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Abstract. Hyper-parameter tuning is a resource-intensive task when
optimizing classification models. The commonly used k-fold cross valida-
tion can become intractable in large scale settings when a classifier has
to learn billions of parameters. At the same time, in real-world, one of-
ten encounters multi-class classification scenarios with only a few labeled
examples; model selection approaches often offer little improvement in
such cases and the default values of learners are used. We propose bounds
for classification on accuracy and macro measures (precision, recall, F1)
that motivate efficient schemes for model selection and can benefit from
the existence of unlabeled data. We demonstrate the advantages of those
schemes by comparing them with k-fold cross validation and hold-out
estimation in the setting of large scale classification.

1 Introduction

Model selection is an essential step in the pipeline of data analysis tasks. Having
decided on the algorithm to be used, one should proceed to parameter selec-
tion that is the process of selecting a value for the model’s hyper-parameter(s)
expected to obtain the optimal performance on unseen examples. For instance,
when using Support Vector Machines (SVM) or Logistic Regression (LR) in a
classification task, one has to tune the regularization parameter λ which controls
the complexity of the model.

The fundamental idea of parameter estimation methods is to validate the
model’s performance in fractions of the training data. In several learning sce-
narios however, except few labeled data, a larger set of unlabeled data may be
available (for example in text classification) as the cost of assigning labels is
high. This is the case for example of the transductive learning framework [7],
where the data to be classified are available beforehand and can be leveraged
during the training or inference procedures.

The situation we are investigating in this paper is when unlabeled data are
available during the step of parameter selection in a classification problem. The
challenge is to come up with a method that is able to leverage the information
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in the unlabeled data, instead of ignoring them as traditional model selection
strategies such as k-fold cross validation (k-CV) do. To tackle this problem, we
incorporate quantification techniques in order to infer the distribution of the
examples on unlabeled data, which in turn is used to calculate upper bounds
(Section 3) on the performance of a model that motivate an efficient model
selection scheme (Section 4).

We place ourselves in the supervised learning paradigm where the i.i.d. as-
sumption holds. Note that unlike semi-supervised and transductive learning
paradigms that make use of the unlabeled data in the training process to im-
prove the performance, we use the unlabeled data for hyper-parameter selection
and, hence, the obtained performance in the test set depends on the amount of
the available labeled data. Our method, which is an alternative to k-CV, moti-
vates the selection of the optimal value for the model’s hyper-parameter(s) from
a finite set that in turn results in the optimal performance (again from a finite
set of possible performances). In this work, we propose a hyper-parameter se-
lection method that (i) benefits from unlabeled data, (ii) performs on par with
k-CV but it is k times faster and (iii) has the same complexity as hold-out esti-
mation but performs better due to the use of unlabeled data. We demonstrate
the efficiency and the effectiveness of the proposed method in Section 5 where
we present multi-class text classification results on several datasets with a large
number of classes.

2 Related Work

Several approaches have been proposed for selecting the hyper-parameters of
learning algorithms. The goal is always to select the hypothesis that minimizes
the generalization error, which is approximated by the estimated error [13]. A
popular method to calculate the estimated error is the hold-out procedure that
splits the data in a training and a validation set; the estimated error is calculated
on the latter.

The k-CV technique repeats k times the hold-out procedure: in each round
the available training data are partitioned into two complementary subsets, one
for training and one for validation. To reduce variability, multiple rounds of cross-
validation are performed using different partitions and the validation results are
averaged over the rounds. At the end, an hypothesis is selected e.g. by retraining
the classifier on all data using the best values found for the hyper-parameters, or
by averaging the hypotheses [5]. A variant of this method is proposed by Blum
et al. [6] with a progressive cross-validation procedure that begins by splitting
the data in training and test. At each step, it tests an example which in the next
round is used for training, resulting in as many hypotheses as the available test
examples. To label an example, a hypothesis is randomly selected. This method
has the advantage of using more examples for training than the hold-out and
was shown to select a better hypothesis. In addition, the study in [12] reviews
accuracy estimation and model selection methods based on cross-validation and
bootstrap. The former is shown to be better than the latter in different datasets,



especially in terms of accuracy estimation (for which a stratified approach may
be preferred).

The hold-out estimation and the k-CV when k is small are known to have
large variance, a problem that can be partially compensated in k-CV by select-
ing high values for k (like 5 or 10) [2, 1]. However, k-CV and its variants are
computationally expensive and may be intractable in practice if one wants to
search for the appropriate values in large-scale scenarios.

We propose here a different method that can select an appropriate model on
unlabeled datasets. The advantages compared to the above-mentioned methods
concern its efficiency and its ability to be applied when few labeled examples are
available. It dispenses with the use of validation sets which can be cumbersome
to produce in unbalanced or small datasets. It is, however, intended for model
selection only, whereas cross-validation and hold-out estimation can be used for
performance evaluation as well.

3 Accuracy and Macro-F1 Quantification Bounds

In this section, we propose an upper bound on several performance measures
(accuracy and macro-F1) of a given classifier C on a dataset S which doesn’t need
to be labeled. We then use this bound, which is based on the class distribution
induced by C on S, to perform model selection.

We consider mono-label multi-class classification problems, where observa-
tions x lie in an input space X ⊆ Rd. Each observation x is associated with
a label y ∈ Y, where |Y| > 2. We suppose that examples consist of pairs of
(x, y) identically and independently distributed (i.i.d) according to a fixed, but
unknown probability distribution D over X × Y (DX will denote the marginal
probability for x in X ). In the context of text classification, x(i) ∈ X denotes
the vector representation of document i and its label y(i) ∈ Y represents the
category associated with x(i). We further assume to have access to a training set
Strain = {(x(i), y(i))}Ni=1 also generated i.i.d with respect to D.

Quantification. As explained below, our analysis makes use of M
C(S)
y , the num-

ber of documents in the unlabeled set S assigned by classifier C to class y. Many
classifiers do not directly assign a category to documents, but rather produce
scores (probabilistic or not) for each category, from which a categorization deci-
sion can be made. The task of determining the number of instances of each target
category in a set S is called quantification and was first proposed by Forman et
al. [10, 11]. Contrary to classification that identifies in which target categories an
observation belongs, quantification is solely concerned with the estimation of the
number of observations belonging to a target category (the positive examples).
Note that a good quantifier is not necessarily a good classifier, and vice versa.
For example, in a binary problem with 40 observations, a learner that outputs
20 False Positives and 20 False Negatives is a perfect quantifier but a really bad
classifier.

Given a set of instances in S, quantifiers output, for each target category y
of S, a number denoting the prediction of the relative frequency of category y in



S. Quantification methods using general purpose learners are usually split ([8])
in aggregative and non aggregative methods based on whether the quantification
step requires the classification of the individual instances as a basic step or not.
Quantification has been mainly used to estimate distribution drifts. We make
a different use of it here, in the context of model selection, and rely on two
popular quantification methods, namely: a) Classify and Count (CC) and b)
Probabilistic Classify and Count (PCC) [8]. In CC, given a classifier C trained

on a set Strain, the relative frequency of a class y in a set S, denoted by p
C(S)
y ,

is obtained by counting the instances of S that classifier C assigns the target

category y, that is p
C(S)
y =

MC(S)
y

|S| , where |S| denotes the size of S. PCC extends

CC using the posterior probabilities of an instance belonging to a category,

leading to p
C(S)
y = 1

|S|
∑

x∈S p(y|x), where p(y|x) is the posterior probability

that an instance x of S belongs to y. We do not consider the adjusted version of
those two approaches proposed in [4] because they require the expensive k-fold
cross-validation in the training set which is undesirable in large scale settings.
Lastly, having a trained classifier, the computational complexity of quantification
reduces to the prediction cost of a trained classifier.
Quantification-based Bounds. We now present our main result which con-
sists of quantification-based upper bounds on the accuracy (denoted AC(S)), the
macro-precision (denoted MaPC(S)), the macro-recall (denoted MaRC(S)) and
the macro-F1 (denoted MaFC(S)) of a classifier C on a dataset S which does
not need to be labeled.

Theorem 1. Let S = {(x(j))}Mj=1 be a set generated i.i.d. with respect to DX , py

the true prior probability for category y ∈ Y and
Ny
N , p̂y its empirical estimate

obtained on Strain. We consider here a classifier C trained on Strain and we
assume that the quantification method used is accurate in the sense that:

∃ε, ε� min{py, p̂y, pC(S)
y },∀y ∈ Y : |pC(S)

y − M
C(S)
y

|S|
| ≤ ε

Let B
C(S)
A , B

C(S)
MaP (ε) and B

C(S)
MaR(ε) be defined as:∑

y∈Y
min{p̂y × |S|, pC(S)

y × |S|}

|S|
, BC(S)

A

1

|Y|
∑
y∈Y

min{p̂y × |S|, pC(S)
y × |S|}+ |S|ε

p
C(S)
y × |S|+ |S|ε

, BC(S)
MaP (ε)

1

|Y|
∑
y∈Y

min{p̂y × |S|, pC(S)
y × |S|}+ |S|ε

p̂
C(S)
y × |S|+ |S|ε

, BC(S)
MaR(ε)

Then for any δ ∈]0, 1], with probability at least (1− δ):

AC(S) ≤ BC(S)
A + |Y|(

√
log |Y|+ log 1

δ

2N
+ ε) (1)



MaPC(S) ≤ BC(S)
MaP (ε)+

√
log |Y|+ log 1

δ

2N
, MaRC(S) ≤ BC(S)

MaR(ε)+

√
log |Y|+ log 1

δ

2N
(2)

MaFC(S) ≤
2B

C(S)
MaP (ε)B

C(S)
MaR(ε)

B
C(S)
MaP (ε) +B

C(S)
MaR(ε)

+

√
log |Y|+ log 1

δ

2N
(3)

Proof. (sketch) We first consider the case where S 6= Strain. Using Hoeffd-
ing’s inequality for random variables bounded in the interval [0, 1], we have the
standard result that, for any δ ∈]0, 1], with probability at least (1− δ):

∀y ∈ Y, py ≤ p̂y +

√
log |Y|+ log 1

δ

2N

The log |Y| factor is a result of the fact that the bound should hold simultane-
ously for all categories. This implies, using the quantification assumption, that,
for any δ ∈]0, 1], with probability at least (1− δ), ∀y ∈ Y:

|min{py × |S|,MC(S)
y } −min{p̂y × |S|, pC(S)

y × |S|}|

< |S|(

√
log |Y|+ log 1

δ

2N
+ ε) (4)

min{py × |S|,MC(S)
y } corresponds to an upper bound on the number of docu-

ments of S correctly classified by C in class y. Hence, the accuracy of C on S is
upper bounded by: ∑

y∈Y
min{py × |S|,MC(S)

y }

|S|

which leads, using Inequality 4, to Inequality 1. The other bounds can be derived
in the same way. �

The above theorem is inspired by a previous result we have developed in the
context of multi-class classification [3]. We have generalized and extended it here
through the consideration of macro measures and quantification. Even though
this extension renders the developments more complex, it is crucial for model
selection using unlabeled datasets.

When the Classify and Count (CC) quantification method is used, then, by

definition, p
C(S)
y =

MC(S)
y

|S| , and ε can be set to 0. This leads to stricter bounds

for all the measures. Furthermore, the condition ε � min{py, p̂y, pC(S)
y } in the

quantification assumption implies that the term |S|ε is negligible compared to

|S| × p̂y or |S| × pC(S)
y , so that B

C(S)
MaP (ε) and B

C(S)
MaR(ε) are close to B

C(S)
MaP (0) and

B
C(S)
MaR(0). Lastly, it can be noted that the quality of the bound is better for the

macro measures than for the accuracy as the multiplying |Y| factor is dropped.



Theorem 1 states that the accuracy, macro-precision, macro-recall and macro-
F1 of a classifier can be upper-bounded by quantities that are related to the be-
havior of the classifier on an unlabeled dataset, and that the quality of the bound
depends on the number of classes, the size of the training set, the quality of the
quantification method and the precision desired. These bounds represent nec-
essary conditions for a classifier C to have high accuracy/macro-F14. They can
nevertheless be exploited, within a given family of classifiers obtained through
e.g. different regularization parameters, to select good classifiers.

Model Selection Using Quantification Bounds. We consider here a stan-
dard regularization setting in which one aims at minimizing a combination of
the empirical error and the model complexity using the following template of
the objective function:

ŵ = arg minRemp(w) + λReg(w)

where Reg(w) is the regularization term to avoid overfitting and Remp(.) repre-
sents the empirical error.

The parameter λ controls the trade-off between the empirical error and the
regularization term. As mentioned before, λ is typically estimated through hold-
out estimation or k-fold cross-validation. We propose here to estimate it on the
basis of the upper bounds presented in Theorem 1, as described in Algorithm 1.
As one can note, for each value of λ, a classifier is trained and quantified on
the unlabeled set S. If the quantification assumption of Theorem 1 is not valid,
then one falls back on the Classification and Count method for quantification.
The bounds, as computed by Inequalities 1 and 3 are used to select the ”best”
classifier. Tuning the hyper-parameter is, therefore, reduced to the problem of
finding a classifier which yields the highest value of the bounds on a given set. In
contrast with other selection methods, the set used to select the classifier can be
an unlabeled set from the same distribution (unlabeled data is usually readily
available, contrary to labeled data) or the test set in a transductive-like scenario.

In terms of complexity, the quantification cost is reduced to the predic-
tion for the already trained classifier, which is linear in the cardinality of the
set S on which quantification is performed. The computational cost for Algo-
rithm 1 is thus the same as 1-fold cross-validation. Additionally, as only one
hypothesis is generated for each parameter value by training to the whole set
of labeled data one has just to select the hypothesis with the highest bound
without the need of retraining the model in contrast to hold-out or k-fold
cross-validation. More precisely, the complexity of our approach for m values
of λ is O([Tr(N) + Pr(M)]×m), which is k times lower than the complex-
ity of k-CV with re-training the learner for the selected λ value, given by
O([Tr((k−1k )×N)+Pr( 1

k×N)]×k×m+T(N)), where Tr(N), Pr(N) are the train-
ing and predicting costs for N examples.

4 They do not provide a sufficient condition since it is possible, in an adversarial setup,
to achieve an upper bound of 1 on the accuracy by simply assigning instances to
categories in the same proportion as in the training set.



Algorithm 1 Model selection using the proposed bounds

Require: Training data Strain = {(x(i), y(i))}Ni=1, unlabeled data S = {(x(j))}Mj=1 and
learning algorithm (SVM, Logistic Regression, ...)

1: for each value of λ (typically λ ∈ {10−4, 10−3, . . . , 102, 103} do)
2: Train a classifier Cλ using Strain
3: Perform quantification of Cλ on S using method Mq (typically CC or PCC)
4: If Mq = CC, set ε = 0

5: If Mq 6= CC, set ε = maxy∈Y min{p̂y, pC(S)
y } − |pC(S)

y − M
C(S)
y

|S| |
6: If ε < 0, go back to step 4 with Mq = CC
7: Compute the accuracy bound using Inequality 1

8: Compute the macro-F1 bound (
2B

Cλ(S)

MaP
(ε)B

Cλ(S)

MaR
(ε)

B
Cλ(S)

MaP
(ε)+B

Cλ(S)

MaR
(ε)

) using Inequality 3

9: end for
10: Select Cλ with the highest accuracy/macro-F1 bound

4 Experimental Framework

To empirically evaluate the model selection method presented above we use
the publicly available datasets of the LSHTC 2011 (Large Scale Hierarchical
Text Classification) challenge [14]. Specifically, we make use of the Dmoz and
Wikipedia datasets containing 27,875 and 36,504 categories respectively. The
datasets are provided in a pre-processed format using stop-word removal and
stemming while we transformed the term-frequency vectors to the tf*idf rep-
resentation. For each of the datasets we randomly draw several datasets with
increasing number of classes.

Table 1 presents the important statistics of the different datasets. As one can
note, the number of categories in our datasets ranges from 250 to 2, 500, and
the number of features from 26, 000 to 212, 000. An interesting property of the
instances of those datasets is the fit to the power law distribution. As a result,
there are several under-represented classes having a few labelled examples. Thus,
model selection approaches using only a fraction of the labeled instances, such
as hold out, may lead to sub-optimal decisions.

The classification problems defined from our datasets are multi-class, and
we adopt a standard one-vs-rest approach to address them (the large datasets
considered prevents one from using more complex multi-class approaches). The
Dmoz dataset is single-labeled, i.e. each training/test instance is associated to
a single target category. On the other hand, the Wikipedia dataset is multi-
labeled with the average labels per instance in the training set being 1.85. We
transformed the multi-label problem to single label, both in the training and the
test phase, by replicating the multi-labeled instances according to the number
of their labels.

In order to empirically measure the effectiveness of model selection, we com-
pare the following three methods: (i) k-CV, using k = 5 folds, (ii) hold-out
estimation with a split of 70% and 30% for the training and the validation
sets, and (iii) our method using as quantification set i) an unlabeled set denoted



“quantification set” in Table 1, and ii) the test set which may be available during
training in a transductive alike scenario. The corresponding methods are called
BoundUN and BoundTest respectively.

Dataset #Training inst. #Quantification inst. #Test inst. #Features # Parameters

dmoz250 1,542 2,401 1,023 55,610 13,902,500
dmoz500 2,137 3,042 1,356 77,274 38,637,000
dmoz1000 6,806 10,785 4,510 138,879 138,879,000
dmoz1500 9,039 14,002 5,958 170,828 256,242,000
dmoz2500 12,832 19,188 8,342 212,073 530,182,500
wiki250 1,917 3,095 1,003 26,699 6,674,750
wiki500 4,912 8,190 2,391 46,556 23,278,000
wiki1000 7,887 12,790 4,067 60,788 60,788,000
wiki1500 12,156 19,776 6,160 79,973 110,959,500
wiki2500 22,642 37,398 11,171 109,694 274,235,000

Table 1: The properties of the datasets we used. The dataset name denotes the
collection we sampled it from; its subscript denotes the number of categories.

Evaluation of the quantification methods. We first discuss the perfor-
mance of the quantification methods presented above (CC and PCC), prior to
comparing the results obtained by the different model selection methods (k-fold
cross-validation, hold-out estimation, BoundUN and BoundTest). Recall that The-

orem 1 is based on the assumption that the quantity Maxε = maxy∈Y |pC(S)
y −

MC(S)
y

|S| | is small. As mentioned above, this quantity is null for the quantification

method CC, which thus agrees with our theoretical developments. The other
quantification method considered, PCC, is based on the probabilities that an
instance belongs to a class. When using LR, those probabilities are directly pro-
duced by the model. For SVMs, however, one needs to transform the confidence
scores into probabilities, which can be done in several ways, as using a logistic
function, a multivariate logistic regression function or neural networks based on
logistic activation functions and without hidden layers (the latter two settings
can be seen as generalizations of Platt’s scaling for the multi-class problem).
We obtained the best results with a simple logistic function defined as 1

1+e−σt ,
varying σ from 1 to 10. Table 2 displays the values of Maxε obtained for PCC for
each of the dataset and for each classifier (the default hyper-parameter values
of the classifiers are used), using the value of σ leading to the lowest value of
Maxε. As one can note, although the values obtained are small in most cases (ex-
cept for Dmoz1000 and Dmoz1500), there are not negligible compared to the class
prior probabilities, which are in the range of 1 divided by the number of classes.
Thus, the quantification method PCC does not fully agree with our theoretical
development. It turns out that it also performs worse than CC in practice. We
thus rely on this latter method for the rest of our experiments.



dmz250 dmz500 dmz1000 dmz1500 dmz2500 wiki250 wiki500 wiki1000 wiki1500 wiki2500

SVM 0.0728 0.0967 0.1067 0.1125 0.0345 0.0287 0.0754 0.0310 0.0425 0.0365
LR 0.0942 0.0674 0.0889 0.1111 0.0530 0.0219 0.0517 0.0481 0.0310 0.0294

Table 2: Evaluation of the assumption of Theorem 1 concerning the quantifica-
tion step. For each dataset, we present Maxε for the PCC quantification method.

Model Selection Evaluation. We evaluate model selection methods for two
families of classifiers: (i) SVMs, and (ii) LR which are among the best performing
models in text classification. We explore for both classifiers the value for the reg-
ularization parameter λ ∈ {10−3, 10−2, . . . , 104}. We used the implementations
in Python’s scikit-learn [15] that are wrappers of the LibLinear package [9].

We report the scores obtained in Accuracy and Macro-F (MaF) measure
when a classifier is applied on the test set. In particular, for each dataset of
Table 1 the model selection methods are used only for selecting the regularization
parameter λ when optimizing for the repsective measure. After the selection of λ,
the classifier is retrained on the entire training set, and we report its performance
in the test set. This last step of retraining is not required for our method since the
classifier is trained in the overall labeled set from the beginning. Also, as hold-out
estimation may be sensitive to the initial split, we perform 10 different random
splits training/validation and report the mean and the standard deviation of the
scores obtained for both evaluation measures.

Figure 1 illustrates the model selection decisions for the different methods
using an SVM on the Wikipedia dataset with 1, 500 classes for the MaF mea-
sure. The curve MaF corresponds to the actual MaF on the test set. Although
each parameter estimation method selects the value for λ that seems to maxi-
mize the performance, the goal in this example, ultimately, is to select the value
that maximizes the performance of MaF. For instance, hold-out, by selecting

10−4 10−3 10−2 10−1 1 10 102 103
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0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

5-CV

H out

MaF

CC

PCC

Fig. 1: Model selection process for SVM on the wiki1500 for MaF. The squares
denote the best performance for each method.



λ = 10−1, fails to select the optimal λ value, while all other the methods suc-
ceed. Here, the 5-CV approach requires 1310 sec., whereas the bound approach
only requires 302 sec. (the computations are performed on a standard desktop
machine, using parallelized implementations on 4-cores). The bound approach is
thus 4.33 times faster, a result consistent over all experiments and in agreement
with the complexity of each approach (Section 3). Lastly, we notice that the
curve for BoundUN with the quantification method CC follows the MaF curve
more strictly than the curve with the quantification method PCC.

Table 3 presents the evaluation of the three model selection methods us-
ing as classifiers SVM and LR respectively. As one can note, the performance
of the method proposed here is equivalent to the one of cross-validation, for
all datasets, and for both classifiers and performance measures (accuracy and
MaF). The performance of SVM is furthermore higher than the one of LR on
all datasets, and for both evaluation measures, the difference being more impor-
tant for the MaF. The performance of cross-validation however comes with the
cost of extra processing time, as our method achieves a k speed-up compared
to cross-validation. If both methods can easily be parallelized (at least on the
basis of the number of values of the hyper-parameter to be tested), k-fold cross
validation requires k times more computing resources than our method.

Unlike cross-validation, hold-out estimation fails to provide a good model
in many instances. This is particularly true for SVMs and the MaF measure,
for which the model provided by hold-out estimation lies way behind the ones
provided by BoundUN and BoundTest on several collections as Dmoz1500 and
Dmoz2500. The difference is less important for LR, but the final results in that
case are not as good as in the SVM case.

5 Conclusions

We have presented in this work a new method for model selection that is able
to exploit unlabeled data (this is in contrast with current model selection meth-
ods). To do so, we have introduced quantification-based bounds for accuracy and
macro performance measures. We have then shown how to apply this bound in
practice, in the case where unlabeled data is available in conjunction with la-
beled data, and in a transductive-like setting where the instances to be classified
are known in advance. The experimental results, obtained on 10 datasets with
different number of classes ranging from 250 to 2,500, show that the method
proposed here is equivalent, in terms of the quality of the model selected, to
k-fold cross-validation, while being k times faster. It furthermore consistently
outperforms hold-out estimation for SVM classification, for both accuracy and
macro-F1, the difference being more important for macro-F1. Furthermore, and
contrary to hold-out estimation, our method needs neither a validation/train
splitting procedure nor a retraining procedure.

In our future work we plan to investigate the application of a generalized
versino of the proposed model selection approach in cases where more than
one hyper-parameters have to be tuned. In this framework, we also plan to



BoundUn BoundTest Hold-out 5-CV

Dataset Acc MaF Acc MaF Acc MaF Acc MaF
S
V

M

wiki250 .7747 .5889 .7747 .5927 .7663 (±.0158) .5746 (±.0183) .7747 .5927
wiki500 .7445 .5257 .7449 .5254 .7440 (±.0006) .5228 (±.0031) .7445 .5254
wiki1000 .7000 .4737 .6993 .4732 .6996 (±.0009) .4584 (±.0274) .7000 .4737
wiki1500 .6360 .4278 .6354 .4283 .6343 (±.0049) .4230 (±.0126) .6360 .4278
wiki2500 .5808 .3763 .5811 .3762 .5822 (±.0023) .3759 (±.0004) .5832 .3763
dmoz250 .8260 .6242 .8270 .6243 .8260 (±.0000) .6242 (±.0000) .8260 .6242
dmoz500 .7227 .5584 .7227 .5584 .7221 (±.0005) .5558 (±.0022) .7220 .5562
dmoz1000 .7302 .4883 .7302 .4892 .7301 (±.0001) .4835 (±.0155) .7299 .4883
dmoz1500 .7132 .4715 .7132 .4715 .6958 (±.0457) .4065 (±.0998) .7132 .4715
dmoz2500 .6352 .4301 .6350 .4306 .6350 (±.0001) .3949 (±.0686) .6352 .4301

L
o
g
is

ti
c

R
eg

re
ss

io
n

wiki250 .7527 .5423 .7527 .5423 .7464 (±.0078) .5335 (±.0134) .7527 .5423
wiki500 .7302 .4709 .7302 .4709 .7266 (±.0056) .4633 (±.0116) .7302 .4709
wiki1000 .6836 .4354 .6836 .4354 .6836 (±.0000) .4354(±.0000) .6836 .4354
wiki1500 .6166 .3801 .6166 .3801 .6166 (±.0000) .3801 (±.0000) .6166 .3801
wiki2500 .5802 .3506 .5802 .3506 .5802 (±.0000) .3506 (±.0000) .5802 .3506
dmoz250 .7742 .4724 .7742 .4724 .7718 (±.0047) .4692 (±.0096) .7742 .4724
dmoz500 .6608 .4513 .6608 .4513 .6586 (±.0064) .4488 (±.0076) .6608 .4513
dmoz1000 .6845 .3681 .6845 .3681 .6845 (±.0000) .3681 (±.0000) .6845 .3681
dmoz1500 .6678 .3616 .6678 .3616 .6678 (±.0000) .3616 (±.0000) .6678 .3616
dmoz2500 .5959 .3351 .5959 .3351 .5959 (±.0000) .3351(±.0000) .5959 .3351

Table 3: The performance of the model selection methods for SVM and Logistic
Regression on the test set. For held out, we report the mean and in parenthesis
the standard deviation of 10 rounds of the method.

research the extension of the theoretical and experimental findings to multi-
label classification problems i.e., multi-class classfication problems where each
instance can be given more than one categories at once.
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