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From stereoscopic images to semi-regular meshes

Jean-Luc Peyrot, Frédéric Payan and Marc Antonini

Laboratory I3S - University Nice - Sophia Antipolis and CNRS (France) - UMR 7271

Abstract

The pipeline to get the semi-regular mesh of a specific physical object is long and

fastidious : physical acquisition (creating a dense point cloud), cleaning/meshing

(creating an irregular triangle mesh), and semi-regular remeshing. Moreover,

these three stages are generally independent, and processed successively by dif-

ferent tools. To overcome this issue, we propose in this paper a new framework to

design semi-regular meshes directly from stereoscopic images. Our semi-regular

reconstruction technique first creates a base mesh by using a feature-preserving

sampling on the stereoscopic images. Afterwards, this base mesh is passed to a

coarse-to-fine meshing process to get the semi-regular mesh of the original sur-

face. Experimental results prove the reliability and the accuracy of our approach

in terms of shape fidelity, compactness, but also runtime, since many steps have

been parallelized on the GPU.

Keywords: Semi-regular mesh , 3D reconstruction, stereoscopy, acquisition,

Poisson-disk sampling, GPU.

1. Introduction1

Motivated by the high fidelity and the realism of the numerical models,2

and supported by the increasing storage capacities, the acquisition devices pro-3

vide now high resolution meshes, ensuring the preservation of the finest details.4

Consequently these data are massive, and cannot be easily managed by any5

workstation or mobile device with limited memory and bandwidth. The semi-6

regular meshes are a good way to overcome these issues, because of their sca-7

lability and their compactness. Indeed, the semi-regular meshes are based on8
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Figure 1: The pipeline to get a semi-regular mesh from a physical object, and its application

to multiresolution analysis.

a regular subdivision connectivity, well-suited to display or transmit a mesh at9

different levels of details. This subdivision connectivity also allows a compact10

representation since only the connectivity of the lowest level of details is needed11

to reconstruct the full connectivity. This semi-regular structure is also adapted12

to multiresolution analysis (Lounsbery et al., 1997) and wavelet compression13

(Payan and Antonini, 2006). Despite their good properties, the semi-regular14

meshes are sometimes forsaken by users because they are not provided by cur-15

rent acquisition systems which only provide point clouds. So, if one wants16

to produce a semi-regular mesh of a specific physical object, the pipeline pre-17

sented in figure 1 must be processed : physical acquisition (creating a dense18

point cloud), cleaning/meshing (removing redundant points and noise inherent19

to acquisition process, and creating an irregular triangle mesh), and then semi-20

regular remeshing (Payan et al., 2015). This pipeline is long and fastidious,21

especially as these three stages are performed independently.22

Our original idea is to make the design of semi-regular meshes easier, by23

simplifying the classical pipeline shown above. This paper, that is an extended24

version of (Peyrot et al., 2014), presents a coarse-to-fine approach that allows25

an acquisition system to provide semi-regular meshes as output, thus avoiding a26
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remeshing process. We focused on stereoscopic systems, because stereoscopy is27

an increasing field of interest in surface reconstruction, due to its rapidity and28

accuracy.
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Figure 2: Our 3D reconstruction technique that produces a semi-regular mesh directly from

stereoscopic images.

29

Our method, depicted in figure 2, relies on an analysis of the stereoscopic30

images to get a base mesh that captures the salient features of the original ob-31

ject, followed by a coarse-to-fine meshing that generates the semi-regular output.32

The most innovative part of our algorithm is the use of the stereoscopic images33

as parameterization domain to create the semi-regular mesh.34

35

The remaining of the paper is organized as follows. In Section 2, we remind36

the reader of the basics of semi-regular meshes and briefly review two prior37

methods of surface reconstruction based on stereoscopy and parameterization.38

Section 3 presents our semi-regular reconstruction method. Experimental re-39

sults are presented in Section 4. Finally, Section 5 summarizes our contributions,40

and proposes future work.41

42
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2. Background43

2.1. Semi-regular meshes44

A semi-regular mesh Msr is a structured mesh defined by L levels of reso-45

lutions (figure 3), where all the triangles at a specific level can be merged by46

fours down to a lower resolution mesh.

 𝑀1  𝑀2  𝑀0 

Quaternary 
merging 

Quaternary 
merging 

Figure 3: Semi-regular mesh of the model Rabbit (L = 3 levels of resolutions).

47

This merging process can be applied (L− 1) times to Msr until obtaining a48

base mesh M0 that represents the lowest resolution of Msr (Msr can be seen as49

ML−1). A semi-regular mesh is sometimes called a subdivision mesh, because50

a subdivision scheme is applied on the mesh at resolution l to generate the51

semi-regular mesh at the finer level of resolution (l + 1).52

2.2. Presentation of two prior surface reconstruction methods53

We now present two prior reconstruction methods similar to our proposal,54

because they are based on multi-view images and use a parameterization. Inter-55

ested reader will find a complete presentation of general reconstruction methods56

in (Seitz et al., 2006).57

The method proposed in (Park et al., a) combines the advantages of geo-58

metric and photometric techniques, thanks to the surface parameterization. It59

consists in associating a Multi-View Stereo (MVS) reconstruction process that60

relies on a correspondence between pixels from different multi-view images, and61

a Shape from Shading method that utilizes the surface reflectance. The authors62
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use two cameras, an array of lights and a rotation table on which the object63

is put (see figure 4). The rotation table allows to acquire several images of the64

object at different points of view, whereas only one light at a time is turned on65

to provide different lighting configurations.

Object on rotating table

Camera #1 

Camera #2 

Lighting 
structure 

Figure 4: Image acquisition system presented in (Park et al., a) (image of (Park et al., a)).

66

First of all, the technique Structure from Motion (Snavely et al., 2006) ge-67

nerates the 3D point cloud of the scanned object. The multi-view method MVS68

of (Hernandez et al., 2008) is then used to generate a depth-map, and the base69

mesh. The third step consists in creating a parameterization by charts (Zhou70

et al., 2004) (see figure 5). Finally, from the parameterization and the normals71

estimated at each vertex of the base mesh, a refinement procedure is applied,72

leading to high-quality reconstructions.73

Figure 5: Charts defined on the base mesh, and its associated parameterization (image of

(Park et al., a)).

74

Another relevant approach is proposed in (Pietroni et al., 2011). The authors75

present a quadrangular remeshing technique based on a global and low distor-76

tion parameterization of different kinds of surfaces (polygonal meshes, point77

5



clouds...). The principle, illustrated in figure 6, is to first generate a set of dis-78

tance maps U i of the input data. Then, each image U i is parameterized into a79

2D planar domain, while controlling the resulting distortion at the frontiers of80

the images in the final parameterization. Finally, a sampling in the parameteri-81

zation domain creates a quadrangular semi-regular mesh.82

83

     Sampling 

Figure 6: Overview of (Pietroni et al., 2011)’s method (image of (Pietroni et al., 2011)).

Discussion These two parameterization-based methods are reliable. However,84

we cannot refer to (Park et al., a) to get a semi-regular mesh directly from85

stereoscopic images, as a coarse 3D mesh must be built before creating the86

parameterization. The other method, (Pietroni et al., 2011), is closely related87

to our goal, it requires a cross-field technique that might be complex and uses88

triangles embedded in R3. A contrario, our method strives to minimize the89

use of the 3D connectivity by using the stereoscopic images as parameterization90

domain and a coarse-to-fine approach.91

3. Presentation of our semi-regular reconstruction method92

3.1. Overview93

To highlight the interest of our approach, we first present the classical pipe-94

line to get a semi-regular mesh of a physical object with a stereoscopic system95

(Figure 7(a)).96

1. Stereo matching The goal is to find the Pixels Of Interest (POI) region97

in the two images that represents the physical object (Scharstein and Sze-98

liski, 2002). The POI region gathers the couples of pixels that correspond99
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to a same point in the 3D space through both cameras (yellow parts on100

the left and right stereoscopic images). The POI region is only a subset of101

the stereoscopic images since it is impossible to capture the same set of102

3D points from two different points of views.103

2. 3D coordinates computation The coordinates of the 3D points are104

computed for all the pixels belonging to the POI region (Hartley and105

Zisserman, 2004). These two first steps are done by the acquisition system.106

3. Cleaning/meshing The 3D point cloud must be cleaned, and then trian-107

gulated, leading to a dense irregular mesh. This is the second independent108

process.109

4. Simplification The semi-regular remeshing can now be done (third inde-110

pendent process) : the irregular mesh is first simplified to obtain a coarse111

mesh corresponding to the base mesh of final semi-regular mesh. During112

this stage, a parameterization of the irregular mesh vertices is generally113

computed onto this base mesh.114

5. Refinement The base mesh is subdivided several times (1 :4 subdivision)115

to create the different resolutions of the final semi-regular mesh. Generally,116

the aforementioned parameterization optimizes the positioning of the new117

vertices added by subdivision.118

The originality of our semi-regular reconstruction method, illustrated in fi-119

gure 7(b), is that it mainly works onto the 2D domain defined by the stereoscopic120

images, and thus can be included in the acquisition system :121

1. Stereo matching This stage is identical to the one in the classical ap-122

proach.123

2. POI pixel classification The goal is to detect the feature lines in the124

POI region. The creation of the base mesh will be guided by these fea-125

ture lines to ensure that the geometrical features are preserved on the126

final semi-regular output. Moreover, such assertion greatly improves the127

reconstruction quality.128
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(a) Classical pipeline of semi-regular reconstruction.
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(b) Proposed semi-regular reconstruction method.

Figure 7: How to get a semi-regular mesh from stereoscopic images ? The classical pipeline

(top) Vs our direct coarse-to-fine reconstruction method (down). Purple and blue blocks

indicate that the process is realized in 2D and 3D space, respectively.
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3. Coarse sampling A coarse sampling, constrained by the feature lines, is129

done to retrieve a set of 2D samples that will be later the vertices of the130

base mesh. This stage is based on 2D Poisson-disk sampling, to ensure a131

good distribution of the samples over the POI region.132

4. Semi-regular meshing The set of 2D samples is first triangulated to133

obtain a 2D base mesh. Then, this 2D base mesh is subdivided several134

times, to get a 2D semi-regular mesh of the POI region. Finally, the 3D135

semi-regular mesh is obtained by computing the 3D coordinates associated136

to the 2D samples.137

3.2. POI pixel classification138

To detect the feature lines in the POI region , we first classify the pixels139

according to their curvature values 1, as described below.140

A tensor Tp(u,v) is calculated at each pixel p(u, v) in the POI region using141

Tp(u,v) =

u′=u+n∑
u′=u−n

v′=v+n∑
v′=v−n

−→
N ′.
−→
N ′

t
, (1)

where
−→
N ′ is the 3D normal associated to the neighbor pixel p′(u′, v′), and n142

depends on the size of the considered neighbor region of p . The three eigenva-143

lues of Tp(u,v) are then computed with the Jacobi operator, and a thresholding144

operation performs the segmentation of high curvature area. In order to reduce145

the runtime and benefit the independence of the operation at each pixel p, this146

classification is GPU-parallelized.147

148

However, this classification is not precise enough to be exploited as it is.149

A parallelized thinning technique (Zhang and Suen, 1984) is thus applied to150

the ’high curvature’ pixels to finely detect the sharp edges. Thinning a set of151

1. In the current version, the curvature values are calculated with the technique of (Park

et al., b) from the 3D normals associated to the corresponding 3D point cloud. In fine, to

limit the use of 3D information, this technique will be replaced in our algorithm by the recent

technique of (DTA) that computes the 3D normals directly from stereoscopic images.
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neighbor pixels consists in generating a skeleton (i.e. a set of median lines) that152

presents the same topology as the related shape.153

154

Once the thinning is done, we classify the pixels in the POI region according155

to three classes :156

– corners containing the pixels where the median lines intersect in the157

image ;158

– sharp features containing the remaining skeleton pixels ;159

– smooth regions containing the other pixels.160

Figure 8 depicts several results of classification obtained with this method.161

This classification of POI pixels will help the subsequent sampling to preserve162

geometrical features and thus to provide a consistent base mesh in terms of163

global shape and geometrical characteristics, as explained below.164

3.3. Coarse sampling165

This stage is inspired by the feature-preserving Poisson-disk sampling for166

surfaces of (Peyrot et al., 2015), which is based on a dart throwing.167

This approach can be efficiently adapted to our setting : the sampling domain168

Ω becomes the POI region of the stereoscopic images (instead of a surface mesh169

in (Peyrot et al., 2015)), and the feature lines detected by the previous stage170

guide the distribution of 2D samples.171

However, as the output 2D samples of this stage will define the vertices of172

the base mesh, they must be consistently distributed over the surface of the173

object (and not especially over its stereoscopic images). Therefore the sampling174

is done onto the POI region, to benefit from its implicit 2D connectivity, but175

the distances between samples are computed in the 3D space with Dijkstra’s176

algorithm (Dijkstra, 1959).177

The principle of the dart throwing on a 2D image is the following : i) one178

pixel in the 2D domain Ω is chosen randomly, ii) a disk is computed around179

it, according to a radius R that depends on the target number N of samples180

and a density function, iii) this pixel is considered as a valid sample if the disk181
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Detection of the feature lines via our classification technique. First row : left ste-

reoscopic images obtained with our scanner (models Pipe, Box and Wall). Second row :

detection of high curvature areas (in blue). Third row : resulting classification after thinning :

white, red and blue pixels represent respectively the smooth regions, the sharp features and

the corners.
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does not intersect the disks relative to the samples already accepted (ensuring182

a minimal distance between the samples).183

One key idea of the proposed sampling technique is the computation of the184

radius R onto the surface in the 3D space, while handling the POI region of185

the stereoscopic images. Given the requested number of samples N , we first186

calculate the horizontal δi and vertical δj deviations between samples when a187

uniform sampling pattern is realized on the stereoscopic image. It generates188

a grid of samples of dimension Nδi × Nδj , as depicted in figure 9, where Ni189

and Nj represent the number of samples per row and per column, respectively190

(Ni ×Nj = N).191

δi

δj

L 

H 

Ni

Nj

Sample

Stereoscopic image

Figure 9: Example of uniform sampling performed on one stereoscopic image.

To take care of the fact that the sampling domain Ω is restricted to the192

pixels in the POI region, the distances δi and δj between samples along each193

dimension, are shrunk by a factor L×H
Card{POI} , with Card{POI} the number of194

pixels in Ω. A uniform sampling can be realized using195

R =
1

3
·max(δi, δj) · Sr, (2)

where Sr is the spatial resolution of the scanner (0.3mm in our case). With some196

objects, it can be convenient to realize an adaptive sampling, to better preserve197

the geometrical features for instance. In that case, the radius will depend on the198

surface curvature according to the following equation (Peyrot et al., 2015) :199

R =
1

3
·max(δi, δj) · Sr · (1 + eC.λ2 + eC.λ3). (3)

Empirically, we put C = −8.0 for the pixels of the class sharp features, and200

C = −6.0 for the pixels of the class smooth regions. λ2 and λ3 are the eigenvalues201
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of the tensor Tp(u,v) computed in section 3.2. In this formulation, the corners202

pixels keep the minimum radius given by equation (2). To determine the disks203

associated to the samples in function of the radius R, we recall that we use204

Dijkstra’s algorithm to compute geodesic distances between 3D points, while205

using the connectivity of the 2D sampling domain Ω. Therefore, a disk does206

not depend on the Euclidean distance between two given 2D samples, but on207

the sum of the lengths of the 3D segments defined by the shortest path in the208

POI region, as shown in figure 10. As output of this stage, we get a set of 2D209

samples, that ensures a good distribution of the vertices of the 3D base mesh210

all over the scanned surface.211

i 

j 

Z 

X 

Y 

3D geometry2D connectivity

Figure 10: Computation of a geodesic distance between two points of the surface in R3 (right

image), driven by the shortest path between the associated pixels in the POI region (light

blue region, left image).

3.4. Semi-regular meshing212

We now present how to generate a semi-regular mesh directly from the set213

of 2D samples defined previously. It is a three-stage process : creation of the 3D214

base mesh from the set of 2D samples, refinement by iterative subdivisions to215

get a 2D semi-regular mesh, and fitting in 3D space.216

Creation of the base mesh. The base mesh is obtained via a constrained Voro-217

noi relaxation (Lloyd, 1982) of the samples in the stereoscopic image domain,218

followed by the triangulation of the relaxed samples (via the dual of the Voronoi219

diagram (Rong et al.)). In our context, the Voronoi relaxation consists in first220

computing a Voronoi diagram of the pixels in function of the set of samples, and221

then displacing each sample to the centroid of its cell. This process is iteratively222
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repeated until convergence. The relaxation greatly improves the mesh quality,223

when comparing with the triangulation that we could obtain directly from the224

initial voronoi diagram.225

In this work, the Voronoi diagrams are generated with (Munshi et al., 2011),226

that is a GPU implementation of popular Dijkstra’s algorithm (Dijkstra, 1959).227

We had to adapt this algorithm to process stereoscopic images. Moreover, to228

preserve the feature lines on the created base mesh, we added a constraint229

during the relaxation : the new samples must belong to the same class than the230

initial samples (corners, sharp features or smooth regions). In other words, if231

after relaxation a sample is moved to a pixel which does not belong to the same232

class, then the sample is displaced to the closest pixel of the same class. This233

technique is straightforward, but produces nice triangulations, while preserving234

geometrical features of the scanned object, as shown in figure 11. This figure235

shows also the poor triangulation obtained if the constraint is not included.236

Figure 11: Base mesh generated by our Voronoi relaxation without (first row) or with (second

row) the constraint on the feature lines. Left : final Voronoi diagram and triangulation.

Middle : the same triangulation on the left stereoscopic image. Right : the resulting 3D base

mesh.

Refinement. A 2D semi-regular mesh is first obtained by applying several mid-237

point subdivisions (Chen and Prautzsch, 2012) to the base mesh of the left238

stereoscopic image (see figure 12). Then, the surface fitting will embed the semi-239

14



regular mesh in the 3D space.240

Left stereoscopic image 

POI region 

(a) (b)

(c) (d)

Figure 12: Generation of the 2D semi-regular mesh. (a) Left stereoscopic image and its POI

region ; (b) 2D base mesh ; (c) Subdivision ; (d) Displacement of the new vertices (red ones).

During the subdivision, some new vertices might be either outside the POI241

region, or in holes (areas without 3D correspondences). In the first case , they242

are displaced to their closest POI pixel, as shown in figures 12(c) and 12(d). To243

avoid an exhaustive research over the POI region, we use a parallelized k-Nearest244

Neighbors algorithm (with k = 1).245

In the second case, if we use the same technique, the resulting triangles will246

be badly shaped (see figure 13(a)), which globally decreases the mesh quality.247

To reduce such artifacts, we choose to keep the vertices ”fallen in a hole” in the248

2D domain, and so in the 3D space. Figure 13(b) shows that, with this technique,249

the triangles filling the holes are better shaped. Note that instead of using this250

simple scheme, one could use an interpolating scheme such as Butterfly (Egli251

and Dussault, 2001).252
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(a) Without our approximation. (b) With our approximation.

Figure 13: Technique proposed to fill the holes during the refinement.

4. Experimental results253

4.1. Visual results254

All our results are generated with a single pair of stereoscopic images ob-255

tained with a hand-held scanning system. Figure 14 gives an overview of our256

method on the model Face.257

From the stereoscopic images (a), the POI region (b) is defined, and the base258

mesh (resolution 0) is created (c). Then, our coarse-to-fine approach generates259

several resolutions (d, e, f). At resolution 5, our semi-regular reconstruction,260

with only 43k vertices, is already a good approximation of the original cloud of261

250k points given by the stereoscopic system. This is promising in terms of both262

compactness and compression. Figure 14(g) also shows the textured semi-regular263

mesh, produced in a very simple way, with one stereoscopic image. No additional264

texturing technique is necessary as the connectivity of the semi-regular mesh is265

generated directly on the image domain. This is another great advantage of our266

approach.267

4.2. Uniform Vs adaptive sampling268

We now study the efficiency of our feature-preserving technique, and the269

difference in terms of triangle quality, between the meshes produced with the270

uniform/adaptive samplings during the creation of the base mesh (Section 3.3).271

272
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(a) Left image. (b) POI region. (c) Resolution 0

(50 vertices).

(d) Resolution 2

(701 vertices).

(e) Resolution 3

(2,745 vertices).

(f) Resolution 5

(43,233 vertices).

(g) Textured

semi-regular mesh.

(h) Reference point

cloud (249,767 pts).

Figure 14: Semi-regular reconstruction of the model Face.

Figure 15 shows a reconstruction of a surface having sharp features called273

Door.274

Subfigures 15(b), (c) and (d) present the results with the uniform sampling,275

whereas subfigures 15(f), (g) and h present the results with the adaptive sam-276

pling. We observe on the smooth shadings that the features are globally well277

preserved whatever the sampling. Some artifacts along them are visible, but278

they are due to the holes in the POI region that generate notches along features279

when the base mesh is created (these artifacts would be removed by improving280

the stereo matching in the scanning system).281

282
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(a) Left image. (b) Uniform base

mesh (300 vertices).

(c) Resolution 2

(4,575 vertices).

(d) Smooth shading.

(e) POI region. (f) Adaptive base

mesh (300 vertices).

(g) Resolution 2

(4,599 vertices).

(h) Smooth shading.

Figure 15: Preservation of the geometrical features of Door, with the uniform or the adaptive

sampling.

However, we observe in subfigures 15(b) and (f) that the adaptive sampling283

tends to better preserve the features from the lowest resolution. This result was284

expected, as the adaptive approach takes into account the curvature during the285

computation of the disks, leading to a dense sampling pattern along the geo-286

metrical features. The counterpart is that the sampling is globally less uniform,287

and the quality of the triangles is lower : the average minimum angle is 42.5̊288

and 37.5̊ respectively for the uniform and the adaptive sampling.289

290

Figure 16 gives an additional result on Face : we see that the uniform sam-291

pling tends to provide a more isotropic mesh, and that the edges of the base292

mesh are less visible at high resolutions, which is advocated in case of smooth293

surfaces. On the database of five objects shown in Figure 17, the uniform sam-294

pling increases of 11% the average min angles.295

296
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(a) Left image. (b) Uniform base

mesh (300 vertices).

(c) Resolution 2

(4,611 vertices).

(d) Smooth shading.

(e) POI region. (f) Adaptive base

mesh (300 vertices).

(g) Resolution 2

(4,629 vertices).

(h) Smooth shading.

Figure 16: Difference of sampling quality obtained on Face in function of uniform/adaptive

sampling.

4.3. Runtime297

We now evaluate the runtime of our semi-regular meshing on five surfaces298

shown in Figure 17. The results have been obtained with an Intel Core i3 CPU299

2.30 GHz processor, associated to a 4 GB RAM.300
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(a) Statue

(102, 403

points)

(b) Face

(249, 764

points)

(c) House

(276, 313

points)

(d) Wall

(513, 036

points)

(e) Door

(531, 572

points)

Figure 17: Database used to compute the runtimes of Figure 19.

Figure 18 shows the runtime in function of the resolution, when the base301

mesh has 50 vertices, and eight resolutions. The inferior part of this figure is a302

zoom of the graphic, where the Y-axis spans from 0 to 1.
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Figure 18: Runtime in seconds of our method, per resolution. The inferior part is a zoom of

the superior one where the Y-axis spans from 0 to 1.

303

As expected, the most ”greedy” resolution is the first one, during which the304

base mesh is generated (including the Poisson-disk sampling, the constrained305

2D Voronoi relaxation, and the 2D Delaunay triangulation). The obtaining of306

the other resolutions is much faster, partly because theses steps have been pa-307
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rallelized on GPU. As a proof, the generation of the seventh resolution defined308

by 705, 281 vertices (528, 768 vertices are added) requires less than 0.6 seconds309

in the worst case. The higher total runtime to create our semi-regular mesh is310

around 17 seconds, for the model Door. Nevertheless, this remains very fast.311

Now, Figure 19 shows the runtime in function of the base mesh density.312

For each surface, the curve is obtained by averaging the runtime of five tests.313

Indeed, our algorithm is not deterministic (because of the dart throwing), and314

the relaxation time depends on the initial sampling. So, we can obtain slightly315

differences at each resolution for a same surface.
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Figure 19: Runtimes (in sec.) of our method in function of the number of vertices of the base

mesh.

316

We observe the linearity of the total runtime with respect to the number of317

vertices of the base mesh. The differences between the models is due to the ori-318

ginal point cloud density (ranging from 102, 403 points for Statue to 531, 572319

points for Door). The curvature of the scanned surface also influences the run-320

time. For instance, Wall contains around 18k points less than Door, but it321

contains much more pixels classified as sharp features. Finally, the mean sam-322

pling runtime is slower : 5.70 seconds for Wall, while it amounts to 10.90323

seconds for Door.324

325
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4.4. Comparison with the classical pipeline326

We now compare our direct semi-regular meshing with the classical acquisi-327

tion pipeline to get a semi-regular mesh (point cloud generation→ triangulation328

→ semi-regular remeshing). We use a Voronoi-based triangulation technique to329

generate the original irregular reference mesh Mori from the point cloud pro-330

vided by our stereoscopic system. This irregular mesh is then remeshed semi-331

regularly either with the SDK SmartMesh based on the patent Fonteles et al.332

(2014) and developed by the company (Cintoo3D) (a free trial is available on333

the website), or with Trireme (Guskov, 2007). To our knowledge, they are the334

only semi-regular remeshing techniques available on the web. Unfortunately, we335

found out that Trireme is not a suitable tool to remesh our data. Indeed, we336

could not produce any semi-regular meshes without severe degeneracies and out-337

lier triangles. In the contrary, SmartMesh always provides manifold semi-regular338

meshes, in particular because it does not use any parameterization, unlike Tri-339

reme. Consequently, we only compare the reconstruction errors and runtimes340

relative to our semi-regular meshing and to SmartMesh.341

342

We first compute the symmetric root mean square distance between the343

set of vertices of our semi-regular meshes, and the set of vertices of Mori (the344

original point cloud provided by the acquisition system). It permits to assess345

the fidelity of our sampling to the reference point cloud. The same distance346

is calculated with the set of vertices of the semi-regular meshes produced by347

SmartMesh. Figure 20 shows the evolutions of these distances depending on the348

resolutions : the X-axis indicates the associated number of points. We observe349

that our method presents lower distances than SmartMesh. It was expected as350

our method is approximating, contrary to SmartMesh that is interpolating (it351

optimizes the positions of the vertices such as its semi-regular mesh is close to352

the reference mesh). Our method has the advantage to determine the majority of353

vertices among the original point cloud, as the vertices are selected via the pixels354

of the POI region in the image domain. The only vertices that do not exist in355

the original point cloud are associated to pixels selected outside the POI region356
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during subdivision. Thus, our method is more accurate when considering only357

the geometry of the initial surface.
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Figure 20: Comparison of the geometry sampling obtained with our method and with Smart-

Mesh (Cintoo3D), depending on the vertex density of the semi-regular meshes.

358

We now assess the fidelity of our semi-regular meshes with respect to the359

reference mesh Mori. To achieve this goal, we compute the symmetric Root360

Mean Square (RMS) distance between Mori and our semi-regular meshes Msr361

(normalized by the diagonal length of the bounding box), which is widespread362

used in the state-of-the-art (Payan et al., 2015). However, in our context, this363

measure is not suited. Indeed, as explained in section 3.4, our method fills the364

holes, in order to make the texturing easier and to enhance the mesh quality.365

As a consequence, when measuring the symmetric RMS distances between our366

semi-regular meshes and the reference irregular mesh Mori, the distances bet-367

ween the triangles filling the holes and the original surface are inevitably high.368

It severely corrupts the comparison with SmartMesh, as this latter has been ini-369

tially developed to preserve the potential borders of a surface and consequently370

the holes. So, to make fairly comparisons, we compute the asymmetric RMS371
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distance RMS(Mori → Msr), which excludes the filled holes : see Figure 21372

(the X-axis still indicates the number of points of each resolution). Globally, we373

observe that our method is better than SmartMesh in the first resolutions. It374

can be explained by the fact that our method tends to preserve the geometrical375

features in the base mesh, and that it is approximating (Payan et al., 2015). On376

the other hand, SmartMesh becomes better on the highest resolutions, because377

it minimizes the geometric distortion directly onto the original surface, without378

any parameterization, which avoids the relative distortion. Furthermore, our379

method is penalized by the fact that it works in the image domain, but also by380

our feature preservation that positions more vertices on them.381

382
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Figure 21: addAsymmetric RMS distance RMS(Mori → Msr) obtained with our method

and with SmartMesh (Cintoo3D) in function of the resolution.

On the other hand, our algorithm is direct and thus significantly faster than383

SmartMesh. The runtime comparison is summarized in table 1. SmartMesh in-384

deed takes several minutes to produce the semi-regular meshes : from 2 to 7385

minutes in function of the data, excluding the triangulation time, whereas our386
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method needs always less than one minute. Finally, it shows that the proposed387

pipeline is a promising alternative to the classical one.

Models Wall Door Statue Face

Base mesh density 431 800 365 492

SmartMesh ≥3 min. ≥ 7 min. ≥ 2 min. ≥ 6min.

Our method 19.1 sec. 27.7 sec. 10.1 sec. 10.3 sec.

Table 1: Runtime comparison in seconds between our method and SmartMesh (Cintoo3D),

to generate 5 resolutions.

388

5. Conclusion and perspectives389

In this paper we proposed an alternative to the fastidious pipeline to get390

semi-regular meshes from physical objects. The idea is to generate semi-regular391

meshes directly from the stereoscopic images acquired with a hand-held stereo392

acquisition system. The key idea of our work is that the stereoscopic images393

can be considered as a parameterization of the acquired surface. Therefore, our394

reconstruction method processes the data as much as possible into the image395

domain, before embedding the surface in the 3D space.396

The first contribution is an original sampling that creates a base mesh of the397

scanned surface. We show that the Poisson-disk sampling developed by (Peyrot398

et al., 2013) can be extended to a stereoscopic system, while retrieving the 3D399

information necessary to preserve features all along the process. This allows to400

take into account the surface geometry, although the sampling is realized on401

the stereoscopic images. The second contribution concerns our coarse-to-fine402

approach that allows to get a semi-regular mesh preserving the geometrical403

features as output of our acquisition system, by working mainly in the image404

domain.405

Our pipeline could be easily included into any stereoscopic acquisition sys-406

tem. It also has the advantage to create semi-regular output that can be directly407
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textured with the stereoscopic image, and is also much more faster and conve-408

nient than the classical pipeline.409

However, a lot of improvements remains possible. For instance, the runtime410

of our algorithm can be improved as some parts are implemented on CPU.411

It would be interesting to investigate parallel algorithms for all the stages, to412

allow quasi real-time reconstructions. We could also investigate new means to413

improve the shape fidelity, in order to be competitive with the semi-regular414

remeshing techniques. Another promising improvement would be to manage415

several views. Indeed, our current algorithm handles only one view, and thus416

only a part of the scanned object can be reconstructed. It would be relevant417

to study, for instance, mosaicing techniques, widespread in photogrammetry, to418

generate a large POI region representing the whole parameterized object, and419

thus to output a complete semi-regular representation of a physical object.420
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