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Abstract—A real demand for underwater acoustic (UWA) 
communications exists in oceanography, ocean exploration and 
undersea navigation. A new Doppler resilient digital 
communication, based on quadratic frequency modulations 
(QFM) is presented. The binary information is transmitted using 
two orthogonal QFM chirps. This signal modulation is suitable 
for low-data-rate communication such as telemetry. The first 
motivation of this paper resides in the performance of the non-
coherent detector for binary QFM signal detection. It is shown 
that for some spreading factors, the detection of QFM signal 
waveform gives better performance than a linear frequency 
modulation (LFM) signal waveform in terms of bit error rate. 
The second motivation is that the non-coherent receiver is more 
Doppler resilient for QFM waveforms than LFM. An analytical 
demonstration is given, which predicts the simulated results. Real 
underwater commutations were accomplished on the Atlantic 
Ocean on February 2015.  

Keywords—Linear & Quadratic Frequency Modulation (LFM 
& QFM); Doppler compression-dilatation; Non-coherent detection; 
Underwater acoustic (UWA) channel. 

I.  INTRODUCTION  

Digital communications have evolved to the point it is 
possible to communicate underwater. When studying the 
problem of sending information form one point to another, the 
perturbations induced by the channel must be analyzed, for 
then being able to choose a proper signal waveform. 

Reliable UWA communications is challenging due to the 
channels’ characteristics. These include high power 
attenuation, small bandwidth, fast time variability, signal 
compression-dilatation due to relative speed between source 
and receiver and multi-path propagation.  

The low celerity of acoustic waves results in larger Doppler 
shifts than in radio transmissions. This is not the only effect of 
Doppler in acoustic waves. Unlike radio waves, which Doppler 
shift is modelled as a frequency offset, symbol duration 
compression dilatation cannot be neglected. If the Doppler is 
significant, this results on frame desynchronization and loss of 
information. Relative speed between source and receiver is not 
the only cause of signal compression-dilatation. Difference 
between the sampling frequencies has the same consequence as 
Doppler. This means that if digital-analog-converter is not 
accurate, we have to take into account this problem in our 
system.  

Coherent modulation methods have been extensively 
studied during the past years. These methods have good 
spectral efficiency, however in practice, when communication 
robustness is desired above bit rate, non-coherent modulations 
are favored. A non-coherent modulation will be presented as 
shown in Fig. 1. This means that there will be two signals 
representing the bits, and we will do the projection of the 
observation on the respective signals subspaces and compare 
the energy of both projections to see which is bigger. An 
intuitive consideration is that if the signals are orthogonal, the 
system performance will increase. 

 

Fig. 1. Non-coherent detector block diagram. 
 

Chirp spread spectrum (CSS) techniques seem to be 
reliable, given their low Doppler sensitivity and multipath 
robustness as presented in [1]-[7]. The first chirp waveform 
that comes to mind is the linear frequency modulation (LFM) 
because of its simplicity. The problem of this waveform is that 
to obtain orthogonality between two LFM, large time-
frequency product (also known as spreading factor) are needed 
as shown in [8]. Large spreading factors will mean 
considerable symbol periods or wide bandwidths. Ideally, we 
are interested in having significant bit rates while keeping good 
robustness properties. Thus, a LFM will occupy undesirable 
large bandwidths. Nevertheless, it could be possible to do 
digital signaling with non-orthogonal LFM with small 
spreading factors, but it will not be an optimal waveform in the 
sense of minimizing errors. 

Therefore, it is important to decide which chirp signal will 
be sufficiently orthogonal for small spread factors to send 
information. In this paper, it will be analyzed the quadratic 
frequency modulation (QFM) as shown in Fig. 2.  



 

 
 
Fig. 2. Instantaneous frequency of binary QFM 
 

LFM are widely used in radar applications for its resilience 
to Doppler as indicated in [9]. Its ambiguity function has been 
deeply studied to prove its correlation properties face severe 
Doppler. An important property of QFM is that it is more 
resilient to Doppler than LFM waveforms as shown in [10].  

II. SYSTEM MODEL 

We will start by expressing mathematically the signal 
waveforms, and then express mathematically the effect on the 
signal of a compression-dilatation.  

A. LFM and QFM 

LFM is the first and probably still is the most popular 
frequency modulation. It was conceived during World War II, 
independently on United States and Europe for radar 
applications. Our application is not distant from a detection 
problem such as in radar or sonar. Here, LFM is used to 
perform a digital communication.  Considering an up-LFM and 
down-LFM as 
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where ߝ௕ is the signal energy,  ܶ is the time period, ܤ is the 
bandwidth and ௖݂ is the carrier frequency. The spreading factor 
will be defined as the product of the bandwidth and time 
period ܶܤ. This parameter expresses the spreading of the signal 
over the time-frequency space. In this paper a constant signal 
envelope is considered. Assuming a non-constant signal 
envelope changes the signal’s correlation and orthogonality 
properties, which is beyond the objective of this paper. 

We will use ݏ଴ and ݏଵto code a bit 0 and 1 respectively. The 
hypothesis test is presented as follows  

 ൜
:଴ܪ ݎ = ଴ݏ + ݊
ݎ :ଵܪ = ଵݏ + ݊ (3) 

Where ݊ ~ܰ(0,
ேబ

ଶ
) is an additive Gaussian white noise 

(AWGN). Given the structure of the non-coherent maximum a 

posteriori detector, deciding ܪଵ (a bit equal to 1) or ܪ଴ (a bit 
equal to 0) 
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Where ‖〈∗,∗〉‖ is the absolute value of the scalar product 
between the observation ݎ and ݏଵ and ݏ଴ respectively. 
Considering choosing ܪଵ knowing ܪ଴ occurs (which means an 
error happens),  

,଴ݏ〉‖  〈ଵݏ + 〈݊, ‖〈ଵݏ − ,଴ݏ〉‖ 〈଴ݏ + 〈݊, ‖〈଴ݏ > 0 (5) 

Analyzing expression (5), given that for LFM 
signals 〈ݏ଴, 〈ଵݏ ് 0 the performance will deteriorate in terms of 
bit error rate in comparison to the case when the waveforms are 
orthogonal. 

QFM signals have an instantaneous frequency as shown in 
Fig. 2. This can be expressed mathematically as 
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In section III we will study the orthogonality of the QFM to 
show the first interest of using this waveform.  

B. Doppler compression-dilatation 

As the receiver and transmitter move with relative speed ݒ 
the waveform suffers a compression-dilatation [12], which 
could be modeled as follows 
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ݒ
ܿ

ቁቇ ;  ݅ = 0,1 (8) 

where ܿ is the celerity of acoustic waves in sea water. For 
the LFM this effect could be expressed as  
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The effect of the compression-dilatation will impact on the 

waveform in two ways, a Doppler frequency shift that is 
proportional to the carrier frequency ∆ ௗ݂ =

௩

௖ ௖݂. This term also 
exists when we work with radio waves, even though the 
celerity of radio waves is several orders of magnitude greater 
than acoustic waves.  

The second impact of the Doppler compression-dilatation is 
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LFM will remain unchanged by Doppler.    



For the QFM a similar expression of the Doppler 
compression-dilatation as the one shown in (9) is the following 
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Once again, a Doppler frequency shift proportional to 

 ∆ ௗ݂ ≅
௩

௖ ௖݂ (considering ܤ ≪ ௖݂) and the term  
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related to the Doppler resilience.  

III. ORTHOGONALITY & DOPPLER RESILIENCE 

We will start discussing the orthogonality of both LFM and 
QFM and compare them as a function of the spread factor ܶܤ 
and then we will talk over the Doppler resilience of both 
waveforms.  

A. Orthogonality 

Considering the orthogonality between two waveforms as 
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Without loss of generality, for calculating 〈ݏ଴,  ଵ〉 we useݏ
the complex expressions of ݏ଴ and ݏଵ. 

For the LFM, the cross inner product becomes 
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Where (ݔ)ܥ and ܵ(ݔ) are the cosine and sine Fresnel 
integrals defined as 
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Fig. 3. Cross inner product for LFM and QFM 

We observe that ‖〈ݏ଴, ܶܤ ଵ〉‖ tends to zero whenݏ → +∞. 
For the QFM we find  
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To solve the integral we will use the stationary-phase 
approximation [10] which gives us 
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Fig. 3 shows the cross inner product ‖〈ݏ଴,  ଵ〉‖ of the LFMݏ
waveform (12) and the QFM cross inner product 
approximation (15) as a function of  ܶܤ. Both waveforms 
decay proportional to 

ଵ

√୆୘
. The QFM cross inner product is a 

periodic function of ܶܤ, which means that for certain spreading 
factors it is orthogonal.   

B. Doppler Resilience 

We will now study the Doppler resilience for both 
waveforms. The ambiguity function has been widely used, 
especially in radar [9-11], to study the properties of waveforms 
with respect to time-frequency shifts. In our case, we work 
with a different version of the ambiguity function than the 
commonly used in radar. The ambiguity function is defined as 
follows 
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 Defining the cross-ambiguity function as  
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   To study the Doppler robustness of the non-coherent 
detector, we will look at the difference between the ambiguity 
function and the cross-ambiguity function 

 Γ(߬, (ݒ = ‖Λ௜(߬, ௩)‖ − ฮΛ௜,௝(߬, ௩)ฮ; ݅ = 0,1 (18) 

Fig. 4. LFM half-energy contour, ݂ܿ = 17.5 kHz, ܶܤ 3.6 
and ܶ = 10 ms 



On Fig. 4 and Fig. 5, we define a half-energy contour, 
which are all the points ߬, ,߬)that Γ ݒ (ݒ >

ఌ್

ଶ
 . 

The carrier frequency was chosen with respect to the 
transducer used on the trials, and the spreading factor is the 
second root of the QFM cross inner product function as shown 
in Fig. 3. 

 

 

Fig. 5. QFM half-energy contour, ݂ܿ = 17.5 kHz, ܶܤ = 3.6 
and ܶ = 10 ms 

 

Fig. 4 and Fig.5 give an idea of the robustness to an error in 
synchronization and the robustness to a relative speed between 
source and receiver. As the area of the QFM half-energy 
contour is bigger than the LFM’s, it can be deduced that it is 
more resilient to Doppler and to a synchronization error.  

Fig. 6 and Fig. 7 show the 70 % energy contour of LFM 
and QFM respectively.  

 

Fig. 6. LFM 70% energy contour, ݂ܿ = 17.5 kHz, ܶܤ = 3.6 
and ܶ = 10 ms 

 

Fig. 7. QFM 70% energy contour, ݂ܿ = 17.5 kHz, ܶܤ = 3.6 
and ܶ = 10 ms 

 

On these figures we observe the effect of the non-
orthogonality of the LFM given that the contour’s area is 
heavily reduced. 

 It is interesting to highlight that for some cases, the Γ(߬,  (ݒ
function is negative, which means that for those values of ߬,  ݒ
the decision will be inverted. Fig. 8 and Fig. 9 show the Γ(߬,  (ݒ
contour for negative values. 

 This means that for the light green regions there will be 
errors in every bit even in the absence of noise.    

 

  

Fig. 8. LFM negative contour, ݂ܿ = 17.5 kHz, ܶܤ = 3.6 and 
ܶ = 20 ms 



 

Fig. 9. QFM negative contour, ݂ܿ = 17.5 kHz, ܶܤ = 3.6 and 
ܶ = 20 ms 

  

IV. SIMULATION ANS RESULTS 

To illustrate the results, we will begin showing the 
performance of LFM and QFM over a noisy channel. Next, we 
show the behavior of the detector with Doppler and noise 
simultaneously. Finally, we will present the results obtained 
over a real underwater channel. 

A. Noisy Channel 

Considering the test hypothesis (3), the non-coherent 
detector is 
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As ‖〈ݎ,  ଴〉‖ is the absolute value of a non-centeredݏ
Gaussian variable, ‖〈ݎ, ‖〈ଵݏ − ,ݎ〉‖  ଴〉‖ is the subtraction ofݏ
two Rice distributions.  

We will not go into further detail of the theoretical bit error 
probability, we will only highlight that a non-coherent detector 
has slightly lower performance than the coherent detector. The 
reason we chose a non-coherent detector is that it is easier to 
synchronize, because there is no need to estimate the phase. 
Phase estimation sometimes requires advanced signal 
processing such as phase-lock loop (PLL). Avoiding this kind 
of problem with a non-coherent detector seems interesting.  

Fig. 10 shows the simulated bit-error rate of the LFM and 
QFM non-coherent detector. We used a spread factors ܶܤ =
1.4 and 3.6. This values where chosen because as shows Fig. 3, 
they are the first and second roots of the QFM cross inner 
product function, which means that the QFM waveforms are 
orthogonal for these values. 

 

Fig. 10. LFM and QFM Bit error rate, ܶܤ = 1.4 

 

We observe lower bit error rate for the QFM than for LFM 
at same ܶܤ. For ܶܤ = 1.4, the difference between the LFM 
and QFM ܴܧܤ is higher than for ܶܤ = 3.6. This is because the 
difference of cross-inner product as shown in Fig. 3 is greater 
for ܶܤ = 1.4 than for ܶܤ = 3.6. 

B. Doppler Channel.   

The simulated performance of the detector over a Doppler 
and noisy channel are shown in this section. It must be 
highlighted that there are several parameters that count when 
introducing Doppler into the channel. The carrier frequency 
will have an important impact in the performances given that 
the Doppler frequency shift is ∆ ௗ݂ ≅

௩

௖ ௖݂. If the Doppler 
frequency shift is significant over the bandwidth, the bit error 
rate risks being poor.  

For the simulations, it was used a carrier frequency of ௖݂ =
17.5 kHz and a relative speed ݒ =  Fig. 11 shows the .ݏ/݉ 1
results for these values. 

 

Fig. 11. LFM and QFM BER, ௖݂ = 17.5 kHz and ݒ = 1 m/s 

 



The performance is deteriorated with respect to the noisy 
channel of section IV.A. This is because of the Doppler. The 
Doppler frequency shift is ∆ ௗ݂ =

௩

௖ ௖݂ = 11,6 Hz and the 

bandwidth are ܤ@ଵ.ସ =  140 Hz and ܤ@ଷ.଺ =  360 Hz, which 

makes the ratio frequency shift over bandwidth less than 
 ∆௙೏

஻
<

10%. Nevertheless, the performance is superior with the QFM 
waveform.  

C. Real UWA channel.  

We had the opportunity to organize real trials in the 
Atlantic Ocean on February 2015. The trials where done 
between docks in the port of Brest, Brittany, France as shown 
in Fig. 12 at a distance of ݀ = 800 m.  

For the trials, it was used a spherical omnidirectional 
transducer ITC-1001 with a resonance frequency ௥݂ =
17.5 kHz and a transmitting voltage response ܸܴܶ =
149 dB μPa/V⁄ @ 1m. Given the resonance frequency we 
chose a carrier frequency ௖݂ = 17.5 kHz. 

In reception, 4 hydrophones Brüel & Kjaer types 8106 were 
used and two National Instruments cards (NI-USB 6356) as 
DA/AD converters,  

 

Fig. 12. Real trials, transmission setup. 

 

It is shown in table 1, the results obtained from the trials. 
The transmission were done for different time periods ܶ =
5, 10 and 20 ms. We send approximately 5000 bits of 
information with a spreading factor ܶܤ = 1.4 for the QFM 
and ܶܤ = 3.6 for both LFM and QFM. We used a band of 
 where we multiplexed several LFM and QFM ݖܪ݇ 3

waveforms on the whole band. Frames of 250 ms were used, 
synchronized by a pilot signal at the beginning of the frame. 
Each frame contained 240 bits/frame when ܶܤ = 1.4 and 
96 bits/frame when ܶܤ = 3.6. 

In reception we had 4 hydrophones, hence we have 4 BER 
estimate each time on Table 1 and Table 2. 

The ܴܵܰ varies between 4 −  depending on the ܤ25݀
hydrophone and on the frame, consequently sometimes we 
have high ܴܧܤ.   

 

Table 1. LFM and QFM BER, real UWA trials ܶܤ = 3.6 

 

In general the QFM performed better than the LFM. Table 
2 shows the results of QFM for a spreading factor ܶܤ = 1.4 

 

 

Table 2. QFM BER, real UWA trials ܶܤ = 1.4 

 

We observe that even at a low spreading factor, when 
signal to noise ratio is sufficient, we arrive to send information 
with acceptable BER which could be decreased using channel 
coding. The using of this low spreading factor would not have 
been possible with the LFM waveform. 

It must be underlined that given the difference between the 
sampling frequencies, we have done a frequency sampling 
compensation for decoding the information.   



V. CONCLUSION 

A Doppler resistant way of sending information with 
quadratic chirps is studied in this paper. This waveform was 
compared analytically and in simulation with a classic linear 
frequency modulation and showed that it performs better in 
presence of noise and Doppler. Its implementation for 
telemetry has been justified assuming the difficulty of sending 
small duration bursts.  

It must be highlighted that the LFM and QFM studied on 
this paper have constant instantaneous amplitude. 
Orthogonality and correlation properties will change if we 
change the signal’s envelope. Additionally, it may be 
interesting to analysis these properties in the future.  

Further analysis would include the investigation of the 
waveform’s robustness to multi-path propagation.  
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