SMOS / AMSR-E common period (2010-2011)

• Good results in the AMSR-E period (2003-2010) with respect to in situ measurements

Thank you for your attention !

North America

SM	STD	R	Bias		
	$\mathrm{m}^3/\mathrm{m}^3$		$\mathrm{m}^3/\mathrm{m}^3$		
ARM-0.05-0.05; Npt= 1308					
NN	0.054	0.459	-0.182		
ERA	0.071	0.493	-0.039		
LPRM	0.097	0.429	-0.086		
MERRA	0.049	0.447	-0.074		
SCAN-0.05-0.05; Npt = 573					
NN	0.060	0.506	-0.067		
ERA	0.063	0.585	0.071		
LPRM	0.103	0.471	0.086		
MERRA	0.055	0.575	0.057		
SNOTEL-0.05-0.05; Npt= 524					
NN	0.085	0.298	-0.082		
ERA	0.087	0.428	-0.009		
LPRM	0.120	0.255	0.031		
MERRA	0.073	0.618	0.022		
USCRN-0.05-0.05; Npt= 144					
NN	0.070	0.577	-0.092		
ERA	0.070	0.615	0.063		
LPRM	0.103	0.493	0.070		
MERRA	0.065	0.702	0.042		