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Scaling solution and n dependance of the eddy

current distribution in a flat superconductor
A. Kameni, D. Netter, S. Mezani, B. Douine and J. Levêque.

Groupe de Recherche en Electronique et Electrotechnique de Nancy, France

Abstract—In this paper we propose an approximate
analytical solution of the problem of nonlinear diffusion
of the current density in a HTS superconducting plate
with current transport. It is obtained by the technique
of the self-similar solution. The construction of this
solution highlights a characteristic time of penetration
Tp whose limit for large n is the model of Bean. We
compare our solution to the ones obtained using COM-
SOL multiphysics. We study the influence of variation
of the magnetic induction on the time penetration and
the influence of the n factor on the time penetration.

Index Terms—Self-similar solution, dimensional
analysis, ordinary differential equation (ODE), High
Temperature Superconductors(HTS).

.

I. Introduction

T
HE superconductors offer new development
prospects for many applications. Indeed, we

have an increase of the use of new conductors like
MgB2 or Y BCO coated conductors. Therefore, it is
important to determine precisely their properties to
design some application like superconducting motors or
superconducting fault current limiter.
The characterization of the superconductors is made by
experimentations and the principals critical values are
deduced from. These caracteristics are used to determine
the current density and the electric field by a numerical or
analytical calculation. They determine the penetration of
the induced fields in the superconductors. Unfortunately
the experimentals processes plays an important role
in their determination, and it became useful to have
approximations rules which allow to decribe the effects
due to the changing in their values.

In this paper we present an analytical and very easy
to implement solution of the penetration of the current
density in a superconducting plate taking into account a
variation of n factor. This calculation is also important
for the problem of trapped flux or magnetic screening,
because we can determine easily the time penetration
versus the factor n whatever its value.

We study a superconducting plate subjected to an
external field. The use of a power constitutive law (1)
to describe HTS superconducting materials, leads to non
linear vector differential equations (2) which are very
difficult to solve.
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Fig. 1: A superconducting plate which is subjected to an
external magnetic field.

This equation (2) is solved by a search of invariant
solution by change of scale [3]. It is the search of self-
similar solution [4]. This method was used with success to
describe magnetic induction in the case of a semi infinite
superconducting plate [5]. It is based on the existence of
a self-similar variable without dimension :

ξ(x, t) =
x

tm
(3)

With this new variable (3), and equation (2), an ordinary
differential equation is constructed. When the magnetic
field at the border of the domain has the following form
B = tp , with p ≥ 0, the solution is proportional to
tpf(ξ(x, t)) and f(ξ(x, t)) is a solution of an ordinary
differential equation. This problem has been studied and
is well-known [6].

We can consider for a superconducting plate two cases
for studies.

. For a superconducting plate subjected to an external
magnetic field the distribution of the current density
is asymmetric and the total current is null.

. For a superconducting plate with current transport,
the distribution of the current density is symmetric.
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The calculations are made with an electric field which
is imposed at the border based on a potential.

Our objective is to compute the electric field induced in a
finite superconducting plate subjected to a magnetic field
of the following form :

∂B

∂t
= tp (4)

This form for the variation of the magnetic field allows the
simulation of different rates of rise of the magnetic field.

Fig. 2: A symetric distribution of current density in a
superconducting plate.

As we can see in Fig.2, the current density has just one
component, thus the electric field has just one component:
−→
E = E−→e z. Consequently, the equation (2) is scalar.

4E = µ0
∂J

∂t
(5)

We adopt the following notations: v =
J

Jc

and c =
µ0Jc

Ec

.

With these notations, the previous equation becomes :

4vn = c
∂v

∂t
(6)

We propose to solve this equation by an analytical way.
This choice allows an easy to implement solution with
instantaneous calculation.

II. Analytical resolution

We suppose that

∂B

∂t
= ±VBtp (7)

Thus, we express our problem






c
∂v

∂t
−

∂2vn

∂x2
= 0

∂vn

∂x
|x=±a = ±VB

Ec
tp

v(x, 0) = 0

(8)

The main idea of the resolution is to transform this
partial differential equation in an ordinary differential
equation by a change of variable. We present in the first
part the construction of the differential equation and in
the second part the solve of the previous equation.

A. A ordinary differential problem

In this part, with the previous partial differential equa-
tion of the system (8), we build an ordinary differential
equation. This work began by the definition of a dimen-
sionless variable. With new variable we determine a new
function and we apply boundary and initial condition to
obtain the new differential equation.

1) Dimensionless variable

Firstly, our goal is to determine the dimensionless
variable. For that, we made a dimensional analysis
of the equations to solve :

[v]n

[x]2
= [c]

[v]

[t]
and

[v]n

[x]
=

[
VB

Ec

]

[t]p

From these two equations, we deduced:

[v]n−1 = [c]
[x]2

[t]
and [v]n = [x]

[
VB

Ec

]

[t]p

And we simplify these two previous equation,

[v] = [c]
1

n−1 [x]
2

n−1 [t]
1

n−1 and [v] = [x]
1
n

[
VB

Ec

] 1
n

[t]
p

n

So we deduce that the quantity
[c]

1
n−1 [x]

n+1
n(n−1)

[
VB

Ec

] 1
n

[t]
n+p(n−1)

n(n−1)

is dimensionless. From this result, we choose the
following shape for the dimensionless variable :

[ξ] =
[c]

n
n+1

[
VB

Ec

] n−1
n+1

[x]

[t]
n+p(n−1)

n+1

(9)

Finally, from this general form, we obtain the follow-
ing relationship for our variable :

ξ(x, t) =
a − |x|

btm
(10)

with

m =
n + p(n − 1)

n + 1
(11)

b =

(
VB

Ec

)n−1
n+1

c−
n

n+1 (12)

We need an absolute value for the variable x to re-
flect the symmetry of the system. A general property
of self similar solution gives the following form for the
solution v(x, t):

v(x, t) = Ktkg(ξ) (13)

Where K, k and function g have to be determined.

2) The ordinary differential equation

Now, we develop each term of the system (8) :
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∂2vn

∂x2
= Kntnk

(
∂ξ

∂x

) (
∂ξ

∂x

)
∂2gn

∂ξ2
(14)

∂v

∂t
= K

[

ktk−1g(ξ) + tk
∂ξ

∂t

∂g

∂ξ

]

(15)

And we have the following expressions for the deriva-
tives of ξ(x, t), when x ∈ [−a, 0 [∪] 0, a] and t > 0 :

∂ξ

∂x
= −b−1t−msign(x) (16)

∂ξ

∂t
= −m

ξ

t
(17)

After, we replace these equations in the first equation
of the system (8). Thus, we have now the following
equation to solve :

kg(ξ) − mξ
∂g

∂ξ
=

Kn−1

b2c
tkn−2m−k+1 ∂2gn

∂ξ2
(18)

The term t in the equation (18) induces a very
complicated non linearity. So, the scaling properties
of the self similar solution allow us to suppress this
term. Therefore we have a choice for the value of k :

k =
2m − 1

n − 1
(19)

With this choice, we obtain a simplification of equa-
tion (20).

Kn−1

b2c

∂2gn

∂ξ2
+ mξ

∂g

∂ξ
− kg(ξ) = 0 (20)

We need to calculate the initial and boundary con-
ditions.

3) Initial condition

After determining the form of ordinary differential
equation, we must calculate the initial condition
and the conditions at the borders.

We have v(x, 0) = 0, because at the initial time
the distribution of current is equal to zero in the
superconductor. At the initial time the dimensionless
variable becomes :

lim
t7→0

ξ(x, t) = lim
t7→0

a − |x|

btm
−→ ∞ (21)

As, we have v(x, t) = Ktkg(ξ), therefore, v(x, 0) = 0
is equivalent to g(∞) = 0.

4) Boundary condition

After initial condition, we need to calculate bound-
ary condition. The beginning of the calculation is the
second relation of the system (8)

∂vn

∂x
|x=±a = ±

VB

Ec

tp

So,

∂vn

∂x
|x=±a = −sign(x)

Kntkn−m

b

∂gn

∂ξ
|x=±a (22)

With the two previous relations, we obtain

∂gn

∂ξ
|ξ(±a,t) = ±

1

sign(x)

VB

Ec

tp+kn−m b

Kn
(23)

In the same way that for (18), we need to suppress
the non linearity induced by the term t. This is
realised thanks to the relations (11) and (19) which
lead to p = kn − m.
Therefore, we have

∂gn

∂ξ
|ξ(±a,t) = −

VB

Ec

b

Kn
(24)

Finally, we have the whole system:






Kn−1

b2c

∂2gn

∂ξ2
+ mξ

∂g

∂ξ
− kg(ξ) = 0

∂gn

∂ξ
|ξ(±a,t) = −

VB

Ec

b

Kn

g(∞) = 0

(25)

To simplify this expression, we notice λ =
Kn−1

b2c
.

We obtain







λ
∂2gn

∂ξ2
+ mξ

∂g

∂ξ
− kg(ξ) = 0

∂gn

∂ξ
|ξ(±a,t) = −λ−

n
n−1

g(∞) = 0

(26)

B. Resolution of the ordinary differential problem

The second step of this work is to solve the system (26).
Our work is based on a modification of a calculation made
by Mayergoysz [6]. The main idea is to use a particular
case of the equation which has an exact solution to obtain
the asymptotic behavior of the general solution of the
system (26). We write a new formulation the equation
that we have to solve introducing ξm coefficient.

First equation of system (26) become

λ
∂2gn

∂ξ2
+ mξm

∂g

∂ξ
− m(ξm − ξ)

∂g

∂ξ
− kg(ξ) = 0 (27)

First, we calculate a particular solution and after, we
present the calculation of the asymptotic behavior of the
general solution.

1) Solution for m = 1
For the case where m = 1, we have an exact solution
of the equation which is :

g(ξ) =

{

d1(ξ1 − ξ)
1

n−1 0 ≤ ξ ≤ ξ1

0 ξ ≥ ξ1
(28)

And

d1 =

(
(n − 1)ξ1

λn

) 1
n−1

(29)

We do not calculate ξ1 for the moment; we make it
in a most general case with the boundary condition
in the next part.
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2) Solution for m 6= 1
The general solution of our problem has an asymp-
totic form which looks like the particular solution

g(ξ) ∝ dm(ξm − ξ)
1

n−1 (30)

The uses of this expression (30) and its introduction
in equation (27) give the following expression for dm.

dm =

(
m(n − 1)

n

ξm

λ

) 1
n−1

(31)

The approximate solution is built like the N terms
of series expansion around its asymptotic expression

g(ξ) = dm(ξm − ξ)
1

n−1

N∑

i=0

fi(ξm − ξ)
i

(32)

Let’s consider f0 = 1. We limit our calculation to the
first term. We show in the presentation of the results
that it is sufficient. Thus, we just need to calculate
f1. To make this calculation, we use equation (32).
The introduction of g(ξ) in the ODE (27) is taken
as a linear combination of dm(ξm − ξ)γ+i−1 :

Φ0(ξm − ξ)
γ−1

+Φ1(ξm − ξ)
γ
+Φ2(ξm − ξ)

γ+1
+... = 0

(33)

with γ =
1

n − 1
. It forms a family of a space vector

of dimension N + 1 and it is a base only if all term
Φi are equal to zero. As we limit our development
to the first term, the coefficient Φ0 and Φ1 are the
following :

Φ0 =
n

(n − 1)2
λdn

m −
m

n − 1
dmξm (34)

Φ1 =
n2

(n − 1)2
dn

mλf1 +
2n2

n − 1
λdn

mf1 − mξmdmf1

−
mdm

n − 1
ξmf1 +

m

n − 1
dm − kdm

(35)

From Φ1 = 0, we obtain

f1 =
k(n − 1) − m

2mξmn(n − 1)
(36)

Now, it is necessary to calculate the term ξm. To this
end, we use the boundary condition

∂gn

∂ξ
|ξ(±a,t) = −λ−

n
n−1

We use the following notation :

G0(ξ) =

N∑

i=0

fi(ξm − ξ)
i

(37)

G1(ξ) =

N∑

i=1

ifi(ξm − ξ)
i−1

(38)

So, we obtain the following expression for the bound-
ary conditions

∂gn

∂ξ
= −

[
1

n − 1
G0(ξ) + (ξm − ξ) G1(ξ)G

n−1
0 (ξ)

]

×ndn
m(ξm − ξ)

1
n−1

(39)

For x = ±a we have ξ(x = ±a, t) = 0. Therefore, we
obtain the following relation

ndn
m(ξm)

1
n−1

[
1

n − 1
G0(0) + ξmG1(0)Gn−1

0 (0)

]

= −λ−
n

n−1

(40)

As, we limit our calculation to the first order :

G0(0) = 1 + ξmf1 (41)

G1(0) = f1 (42)

Finally, we obtain

ndn
m(ξm)

1
n−1

[
1 + ξmf1

n − 1
+ ξmf1(1 + ξmf1)

n−1

]

= −λ−
n

n−1

(43)

The final result for ξm is given by this expression

ξm =
n

mn(n − 1)

1
n−1

[

1 + q + (n − 1)q(1 + q)n−1
]−n−1

n+1

(44)

with q =
k(n − 1) − m

2mn(n − 1)
. The general solution can be

written as

g(ξ) ≈ λ−
1

n−1

(
m(n − 1)ξm

n

) 1
n−1

(ξm − ξ)
1

n−1

×

(

1 +
q

ξm

(ξm − ξ)

) (45)

We have calculated the general solution of our sys-
tem. The last point consists to determine the current
distribution.

C. Calculation of the current density

We have v(x, t) = Ktkg(ξ) and ξ =
a − |x|

btm
. So, with

the previous results

v(x, t) = Ktkλ−
1

n−1

(
m(n − 1)ξm

n

) 1
n−1

(

ξm −

[
a − |x|

btm

]) 1
n−1

×

(

1 +
q

ξm

(

ξm −

[
a − |x|

btm

]))

(46)

and Kλ−
1

n−1 = K

(
Kn−1

b2c

)

= b2c.

So, we have the complete solution for the system (8)
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





c =
µ0Jc

Ec

b =
VB

Ec

n−1
n+1

c−
n

n−1

m =
n + p(n − 1)

n + 1

k =
2m − 1

n − 1

q =
k(n − 1) − m

2mn(n − 1)

ξm =
n

mn(n − 1)

1
n−1

[

1 + q + (n − 1)q(1 + q)
n−1

]−n−1
n+1

ξ =
a − |x|

btm

dm =

(
m(n − 1)ξm

n

) 1
n−1

J

Jc

=
(
b2c

) 1
n−1 tk(ξm − ξ)

1
n−1

[

1 +
q

ξm

(ξm − ξ)

]

(47)
Now, we can consider two cases, the complete penetra-

tion and the incomplete penetration.The limit for both
cases is obtained as soon as only v(x = 0, t) is equal to
zero. We note that v(x = 0, t) = 0 when the dimensionless

variable ξ(x = 0, t) reaches at ξm : ξ(x = 0, t) =
a

btm
= ξm.

This equality enable us to define the penetration time Tp

:

Tp =

(
a

bξm

) 1
m

(48)

1) Incomplete penetration

When t < Tp, the proposed solution is suitable for
study of a superconducting plate when :

. An external magnetic field such as
∂B

∂t
|x=±a =

VBtp is applied. In this case, for x ∈ [−a, a], we
have v(−x, t) = −v(x, t).

. A transport current such as
∂B

∂t
|x=±a = ±VBtp

is imposed. In this case, for x ∈ [−a, a], we have
v(−x, t) = v(x, t).

Both cases, the penetration is characterized by posi-

tion xf (t) and speed
dxf

dt
of the fronts of the current

density. We remark that ξ(x, t) ∈ [0, ξm] leads to
a − ξmbtm ≤ |x| ≤ a. This allow us to deduce :

xf (t) = a − ξmbtm (49)

dxf

dt
(t) = mξmbtm−1 (50)

2) Complete penetration

When t > Tp, we have ξ > ξm. The proposed solution
needs additional considerations :

. In applied magnetic field, we need to impose
v(x = 0, t) = 0.

. In transport current, current density becomes
rapidly independent of the position x. We con-
sider that v(x, t) ≈ v(t). By using the Ampere’s

law
∂B

∂x
= µ0Jcv(t), and the assumption such

as v(t) = v(t) − v(Tp)
︸ ︷︷ ︸

t>Tp

+ v(x = 0, Tp)
︸ ︷︷ ︸

t=Tp

, we propose

the following expression for the complete pene-
tration :

v(t) =
VB

(p + 1)µ0Jca

(
tp+1 − T p+1

p

)
+

(
b2c

) 1
n−1 T k

p

×(ξm)
1

n−1 [1 + q]
(51)

III. Results

First, we need to choose the size and characteristics of
the superconducting plate and the rate. These character-
istics are summarized in the following table.

Parameters Values Units
2a 10 mm

Ec 10−4 V.mm−1

Jc 100 A.mm−2

n 20
p 0

VB 1 T.s−1

TABLE I: parameters for the simulation

With these data, we can calculate the time for the full
penetration in the superconductor : Tp = 0.72s

A. Comparison between analytical and numerical results

We present in Fig.3 and Fig.4 the comparison between
analytical and numerical results obtain by Comsol [7] for
two times. We notice a very good correlation. These results
validate our method and the choice of one term in the serial
expansion.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x (mm)

J/
J c

t = 2T
p
 / 3

Analytic
Numeric

Fig. 3: Comparison of analytical and numerical profiles in
partial penetration at t = 0.48s
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Fig. 4: Comparison of analytical and numerical profiles in
full penetration at t = 0.77s

B. Influence of n−factor on the penetration time

We can show in Fig.5 the variation of the time penetra-
tion versus n−factor. It is important to remark that this
method is suitable to calculate time penetration for high
value of n−factor.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

n

T
p  (

s)

T
bean

 

Fig. 5: n−factor versus time penetration

We notice that the time of penetration decrease when
the n factor increases and it is constant when the n factor
is greater than 50. In this case, it coincides with the Bean
model.

C. Influence of the rise of magnetic flux on the penetration

time

In this part, we study the influence of increased time of
magnetic flux on the penetration of the current density
in the superconductors.

When VB is small and n increases, the penetration of J

is slower. The position of fronts and the penetration time
grow to reach the higher limits given by the Bean model
as shown in Fig.6. The Bean model overestimates xf and
Tp. When VB is large and n increases, the penetration of J

is faster. The position of fronts and the penetration time
decreases to the lower limits of the Bean model as shown
in Fig.7. The Bean model underestimates xf and Tp.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40
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60

V
B
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T
p (

s)

Bean
n=5
n=20

Fig. 6: Time penetration for small values of VB .
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T
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Fig. 7: Time penetration for large values of VB .

IV. Conclusion

We present in this paper an extension of the method
developed for the first time by Mayegoysz. Our calculation
is able to determine the diffusion of current density in
a finite superconducting plate for for all values of the
n−factor. We show also the influence of the rise of the
magnetic flux on the time penetration and the influence
of n−factor on the time penetration.
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