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A MODEL OF MISCIBLE LIQUIDS IN POROUS MEDIA

KARAM ALLALI, VITALY VOLPERT, VITALI VOUGALTER

Abstract. In this article we study the interaction of two miscible liquids

in porous media. The model consists of hydrodynamic equations with the

Korteweg stress terms coupled with the reaction-diffusion equation for the
concentration. We assume that the fluid is incompressible and its motion is

described by the Darcy law. The global existence and uniqueness of solutions

is established for some optimal conditions on the reaction source term and
external force functions. Numerical simulations are performed to show the

behavior of two miscible liquids subjected to the Korteweg stress.

1. Introduction

There exists transient interfacial phenomena between two miscible liquids similar
to interfacial tension [7]. However they are rather weak and they decay in time
because of the mixing of the two liquids because of the molecular diffusion [7, 12].
Investigation of such phenomena is motivated by enhanced oil recovery, hydrology,
frontal polymerization, groundwater pollution and filtration [2, 6, 11, 15, 16].

In 1901 Korteweg [8] introduced additional stress terms in the Navier-Stokes
equations to describe the influence of the composition gradients on fluid motion. In
1949, Zeldovich [18] studied the existence of a transitional interfacial tension and
described it with the expression

σ = k
[C]2

δ
,

where [C] is the variation of mass fraction through the transition zone, and δ is the
width of this zone. This relationship was generalized by Rousar and Nauman [14]
to systems far from equilibrium, for linear concentration gradients. In 1958, Cahn
and Hilliard [5] introduced the free energy density for a non-homogeneous fluid,

e = e0 + k|∇ρ|2,
where e0 is the energy density of a homogeneous fluid and ρ denotes the density of
the fluid.

A miscible liquid model with fully incompressible Navier-Stokes equations is
studied in [9]. Modelling and experiments of miscible liquids in relation with micro-
gravity experiments were carried out in [2, 3, 4, 13]. The existence and uniqueness
of solutions for miscible liquids model in porous media is studied in [1].

2010 Mathematics Subject Classification. 35A01, 35A02, 76D03, 76S05.

Key words and phrases. Darcy approximation; Korteweg stress; miscible liquids; porous media.
c©2015 Texas State University.

Submitted June 3, 2015. Published October 12, 2015.

1



2 K. ALLALI, V. VOLPERT, V. VOUGALTER EJDE-2015/264

In this article, we continue the studies of miscible liquids in porous media. We
consider a three-dimensional formulation and introduce the source terms in the
equation of motion and in the equation for the concentration. The paper is or-
ganized as follows. The next section is devoted to the model presentation, while
Section 3 deals with the existence of solutions. We establish the uniqueness of
solutions in Section 4 followed in Section 5 by numerical simulations.

2. Model presentation

The model describing the interaction of two miscible liquids is written as follows:
∂C

∂t
+ u · ∇C = d∆C − Cg, (2.1)

∂u

∂t
+
µ

K
u = −∇p+∇ · T (C) + f, (2.2)

div(u) = 0. (2.3)

We consider the boundary conditions:
∂C

∂n
= 0, u.n = 0, on Γ, (2.4)

and the initial conditions:

C(x, 0) = C0(x), u(x, 0) = u0(x), x ∈ Ω. (2.5)

Here u is the velocity, p is the pressure, C is the concentration, d is the coefficient
of mass diffusion, µ is the viscosity, K is the permeability of the medium, Γ is
a Lipschitz continuous boundary of the open bounded domain Ω, n is the unit
outward normal vector to Γ, f is the function describing the external forces such as
gravity and buoyancy while the term, g stands for the reaction source term. The
stress tensor terms are given by the relations:

T11 = k
( ∂C
∂x2

)2

, T12 = T21 = −k ∂C
∂x1

∂C

∂x2
, T13 = T31 = −k ∂C

∂x1

∂C

∂x3
,

T23 = T32 = −k ∂C
∂x2

∂C

∂x3
, T22 = k

( ∂C
∂x1

)2

, T33 = k
( ∂C
∂x3

)2

,

where k is nonnegative constant. We set

∇ · T (C) =

∂T11
∂x1

+ ∂T12
∂x2

+ ∂T13
∂x3

∂T21
∂x1

+ ∂T22
∂x2

+ ∂T23
∂x3

∂T31
∂x1

+ ∂T32
∂x2

+ ∂T33
∂x3

 . (2.6)

To state the problem in a variational form we need to introduce function spaces:

Su = {u ∈ H(div; Ω); div(u) = 0, u.n = 0 on Γ},

SC = {C ∈ H2(Ω);
∂C

∂n
= 0 on Γ}.

The variational form of the problem is to find C, u such that for all B, v the
following equalities hold:

(
∂C

∂t
,B) + d(∇C,∇B) + (u.∇C,B) + (gC,B) = 0, (2.7)

(
∂u

∂t
, v) + µp(u, v)− (div T (C), v)− (f, v) = 0. (2.8)
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Here µp = µ/K. The functions f(x, t) and g(x) are assumed to be a sufficiently
regular in Ω such that the first is bounded in L∞(0, t;L2(Ω)), the second is bounded
in L∞(Ω) and both of them are positive.

3. Existence of global solutions

We begin the proof of existence of solutions with the following lemmas.

Lemma 3.1. The concentration C is bounded in the L∞(0, t;L2) space.

Proof. Choosing C as test function in (2.7) and taking into account that g is a
positive function, we get the inequality:

1
2
∂

∂t
(C,C) + d(∇C,∇C) + (u.∇C,C) ≤ 0.

Since u ∈ Su, the last term vanishes. The second term is positive, so integrating
by time we obtain:

‖C(t = s)‖2L2 ≤ ‖C0‖2L2 .

From this inequality, it follows that C is bounded in L∞(0, t;L2). �

Lemma 3.2. The concentration C is bounded in L∞(0, t;H1) and the velocity u is
bounded in L∞(0, t;L2).

Proof. Choosing −k∆C as test function in equation (2.7), we have

(
∂C

∂t
,−k∆C) + (u.∇C,−k∆C) = d(∆C,−k∆C) + (gC, k∆C).

Next, since the reaction source term g is bounded, we get from the previous esti-
mate:

k

2
∂

∂t
(∇C,∇C) + dk(∆C,∆C)− k(u.∇C,∆C) ≤ kg0(∇C,∇C).

Then
1
2
∂

∂t
(∇C,∇C) + d(∆C,∆C) ≤ (u.∇C,∆C) + g0(∇C,∇C). (3.1)

Also, by choosing in (2.8), u as test function we obtain
1
2
∂

∂t
(u, u) + µp(u, u)− (∇.T (C), u) = (f, u). (3.2)

To have an explicit expression of ∇.T (C), we calculate its first component:

∂T11

∂x1
+
∂T12

∂x2
+
∂T13

∂x3
= 2k

∂C

∂x2

∂2C

∂x1∂x2
− k ∂2C

∂x1∂x2

∂C

∂x2
− k ∂C

∂x1

∂2C

∂x2
2

− k ∂2C

∂x1∂x3

∂C

∂x2
− k ∂C

∂x1

∂2C

∂x2
3

.

(3.3)

Hence
∂T11

∂x1
+
∂T12

∂x2
+
∂T13

∂x3
= k

∂C

∂x1

∂2C

∂x1∂x2
+ k

∂C

∂x1

∂2C

∂x1∂x3
+ k

∂C

∂x1

∂2C

∂x2
1

− k ∂C
∂x1

∆C.

Then
∂T11

∂x1
+
∂T12

∂x2
+
∂T13

∂x3
=
k

2
∂

∂x1
(∇C)2 − k ∂C

∂x1
∆C.

Following the same steps for the second component, we conclude:

∇ · T =
k

2
∇(∇C)2 − k∆C∇C .
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Replacing this last equality in (3.2) and since u ∈ Su, we have

1
2
∂

∂t
(u, u) + µp(u, u)− k(∆C∇C, u) = (f, u). (3.4)

Adding (3.4) to the inequality (3.1), and with the fact u ∈ Su and C ∈ Sc, we have

1
2
∂

∂t
((u, u) + k(∇C,∇C)) + µp(u, u) + dk(∆C,∆C) ≤ (f, u) + g0(∇C,∇C).

1
2
∂

∂t
((u, u) + k(∇C,∇C)) + µp(u, u) + dk(∆C,∆C)

≤ 1
2

(f, f) +
1
2

(u, u) + g0(∇C,∇C).

Since the third and the fourth terms in the left hand side of this inequality are
positive, we have

∂

∂t
((u, u) + k(∇C,∇C)) ≤ (f, f) + (u, u) + 2g0(∇C,∇C).

Therefore,

∂

∂t
((u, u) + (∇C,∇C)) ≤ (f, f)

min(1; k)
+

max(1; 2g0)
min(1; k)

((u, u) + (∇C,∇C)) .

By integrating over time, and since f is bound in L∞(0, t;L2), we have

‖u(t = s)‖L2 + ‖∇C(t = s)‖L2

≤ ‖u0‖L2 + ‖∇C0‖L2 +
f0

min(1; k)
+

max(1; 2g0)
min(1; k)

∫ t

0

(‖u(s)‖L2 + ‖∇C(s)‖L2) ds.

From the Gronwall’s Lemma, it follows that

‖u(t = s)‖L2 + ‖∇C(t = s)‖L2

≤ (‖u0‖L2 + ‖∇C0‖L2 +
f0

min(1; k)
) exp

(max(1; 2g0)t
min(1; k)

)
.

We conclude that C is bounded in L∞(0, t;H1) and u is bounded in L∞(0, t;L2)
for t ∈ [0;T ]. �

Lemma 3.3. The time derivative of the concentration ∂C
∂t is bounded in L2(0, t;L2).

Proof. From (2.7), since g is a positive function and by the triangle inequality, we
have

‖∂C
∂t
‖L2 ≤ d‖∆C‖L2 + ‖u · ∇C‖L2 .

Using Hölder inequality, we obtain

‖∂C
∂t
‖L2 ≤ d‖∆C‖L2 + ‖u‖L4‖∇C‖L4 ,

and from the Gagliardo-Nirenberg inequality, it follows that ∃N > 0 such that

‖∂C
∂t
‖L2 ≤ d‖∆C‖L2 +N‖u‖1/2

L2 ‖∇u‖1/2
L2 ‖∇C‖1/2

L2 ‖∇C‖1/2
H1 .

We conclude that ∂C
∂t is bounded in L2(0, t;L2). �

Lemma 3.4. The time derivative of the velocity ∂u
∂t is bounded in L2(0, t;L2).
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Proof. To prove this lemma, it is sufficient to remark that ∇ · T (C) is a sum of the
expressions of the form λDi(DjCDlC), where Di = ∂

∂xi
, i = 1, 2, 3 and λ depending

on i, j and l (see for example (3.3)). We have

‖Di(DjCDlC)‖S′
C
≤ ‖DjCDlC‖L2(Ω)

≤ ‖DjC‖L4(Ω)‖DlC‖L4(Ω)

≤M‖DjC‖1/2
L2(Ω)‖DlC‖1/2

L2(Ω)‖DjC‖1/2
H1(Ω)‖DlC‖1/2

H1(Ω).

We notice that f is a bounded function. Using the the same reasoning as for the
previous lemmas, we prove that ∂u

∂t is bounded in L2(0, t;L2). �

We can now formulate the main result of this section.

Theorem 3.5. Problem (2.1)-(2.5) admits a global solution.

Proof. It is easy to see that the problem admits a finite-dimensional solutions Cm

and um defined on the interval of time [0;Tm[. From the previous Lemmas applied
to Cm and um we deduce the global existence of those solutions.

Furthermore, the previous Lemmas provide the existence of subsequences, still
denoted by Cm and um, such that

Cm → C weakly in L2(0, T ;SC),

Cm → C weak-star in L∞(0, T ;H1),

C ′m → C ′ weakly in L2(0, T ;S′C),

um → u weakly in L2(0, T ;Su),

um → u weak-star in L∞(0, T ;Hdiv),

u′m → u′ weakly in L2(0, T ;S′u) .

By classical compactness theorems (see for example [10, 17]), we also obtain the
strong convergence of (Cm;um) and by passing to the limit we obtain the existence
of solutions. �

4. Uniqueness of solution

To prove uniqueness of solution, we assume that problem (2.1)-(2.5) has two
solutions (C1, u1) and (C2, u2). From (2.1), we have

∂

∂t
(C1 − C2)− d∆(C1 − C2) + u1∇C1 − u2∇C2 + g(C1 − C2) = 0, (4.1)

and from (2.2), we also have

∂

∂t
(u1 − u2) + µp(u1 − u2) +∇(p1 − p2)

=
k

2
∇
(
(∇C1)2 − (∇C2)2

)
− k(∆C1∇C1 −∆C2∇C2).

(4.2)

Multiplying (4.1) by −k∆(C1 − C2) and integrating, we obtain

(
∂

∂t
(C1 − C2),−k∆(C1 − C2)) + dk(∆(C1 − C2),∆(C1 − C2))

+ (u1∇C1,−k∆(C1 − C2)) + (u2∇C2, k∆(C1 − C2))

+ (g(C1 − C2),−k∆(C1 − C2)) = 0.
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Similarly, multiplying (4.2) by u1 − u2 and integrating, we have

(
∂

∂t
(u1 − u2), u1 − u2) + µp(u1 − u2, u1 − u2)

=
k

2
(∇
(
(∇C1)2 − (∇C2)2

)
, u1 − u2)− k(∆C1∇C1 −∆C2∇C2, u1 − u2).

Adding the two last equalities, using Green’s formula and the fact that ui ∈ Su, we
conclude that

1
2
∂

∂t
(‖u1 − u2‖2L2 + k‖∇C1 −∇C2‖2L2) + µp‖u1 − u2‖2L2 + kd‖∆(C1 − C2)‖2L2

= k(u1∇(C1 − C2),∆(C1 − C2)) + k((u1 − u2)∇C2,∆(C1 − C2))

− k(∆C1∇(C1 − C2), u1 − u2) + k(−∆C1∇C2 + ∆C2∇C2, u1 − u2)

+ k(g(C1 − C2),∆(C1 − C2)).

Therefore,
1
2
∂

∂t
(‖u1 − u2‖2L2 + k‖∇C1 −∇C2‖2L2) + µp‖u1 − u2‖2L2 + kd‖∆(C1 − C2)‖2L2

= k(u1∇(C1 − C2),∆(C1 − C2))− k(∆C1∇(C1 − C2), u1 − u2) (4.3)

+ k(g(C1 − C2),∆(C1 − C2)).

We now estimate the right-hand side of this equality. We put C = C1 − C2 and
u = u1 − u2. From the Hölder inequality it follows that

|(∆C1∇C, u)| ≤ ‖∆C1‖L2‖∇C.u‖L2 ≤ ‖∆C1‖L2‖∇C‖L4‖u‖(L4)2 .

Also, from the Gagliardo-Nirenberg inequality we obtain

|(∆C1∇C, u)| ≤ N1‖∆C1‖L2‖∇C‖1/2
L2 ‖∆C‖1/2

L2 ‖u‖1/2
L2 ‖∇u‖1/2

L2 .

Next, applying the Young’s inequality, we obtain

|(∆C1∇C, u)| ≤ N1

4
‖∆C‖2L2 +

3N1

4
‖∆C1‖4/3

L2 ‖∇C‖2/3
L2 ‖u‖2/3

L2 ‖∇u‖2/3
L2 .

Using that same technics, we obtain the inequality

|(u1∇C,∆C)| ≤ ‖∆C‖L2‖∇C.u1‖L2 ≤ ‖∆C‖L2‖∇C‖L4‖u1‖(L4)2 .

Therefore,

|(u1∇C,∆C)| ≤ N2‖∆C‖3/2
L2 ‖∇C‖1/2

L2 ‖u1‖1/2
L2 ‖∇u1‖1/2

L2 .

Finally,

|(u1∇C,∆C)| ≤ 3N2

4
‖∆C‖2L2 +

N2

4
‖∇C‖2L2‖u1‖2L2‖∇u1‖2L2 .

From (4.3) and assuming that N1 + 3N2 ≤ 4d, we have

1
2
∂

∂t
(‖u‖2L2 + k‖∇C‖2L2)

≤ 3N1k

2
‖∆C1‖4/3

L2 ‖∇C‖2/3
L2 ‖u‖2/3

L2 ‖∇u‖2/3
L2

+
N2k

2
‖∇C‖2L2‖u1‖2L2‖∇u1‖2L2 + kg0‖∇C‖2L2

≤ (‖u‖2L2 + k‖∇C‖2L2)
(N2

2
‖∇C‖2L2‖u1‖2L2‖∇u1‖2L2
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+
3N1k

2
‖∆C1‖4/3

L2 ‖∇C‖2/3
L2 ‖u‖−4/3

L2 ‖∇u‖2/3
L2 + kg0

)
.

Denote

φ(t) = ‖∇C‖2L2‖u1‖2L2‖∇u1‖2L2 + ‖∆C1‖4/3
L2 ‖∇C‖2/3

L2 ‖u‖−4/3
L2 ‖∇u‖2/3

L2 + 1,

M = max
(N2

2
,

3N1k

2
, kg0

)
.

Then we have the estimate
d

dt
(exp

(
M

∫ t

0

φ(s)ds
)

(‖u‖2L2 + k‖∇C‖2L2)) ≤ 0.

for all t ≥ 0. From this we deduce that

exp
(
M

∫ t

0

φ(s)ds
)

(‖u‖2L2 + k‖∇C‖2L2) ≤ ‖u(0)‖2L2 + k‖∇C(0)‖2L2 .

Since u(0) = C(0) = 0, we conclude the uniqueness of solution. We can now state
the theorem on the uniqueness of solution.

Theorem 4.1. Problem (2.1)-(2.5) admits a unique solution.

5. Numerical simulations

For numerical simulations, we will consider the 2D problem without reaction
term and external forces. We will introduce the stream function defined by the
equalities

u1 =
∂ψ

∂x2
, u2 = − ∂ψ

∂x1
,

and the vorticity ω = rot(u). The problem becomes
∂ω

∂t
+ µpω =

∂

∂x1
(
∂T21

∂x1
+
∂T22

∂x2
)− ∂

∂x2
(
∂T11

∂x1
+
∂T12

∂x2
), (5.1)

∂C

∂t
+ (

∂ψ

∂x2
,− ∂ψ

∂x1
).∇C = d∆C, (5.2)

ω = −∆ψ . (5.3)

Numerical method. We begin with equation (5.2). It is solved by the alternative
direction implicit finite difference method with Thomas algorithm:

C
n+ 1

2
i,j − Cn

i,j

ht/2

= d
(Cn+ 1

2
i−1,j − 2Cn+ 1

2
i,j + C

n+ 1
2

i+1,j

h2
x

+
Cn

i,j−1 − 2Cn
i,j + Cn

i,j+1

h2
y

)
−
ψn

i,j+1 − ψn
i,j−1

2hy

C
n+ 1

2
i+1,j − C

n+ 1
2

i−1,j

2hx
+
ψn

i+1,j − ψn
i−1,j

2hx

Cn
i,j+1 − Cn

i,j−1

2hy
,

Cn+1
i,j − Cn+ 1

2
i,j

ht/2

= d
(Cn+ 1

2
i−1,j − 2Cn+ 1

2
i,j + C

n+ 1
2

i+1,j

h2
x

+
Cn+1

i,j−1 − 2Cn+1
i,j + Cn+1

i,j+1

h2
y

)
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−
ψn

i,j+1 − ψn
i,j−1

2hy

C
n+ 1

2
i+1,j − C

n+ 1
2

i−1,j

2hx
+
ψn

i+1,j − ψn
i−1,j

2hx

Cn+1
i,j+1 − C

n+1
i,j−1

2hy
.

In (5.1) we replace Tij by their expressions through the concentrations

∂ω

∂t
+ µpω = k

( ∂C
∂x1

(∂3C

∂x3
2

+
∂3C

∂x2
1∂x2

)
− ∂C

∂x2

(∂3C

∂x3
1

+
∂3C

∂x1∂x2
2

))
(5.4)

We use the finite difference scheme

ωn+1
i,j =

1
1 + htµp

ωn
i,j + k

ht

1 + htµp

(
Cn+1

i+1,j − C
n+1
i−1,j

2hx

×
(Cn+1

i,j+2 − 2Cn+1
i,j+1 + 2Cn+1

i,j−1 − C
n+1
i,j−2

2h3
y

+
(Cn+1

i+1,j+1 − C
n+1
i+1,j−1)− 2(Cn+1

i,j+1 − C
n+1
i,j−1) + (Cn+1

i−1,j+1 − C
n+1
i−1,j−1)

2h2
xhy

)
−
Cn+1

i,j+1 − C
n+1
i,j−1

2hy

(Cn+1
i+2,j − 2Cn+1

i+1,j + 2Cn+1
i−1,j − C

n+1
i−2,j

2h3
x

+
(

(Cn+1
i+1,j+1 − C

n+1
i−1,j+1)− 2(Cn+1

i+1,j − C
n+1
i−1,j) + (Cn+1

i+1,j−1

− Cn+1
i−1,j−1)

)/(
2h2

yhx

)))
.

Equation (5.3) is solved by the fast Fourier transform method.
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Figure 1. Evolution of the concentration during 100 seconds for
d = 3× 10−3, k = 10−7 and µp = 100.

Numerical results. An example of numerical simulations is shown in Figures 1 and 2.
Figure 1 shows the evolution of the miscible drop in time. The transient interfacial
tension affects the geometry of the drop and its shape becomes more spherical.
At the same time, the maximum of the concentration decreases due to diffusion
(Figure 2, left). The stream lines are shown in Figure 2 (right). Though transient
interfacial phenomena are sufficiently weak, they provoke the motion of fluid which
is initially quiescent.
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Figure 2. The maximum of stream function as function of time
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for the same parameters and after 100 s(right)
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