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Abstract

The aim of this paper is two-fold. First, we propose a new method
for enhancing the contrast of gray-value images. We use the difference
of the average local contrast measures between the original and the en-
hanced images within a variational framework. This enables the user to
control the contrast level and the scale of the enhanced details intuitively.
Moreover, our model avoids large modifications of the original image his-
togram. Thereby it preserves the global illumination of the scene and
can cope with large areas having similar gray values. The minimizer of
the proposed functional is computed by a gradient descent algorithm in
connection with a polynomial approximation of the average local contrast
measure. The polynomial approximation is done via Bernstein polynomi-
als and leads to to a speed up of the algorithm by applying fast Fourier
transforms.

In the second part, the approach is extended to a variational enhance-
ment method for color images. The model approximately preserves the
hue of the original image and includes additionally a total variation term
to correct possible noise. The method requires no post- or pre-processing.
The minimization problem is solved with a hybrid primal-dual algorithm.

Numerical experiments demonstrate the efficiency and the flexibility
of the proposed approaches in comparison with state-of-the-art methods.

1 Introduction

Contrast enhancement of color images that are over-lighted or under-lighted is
an active field of research. The task itself is old and has been historically treated
manually in a darkroom from the film negative. This technique was called dodge
and burn. The dodging decreases the exposure for areas of film negatives that
the photographer wants lighter, while the burning increases the exposure in
order to make it darker. Digital image editing reproduces the same technique
in a computational way. Nevertheless, it usually requires manual intervention
by a user, which can be tedious since most parts of the image have to be edited.

∗This study has been carried out with financial support from the French State, managed
by the French National Research Agency (ANR) in the frame of the Investments for the
future Programme IdEx Bordeaux (ANR-10-IDEX-03-02). J-F. Aujol is a member of Institut
Universitaire de France. Many thanks to M. Bertalmio for providing the code of [7].
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In recent years, many contrast enhancement techniques have been proposed
for digital images. Some approaches exploit multiple views or sensors and are
able to improve image contrast in low light conditions [43, 53]. Other methods,
called sharpening, focus on enforcing the strong contours in order to remove
blur obtained, e.g., by Gaussian convolution [39]. This kind of enhancement
concerns only the strong image contours while contrast enhancement attempts
to modify the gray level of the objects not only in the neighborhood of the
contours.

In this paper, we focus on the problem of contrast enhancement of natural
images captured with a digital camera. Existing methods can be divided into
three groups: spectral methods, histogram methods, and spatial methods.

Spectral methods. These methods rely either on wavelets or homomorphic
filtering. Laine et al. [30] proposed a method based on the wavelet transform,
performing the image enhancement in the wavelet domain with a non-linear op-
erator applied to the wavelet coefficients. This operator performs both denoising
and enhancement. The denoising is achieved by soft and/or hard thresholding
of high frequency bands. The other bands are modified by a piecewise affine
mapping extending the expression of soft thresholding.

In [24], homomorphic filtering is performed after a logarithmic transforma-
tion. Basically, the homomorphic filter is a high-pass filter which enforces the
sharpness of the image. The method can produce some Gibbs-like artifacts or
a noise amplification. Moreover, the tuning of the scale and the level of the
contrast enhancement is not intuitive.

Histogram methods. Histogram Specification (HS) transforms the gray-
scale input image to an output having a previously specified histogram. A
special case of HS is Histogram Equalization, where the specified histogram
is the uniform one. These methods have been well studied in the literature.
The method of Mignotte [34] performs HS based on the distribution of the first
order derivative in order to enforce edges. In [51], the authors propose a Partial
Differential Equation (PDE) to modify the histogram. This approach tackles
with the issue of specifying a particular histogram. The PDE scheme performs
both denoising and contrast enhancement. Sun et al. [54] suggest a HS technique
which takes the first and the second order derivatives of the image into account
to preserve the shapes in the original image.

Some methods use a prior on the histogram. Wang et al. [56] address a
prior that maximizes the entropy of the output image. Arici et al. [3] propose
a variational framework which makes a trade-off between the histogram of the
input image and the uniform one. A smoothing term is added to penalize
discontinuities of the histogram.

In order to avoid problems in multi-modal histograms, some approaches di-
vide the histogram specification into sub-histogram specifications. In [29], the
values of the original image are split in order to equalize two sub-histograms.
The splitting is achieved on both sides of the mean. Chen et al. [16] propose
to perform this separation recursively. The algorithm of Sim et al. [52] uses the
same division but based on the median. In [1], Wadud et al. divide the his-
togram into multiple sub-histograms in order to equalize separately the complete
histogram while protecting small features of the input image. With the same
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idea, Celik et al. [12] model the histogram as a mixture of Gaussians. For more
division strategies we refer to [28] and the references therein. Some methods
are adaptive because the enhancement is done locally, see, e.g., [10, 11, 25, 33].
However, in these methods the influence of neighboring and far away pixels on
the enhanced one is the same.

A problem of histogram techniques is the meaningful strict ordering of the
pixel values. If such ordering is available, the HS can be done in a straightfor-
ward way, see, e.g., [15]. Several methods to obtain a meaningful ordering were
developed as the local mean ordering [17], the wavelet based ordering [55], and
the variational approach based on the minimization of a fully smoothed `1-TV
functional [15, 38] together with its fast version [37].

Finally, we mention that HS can also be done on the color histogram, for
instance by the variational framework [41] which requires a target color image
with desired contrast. A two step algorithm consisting of a HS of the intensity
image, followed by a hue and range preserving color adjustment was proposed
by Nikolova et al. in [35, 36]. For a toolbox see [26].

Spatial methods. These approaches tackle with the problem of most his-
togram approaches which change the values of pixels without considering spatial
constraints. A first approach of Boccignone [8] uses the anisotropic diffusion
equation of Perona and Malik [42] in a multi-scale framework.

Most spatial methods take hypotheses about the Human Visual System
(HVS) into account. In particular, the perceptual work about the Retinex
model [31] has found wide acceptance. Two remote pixels with the same value
can be perceived by a human as having different intensities. For example, Fig-
ure 1 shows the experiments of the Checker shadow illusion of Adelson [2]. Al-
though the squares A and B are physically of the same intensity, the perceived
intensities are different. Because of this difference in perception, a contrast en-
hancement could be performed by changing their values, darker for the darkest
perceived A, and lighter for the lightest perceived B. The perceived intensity
would be the same, but the local contrasts would be improved.

(a) Checker shadow illusion of Adelson (b) Proof of illusion

Figure 1: Checker shadow illusion of Adelson [2]. The two squares A and B are
of the same value, but their gray levels are perceived as different by the Human
Visual System. This failure is taken as an advantage by the method proposed
in this paper to enforce the contrasts of images.
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Rizzi et al. [48] propose an approach, called Automatic Color Equalization
(ACE), based on a perceptual hypothesis. Bertalmio et al. [7] integrate the
previous approach into a variational model. The method was generalized by
Palma-Amestoy et al. [40] for a larger class of functionals. This last method
was implemented in [18]. Provenzi et al. [47] propose to work in the wavelet
domain in order to reduce the computation time. Some links between these
works and the Retinex model have been studied in [6]. Since these approaches
are related to our new model, we explain them more detailed in Section 2.

Contribution. In this paper, a functional for the enhancement of gray-value
images with the following advantages is proposed:

• intuitive control of the contrast level;

• choice of the spatial contrast scale;

• slight modification of the histogram.

The model is enlarged to color images such that

• the hue of the original image is approximately preserved.

In our model, the control of the level of contrast can be tuned with an intuitive
parameter. A model with possible contrast level tuning is more adaptive to the
image at hand. For instance, a binary image is useful for Optical Character
Recognition, but it is not reliable in entertainment applications because it is
unpleasant to watch.

A reliable enhancement has to be performed at a spatial scale defined by the
user depending on its application. Since an image can be seen at multiple scales,
the choice of this scale is significant for contrast enhancement. For example, the
enhancement of the noise can be seen as a fine scale operation.

The proposed approach does not strongly modify the histogram of the orig-
inal image. This enables the model to preserve the global lighting sensation.
Moreover, as shown in the Checker Shadow Illusion of Adelson, the modifica-
tion of the histogram is not local enough. Furthermore, if we consider an image
with a large and uniform background, the modification of the histogram would
damage it. In contrast, a large modification of the histogram is able to recover
some details in an under-contrasted image.

The proposed model for color images preserves the hue of the image. The
hue of the resulting image has to be as close as possible to the one of the input
image. Indeed, the hue of an object does not change with the illumination.

Outline. In Section 2, we review models inspired by the HVS as the Retinex
model and the model of Bertalmio et al. [7] which were the basis of our work.
Then, in Section 3, we introduce a novel non-convex functional to enhance
gray-scale images. Examples give some intuition on the idea behind the model.
Furthermore, certain local minima are characterized. We present a minimization
algorithm and demonstrate its performance by numerical examples. In Section
4 we start with some simple ideas how to generalize the above model to color
images. Then, we merge the model with a color image enhancement method
proposed by Fitschen et al. [19] within a variational framework. In contrast
to the latter method, our new model does not require a given target intensity
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from some preprocessing step. The functional is then minimized by a hybrid
primal-dual algorithm. Finally, comparisons with some state-of-the-art methods
are performed on color images that demonstrate the efficiency of the proposed
variational method.

2 Models Inspired by the HVS

We start by we recalling some state-of-the-art methods that were crucial for our
work. Throughout this paper, we consider M ×N digital images on the image
grid

Λ := {1, . . . ,M} × {1, . . . , N}

with values in [0, 1]. Let B := [0, 1]M×N .
Contrast enhancement can be performed by the Retinex model, developed by

Land and McCann [31]. It states that the HVS does not perceive an absolute
lightness but rather a relative, local one, see Figure 1. This phenomenon is
called lateral inhibition. The aim of the original Retinex method is to remove
the effect of the illumination over a scene. The noticeable work about Retinex
by Jobson et al. [27] describes a so-called Single Scale Retinex algorithm. The
Retinex output R(x) of the original image u at pixel x ∈ Λ is determined by

log(R(x)) := log(u(x))− log((G ∗ u)(x)), (1)

where G is a Gaussian kernel (frequently stated as surround function) and ∗ the
convolution operator.

The Retinex model considers the formation of the image as a multiplicative
process. The reflectance R of the object is the light reflected by its own material.
The illumination L appears by smoothly illuminating the object by a light
source. In the Retinex model, the light perceived by the observer (or a camera)
is considered to be

u(x) = L(x)R(x). (2)

Assuming a certain smoothness of L, the value of interest R is supposed to be
well recovered by (1).

Method (1) corresponds to a multiplicative version of the ACE [20, 48, 49].
ACE is in particular based on the lateral inhibition. The ACE spatial chromatic
comparison is defined as

R(u)(x) =
∑
y∈Λ

w(x, y)ϕ(u(x)− u(y)), (3)

where ϕ is an increasing function such as the identity, a slope function, a sigmoid,
or the sign function. The kernel w has to be symmetric and to fulfill∑

y∈Λ

w(x, y) = 1

for all x ∈ Λ. The kernel models the lateral inhibition. More precisely, its
size steers the spatial scale of the contrast enhancement. By removing the
log operator in (1) we obtain the ACE term (3) with the identity function ϕ
and Gaussian weight w. Another assumption on the HVS, called gray-world
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hypothesis, is adopted in various variational models. It states that the mean of
the perceived world is gray. Thus, the authors of [48] propose to average the
image with the gray value 1

2 .
Based on the ACE findings, Bertalmio et al. [7] proposed an image enhance-

ment method in a variational framework. It is related to Kernel Based Retinex
models, see, e.g., [6] and makes use of the gray-world hypothesis. This method
minimizes the following functional for each color channel u of the image:

α

2

∑
x∈Λ

(u(x)− 1

2
)2 +

β

2

∑
x∈Λ

(u(x)− u0(x))2

− 1

2

∑
x,y∈Λ

w(x, y)Φ(u(x)− u(y)). (4)

Here u0 ∈ B denotes the corresponding color channel of the original image, α
and β are non-negative parameters and Φ is a convex even function. The authors
focus on Φ(t) = |t| which we will also be our choice in the rest of the paper.
More general functions were examined in [40]. The first term pays attention to
the gray-world hypothesis, the second term is the fidelity data term, and the
third term, called average local contrast measure, favors contrasted images due
to its negative sign. Since the functional is defined channel-wise, this model is
not able to preserve the hue of the original image.

Using that the generalized gradient of the average local contrast measure is
given by R(u) in (3) with the sign function ϕ, the authors of [7] propose the
following gradient descent algorithm to minimize (4):

u(k+1) = u(k)−

∆t

(
α(u(k) − 1

2 ) + β(u(k) − u0)−Ru(k)
)

= (1− (α+ β)∆t)u
(k) + ∆t

(α
2

+R(u(k)) + βu0

)
. (5)

Obviously, if |u(k)|≤ 1, then |R(u(k))|≤ 1 componentwise. Thus, by induction,
the stability of the system is guaranteed if (α+ β)∆t < 1 and α ≥ 2 because in
this case

|u(k+1)|≤ 1−∆t(α+ β − α

2
− β − 1) = 1−∆t(

α

2
− 1) ≤ 1. (6)

In order to speed-up the evaluation of the operator R, the authors of [7] ap-
proximate the sign function by a polynomial. Appendix A details how this
approximation accelerates the computation.

Unfortunately, the approximation by the sum of the Chebyshev polynomials
proposed in [7] shows the typical Gibbs-like errors and takes values outside
[−1, 1], see Figure 2. Thus, the approximation of R remains no longer in [−1, 1].
This leads to stability problems and indeed the algorithm can diverge with a
high rate. To avoid this problem, the ACE implementation of [21] applies an
affine mapping of the outcome of the R operator towards [−1, 1] at each (or
some) iteration. However, with this modification we have no longer a gradient
descent algorithm, and to the best of our knowledge, the convergence of the
sequence {u(k)}k to a critical point of the functional is no longer guaranteed.
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Figure 2: Bernstein and Chebyshev polynomial approximation of degree 9 of
the sign function. The Bernstein approximation is bounded between -1 and 1.

In order to stabilize the above numerical scheme without changing the model,
the authors of [45] propose to replace the Chebyshev approximation by the sum
of Bernstein polynomials so that R stays within [−1, 1]. The computation of
the Bernstein approximation is detailed in Appendix A. Figure 2 shows the
Bernstein and the Chebyshev approximations of the sign function.

Figure 3 shows the enhancement result of the method of Bertalmio et al. [7]
with the Chebyshev approximation and affine rescaling and the Bernstein one
without any additional mapping towards [−1, 1]. The results are shown after
15 and 150 steps. Although both results after 150 steps are over-contrasted the
one with the Chebyshev approximation is even worth.

Let us summarize some limitations of the reviewed perceptual model. The
model is not hue preserving. The convergence of the gradient descent algorithm
for model (4) is not guaranteed even if an additional affine rescaling is applied.
In [40], Palma-Amestoy et al. demonstrate the convergence of the algorithm
applied to the model (4) but with very small parameters α and β, not used in
practical cases because the results would be over-contrasted. Hence the algo-
rithm requires to limit the number of iterations. One may consider this as an
advantage because a small number of iterations makes the performance faster,
but the addition of new regularization terms may require another ”optimal”
number of iterations. In other words, the model is not flexible enough; the
result depends on the number of iterations.

3 Enhancement of Gray-Scale Images

In this section, we propose a new model for the enhancement of gray-scale
images. Its contrast level and spatial contrast tuning is intuitive.

We propose a projected gradient algorithm whose convergence to a critical
point can be theoretically guaranteed. We demonstrate the very good perfor-
mance of our method by numerical examples.
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(a) Original image. (b) Algorithm (5) with Cheby-
shev approximation [7] and 15
iterations.

(c) Algorithm (5) with Bern-
stein approximation and 15 it-
erations.

(d) Algorithm (5) with Cheby-
shev approximation [7] and 150
iterations.

(e) Algorithm (5) with Bern-
stein approximation and 150 it-
erations.

(f) Proposed approach.

Figure 3: Comparison between the algorithm of [7] with the Chebyshev polyno-
mial approximation and the Bernstein one after 15 and 150 iterations. Too many
iterations result in over-contrasted images. The proposed approach enables to
control the contrast level.

3.1 New Variational Model

We restrict our attention to the discrete model and refer to Appendix B for the
corresponding continuous one.

We use the average local contrast measure from (4) with the absolute value
function Φ:

C(u) :=
∑
x∈Λ

∑
y∈Λ

w(x, y)|u(x)− u(y)|. (7)

The function C with a more general distance function is also known as Non-Local
Total Variation, see, e.g., [5, 22].

Now our model for the enhancement of a given gray-scale image u0 ∈ B
consists in minimizing the functional

F (u) := ‖u− u0‖22+λ(C(u)− cC(u0))2 + ιB(u). (8)
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Here ιB denotes the indicator function of B which is zero within the set and
+∞ outside. It guarantees that the range of the image is preserved. The
regularization parameter λ > 0 manages the trade-off between the fidelity-data
term and the contrast term. The constant c > 1 implies that a minimizer of (8)
increases the average local contrast measure. Intuitively, the contrast of the
result tends to be c times larger than the one of the input image. This can be
interpreted as a multiplication by c of the dynamic of the contours in the image.
The choice of the parameter c is intuitive and has a geometrical interpretation.
It provides a control of the contrast level expected for the result. We give a
simple illustrating example.

Example 1. (Role of the Contrast Value c)
Consider the discretized one-dimensional step function

u0 :=
(

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4

)T
depicted in Figure 4(a). We use the uniform kernel, i.e.,

C(u) :=

6∑
x=1

6∑
y=1

1
6 |u(x)− u(y)|.

Figure 4 shows the function u0 as well as a local minimizer of the functional (8).

0 2 4 6
0

0.2

0.4

0.6

0.8

1

(a) Step function

0 2 4 6
0

0.2

0.4

0.6

0.8

(b) Random function

Figure 4: Toy functions (dotted line) and a local minimizer of (8) (plain line).
In each case, this minimizer looks like the original function, but its dynamic is
improved, i.e., the difference between values of adjacent pixels is increased.

Note that the local minimizer is obtained by Proposition 1ii) in the next subsec-
tion and has the same relative pixel order as u0. The local minimizer has the
same shape as u0. All differences between two adjacent pixels are increased,
giving a higher dynamic to the result, and thus a higher contrast. This dynamic
can be easily tuned modifying c.
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Example 2. (Role of the Kernel w)
Let us consider the simple signal

u0(x) =

 0 if x ≤ 1/3,
1/2 if x ∈ (1/3, 2/3],
1 if x > 2/3

(9)

in Figure 5(a). This function contains two contours which have to be enforced.
Since it is bounded between 0 and 1, it is impossible to increase the most left
contour on its left-hand side. Thus, its right-hand side has to be increased in
order to create an image with a higher average local contrast measure. The
kernel function has a spatially limited effect. Assume that the spatial effect of
the kernel is limited by its width of 0.2. Thus, the minimizer of the functional
between 0.4 and 0.6 is mainly effected by the data fidelity term, and is indeed
equal to u0 here. A smooth transition is done between the two contours.

In the case of images, this smooth transition is roughly perceived as a con-
stant part, when the width of the kernel is large enough. This phenomenon is
related to the lateral inhibition. It is similar to the effect of the smoothness of
the shadow in the Checker shadow illusion of Adelson in Figure 1. The width
of the kernel has to be related to the size of the object of interest. This enables
the proposed approach to be adapted to numerous applications.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) Initial function (9)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) Contrasted function

Figure 5: Original function (a) and contrasted one (b) with sharper contours.

Note that we do not impose a gray-world assumption for our model (8). On
the one hand, it is often not fulfilled for natural images. On the other hand,
this assumption enforces the result to be close to the histogram equalization.
In contrast, we want to keep the histogram modification as small as possible,
in order to preserve the global lighting sensation and handle large image areas
having the same gray value.
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3.2 Local Minima Characterization

First note that F : RM×N → [0,+∞] in (8) is obviously proper, lower semi-
continuous and coercive. Hence it has a global minimizer. However, the func-
tional is not convex so that we are interested in local minima. The following
proposition gives expressions for local minima under certain assumptions.

Theorem 1. i) If the relative order of the pixels of u is known, then the average
local contrast measure in (7) can be rewritten as

C(u) = 2
∑
x∈Λ

(∑
y∈Λ

w(x, y)su(x, y)
)
u(x),

with

su(x, y) :=

 1 if u(x) > u(y),
−1 if u(x) < u(y),

0 if u(x) = u(y).

By reordering u columnwise into a vector u ∈ Rn, n = MN , the average local
contrast measure becomes

C(u) = V Tu

with the vector V = (V (x))x ∈ Rn given by

V (x) :=
∑
y∈Λ

w(x, y)su(x, y).

ii) Assume that the relative order of u and u0 coincide. Then the functional F
in (8) can be written as

F (u) = ‖u− u0‖22+λ(V Tu− cV Tu0)2 + ι[0,1]n(u). (10)

If

û :=
(
Id+ λV V T

)−1 (
Id+ λcV V T

)
u0

has the same relative order as u0 and values in [0, 1], then û is a local minimizer
of F .

Proof. i) Due to the known order of u we can rewrite the average local contrast
measure as

C(u) =
∑
x∈Λ

∑
y∈Λ

w(x, y)|u(x)− u(y)|

=
∑
x∈Λ

∑
y∈Λ

w(x, y)su(x, y)(u(x)− u(y))

=
∑
x∈Λ

∑
y∈Λ

w(x, y)su(x, y)u(x)

−
∑
x∈Λ

∑
y∈Λ

w(x, y)su(x, y)u(y)

and since su(x, y) = −su(y, x) further as

C(u) = 2
∑
x∈Λ

∑
y∈Λ

w(x, y)su(x, y)

u(x).
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This proves assertion i).
ii) The vector form (10) of F follows directly from i). The minimizer property

of û can be seen by setting the gradient of the first two summands of (10) to
zero and verifying that its Hessian Id+ λV V T is definite positive. �

3.3 Algorithm

In this subsection, we propose an efficient algorithm for minimizing F in (8).
In order to apply a gradient-descent algorithm, the non-smooth contrast term
is approximated by a polynomial. This polynomial approximation also enables
us to speed-up the algorithm. The average local contrast measure C is approx-
imated by

C̃(u) =
∑
x,y∈Λ

w(x, y)P̃ (u(x)− u(y)), (11)

where P̃ is an even polynomial which derivative P = (P̃ )′ is a Bernstein poly-
nomial approximation of the sign function explained in Appendix A. Note that

∇C̃(u)(x) =
∑
y∈Λ

w(x, y)P (u(x)− u(y))

which can be computed efficiently as outlined in the Appendix A Instead of F
we consider

F̃ (u) := ‖u− u0‖22+λ(C̃(u)− c C̃(u0))2
2 + ιB(u). (12)

Since F̃ is composed of a differentiable part

Fsmooth(u) := ‖u− u0‖22+λ(C̃(u)− c C̃(u0))2
2 (13)

and a box constraint, we propose to minimize it by the projected gradient
algorithm detailed in Algorithm 1. Here ΠB denotes the orthogonal projection
onto the convex set B and τ is the time step size which is fixed by Theorem 2
below. The efficient computation of ∇C̃ is described in Appendix A. The
evaluation of C̃ can be treated in a similar way.

Algorithm 1 Enhancement of Gray-Value Images

1: input : u0 ∈ B
2: u(0) ← u0

3: for 0 ≤ k ≤ kmax do
4:

u(k+1) ← ΠB

(
u(k)

−2τ
(
u(k) − u0 + λ∇C̃(u(k))(C̃(u(k))− c C̃(u0))

))
5: end for
6: output : u(kmax+1) ∈ B

By the following theorem it can be at least ensured that the sequence {u(k)}k
generated by Algorithm 1 converges to critical point of F̃ .
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Theorem 2. Let L be the Lipschitz constant of the gradient of the function
Fsmooth defined in (13) on B. Let ε ∈ (0, 1

2L ). Then, for ε < τ < 1
L − ε, the

sequence {u(k)}k generated by Algorithm 1 converges to a critical point of F̃ .

Proof. Since Fsmooth is polynomial in u, it is a real-analytic function. Moreover,
as B is a non-empty closed semi-algebraic set, the function F̃ = Fsmooth + ιB
is a semi-analytic function and therefore a Kurdyka-Lojasiewicz function [32].
Since the u(k) are bounded by construction, Theorem 5.3 of Attouch et al. [4]
implies that Algorithm 1 converges to a critical point. �

3.4 Numerical Results

We apply Algorithm 1 to gray-scale images. In practical cases, the value of
τ is tuned manually to ensure the decreasing of the energy of the functional
during the iterations. In all the presented cases, we used τ = 10−6 and 20 iter-
ations. Throughout this paper we will use the discretized Gaussian kernel with
modifications at the boundary corresponding to mirror boundary conditions:

w(x, y) := 1
γ e−

‖x−y‖22
2σ2 , γ :=

∑
x∈Z∩[−3σ,3σ]

e−
‖x‖22
2σ2 . (14)

Figure 6 provides results for various images. The details are better visible
in the enhanced images and the image objects are better highlighted.

4 Enhancement of Color Images

Model (8), resp., (12) is designed to enhance gray-scale images. A simple gen-
eralization of our model to color images consists in treating each color channel
separately. This method does not preserve the hue of the original image and can
give non satisfactory results as in the Jupiter image in Figure 7 bottom, middle.
The enhanced image is too shiny and has colors such as blue and purple, not
present in the input image.

In this paper, we focus on color image enhancement that respects the hue of
the original image. Recall that the hue of a single pixel w = (r, g, b) is given by
H(w) := 0 if r = g = b and otherwise by

H(w) :=

{
θ if b ≤ g,
360o − θ if b > g,

(15)

where

θ := arccos
1
2 ((r − g) + (r − b))

((r − g)2 + (r − b))(g − b)) 1
2

,

see [23]. Another possibility to enlarge our model (8) to color images is the two
step algorithm described in the next subsection.

4.1 Two Step Model for Color Image Enhancement

Let u0 := (r0, g0, b0), r0, g0, b0 ∈ B be the given RGB image, i.e., the concate-
nation of r, g and b considered as three-dimensional array. In step 1, our model
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Original images. Enhanced images.

Figure 6: Results of Algorithm 1 on gray-scale images.

(8) is applied to the intensity image

I0 :=
1

3
(r0 + g0 + b0) ∈ B (16)

which results in an enhanced intensity image I ∈ B. Then, in a subsequent step,
we apply the algorithm from [35, 36]. More precisely, the so-called multiplicative
method in [36] finds the new color image u := (r, g, b), r, g, b ∈ B with prescribed
intensity I as follows: for every x ∈ Λ set M0(x) := max{r0(x), g0(x), b0(x)}.
For every ν ∈ {r, g, b} compute

ν(x) :=

{ ν0(x)
I0(x) I(x) if M0(x)

I0(x) I(x) ≤ 1,

ν0(x)−I0(x)
M0(x)−I0(x) (1− I(x)) +I(x) otherwise.

(17)

We set
r0(x)

I0(x)
=
g0(x)

I0(x)
=
b0(x)

I0(x)
:= 1 if I0(x) = 0. (18)
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It is easy to check that the method preserves the range, i.e., r, g, b ∈ B and that
u := (r, g, b) has the prescribed intensity

I =
1

3
(r + g + b). (19)

By the following proposition which proof can be found, e.g., in [19] it follows
immediately that the method (17) also preserves the hue.

Proposition 1. The single pixels (r0, g0, b0) ∈ [0, 1]3 and (r, g, b) ∈ [0, 1]3 have
the same hue if and only if there exist a, d ∈ R such that

(r, g, b) = a(r0, g0, b0) + d13
T,

where 13 := (1, 1, 1)T.

Figure 7 right shows that the two step method gives good results.
Let us mention that alternatively to the multiplicative algorithm in [36] its

affine variant from the same paper, or variational methods as those in [44] can
be applied in the second step. Indeed it was shown in [36] that for pixels treated
by the first equation in (17), which are in general most of the image pixels, also
the saturation of the original image is preserved. This leads to rather colorful
images. Depending on the taste of the viewer this effect (colorfulness) can be
steered using the affine model.

Original image Channel-wise Intensity enhancement

Figure 7: Comparison of our method generalized to color images. First column:
original image. Second column: channel-wise application. Third column: appli-
cation to the intensity channel and subsequent application of the multiplicative
algorithm in [36].

4.2 New Variational Model

In this section, we propose a model that enhances a given color image without a
decoupling of the channels or a two step strategy. Our model preserves the hue
approximately so that errors can be corrected. The idea consists in merging the
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model of Fitschen et al. [19] with the average local contrast measure from the
previous section.

Given a color image u0 with intensity I0, the authors of [19] propose a
variational model to obtain an enhanced image u with prescribed intensity I
that respects to some degree the hue of the original image. To this end, auxiliary
variables

xR, xG, xB ∈ RM×N and d ∈ RM×N

are introduced which are related to the desired (concatenated) image u = (r, g, b)
by

r :=
r0

I0
◦ xR + d, g :=

g0

I0
◦ xG + d, b :=

b0
I0
◦ xB + d. (20)

Here the quotients

AR :=
r0

I0
, AG :=

g0

I0
, AB :=

b0
I0
∈ RM×N

are meant componentwise, and ◦ denotes the componentwise (Hadamard) prod-
uct. If I0(x) = 0, we use the setting in (18). To shorten the notation, we set

xRGB := (xR, xB , xG) ∈ RM×N×3

and denote the assignment in (20) by

u = (r, g, b) = (AxRGB , d). (21)

Clearly, if xA ≈ xG ≈ xB , then
xν
I0

, ν ∈ {R,G,B} in (20) approximate the

constant a in Proposition 1 so that u should respect the hue of u0. We enforce
the approximate hue preservation by penalizing

H̃(xRGB) := ‖xR − xG‖22+‖xR − xB‖22+‖xG − xB‖22. (22)

The prescribed intensity I is obtained if

I = I(xRGB , d) (23)

:=
1

3
(AR ◦ xR +AG ◦ xG +AB ◦ xB) + d.

To cope with noise while preserving the image edges we will exploit the discrete
total variation (TV) [50] of u. We define the discrete gradient of the color
channels ν ∈ {r, g, b} at x = (i, j) ∈ Λ by

∇ν(x) :=

(
Dxν(x)
Dyν(x)

)

=


{
ν(i+ 1, j)− ν(i, j) if i < N ,

0 if i = N ,{
ν(i, j + 1)− ν(i, j) if j < M ,

0 if j = M ,

 .

16



Then the total variation of u in terms of xRGB and d is given by

TV (xRGB , d) :=
∑
x∈Λ

( ∑
ν∈{r,g,b}

Dxν(x)2 +Dyν(x)2
) 1

2

=
∑
x∈Λ

( ∑
ν∈{R,G,B}

Dx(Aν ◦ xν + d)(x)2

+Dy(Aν ◦ xν + d)(x)2
) 1

2

. (24)

Taking (22), (24) and (23) into account, and demanding the range preservation
in (21), the authors of [19] propose the following model:

arg min
xRGB ,d

{
1

2
‖d‖22 +

µ

2
H̃(xRGB) + λTV(xRGB , d)

}
subject to

{
(AxRGB , d) ∈ B3,
I = I(xRGB , d),

(25)

where λ, µ ≥ 0. If x̂RGB , d̂ is a solution, then (Ax̂RGB , d̂) is the desired image.
Note that the squared norm of d is penalized to enforce the model to have a
minimizer which is near to the multiplicative model (17). Indeed, it was shown
in [19] that for large µ and small λ the solution in (17) is obtained. However,
model (25) still requires that an enhanced intensity image I is known.

We merge the above variational model with model (8) to get a unified vari-
ational framework for color image enhancement without pre-assigning a well
contrasted intensity image. Our new model reads as follows:

arg min
xRGB ,d

{
λ

2
‖d‖22 +

µ

2
H̃(xRGB) + TV(xRGB , d)

+
α

2

(
C̃ (I(xRGB , d))− c C̃(I0)

)2

+
β

2
‖I(xRGB , d)− I0‖22

}
subject to (AxRGB , d) ∈ B3. (26)

The aim of this model is to enhance at the same time the intensity channel and
to assign to each pixel a color which hue is close to that of the original one. A
high value of µ ensures that the hue of the new image is close to the original one.
We penalize the Total Variation in order to remove noisy pixels or artifacts. The
scale of the contrast enhancement is controlled by the size of the kernel used
for the computation of C̃. The contrast level is tuned by the parameter c. The
parameter λ enforces the algorithm towards the multiplicative method (17).

4.3 Algorithm

Chambolle and Pock [14] propose an algorithm to compute a saddle-point of a
problem of the form

min
p

max
q
〈Kp, q〉+ f(p) + g(p)− h∗(q), (27)
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where f has a Lipschitz gradient with constant Lf , and g, h are proper, lower
semi-continuous, convex functions with Fenchel dual

h∗(q) = sup
y
〈q, y〉 − h(y).

Further, K is a bounded linear operator with operator norm L = ‖K‖. For
former versions of primal-dual algorithms see also [13, 46, 57]. The general
iteration of the algorithm

(p̂, q̂) = PD(p, q, p̃, q̃)

is defined by

p̂ = arg min
p
{f(p) + 〈∇f(p), p− p〉+ g(p) + 〈Kp, q̃〉

+ 1
2τ ‖p− p‖

2
2

}
(28)

q̂ = arg min
q

{
h∗(q)− 〈Kp̃, q〉+ 1

2σ‖q − q‖
2
2

}
(29)

The authors of [14] propose to use the iteration

(p(k+1), qk+1) = PD(p(k), q(k), 2p(k+1) − p(k), q(k)),

and prove the convergence of the algorithm if

(
1

τ
− Lf )

1

σ
≥ L2.

In order to apply the algorithm to our model (26), we reshape all images from
RM×N columnwise into vectors of length n = MN . This is often described by
the vec operation. Since the format becomes clear from the context we keep the
notation x instead of vec(x). In particular, we have xRGB ∈ R3n and d ∈ Rn
now. Moreover, after reshaping Aν , ν ∈ {R,G,B} into vectors of length n, we
built the diagonal matrices Aν , ν ∈ {R,G,B} out of these vectors. We can
rewrite the total variation term for this setting by applying the vector adapted
gradient operator ∇:Rn 7→ R2n below

∇ :=

(
IN ⊗DM

DN ⊗ IM

)
, DM :=


−1 1

. . .
. . .

−1 1
0

 ∈ RM,M ,

where ⊗ denotes the Kronecker product and IN is the N ×N identity matrix.
Setting

f(xRGB , d) :=
λ

2
‖d‖22 +

µ

2
H̃(xRGB)

+
α

2

(
C̃ (I(xRGB , d))− c C̃(I0)

)2

+
β

2
‖I(xRGB , d)− I0‖22,

g(xRGB , d) :=0,

h(v, u) :=‖v‖2,1+ι[0,1]3n(u)
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and

K :=

(
(I3 ⊗∇)A 13 ⊗∇

A 13 ⊗ In

)
, A :=

 AR

AG

AB

 ,

our model (26) can be rewritten as

min
xRGB,d

v,u

{f(xRGB , d) + h(u, v)}

subject to K

(
xRGB
d

)
=

(
v
u

)
. (30)

For v ∈ R6n we have used the norm

‖v‖2,1:=

n∑
i=1

( 6∑
j=1

v2
i+jn

) 1
2

.

The above model (30) is equivalent to

min
xRGB,d

v,u

max
q1,q2
{f(xRGB , d) + h(u, v)

+ 〈K
(
xRGB

d

)
−
(
v
u

)
,

(
q1
q2

)
〉
}
.

Using that minv,u ϕ = −maxv,u(−ϕ), changing the order of maxv,u and maxq1,q2
and applying the definition of the Fenchel dual, our model obtains finally the
form of (27):

min
xRGB ,d

max
q1,q2
{f(xRGB , d)− h∗(q1, q2)

+ 〈K
(
xRGB

d

)
,

(
q1
q2

)
〉
}
.

Then the first part (28) of the algorithm reads

p̂ = arg min
p
‖p− p̄+ τ(∇f(p) +K∗q̃)‖22

= p̄− τ(∇f(p) +K∗q̃). (31)

and regarding that

K∗ :=

(
A(I3 ⊗∇T) A

1T
3 ⊗∇T 1T

3 ⊗ In

)
we obtain Step 7 and 8 in Algorithm 2. The computation of ∇f is outlined in
Remark 1. Note that ∇T plays the role of the negative divergence operator in
the continuous setting.

Concerning the second part (29) of the algorithm, we have

h∗(q1, q2) = (‖·‖2,1)∗(q1) + ι∗[0,1]3n(q2)

= ιB2,∞(q1) + q2χ≥0(q2),
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where B2,∞ denotes the unit ball with respect to the dual norm of the `2 − `1
norm

‖v‖2,∞:= max
i=1...,n

( 6∑
j=1

v2
i+jn

) 1
2

,

and χ≥0 is the component-wise characteristic function of the non negative num-
bers, i.e., it is one for non negative numbers and zero otherwise. Then we can
rewrite (29) as

q̂ = arg min
q

h∗(q) +
1

2σ
‖q − q̄ − σK(x̃RGB , d̃)T‖22,

q̂1 = ΠB2,∞

(
q̄1 + σ((I3 ⊗∇)Ax̃RGB + (13 ⊗∇)d̃)

)
q̂2 = σ

(
y −Π[0,1]3n(y)

)
,

y := 1
σ q̄2 + Ax̃RGB + (13 ⊗ In)d̃.

This is used in Step 11-13 of Algorithm 2.

Algorithm 2 Enhancement of Color Images

1: input image: RGB image (r0, g0, b0).
2: I0 ← (r0 + g0 + b0)/3

3: x
(0)
R ← I0, x

(0)
G ← I0, x

(0)
B ← I0 , d(0) ← 0n

4: q
(0)
1 ← (I3 ⊗∇)AxRGB + (13 ⊗∇)d , q

(0)
2 ← 03n

5: for 0 ≤ k ≤ kmax do
6: Compute ∇xRGB

f , ∇df by (32) and (33).
7:

x
(k+1)
RGB ← x

(k)
RGB − τ∇xRGB

f

− τ
(
A(I3 ⊗∇T)q

(k)
1 + Aq

(k)
2

)
8: d(k+1) ← d(k) − τ∇df−

τ
(

(1T
3 ⊗∇T)q

(k)
1 + (1T

3 ⊗ In)q
(k)
2

)
9: x

(k+1)
RGB ← 2x

(k+1)
RGB − x

(k)
RGB

10: d
(k+1) ← 2d(k+1) − d(k)

11:
q

(k+1)
1 ← ΠB2,∞

(
q

(k)
1 + σ

(
(I3 ⊗∇)Ax̄

(k+1)
RGB

+(13 ⊗∇)d̄(k+1)
))

12: y(k+1) ← 1
σ q

(k)
2 + Ax̄

(k+1)
RGB + (13 ⊗ In)d̄(k+1)

13: q
(k+1)
2 ← σ

(
y(k+1) −Π[0,1]3n

(
y(k+1)

))
14: end for
15: output image: u = Ax̄

(kmax+1)
RGB + (13 ⊗ In)d̄(kmax+1)

The most expensive computation is the one of C̃ and ∇C̃ embedded in the
computation of ∇f . This computation is accelerated in the same way as for
Algorithm 1, see Appendix A.
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Remark 1. (Computation of ∇f = ∇xRGB
f,∇df)

The derivative of f with respect to xν , ν = R,G,B is given by

∂f

∂xν
= µ (2xν − xν̂ − xν̃)

+
αν0

3I0
∇C̃(I(xRGB , d))(C̃(I(xRGB , d))− c C̃(I0))

+
βν0

3I0
(I(xRGB , d)− I0) , (32)

where ν̃, ν̂ ∈ {R,G,B}. The derivative of f with respect to d reads

∂f

∂d
= λd+ α∇C̃(I(xRGB , d))(C̃(I(xRGB , d))− c C̃(I0))

+ β (I(xRGB , d)− I0) . (33)

The convergence of Algorithm 2 is not guaranteed because model (26) is not
convex, but in practice, numerical convergence was observed.

Finally, let us emphasize that we use the Kronecker product notation only
for a correct description of the algorithm. In our numerical computations we
work with arrays based on the relation

vec(AXBT) = (B ⊗A) vec(X). (34)

4.4 Numerical Results

In this section, Algorithm 2 is applied to color images and the results are com-
pared to some state-of-the-art methods. The algorithm is implemented in MAT-
LAB.

The following parameters have been experimentally chosen: λ = 100, µ = 1,
α = 100, β = 500, σ = 5.10−5, τ = 5.10−9 and 103 iterations. The polynomial
approximation is done with Bernstein polynomials of degree 9. The size of
the Gaussian kernel used for C has to be related to the size of the image.
In experiments it is experimentally chosen equal to min(M,N)/20. This size
manages the scale of the contrast enhancement. Its choice is discussed at the
end of this subsection.

In Figure 8, we compare our method to the equalization implementation of
Gimp, the algorithm of Nikolova et al. [37, 36] with implementation [26], the
method of Bertalmio et al. [7] and the one of Ferradans et al. [18]. For the
comparison approaches, we used the default parameters of the papers. The
implementation of Gimp consists in a histogram equalization of the intensity
channel. This method is not able to preserve the hue, because the transformation
from the HSV color-space to RGB can change the hue due to the Gamut problem
(see, e.g., [44]).

In the Jupiter image, the approach of [7, 18] such as the one of the Gimp
performs a modification of the histogram. However, it contains a peak, corre-
sponding to the background. Thus, an important modification of the histogram
is not useful for this type of images. Tackling with this issue, the proposed
approach preserves the histogram and thus the background.

In the Chandelier image, the method of [7], the approach of [18] as well as
the one of Gimp change the color of the ceiling due the lack of hue preservation.
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Original Gimp [36] [7] [18] Our

Figure 8: Comparison of our enhancement results with those obtained by the al-
gorithms of the Gimp histogram equalization, of Nikolova et al. [36], of Bertalmio
et al. [7], of Ferradans et al. [18]. The proposed algorithm produces good results
in all these cases.

In contrast, the proposed approach, as well as the one of [36], produces results
with nearly the original hue. The preservation of the hue is needed to obtain
these results, and may be important in some application such as art restoration.

For the Sunrise image, only Algorithm 2 is able to produce an image on which
the building in the center is clearly visible. In the other images, the results are
over-contrasted, in particular near the sun. With the controlled contrast level,
the proposed method is able to recover the desired informations.

For the Iris image, the method of [7, 18] and the one of Gimp provide
images with a purple background due the modification of the hue. The approach
of [37, 36, 26] respects the hue. The proposed algorithm controls the contrast
level and respects the hue. Thus it is thus able to enforce the visibility of the
leaf veins.

Finally, in the Cathedral image, the enhanced details are different for each
method. State-of-the-art methods enhance the details in the foreground con-
trary to the proposed approach which enforces the background. The lighting
sensation is also different on the different approaches: for all comparison ap-
proaches, it seems that the light is behind the photographer in order to en-
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Original Coarse scale
(c = 2, ker-
nel size=
min(M,N)/2)

Medium scale
(c = 2, ker-
nel size=
min(M,N)/20)

Fine scale (c =
10, kernel size=
min(M,N)/50)

Very fine
scale (c = 10,
kernel size=
min(M,N)/120)

Figure 9: Influence of the contrast enhancement scale on the result. This scale
has to be tuned in dependence on the desired result.

Original Medium level and coarse
scale (c = 2, kernel
size= min(M,N)/20)

High level and fine scale (c = 10,
kernel size= min(M,N)/50)

Figure 10: Influence of the contrast enhancement scale and level on the result.
In function of the application, these parameters have to be tuned.

lighten the columns of the Cathedral, contrary to our result that preserves the
light sensation and the shadows of the scene. These facts are due to the contrast
scale. In the following, we show that a modification of the contrast scale of the
algorithm may change the location of the enhanced details such as the lighting
sensation and the shadows. Figure 11 proposes some additional results obtained
with Algorithm 2.

Importance of the contrast enhancement scale. For the Cathedral
image on Figure 8, our result appears to be less contrasted than the others in
some parts of the image. Some details near the windows are better visible than
with the others methods, but some details are not visible, for instance the details
in the shadows of the columns. This is due to the scale of the enhancement.
By changing this scale, our method can recover different details, as shown in
Figure 9. All the enhanced images do not have the same contextual information.
For instance, at coarse scale, the overall lighting of the scene is enhanced. The
over-lighting of the window is increased. For the medium scale, the shadows
are enforced and the details close to the window are more visible. The overall
lighting of the scene is farther from the original image than at the coarse scale.
With the finest scale, the shadows are less enforced, but the details of the
textures of the column are enhanced. The tuning of the contrast scale depends
on the targeted application. A trade-off has to be chosen by the user between a
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Original Gimp [36] [7] [18] Our

Figure 11: Additional results.

preservation of the lighting sensation and the expected details. Figure 10 shows
the performance of Algorithm 2 for different contrast levels and scales. At a
large scale and low contrast level, the model is able to produce an image with
more details, but with the same lighting sensation as the original one, i.e., a
hazed aerial photography. At a fine contrast scale and a high contrast level, the
model is able to provide an image which can be used, for example, to detect the
number of planes on the airfield. As a conclusion, depending on the application,
a good parameter tuning makes our model fully adaptive.

5 Summary and Conclusions

We introduced variational models both for the enhancement of gray-scale images
and color images. We show that increasing the average local contrast measure
improves the perceived contrast of the image. The convergence of the minimiza-
tion algorithm for gray-scale images is proved. The contrast scale and level in
our model are adjustable, so that the proposed approach is fully adaptive. Our
enhancement method for color images works directly on the RGB image without
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decoupling of the color channels or enhancing the intensity in a previous step.
We demonstrated that our model is able to enhance contrast on images where
state-of-the-art methods fail. The automatic adaptation of the parameters to
the content of the considered image could be a future direction of research.

A Efficient Computation by Polynomial Approx-
imation

First we show how the sign function can be approximated by Bernstein polyno-
mials. The Bernstein polynomial on [0, 1] of degree n is defined by

Bnk (t) :=

(
n

k

)
tk(1− t)n−k.

By Weistraß’ theorem, any continuous function f : [0, 1] → R can be approxi-
mated by

bn(f, t) =

n∑
k=0

f

(
k

n

)
Bnk (t) (35)

and ‖f − bn(f, ·)‖∞ goes to zero as n→∞. We approximate the jump function
g : [0, 1]→ R defined by

g(t) :=


0 if t ∈ [0, 1

2 ),
1
2 if t = 1

2 ,

1 if t ∈ ( 1
2 , 1]

and use P (t) := 2bn

(
g,
t+ 1

2

)
− 1 as an approximation of the sign function.

Next, we write bn

(
g,
t+ 1

2

)
as the sum of monomials

(
1

2

)n n∑
k=0

(
n

k

)
g

(
k

n

) k∑
i=0

n−k∑
j=0

(
k

i

)(
n− k
j

)
(−1)jti+j . (36)

Having a polynomial representation P (t) =
∑n
m=0 cmt

m available, we can apply

an idea from [7] in order to efficiently compute ∇C̃(u)(x) if w(x, y) = G(x− y):

∇C̃(u)(x) =
∑
y∈Λ

w(x, y)

n∑
m=0

cm(u(x)− u(y))m

=
∑
y∈Λ

w(x, y)

n∑
m=0

cm(−1)k
m∑
k=0

(
m
k

)
u(y)ku(x)m−k

=

n∑
k=0

ak(x)
∑
y∈Λ

w(x, y)u(y)k

=

n∑
k=0

ak(x)(G ∗ uk)(x)
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with ak(x) a polynomial depending on u(x). The convolution can be computed
in a fast way way using the fast Fourier transform. Note that in [7] not the
sign function, but a continuous approximation of it, namely a slope function
was approximated. Also for this function the Chebyhsev approximation will
not stay within [−1, 1].

B Remarks on the Continuous Case

Let Ω the domain of the image which is considered as bounded with Lipschitz
boundary. We define the average local contrast measure u ∈ L2(Ω) as

C(u) =

∫
Ω2

w(x, y)|u(x)− u(y)| dx dy (37)

with w(x, y) ∈ L2(Ω2) a symmetric, non negative kernel such that∫
Ω

w(x, y) dx = 1, ∀y ∈ Ω. (38)

A typical kernel is

w(x, y) =
1

σ
√

2π
e
−
‖x− y‖22

2σ2 , σ > 0.

In order to enhance images, we propose a variational model for an image u0 :
Ω→ [0, 1]:

min
u∈L2(Ω)

‖u− u0‖2L2(Ω)+λ (C(u)− cC(u0))
2

+ ι[0,1](u), (39)

where λ > 0 manages the trade-off between the fidelity-data term and the
contrast term. The functional (39) is positive and coercive in L2(Ω). We show
the existence of a minimizer of a regularized version of the functional (39) which
was inspired from [7]. We set

F (u) + λH(u) := ‖u− u0‖2L2

+ λ

(∫
Ω2

w(x, y) |u(x)− u(y)| dx dy − a
)2

, (40)

with a constant a = c C(u0), and consider the regularized version

F (u) + λH(G ∗ u), (41)

with a smoothing Gaussian kernel G. The following proposition appears to be
useful.

Proposition 2. The functional H(u) is continuous on its domain in L2(Ω).
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Proof. We prove the continuity of C(u). Let us consider {un}n such that un → u
in L2(Ω) as n→∞. Then we obtain

C(un)− C(u) =

∫
Ω2

w(x, y) |un(x)− un(y)| dx dy

−
∫

Ω2

w(x, y) |u(x)− u(y)| dx dy

=

∫
Ω2

w(x, y)|un(x)− u(x)− u(y)

+ un(y) + u(x)− u(y)| dx dy

−
∫

Ω2

w(x, y) |u(x)− u(y)| dx dy.

Using the triangular inequality we conclude

|C(un)− C(u)|

≤
∫

Ω2

w(x, y) (|un(x)− u(x)|+ |un(y)− u(y)|) dx dy

≤ 2

∫
Ω

|un(x)− u(x)| dx.

Since we have convergence of {un}n in L2(Ω) this implies also convergence in
L1(Ω). Hence H(u) = (C(u)− a)2 is continuous in L2(Ω) on its domain. �

Theorem 3. The functional F (u) + λH(G ∗ u) admits a minimizer in L2(Ω).

Proof. The functional F (u) + λH(G ∗ u) is bounded from below. Let {un}n be
a minimizing sequence, i.e.,

F (un) + λH(G ∗ un) →
n→+∞

inf
v
F (v) + λH(G ∗ v). (42)

Since F (un) + λH(G ∗ un) ≤ M for all n ∈ N, we have F (un) ≤ M , and it
follows that ‖un‖L2≤ M . Thus, up to a subsequence, there exists ũ such that
un → ũ in L2(Ω) as n→ +∞. Since F is convex, we have that, (see, e.g., [9]):

F (ũ) ≤ lim inf
n

F (un).

Since u 7→ G ∗ u is a Hilbert-Schmidt operator, it is a compact operator in
L2(Ω). Thus, up to a subsequence, G ∗ un → G ∗ ũ as n → +∞ with strong
convergence in L2(Ω) (see, e.g., [9]). By Proposition 2 we get

λH(G ∗ un) →
n→+∞

λH(G ∗ ũ).

Finally we obtain

F (ũ) + λH(G ∗ ũ) ≤ lim inf
n

F (un) + λH(G ∗ un).

Thus ũ is a minimizer of F (u) + λH(G ∗ u). �
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