
HAL Id: hal-01237070
https://hal.science/hal-01237070v1

Submitted on 2 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Phenomenological marine snow model for optical
underwater image simulation: Applications to color

restoration
Matthieu Boffety, Frédéric Galland

To cite this version:
Matthieu Boffety, Frédéric Galland. Phenomenological marine snow model for optical underwater
image simulation: Applications to color restoration. OCEANS 2012 - Yeosu, May 2012, Yeosu, South
Korea. pp.1-6, �10.1109/OCEANS-Yeosu.2012.6263448�. �hal-01237070�

https://hal.science/hal-01237070v1
https://hal.archives-ouvertes.fr


Phenomenological marine snow model
for optical underwater image simulation:

Applications to color restoration
Matthieu Boffety and Frédéric Galland

Insitut Fresnel, CNRS, Aix-Marseille Université, École Centrale Marseille
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Abstract—Optical imaging plays an important role in oceanic
science and engineering. However, the design of optical systems
and image processing techniques for subsea environment are
challenging tasks due to water turbidity. Marine snow is notably a
major source of image degradation as it creates white bright spots
that may strongly impact the performance of image processing
methods. In this context, it is necessary to have a tool to foresee
the behavior of these methods in marine conditions. This paper
presents a phenomenological model of marine snow for image
simulation. In order to highlight the interest of such a modeling
for image processing characterization, the impact of marine snow
perturbation on a color restoration technique is analyzed and a
solution to improve the robustness of the algorithm is finally
proposed.

I. INTRODUCTION

Optical imaging has become a valuable tool in the field of
oceanic science and engineering [1]. However due to scattering
and absorption properties of water imaging, system design
and image processing in subsea environment remain chal-
lenging tasks and subjects of investigation and technological
innovation [2], [3]. In this context, being able to foresee
operating conditions and the behavior of image processing
techniques in underwater environments is of great interest.
Optical image simulation is therefore an attractive tool to
tackle these issues [4].

Various approaches have already been proposed [5], [6] to
simulate underwater images from a known scene. In order to
obtain realistic underwater images it is notably important to
take into account all phenomena involved in image degradation
such as attenuation, scattering or noise phenomena. For the
latter, besides classical Poisson and Gaussian noise models
commonly considered in the field of photodetection (e.g for
shot noise and thermal noise modeling), an other major source
of degradation can be encountered in underwater images: The
presence of white bright spots randomly distributed on the
images. This phenomenon is generally designated as marine
snow and is due to light reflection on small particle aggregates.
Classical approaches of underwater image simulation assume
an homogeneous effective medium and thus do not take into
account the presence of local inhomogeneities that induces
the phenomenon of marine snow. Nevertheless, this source of
degradation has a great impact on visual image quality and
its influence on image processing performances is yet to be
addressed. Image simulation appears again to be a precious

tool to deal with this issue.
This paper presents a phenomenological model of underwa-

ter image formation to take into account marine snow effect
on color images. The purpose of this study is to illustrate the
interest of such a model for image processing and to highlight
the benefits one can obtain by using this kind of simulator
for the development and characterization of image processing
algorithms.

After this introduction, section II presents the model un-
derlying our approach in the context of optical underwater
imaging under artificial illumination. In the third part, in order
to illustrate the interest of this simulator, the impact of marine
snow on the behavior of a standard color restoration algorithm
is shown allowing one to propose an improvement of the
robustness of the method to the presence of marine snow.

II. IMAGE SIMULATION IN THE PRESENCE OF MARINE
SNOW

A. Brief recall of the Jaffe-McGlamery image formation model

According to the classical Jaffe-McGlamery image forma-
tion model the irradiance measured by an underwater optical
sensor can be written as [4], [5], [6]

Etot,λ(x, y, z) = e−cλRcE0,λ(x, y, z)

+
[
E0,λ ∗ hλ

]
(x, y, z) + Eb,λ(x, y, z) (1)

where ∗ is the convolution operator over (x, y), Etot,λ is the
total measured irradiance on the CCD (in W·m−2·nm−1),
E0,λ is the irradiance that would have been measured in
the absence of water between the scene and the sensor, and
Eb,λ is the backscattered component [5] (i.e. light that has
been scattered directly to the camera by the medium without
reaching the scene). Rc is the distance between the observed
point (x, y, z) and the camera (cf. Fig 1.(a)), cλ the beam
extinction coefficient of the water and hλ its point spread
function (PSF) as defined in [5], [6], [7].

Calculation of the backscattering component Eb,λ is done
by dividing the water column into thin slabs. Each of them are
composed of small elementary volumes that scatter the light
directly to the camera (cf. Fig 1.(b)). The contribution Ek,λ of
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Fig. 1. Geometry and coordinate system of the model used for this study.
The scene is assumed to be parallel to the detector plane. (a) For general
calculation. (b) For backscattering component calculation.

each volume reads [5]

Ek,λ(x, y, zk) = Ek,0,λ(x, y, zk)e−cλRk

+
[
Ek,0,λ ∗ hλ

]
(x, y, zk) (2)

where Rk is the distance between the elementary volume and
the CCD (cf. Fig. 1.(b)). Ek,λ,0 is the contribution of a volume
without taking into account the medium between the volume
and the camera and is calculated through the use of the water
volume scattering function βλ

Ek,λ,0(x, y, zk) =
Tλ

4N2

(
Zo − Fl
Zo

)2

× βλ(ϕk)Es,λ(x, y, zk)π cos3 θk∆z (3)

where Es,λ(x, y, zk) is the illumination that reaches the vol-
ume, ∆z the height of the volume, Zo the object distance
of the detector, and Fl, N , and Tλ are respectively the focal
length, f-number and total transmission of the optical system
lens.

Moreover these volumes are generally out of focus. The
measured irradiance for a given depth zk is thus modified by
the defocus point spread function Ddefocus. According to [8]
Ddefocus can be modeled by a disk function of diameter d
given by

d(z) =
F 2
l z

N(Zo − z)(Zo − Fl)
or by a Gaussian kernel of parameter σ = ηd, where η is
a constant of proportionality depending on the characteristics
of a given set-up [8]. In this study, a Gaussian kernel with
parameter σ = d/2 is considered. The final expression for the
backscattering component is thus given by [5]

Eb,λ(x, y) =

Zo/∆z∑
k=1

[
Ek,λ ∗Ddefocus

]
(x, y, zk)

∣∣∣∣∣∣
zk=∆z×(k−1/2)

(4)
The discretization step ∆z has to be chosen small enough to
verify the convergence of the sum of equation (4).

B. A phenomenological approach of marine snow noise

The modeling of marine snow properties is still a subject
under investigation [9]. Nevertheless, for image simulation

purposes, a simple way to model marine snow effect would
be to generate a salt and pepper noise on the final image
Etot,λ. However this model does not take into account various
physical parameters such as the effect of water absorption and
scattering on the signal backscattered by the particles, the size
and shape of the particles or the defocus effect.

In the proposed approach and for simplification purpose,
these macro-particles are assumed to behave like white lamber-
tian scatterers. The spatial profile of their reflection coefficient
is chosen to be a Gaussian function with standard deviation
parameter σs and maximum value equal to Rλm. This choice
over the shape seems realistic to take into account that marine
snow particles may be thicker in their center than in their
circumference, however other choices could have been made
and implemented in the simulator (such as a disk shape
of radius σs or other more complex shapes). Therefore the
reflectance map of a given macro-particle located at pixel
(x0, y0) is given by

Rλ[x0,y0](x, y) = αRλm exp

(
− [x− x0]2 + [y − y0]2

2σ2
s

)
if
√

[x− x0]2 + [y − y0]2 ≤ 3σs and 0 elsewhere. The coef-
ficient α is defined so that∑

x,y

Rλ[x0,y0](x, y)AV =∫ ∞
−∞

∫ ∞
−∞

Rλm exp

(
− [x− x0]2 + [y − y0]2

2σ2
s

)
dxdy (5)

where AV is the surface associated with an elementary volume
considered in the backscattering calculation (cf. Fig 1.(b)).
This definition of α is chosen to avoid discretization problem
when the particle size becomes smaller than a pixel. It leads
to

α = 2π
σ2
s

AV

[∑
x,y

exp

(
− [x− x0]2 + [y − y0]2

2σ2
s

)]−1

Then, for each slab used to compute the backscattering
component Eb,λ, a global reflectance map is created. This
map is generated by positioning the white Gaussian-shaped
particles according to a salt and pepper distribution: For each
slab elementary volume V = AV ×∆z, there is a probability
p = Cp×V of finding a particle in the volume, where Cp is the
concentration in particles. This model assumes that only one
macro-particle can be found in a given discretization volume
of the slab. Therefore the discretization of the water column
has also to be chosen accordingly1.

Let Rsnow
λ,k be the created reflectance map due to marine

associated with the kth slab. The resulting irradiance E snow
k,0,λ,

that would have been observed on the sensor without taking

1In the case where 2 particles located on neighboring pixels (x0, y0)
and (x1, y1) overlap, it will be assumed that the corresponding re-
flectance map is simply equal to the maximum of the 2 reflectivities
max{Rλ

[x0,y0]
(x, y),Rλ

[x1,y1]
(x, y)}, i.e. the brightest particle hides the

other one.



into account the medium between the slab and the camera, is
then computed according to the equation:

E snow
k,0,λ(x, y, zk) =

Tλ
4N2

(
Zo − Fl
Zo

)2

×Rsnow
λ,k (x, y)Es,λ(x, y, zk) cos4 θk (6)

The signal is then modified according to the water PSF:

E snow
k,λ (x, y, zk) = E snow

k,0,λ(x, y, zk)e−cλRk

+
[
E snow
k,0,λ ∗ hλ

]
(x, y, zk) (7)

The final expression of the backscattering component is thus

Eb,λ(x, y) =

Zo/∆z∑
k=1

[ (
Ek,λ + E snow

k,λ

)
∗Ddefocus

]
(x, y, zk)

∣∣∣
zk=∆z×(k−1/2)

(8)

The signal backscattered by the particles is therefore affected
by the medium as well as by defocus defect.

C. Experimental set-up and examples of images

In this study, two types of water are considered: a clear
water type and a turbid one. Their absorption, scattering
and extinction coefficients, respectively aλ, bλ and cλ (with
cλ = aλ + bλ), are given by Fig. 2 over a 400-800nm spectral
interval. The detection system was assumed to be a CCD
camera equipped with a lens of focal length Fl = 27.5mm,
f-number N = 2.8 and transmission Tλ = 1 over the whole
spectrum. The medium is illuminated by an isotropic punctual
white source with unitary power and translated from the
camera by 1m in the y direction (cf.Fig. 1). The discretization
of the water column is chosen to have ∆z = 5cm. Moreover
it is assumed that the RGB images are acquired through a
camera with spectral responses given by Fig. 4.
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Fig. 2. Inherent optical properties spectra of the types of water used in this
article. The absorption beam coefficient is plotted in light gray dot line, the
scattering in dark gray dashed line, and the total extinction coefficient in black
plain line. (a) For clear water (referred in the text as ”type 1”). (b) For turbid
water (referred in the text as ”type 2”).

Fig. 3 shows examples of simulated backscattering compo-
nent with marine snow for both types of water. Images were
generated using the marine snow phenomenological model
previously described, assuming the scatterers have a Gaussian
shape of size parameter equal to σs = 0.5 mm, a reflexion

coefficient of Rλm = 1 over the whole spectrum, and assuming
that the particle concentration is equal to 10 m−3 (Fig. 3.(c)
and (d)), 25 m−3 (Fig. 3.(e) and (f)) and 50 m−3 (Fig. 3.(g)
and (h)).

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 3. Effect of marine snow on the backscattering component (i.e. the image
that would have been observed if the scene were located sufficiently far from
the sensor). Left column: Type 1 water. Right column: Type 2 water. (a)-(b)
Image without marine snow. (c)-(d) Image of marine snow for a particle
concentration equal to 10 m−3. (e)-(f) Idem for particle concentration =
25 m−3. (g)-(h) Idem for particle concentration = 50 m−3. Image size is
256×160.

As we can see, in both cases the marine snow appears
blueish as it is affected by the water absorption and diffusion.
The size difference of the white ”hot spots” is mainly due to
defocus when particle are close to the sensor. Moreover for
type 1 water the signal due to marine snow is stronger than
the backscattering signal of the medium. It is thus expected to
be in this case the main source of degradation of the image
whereas the backscattering of the medium is still visible for
water of type 2, which means that both effects will have to be
taken into consideration.

III. A VALUABLE TOOL FOR IMAGE PROCESSING

The primary goal of the Jaffe-McGlamery image simulation
tool for underwater optics was to design optimal underwater
systems [5], [6], but simplified versions were also used for
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Fig. 5. Restoration of an underwater image generated with the simulator. The water is assumed to have properties of type 1 and the scene to be at 7m
from the camera. Image size is 256×160. (a) Simulated image assuming the scene is in the air. (b) Idem but in underwater conditions. (c) Restoration of the
underwater image (b) using the HSM algorithm. (d) Simulated underwater image as in (b) but in the presence of marine snow. (e) Restoration of image (d)
using the HSM algorithm. (f) Idem but using the robust HSM version.
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Fig. 4. RGB spectral responses of the camera used to generate the images
in this study.

characterization and improvement of image restoration algo-
rithms [10], [11]. In this section, we show the interest of
underwater image simulation to study color image restoration
algorithms. Indeed, color degradation and restoration are major
aspects of underwater imaging and are the subject of various
studies [4], [12], [13], [14], [15].

A. An example of image color restoration algorithm

Assuming that RGB images are acquired with the same
camera as in section II (Fig. 4), two synthetic images of a
given scene have been simulated. Fig. 5.(a) presents the image
that would have been acquired in the air, whereas Fig. 5.(a)
corresponds to the image that would have been observed in
underwater conditions. It assumes type 1 water properties
and a scene-camera distance of 7m. In order to take into
account sensor noises, the 3 RGB channels of the image have
been corrupted with an additive Gaussian noise with the same
standard deviation σ set to 0.1% of the maximum value of the
3 channels. It is clear on Fig. 5.(b) that the spectral information

of the scene has been modified by the medium.
To restore the initial colors of the image, it is proposed

here to use and study the behavior of a simplified version
of an histogram stretching method [12] (HSM), which is a
technique belonging to the canonical gain/offset type [16].
Indeed although this technique is quite simple, it gener-
ally leads to interesting color restorations. Let I(x, y) =
[IR(x, y), IG(x, y), IB(x, y)]

T be the initial measured RGB
image and J(x, y) = [JR(x, y), JG(x, y), JB(x, y)]

T be the
RGB restored image, where Jc and Ic are the image com-
ponents in channel c ∈ {R,G,B}, and T is the transpose
operator. According to the HSM restoration method, Jc is
estimated as

Jc(x, y) =
255

max
x,y

(Ic)−min
x,y

(Ic)

[
Ic(x, y)−min

x,y
(Ic)

]
It can be seen on Fig. 5.(c) that even at 7m, where colors

are severely degraded, HSM leads to very interesting color
restoration.

B. Impact of marine snow on restorations

On the contrary, when applied to the real underwater image
of Fig. 6.(a), the method gives very disappointing results:
The restored image (Fig. 6.(b)) remains dark and blueish. An
hypothesis would be that the bright spots of marine snow in
the image limit the dynamic of the reconstruction. Using the
phenomenological model introduced in the previous section, it
is possible to add such a perturbation on the simulated image.

Fig. 5.(d) presents the result of the simulation when marine
snow has been added to Fig. 5.(b) assuming the scatterers have
a Gaussian shape of size parameter equal to σs = 0.5mm,
a reflexion coefficient of Rλm = 1 over the whole spectrum



(a) (b) (c)
Fig. 6. Examples of color restoration on real data. (a) Underwater image (801×651 pixel extract) provided by Ifremer. (b) Restoration with HSM. (c)
Restoration with robust HSM.

and that the particle concentration is equal to 10 m−3. When
applying the HSM color restoration algorithm on this image,
the same behavior as on Fig. 6.(b) can be observed (cf.
Fig. 5.(e)), i.e. the image remains dark and blueish. Therefore
marine snow seems to be indeed what is limiting the HSM
algorithm in Fig. 6.(b).

C. Improvement of the algorithm

Since HSM relies on calculations of the minimum and
maximum values of the 3 RGB channels, the robustness of
the algorithm to the presence of marine snow can be improved
by replacing calculation of the extrema by calculation of the
quantiles. More precisely in our case, the maximum value is
replaced by the 99%-quantile value (i.e. the intensity value
such that 1% of the highest values are not taken into account).
This choice relies on the fact that the high intensity values
of the image seem to correspond to the marine snow bright
spots. When applying this robust version of the HSM on the
simulated image we get the result of Fig 5.(f), which is close
to the result obtained in the absence of marine snow. When
applied to the real image of Fig. 6.(a), this robust HSM allows
one to recover the yellow hue of the rock (cf. Fig. 6.(c)).

IV. CONCLUSION

It has been shown that marine snow is an important per-
turbation that can strongly decrease the performance of color
restoration algorithms. It is therefore necessary to be able to
characterize the behavior of such algorithms in the presence
of such a phenomenon. In this context, a phenomenological
model allowing the simulation of underwater images in pres-
ence of marine snow has been presented. The behavior of
a standard HSM color restoration technique has then been
analyzed in the presence of marine snow, allowing one to
increase its robustness to the presence of this perturbation in
the perspectives of real data application.

The immediate perspective of this work is to generalize
this approach in order to automatically determine which is
the best quantile value to use in the robust version of the
color restoration algorithm. Moreover the interest of such
a simulator is not limited to color restoration and can be

used to characterize the robustness of other image processing
algorithms to the presence of marine snow.

ACKNOWLEDGMENT

The authors would like to thank Philippe Réfrégier from In-
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