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Abstract

A bistable nonlocal reaction-diffusion equation is studied. Solutions in the form of simple and
periodic travelling waves, single and multiple pulses are observed in numerical simulations. Suc-
cessive transitions from simple waves to periodic waves and to stable pulses are described.
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1. Introduction

Nonlocal reaction-diffusion equations

∂u
∂t
= d

∂2u
∂x2 + au2(1 − J(u)) − σu, (1)

where

J(u) =
∫ ∞
−∞

ϕ(x − y)u(y, t)dy,
∫ ∞
−∞

ϕ(y)dy = 1.

describes various biological phenomena such as emergence and evolution of biological species
and the process of speciation in a more general context [8], [9]. An important property of such
equations is that they have solutions in the form of periodic travelling waves [1], [2], [3]. Such
solutions do not exist for the usual (scalar) reaction-diffusion equations. In this work we present a
new type of solutions of this equation, single and multiple pulses, and show how they are related
to periodic travelling waves. We will consider the kernel ϕ(x) in the form of a step-wise constant
function:

ϕ(x) =
{

1/(2N) , |x| < N
0 , |x| ≥ N .

In the limit of small N we obtain the reaction-diffusion equation

∂u
∂t
= d

∂2u
∂x2 + au2(1 − u) − σu. (2)

It is well known that it can have travelling wave solutions and solutions in the form of station-
ary pulses, that is positive solutions decaying at infinity. Travelling waves are asymptotically
stable with shift while pulses are unstable. Existence of waves for the nonlocal equation (1) is
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proved for sufficiently small N [1], [2]. Existence of pulses can be proved by a similar method.
Moreover, travelling waves are stable if N is small enough and pulses are unstable.

The second limiting case of equation (1) is that of large N. Instead of the kernel ϕ(x) we now
consider the kernel ψ(x) = 2Nϕ(x). The limiting equation becomes

∂u
∂t
= d

∂2u
∂x2 + au2(1 − I(u)) − σu, I(u) =

∫ ∞
−∞

u(y, t)dy. (3)

This equation does not have travelling waves but it has stationary pulses. The integral term in
this equation can make them stable [8]. Therefore we can expect that stable pulses also exist for
equation (2) if N is sufficiently large.

Thus, for sufficiently small N nonlocal equation (1) has stable waves and unstable pulses.
For sufficiently large N, it can have stable pulses but there are no waves. In this work we will
study transition of solutions of this equation from stable waves to stable pulses as N increases.

2. Travelling waves

If σ/a < 1/4, then equation (1) has three homogeneous in space stationary solutions, u+ = 0,
and two other solutions u0 and u−, u0 < u−, of the equation u(1 − u) = σ/a. The homogeneous
in space stationary solution u = u− of equation (1) can lose its stability resulting in appearance
of periodic in space solutions [4], [5], [6]. If we consider a localized in space perturbation of
this homogeneous in space solution, then it propagates as a periodic wave. The speed and the
amplitude of this wave depends on parameters. In the linear approximation, the speed can be
estimated through the maximal positive eigenvalue [10].

Let c0 be the speed of the wave with the limits w(±∞) = u±, which exists at least for suf-
ficiently small N, and cp be the average speed of the periodic wave which effectuates transition
from u− to the periodic in space stationary solution. If the support N of the kernel ϕ(x) is suf-
ficiently small, then we can use the linear approximation to describe the propagation of the
perturbation, and its speed converges to zero. Therefore for sufficiently small N, c0 < cp, and the
[c+, c−]-wave runs away from the periodic wave.

Figure 1: Numerical simulations of equation (1). Snapshot of solution u(x, t) is shown in red. Green lines represent
positions of the maxima of solution in the (x, t)-plane. If u− is stable, then then there is a simple [u+, u−]-wave (N = 3,
left). If it is unstable, then the periodic perturbation can propagate slower than this wave (N = 3.6, middle) or with the
same speed (N = 3.8, right).
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Figure 1 shows different regimes of wave propagation. If the solution u− is stable, then it is
a simple [u+, u−]-wave. It is not monotone with respect to x. The green lines in the left figure
show the position of the maxima of solution. They move altogether with the wave front. If N
is greater than the critical value Nc ≈ 3.6, then the homogeneous in space stationary solution
becomes unstable and a periodic in space stationary solution emerges behind the [u+, u−]-wave.
If N is close to the critical value, then the amplitude and the speed of propagation of the periodic
wave are small. It propagates slower than the [u+, u−]-wave (Figure 1, middle). For a greater
N, they propagate with the same speed but the periodic wave stays at some distance behind the
[u+, u−]-wave (Figure 1, right). Its influence is exponentially small, and the [u+, u−]-wave can
still be considered as having a constant speed and profile. Finally for sufficiently large values of
N, the two waves merge forming a single periodic wave (Figure 2, middle).

3. Single and mutiple pulses

3.1. Unstable pulses

Consider the equation

dw′′ + aw2(1 − w) − σw = 0. (1)

If
∫ u−

0 F(u)du > 0, then it has a positive solution w0(x) which decays at infinity. This solution
is unstable since the corresponding linearized operator has a positive eigenvalue [8]. Along with
equation (1) we consider the corresponding nonlocal equation

dw′′ + aw2(1 − J(w)) − σw = 0, (2)

where

J(w) =
∫ ∞
−∞

ϕ(x − y)w(y)dy, ϕ(x) =
{

1/(2N) , |x| < N
0 , |x| ≥ N .

It can be proved by the perturbation technique similar to travelling waves [1], [2] that for all
N sufficiently small there exists a pulse solution of this equation. The proof uses the implicit
function theorem and the spectral properties of the linearized operator. This pulse solution is
unstable for sufficiently small N.

3.2. Stable pulses

Next, consider the equation

∂u
∂t
= d

∂2u
∂x2 + au2(1 − K(u)) − σu, K(u) =

∫ ∞
−∞

ψ(x − y)u(y, t)dy, (3)

where the kernel of the integral differs from the kernel ϕ(x) in the integral J(u) by the factor 2N.
The corresponding stationary equation

dw′′ + aw2(1 − K(w)) − σw = 0, K(w) =
∫ ∞
−∞

ψ(x − y)w(y)dy (4)

is close to the equation
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Figure 2: Stable pulse for N = 20 (left). The same pulse becomes unstable for N = 8, and a periodic travelling
wave forms (middle). For N = 0.5, it is a usual wave instead of the periodic wave. The values of other parameters:
d = 0.2, a = 1, σ = 0.1.

dw′′ + aw2(1 − I(w)) − σw = 0, I(w) =
∫ ∞
−∞

w(y)dy. (5)

if N is sufficiently large. It can be proved that equation (5) has two positive decaying at infinity
solutions for any a > a0, where a0 depends on σ [8]. If a < a0, then such solutions do not exist.
It allows one to prove existence of pulses for equation (4) for all N sufficiently large [11]. The
proof of existence uses spectral properties of the linearized operator

Lu = du′′ + 2aw(1 − I(w))u − σu − aw2I(u).

It is a Fredholm operator in weighted Hölder spaces with the zero index and one-dimensional
kernel. It is invertible on subspace of even functions. These properties allow the application of
the implicit function theorem to prove of existence of solutions for sufficiently large N.

The spectrum of the operator L determines stability of the pulse solution of equation (5) as
a stationary solution of the corresponding evolution equation. Numerical simulations show that
this solution is stable. However it is not proved that the spectrum of operator L lies in the left-half
plane of the complex plane. This property is verified for some related but different operators [7].

Assuming that all eigenvalues of the operator L lie in the left-half plane except for a simple
zero eigenvalue related to translation invariance of stationary solutions, we obtain similar prop-
erties of the linearized operator corresponding to equation (4). Therefore we can expect that
the pulse solutions of this equation are asymptotically stable with respect to small perturbations.
Figure 2 (left) shows a stable pulse for a large value of N. If we decrease N, this pulse becomes
unstable and initiates a travelling wave propagating in both directions (Figure 2, middle and
right). It can be a simple wave or a periodic wave depending on parameters.

3.3. Multiple pulses
The results of the previous sections show that there are two alternative cases. In the first case

the wave is stable and the pulse is unstable. In the second case the pulse is stable, and the wave
is not observed in numerical simulations. Most likely it does not exist.

4



In order to study behavior of solutions in the case of stable pulses in more detail, we vary
initial conditions. Depending on the width of the support of the initial condition considered in
the form of a step-wise constant function, we obtain single or multiple pulses. If the support of
the initial condition is sufficiently narrow, the solution converges to a single stable pulse. If the
width of the support increases, then several pulses emerge. Their number depends on the initial
condition (Figure 3). These pulses slowly move from each other.

Figure 3: Multiple pulses for N = 20, d = 0.2, a = 1, σ = 0.1. The number of pulses depends on the width of the initial
condition. Pulses slowly move from each other. Red curves show snapshots of solutions, green curves inidicate positions
of maxima of solutions in time.

4. Bifurcation diagram

We summarize the result on the existence and stability of waves and pulses in the bifurcation
diagram (Figure 4). It is obtained as result of numerical simulations of equation (1). We vary
the value of N for all other parameters fixed. If N is sufficiently small, then there exists a stable
monotone [u+, u−]- wave. The maximum of solution equals its value u− at −∞. For larger values
of N, this wave still exists and it is stable but it becomes nonmonotone. We show in the diagram
not the maximal value of solution in the wave but its value at −∞.

At the first bifurcation point N = N1, this wave becomes unstable and a periodic wave ap-
pears. It is a two stage process as described in Section 2. The diagram shows the maximal value
of the periodic stationary structure which emerges behind the wave. The second bifurcation point
N = N2 corresponds to the transition from periodic waves to stable pulses. The average speed
of the periodic wave decreases as N tends to N2. The time interval between appearance of new
localized peaks becomes longer and tends to infinity. These peaks correspond to multiple pulses
for N > N2. Thus we have a transition from a periodic wave to multiple pulses by means of the
speed of wave propagation which becomes zero.

Let us note that both bifurcation points correspond to unusual bifurcations. In the first case,
periodic waves appear due to the essential spectrum crossing the imaginary axis. In the second
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Figure 4: Bifurcation diagram: the maximum of the solution as a function of N (see the explanation in the text). Traveling
wave is stable for 0 < N < N1, periodic travelling wave for N1 < N < N2, pulses for N > N2. Solid line shows
results of numerical simulations, dashed line represents qualitative behavior of solutions. The values of parameters:
d = 0.2, a = 1, σ = 0.1.

case, the speed of the travelling wave approaches zero as N ↗ N2. The wave propagation can
“stop” at any number of pulses.
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