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Asymptotic stability in the energy space for dark solitons of the

Landau-Lifshitz equation

Yakine Bahri 1
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Abstract

We prove the asymptotic stability in the energy space of non-zero speed solitons for the

one-dimensional Landau-Lifshitz equation with an easy-plane anisotropy

∂tm+m× (∂xxm−m3e3) = 0

for a map m = (m1,m2,m3) : R × R → S2, where e3 = (0, 0, 1). More precisely, we show

that any solution corresponding to an initial datum close to a soliton with non-zero speed,

is weakly convergent in the energy space as time goes to infinity, to a soliton with a possible

different non-zero speed, up to the invariances of the equation. Our analysis relies on the

ideas developed by Martel and Merle for the generalized Korteweg-de Vries equations. We

use the Madelung transform to study the problem in the hydrodynamical framework. In

this framework, we rely on the orbital stability of the solitons and the weak continuity of

the flow in order to construct a limit profile. We next derive a monotonicity formula for the

momentum, which gives the localization of the limit profile. Its smoothness and exponential

decay then follow from a smoothing result for the localized solutions of the Schrödinger

equations. Finally, we prove a Liouville type theorem, which shows that only the solitons

enjoy these properties in their neighbourhoods.

1 Introduction

We consider the one-dimensional Landau-Lifshitz equation

∂tm+m× (∂xxm+ λm3e3) = 0, (LL)

for a map m = (m1,m2,m3) : R × R → S
2, where e3 = (0, 0, 1) and λ ∈ R. This equation

was introduced by Landau and Lifshitz in [20]. It describes the dynamics of magnetization in
a one-dimensional ferromagnetic material, for example in CsNiF3 or TMNC (see e.g. [19, 16]
and the references therein). The parameter λ accounts for the anisotropy of the material. The
choices λ > 0 and λ < 0 correspond respectively to an easy-axis and an easy-plane anisotropy. In
the isotropic case λ = 0, the equation is exactly the one-dimensional Schrödinger map equation,
which has been intensively studied (see e.g. [15, 17]). In this paper, we study the Landau-
Lifshitz equation with an easy-plane anisotropy (λ < 0). Performing, if necessary, a suitable
scaling argument on the map m, we assume from now on that λ = −1. Our main goal is to prove
the asymptotic stability for the solitons of this equation (see Theorem 1.1 below).

1Centre de Mathématiques Laurent Schwartz, École polytechnique, 91128 Palaiseau Cedex, France. E-mail:
yakine.bahri@polytechnique.edu
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The Landau-Lifshitz equation is Hamiltonian. Its Hamiltonian, the so-called Landau-Lifshitz
energy, is given by

E(m) :=
1

2

∫

R

(

|∂xm|2 +m2
3

)

.

In the sequel, we restrict our attention to the Hamiltonian framework in which the solutions m
to (LL) have finite Landau-Lifshitz energy, i.e. belong to the energy space

E(R) :=
{

υ : R → S
2, s.t. υ′ ∈ L2(R) and υ3 ∈ L2(R)

}

.

A soliton with speed c is a travelling-wave solution of (LL) having the form

m(x, t) := u(x− ct).

Its profile u is a solution to the ordinary differential equation

u′′ + |u′|2u+ u23u− u3e3 + cu× u′ = 0. (TWE)

The solutions of this equation are explicit. When |c| ≥ 1, the only solutions with finite Landau-
Lifshitz energy are the constant vectors in S

1 × {0}. In contrast, when |c| < 1, there exist
non-constant solutions uc to (TWE), which are given by the formulae

[uc]1(x) =
c

cosh
(

(1− c2)
1
2x
)

, [uc]2(x) = tanh
(

(1− c2)
1
2x
)

, [uc]3(x) =
(1− c2)

1
2

cosh
(

(1− c2)
1
2x
)

,

up to the invariances of the problem, i.e. translations, rotations around the axis x3 and orthogonal
symmetries with respect to the plane x3 = 0 (see [9] for more details).

Our goal is to study the asymptotic behaviour for solutions of (LL) which are initially close to
a soliton in the energy space. We endow E(R) with the metric structure corresponding to the
distance introduced by de Laire and Gravejat in [10],

dE (f, g) := |f̌(0)− ǧ(0)|+ ‖f ′ − g′‖L2(R) + ‖f3 − g3‖L2(R),

where f = (f1, f2, f3) and f̌ = f1+ if2 (respectively for g). The Cauchy problem and the orbital
stability of the travelling waves have been solved by de Laire and Gravejat in [10]. We are
concerned the asymptotic stability of travelling waves. The following theorem is our main result.

Theorem 1.1. Let c ∈ (−1, 1) \ {0}. There exists a positive number δc, depending only on c,
such that, if

dE
(

m0, uc
)

≤ δc,

then there exist a number c
∗ ∈ (−1, 1) \ {0}, and two functions b ∈ C1(R,R) and θ ∈ C1(R,R)

such that
b′(t) → c

∗, and θ′(t) → 0,

as t→ +∞, and for which the map

mθ :=
(

cos(θ)m1 − sin(θ)m2, sin(θ)m1 + cos(θ)m2,m3

)

,

satisfies the convergences

∂xmθ(t)

(

·+b(t), t
)

⇀ ∂xuc∗ in L2(R), mθ(t)

(

·+b(t), t
)

→ uc∗ in L∞
loc(R),

and
m3

(

·+b(t), t
)

⇀
[

uc∗
]

3
in L2(R),

as t→ +∞.
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Remarks. (i) Note that the case c = 0, that is black solitons, is excluded from the statement of
Theorem 1.1. In this case, the map ǔ0 vanishes and we cannot apply the Madelung transform and
the subsequent arguments. Orbital and asymptotic stability remain open problems for this case.
Note that, to our knowledge, there is currently no available proof of the local well-posedness of
(LL) in the energy space, when u0 vanishes and so the hydrodynamical framework can no longer
be used.
(ii) Here, we state a weak convergence result and not a local strong convergence one, like the
results given by Martel and Merle for the Korteweg-de Vries equation [23, 24]. In their situation,
they can use two monotonicity formulae for the L2 norm and the energy. This heuristically
originates in the property that dispersion has negative speed in the context of the Korteweg
de Vries equation. In contrast, the possible group velocities for the dispersion of the Landau-
Lifshitz equation are given by vg(k) = ± 1+2k2√

1+k2
, where k is the wave number. Dispersion has

both negative and positive speeds. A monotonicity formula remains for the momentum due to
the existence of a gap in the possible group velocities, which satisfy the condition |vg(k)| ≥ 1.
However, there is no evidence that one can establish a monotonicity formula for the energy.

Similar results were stated by Soffer and Weinstein in [27, 28, 29]. They provided the asymptotic
stability of ground states for the nonlinear Schrödinger equation with a potential in a regime for
which the nonlinear ground-state is a close continuation of the linear one. They rely on dispersive
estimates for the linearized equation around the ground state in suitable weighted spaces, and
they apply a fixed point argument. This strategy was successful extended in particular by
Buslaev, Perelman, C. Sulem and Cuccagna to the nonlinear Schrödinger equations without
potential (see e.g. [4, 5, 6, 7]) and with a potential (see e.g. [12]). We refer to the detailed
historical survey by Cuccagna [8] for more details. In addition, asymptotic stability in spaces of
exponentially localized perturbations was studied by Pego and Weinstein in [26] (see also [25]
for perturbations with algebraic decay).

Our strategy for establishing the asymptotic stability result in Theorem 1.1 is reminiscent
from ideas developed by Martel and Merle for the Korteweg-de Vries equation [22, 23, 24], and
successfully adapted by Béthuel, Gravejat and Smets in [3] for the Gross-Pitaevskii equation.

The main steps of the proof are similar to the ones for the Gross-Pitaevskii equation in [2].
Indeed, the solitons of the Landau-Lifshitz equation share many properties with the solitons of
the Gross-Pitaevskii equation. In fact, the stereographic variable ψ defined by

ψ =
u1 + iu2
1 + u3

,

verifies the following equation

∂xxψ +
1− |ψ|2
1 + |ψ|2ψ − ic∂xψ =

2ψ̄

1 + |ψ|2 (∂xψ)
2,

which can be seen as a perturbation of the equation for the travelling waves of the Gross-Pitaevskii
equation, namely

∂xxΨ+ (1− |Ψ|2)Ψ− ic∂xΨ = 0.

However, the analysis of the Landau-Lifshitz equation is much more difficult. Indeed, we rely
on a Hasimoto like transform in order to relate the Landau-Lifshitz equation with a nonlinear
Schrödinger equation. During so, we lose some regularity. We have to deal with a nonlinear
equation at the L2-level and not at the H1-level as in the case of the Gross-Pitaevskii equation.
This leads to important technical difficulties.

Coming back to the proof of Theorem 1.1, we first translate the problem into the hydrodynamical
formulation. Then, we prove the asymptotic stability in that framework. In fact, we begin by
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refining the orbital stability. Next, we construct a limit profile, which is smooth and localized. For
the proof of the exponential decay of the limit profile, we cannot rely on the Sobolev embedding
H1 into L∞ as it was done in [2]. We use instead the results of Kenig, Ponce and Vega in [18],
and the Gagliardo-Niremberg inequality (see the proof of Proposition 2.7 for more details). We
also have to deal with the weak continuity of the flow in order to construct the limit profile.
For the Gross Pitaevskii equation, this property relies on the uniqueness in a weaker space (see
[2]). There is no similar result at the L2-level. Instead, we use the Kato smoothing effect. The
asymptotic stability in the hydrodynamical variables then follows from a Liouville type theorem.
It shows that the only smooth and localized solutions in the neighbourhood of the solitons are
the solitons. Finally, we deduce the asymptotic stability in the original setting from the result
in the hydrodynamical framework.

In Section 2 below, we explain the main tools and different steps for the proof. First, we
introduce the hydrodynamical framework. Then, we state the orbital stability of the solitons
under a new orthogonality condition. Next, we sketch the proof of the asymptotic stability for
the hydrodynamical system and we state the main propositions. We finally complete the proof
of Theorem 1.1.

In Section 3 to 5, we give the proofs of the results stated in Section 2. In Section 3, We deal with
the orbital stability in the hydrodynamical framework. In Section 4, we prove the localization
and the smoothness of the limit profile. In the last section, we prove a Liouville type theorem.
In a separate appendix, we show some facts used in the proofs, in particular, the weak continuity
of the (HLL) flow.

2 Main steps for the proof of Theorem 1.1

2.1 The hydrodynamical framework

We introduce the map m̌ := m1 + im2. Since m3 belongs to H1(R), it follows from the Sobolev
embedding theorem that

|m̌(x)| = (1−m2
3(x))

1
2 → 1,

as x → ±∞. As a consequence, the Landau-Lifshitz equation shares many properties with
the Gross-Pitaevskii equation (see e.g. [1]). One of these properties is the existence of an
hydrodynamical framework for the Landau-Lifshitz equation. In terms of the maps m̌ and m3,
this equation may be written as

{

i∂tm̌−m3∂xxm̌+ m̌∂xxm3 − m̌m3 = 0,

∂tm3 + ∂x
〈

im̌, ∂xm̌
〉

C
= 0.

When the map m̌ does not vanish, one can write it as m̌ = (1 −m2
3)

1/2 exp iϕ. The hydrody-
namical variables v := m3 and w := ∂xϕ verify the following system











∂tv = ∂x
(

(v2 − 1)w
)

,

∂tw = ∂x

( ∂xxv

1− v2
+ v

(∂xv)
2

(1− v2)2
+ v
(

w2 − 1)
)

.
(HLL)

This system is similar to the hydrodynamical Gross-Pitaevskii equation (see e.g. [2]).1 We first
study the asymptotic stability in the hydrodynamical framework.

1The hydrodynamical terminology originates in the fact that the hydrodynamical Gross-Pitaevskii equation is
similar to the Euler equation for an irrotational fluid (see e.g. [3]).
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In this framework, the Landau-Lifshitz energy is expressed as

E(v) :=

∫

R

e(v) :=
1

2

∫

R

( (v′)2

1− v2
+
(

1− v2
)

w2 + v2
)

, (2.1)

where v := (v,w) denotes the hydrodynamical pair. The momentum P , defined by

P (v) :=

∫

R

vw, (2.2)

is also conserved by the Landau-Lifshitz flow. The momentum P and the Landau-Lifshitz energy
E play an important role in the study of the asymptotic stability of the solitons. When c 6= 0,
the function ǔc does not vanish. The hydrodynamical pair Qc := (vc, wc) is given by

vc(x) =
(1− c2)

1
2

cosh
(

(1− c2)
1
2x
)

, and wc(x) =
c vc(x)

1− vc(x)2
=
c(1 − c2)

1
2 cosh

(

(1− c2)
1
2x
)

sinh
(

(1− c2)
1
2x
)2

+ c2
. (2.3)

The only invariances of (HLL) are translations and the opposite map (v,w) 7→ (−v,−w). We
restrict our attention to the translation invariances. All the analysis developed below applies
when the opposite map is also taken into account. For a ∈ R, we denote

Qc,a(x) := Qc(x− a) :=
(

vc(x− a), wc(x− a)
)

,

a non-constant soliton with speed c. We also set

NV(R) :=
{

v = (v,w) ∈ H1(R)× L2(R), s.t. max
R

|v| < 1
}

.

This non-vanishing space is endowed in the sequel with the metric structure provided by the
norm

‖v‖H1×L2 :=
(

‖v‖2H1 + ‖w‖2L2

) 1
2
.

2.2 Orbital stability

A perturbation of a soliton is provided by another soliton with a slightly different speed. This
property follows from the existence of a continuum of solitons with different speeds. A solution
corresponding to such a perturbation at initial time diverges from the soliton due to the different
speeds of propagation, so that the standard notion of stability does not apply to solitons. The
notion of orbital stability is tailored to deal with such situations. The orbital stability theorem
below shows that a perturbation of a soliton at initial time remains a perturbation of the soliton,
up to translations, for all time.

The following theorem is a variant of the result by de Laire and Gravejat [10] concerning sums
of solitons. It is useful for the proof of the asymptotic stability.

Theorem 2.1. Let c ∈ (−1, 1) \ {0}. There exists a positive number αc, depending only on c,
with the following properties. Given any (v0, w0) ∈ X(R) := H1(R)× L2(R) such that

α0 :=
∥

∥(v0, w0)−Qc,a

∥

∥

X(R)
≤ αc, (2.4)

for some a ∈ R, there exist a unique global solution (v,w) ∈ C0(R,NV(R)) to (HLL) with initial
datum (v0, w0), and two maps c ∈ C1(R, (−1, 1) \ {0}) and a ∈ C1(R,R) such that the function ε
defined by

ε(·, t) :=
(

v(·+ a(t), t), w(· + a(t), t)
)

−Qc(t), (2.5)
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satisfies the orthogonality conditions

〈ε(·, t), ∂xQc(t)〉L2(R)2 = 〈ε(·, t), χc(t)〉L2(R)2 = 0, (2.6)

for any t ∈ R. Moreover, there exist two positive numbers σc and Ac, depending only and
continuously on c, such that

max
x∈R

v(x, t) ≤ 1− σc, (2.7)

∥

∥ε(·, t)
∥

∥

X(R)
+
∣

∣c(t)− c
∣

∣ ≤ Acα
0, (2.8)

and
∣

∣c′(t)
∣

∣+
∣

∣a′(t)− c(t)
∣

∣ ≤ Ac

∥

∥ε(·, t)
∥

∥

X(R)
, (2.9)

for any t ∈ R.

Remark. In this statement, the function χc is a normalized eigenfunction associated to the
unique negative eigenvalue of the linear operator

Hc := E′′(Qc) + cP ′′(Qc).

The operator Hc is self-adjoint on L2(R)×L2(R), with domain Dom(Hc) := H2(R)×L2(R) (see
(A.42) for its explicit formula). It has a unique negative simple eigenvalue −λ̃c, and its kernel is
given by

Ker(Hc) = Span(∂xQc). (2.10)

Our statement of orbital stability relies on a different decomposition from that proposed by
Grillakis, Shatah and Strauss in [14]. This modification is related to the proof of asymptotic
stability. A key ingredient in the proof is the coercivity of the quadratic form Gc, which is defined
in (2.46), under a suitable orthogonality condition. In case we use the orthogonality conditions in
[14], the corresponding orthogonality condition for Gc is provided by the function v−1

c S∂cQc (see
(2.40) for the definition of S), which does not belong to L2(R). In order to by-pass this difficulty,
we use the second orthogonality condition in (2.6) for which the corresponding orthogonality
condition for Gc is given by the function v−1

c Sχc, which does belong to L2(R) (see the appendix
for more details). This alternative decomposition is inspired from the one used by Martel and
Merle in [23].

Concerning the proof of Theorem 2.1, we first establish an orbital stability theorem with the
classical decomposition of Grillakis, Shatah and Strauss [14]. This appears as a particular case
of the orbital stability theorem in [10] for sum of solitons. We next show that, if we have orbital
stability for some decomposition and orthogonality conditions, then we also have it for different
decomposition and orthogonality conditions (see Section 2 for the detailed proof of Theorem 2.1).

2.3 Asymptotic stability for the hydrodynamical variables

The following theorem shows the asymptotic stability result in the hydrodynamical framework.

Theorem 2.2. Let c ∈ (−1, 1) \ {0}. There exists a positive constant βc ≤ αc, depending only
on c, with the following properties. Given any (v0, w0) ∈ X(R) such that

∥

∥(v0, w0)−Qc,a

∥

∥

X(R)
≤ βc,

for some a ∈ R, there exist a number c
∗ ∈ (−1, 1) \ {0} and a map b ∈ C1(R,R) such that the

unique global solution (v,w) ∈ C0(R,NV(R)) to (HLL) with initial datum (v0, w0) satisfies
(

v(·+ b(t), t), w(· + b(t), t)
)

⇀ Qc∗ in X(R), (2.11)
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and
b′(t) → c

∗,

as t→ +∞.

Theorem 2.2 establishes a convergence to some orbit of the soliton. This result is stronger than
the one given by Theorem 2.1 which only shows that the solution stays close to that orbit.

In the next subsections, we explain the main ideas of the proof, which follows the strategy
developed by Martel and Merle for the Korteweg-de Vries equation [23, 24].

2.3.1 Construction of a limit profile

Let c ∈ (−1, 1) \ {0}, and (v0, w0) ∈ X(R) be any pair satisfying the assumptions of Theorem
2.2. Since βc ≤ αc in the assumptions of Theorem 2.2, we deduce from Theorem 2.1 that the
unique solution (v,w) to (HLL) with initial datum (v0, w0) is global.

We take an arbitrary sequence of times (tn)n∈N tending to +∞. In view of (2.8) and (2.9), we
may assume, up to a subsequence, that there exist a limit perturbation ε∗0 ∈ X(R) and a limit
speed c∗0 ∈ [−1, 1] such that

ε(·, tn) =
(

v(·+ a(tn), tn), w(· + a(tn), tn)
)

−Qc(tn) ⇀ ε∗0 in X(R), (2.12)

and
c(tn) → c∗0, (2.13)

as n→ +∞. Our main goal is to show that

ε∗0 ≡ 0,

(see Corollary 2.2). For that, we establish smoothness and rigidity properties for the solution of
(HLL) with the initial datum Qc∗0

+ ε∗0.

First, we impose the constant βc to be sufficiently small so that, when the number α0 which
appears in Theorem 2.1 satisfies α0 ≤ βc, then we infer from (2.8) and (2.9) that

min
{

c(t)2, a′(t)2
}

≥ c
2

2
, max

{

c(t)2, a′(t)2
}

≤ 1 +
c
2

2
, (2.14)

and
∥

∥vc(·)− v(·+ a(t), t)
∥

∥

L∞(R)
≤ min

{

c
2

4
,
1− c

2

16

}

, (2.15)

for any t ∈ R. This yields, in particular, that c∗0 ∈ (−1, 1)\{0}, and then, that Qc∗0
is well-defined

and different from the black soliton.

By (2.8), we also have
∣

∣c∗0 − c
∣

∣ ≤ Acβc, (2.16)

and, applying again (2.8), as well as (2.12), and the weak lower semi-continuity of the norm, we
also know that the function

(v∗0 , w
∗
0) := Qc∗0

+ ε∗0,

satisfies
∥

∥(v∗0 , w
∗
0)−Qc

∥

∥

X(R)
≤ Acβc +

∥

∥Qc −Qc∗0

∥

∥

X(R)
. (2.17)

We next impose a supplementary smallness assumption on βc so that

∥

∥(v∗0 , w
∗
0)−Qc

∥

∥

X(R)
≤ αc. (2.18)
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By Theorem 2.1, there exists a unique global solution (v∗, w∗) ∈ C0(R,NV(R)) to (HLL) with
initial datum (v∗0 , w

∗
0), and two maps c∗ ∈ C1(R, (−1, 1) \ {0}) and a∗ ∈ C1(R,R) such that the

function ε∗ defined by

ε∗(·, t) :=
(

v∗(·+ a∗(t), t), w(· + a∗(t), t)
)

−Qc∗(t), (2.19)

satisfies the orthogonality conditions

〈ε∗(·, t), ∂xQc∗(t)〉L2(R)2 = 〈ε∗(·, t), χc∗(t)〉L2(R)2 = 0, (2.20)

as well as the estimates

∥

∥ε∗(·, t)
∥

∥

X(R)
+
∣

∣c∗(t)− c
∣

∣+
∣

∣a∗′(t)− c∗(t)
∣

∣ ≤ Ac

∥

∥(v∗0 , w
∗
0)−Qc

∥

∥

X(R)
, (2.21)

for any t ∈ R.

We may take βc small enough such that, combining (2.16) with (2.17) and (2.21), we obtain

min
{

c∗(t)2, (a∗)′(t)2
}

≥ c
2

2
, max

{

c∗(t)2, (a∗)′(t)2
}

≤ 1 +
c
2

2
, (2.22)

and
∥

∥vc(·)− v∗(·+ a∗(t), t)
∥

∥

L∞(R)
≤ min

{

c
2

4
,
1− c

2

16

}

, (2.23)

for any t ∈ R.

Finally, we use the weak continuity of the flow map for the Landau-Lifshitz equation. The proof
relies on Proposition A.1 and follows the lines the proof of Proposition 1 in [2].

Proposition 2.1. Let t ∈ R be fixed. Then,

(

v(·+ a(tn), tn + t), w(· + a(tn), tn + t)
)

⇀
(

v∗(·, t), w∗(·, t)
)

in X(R), (2.24)

while
a(tn + t)− a(tn) → a∗(t), and c(tn + t) → c∗(t), (2.25)

as n→ +∞. In particular, we have

ε(·, tn + t)⇀ ε∗(·, t) in X(R), (2.26)

as n→ +∞.

2.3.2 Localization and smoothness of the limit profile

Our proof of the localization of the limit profile is based on a monotonicity formula.

Consider a pair (v,w) which satisfies the conclusions of Theorem 2.1 and suppose that (2.14)
and (2.15) are true. Let R and t be two real numbers, and set

IR(t) ≡ I
(v,w)
R (t) :=

1

2

∫

R

[

vw
]

(x+ a(t), t)Φ(x−R) dx,

where Φ is the function defined on R by

Φ(x) :=
1

2

(

1 + th
(

νcx
)

)

, (2.27)

with νc :=
√
1− c2/8. We have

8



Proposition 2.2. Let R ∈ R, t ∈ R, and σ ∈ [−σc, σc], with σc :=
√
1− c2/4. Under the above

assumptions, there exists a positive number Bc, depending only on c, such that

d

dt

[

IR+σt(t)
]

≥1− c
2

8

∫

R

[

(∂xv)
2 + v2 +w2

]

(x+ a(t), t)Φ′(x−R− σt) dx

−Bce
−2νc|R+σt|.

(2.28)

In particular, we have
IR(t1) ≥ IR(t0)−Bce

−2νc|R|, (2.29)

for any real numbers t0 ≤ t1.

For the limit profile (v∗, w∗), we set I∗R(t) := I
(v∗,w∗)
R (t) for any R ∈ R and any t ∈ R. We claim

Proposition 2.3 ([2]). Given any positive number δ, there exists a positive number Rδ, depending
only on δ, such that we have

∣

∣I∗R(t)
∣

∣ ≤ δ, ∀R ≥ Rδ,
∣

∣I∗R(t)− P (v∗, w∗)
∣

∣ ≤ δ, ∀R ≤ −Rδ,

for any t ∈ R.

The proof of Proposition 2.3 is the same as the one of Proposition 3 in [2].

From Propositions 2.2 and 2.3, we derive as in [2] that

Proposition 2.4 ([2]). Let t ∈ R. There exists a positive constant Ac such that

∫ t+1

t

∫

R

[

(∂xv
∗)2 + (v∗)2 + (w∗)2

]

(x+ a∗(s), s)e2νc|x| dx ds ≤ Ac.

We next consider the following map which was introduced by de Laire and Gravejat in [10],

Ψ :=
1

2

( ∂xv

(1− v2)
1
2

+ i(1 − v2)
1
2w
)

exp iθ, (2.30)

where

θ(x, t) := −
∫ x

−∞
v(y, t)w(y, t) dy. (2.31)

The map Ψ solves the nonlinear Schrödinger equation

i∂tΨ+ ∂xxΨ+ 2|Ψ|2Ψ+
1

2
v2Ψ− Re

(

Ψ
(

1− 2F (v,Ψ)
)

)

(

1− 2F (v,Ψ)
)

= 0, (2.32)

with

F (v,Ψ)(x, t) :=

∫ x

−∞
v(y, t)Ψ(y, t) dy, (2.33)

while the function v satisfies the two equations







∂tv = 2∂x Im
(

Ψ
(

2F (v,Ψ)− 1
)

)

,

∂xv = 2Re
(

Ψ
(

1− 2F (v,Ψ)
)

)

.
(2.34)

The local Cauchy problem for (2.32)-(2.34) was analyzed by de Laire and Gravejat in [10]. We
recall the following proposition which shows the continuous dependence with respect to the initial
datum of the solutions to the system of equations (2.32)-(2.34) (see [10] for the proof).
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Proposition 2.5 ([10]). Let (v0,Ψ0) ∈ H1(R) × L2(R) and (ṽ0, Ψ̃0) ∈ H1(R) × L2(R) be such
that

∂xv
0 = 2Re

(

Ψ0
(

1− 2F (v0,Ψ0)
)

)

, and ∂xṽ
0 = 2Re

(

Ψ̃0
(

1− 2F
(

ṽ0, Ψ̃0
)

))

.

Given two solutions (v,Ψ) and (ṽ, Ψ̃) in C0([0, T∗],H1(R) × L2(R)), with (Ψ, Ψ̃) ∈ L4([0, T∗],
L∞(R))2, to (2.32)-(2.34) with initial datum (v0,Ψ0), resp. (ṽ0, Ψ̃0), for some positive time T∗,
there exist a positive number τ , depending only on ‖v0‖L2 , ‖ṽ0‖L2 , ‖Ψ0‖L2 and ‖Ψ̃0‖L2 , and a
universal constant A such that we have

∥

∥v − ṽ
∥

∥

C0([0,T ],L2)
+
∥

∥Ψ− Ψ̃
∥

∥

C0([0,T ],L2)
+
∥

∥Ψ− Ψ̃
∥

∥

L4([0,T ],L∞)

≤A
(

∥

∥v0 − ṽ0
∥

∥

L2 +
∥

∥Ψ0 − Ψ̃0
∥

∥

L2

)

,
(2.35)

for any T ∈ [0,min{τ, T∗}]. In addition, there exists a positive number B, depending only on
‖v0‖L2 , ‖ṽ0‖L2 , ‖Ψ0‖L2 and ‖Ψ̃0‖L2 , such that

∥

∥∂xv − ∂xṽ
∥

∥

C0([0,T ],L2)
≤ B

(

‖v0 − ṽ0
∥

∥

L2+
∥

∥Ψ0 − Ψ̃0
∥

∥

L2

)

, (2.36)

for any T ∈ [0,min{τ, T∗}].

This proposition plays an important role in the proof of not only the smoothing of the limit
profile, but also the weak continuity of the hydrodynamical Landau-Lifshitz flow.

In order to prove the smoothness of the limit profile, we rely on the following smoothing type
estimate for localized solutions of the linear Schrödinger equation (see [2, 11] for the proof of
Proposition 2.6).

Proposition 2.6 ([2, 11]). Let λ ∈ R and consider a solution u ∈ C0(R, L2(R)) to the linear
Schrödinger equation

i∂tu+ ∂xxu = F, (LS)

with F ∈ L2(R, L2(R)). Then, there exists a positive constant Kλ, depending only on λ, such
that

λ2
∫ T

−T

∫

R

|∂xu(x, t)|2eλx dx dt ≤ Kλ

∫ T+1

−T−1

∫

R

(

|u(x, t)|2 + |F (x, t)|2
)

eλx dx dt, (2.37)

for any positive number T .

We apply Proposition 2.6 to Ψ∗ as well as all its derivatives, where Ψ∗ is the solution to (2.32)
associated to the solution (v∗, w∗) of (HLL), and then we express the result in terms of (v∗, w∗)
to obtain

Proposition 2.7. The pair (v∗, w∗) is indefinitely smooth and exponentially decaying on R×R.
Moreover, given any k ∈ N, there exists a positive constant Ak,c, depending only on k and c, such
that

∫

R

[

(∂k+1
x v∗)2 + (∂kxv

∗)2 + (∂kxw
∗)2
]

(x+ a∗(t), t)eνc|x| dx ≤ Ak,c, (2.38)

for any t ∈ R.
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2.3.3 The Liouville type theorem

We next establish a Liouville type theorem, which guarantees that the limit profile constructed
above is exactly a soliton. In particular, we will show that ε∗0 ≡ 0.

The pair ε∗ satisfies the equation

∂tε
∗ = JHc∗(t)(ε

∗) + JRc∗(t)ε
∗ +

(

a∗′(t)− c∗(t)
)(

∂xQc∗(t) + ∂xε
∗)− c∗′(t)∂cQc∗(t), (2.39)

where J is the symplectic operator

J = −2S∂x :=

(

0 −2∂x
−2∂x 0

)

, (2.40)

and the remainder term Rc∗(t)ε
∗ is given by

Rc∗(t)ε
∗ := E′(Qc∗(t) + ε∗)− E′(Qc∗(t))− E′′(Qc∗(t))(ε

∗).

We rely on the strategy developed by Martel and Merle in [23] (see also [22]), and then applied
by Béthuel, Gravejat and Smets in [2] to the Gross-Pitaevskii equation. We define the pair

u∗(·, t) := SHc∗(t)(ε
∗(·, t)). (2.41)

Since SHc∗(t)(∂xQc∗(t)) = 0, we deduce from (2.39) that

∂tu
∗ = SHc∗(t)

(

JSu∗
)

+ SHc∗(t)

(

JRc∗(t)ε
∗)− (c∗)′(t)SHc∗(t)(∂cQc∗(t))

+ (c∗)′(t)S∂cHc∗(t)(ε
∗) +

(

(a∗)′(t)− c∗(t)
)

SHc∗(t)(∂xε
∗).

(2.42)

Decreasing further the value of βc if necessary, we have

Proposition 2.8. There exist two positive numbers A∗ and R∗, depending only on c, such that
we have 2

d

dt

(∫

R

xu∗1(x, t)u
∗
2(x, t) dx

)

≥ 1− c
2

16

∥

∥u∗(·, t)
∥

∥

2

X(R)
−A∗‖u∗(·, t)‖2X(B(0,R∗))

, (2.43)

for any t ∈ R.

We give a second monotonicity type formula to dispose of the non-positive local term
‖u∗(·, t)‖2X(B(0,R∗))

in the right-hand side of (2.43). If M is a smooth, bounded, two-by-two
symmetric matrix-valued function, then

d

dt

〈

Mu∗, u∗
〉

L2(R)2
= 2
〈

SMu∗,Hc∗(−2u∗)
〉

L2(R)2
+ “super-quadratic terms”, (2.44)

where S is the matrix

S :=

(

0 1
1 0

)

.

For c ∈ (−1, 1) \ {0}, let Mc be given by

Mc :=

(

−2cvc∂xvc
(1−vc)2

−∂xvc
vc

−∂xvc
vc

0

)

. (2.45)

We have the following lemma.

2In (2.43), we use the notation

∥

∥(f, g)
∥

∥

2

X(Ω)
:=

∫

Ω

(

(∂xf)
2 + f

2 + g
2
)

,

in which Ω denotes a measurable subset of R.
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Lemma 2.1. Let c ∈ (−1, 1) \ {0} and u ∈ X3(R). Then,

Gc(u) :=2
〈

SMcu,Hc(−2∂xu)
〉

L2(R)2

=2

∫

R

µc

(

u2 −
cv2c
µc
u1 −

2cvc∂xvc
µc(1− v2c )

∂xu1

)2
+ 3

∫

R

v4c
µc

(

∂xu1 −
∂xvc
vc

u1

)2
,

(2.46)

where
µc = 2(∂xvc)

2 + v2c (1− v2c ) > 0. (2.47)

The functional Gc is a non-negative quadratic form, and

Ker(Gc) = Span(Qc). (2.48)

We have indeed chosen the matrix Mc such that McQc = ∂xQc to obtain (2.48). Since Qc does
not vanish, we deduce from standard Sturm-Liouville theory, that Gc is non-negative, which is
confirmed by the computation in Lemma 2.1.

By the second orthogonality condition in (2.20) and the fact that Hc∗(χc∗) = −λ̃c∗χc∗ , we have

0 = 〈Hc∗(χc∗), ε
∗〉L2(R)2 = 〈Hc∗(ε

∗), χc∗〉L2(R)2 = 〈u∗, Sχc∗〉L2(R)2 . (2.49)

On the other hand, we know that

〈

Qc∗ , Sχc∗
〉

= P ′(Qc∗
)(

χc∗
)

6= 0, (2.50)

so that the pair u∗ is not proportional to Qc∗ under the orthogonality condition in (2.49). We
claim the following coercivity property of Gc under this orthogonality condition.

Proposition 2.9. Let c ∈ (−1, 1) \ {0}. There exists a positive number Λc, depending only and
continuously on c, such that

Gc(u) ≥ Λc

∫

R

[

(∂xu1)
2 + (u1)

2 + (u2)
2
]

(x)e−2|x| dx, (2.51)

for any pair u ∈ X(R) verifying
〈u, Sχc〉L2(R)2 = 0. (2.52)

Coming back to (2.44), we can prove

Proposition 2.10. There exists a positive number B∗, depending only on c, such that

d

dt

(

〈

Mc∗(t)u
∗(·, t), u∗(·, t)

〉

L2(R)2

)

≥ 1

B∗

∫

R

[

(∂xu
∗
1)

2 + (u∗1)
2 + (u∗2)

2
]

(x, t)e−2|x| dx

−B∗
∥

∥ε∗(., t)
∥

∥

1
2

X(R)

∥

∥u∗(·, t)
∥

∥

2

X(R)
,

(2.53)

for any t ∈ R.

Using Propositions 2.8 and 2.10, we claim

Corollary 2.1. Set

N(t) :=
1

2

(

0 x
x 0

)

+A∗B∗e
2R∗Mc∗(t).

There exists a positive constant Ac such that we have

d

dt

(

〈N(t)u∗(·, t), u∗(·, t)〉L2(R)2

)

≥ Ac

∥

∥u∗(·, t)
∥

∥

2

X(R)
, (2.54)
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for any t ∈ R. Since
∫ +∞

−∞

∥

∥u∗(·, t)
∥

∥

2

X(R)
dt < +∞, (2.55)

there exists a sequence (t∗k)k∈N such that

lim
k→+∞

∥

∥u∗(·, t∗k)
∥

∥

2

X(R)
= 0. (2.56)

In view of (2.20), (2.41) and the bound for Hc∗ in (A.43), we have

∥

∥ε∗(·, t)‖X(R) ≤ Ac

∥

∥u∗(·, t)
∥

∥

X(R)
, (2.57)

Hence, we can apply (2.56) and (2.57) in order to obtain

lim
k→+∞

∥

∥ε∗(·, t∗k)
∥

∥

2

X(R)
= 0. (2.58)

By (2.58) and the orbital stability in Theorem 2.1, this yields

Corollary 2.2. We have
ε∗0 ≡ 0.

At this stage we obtain (2.11) for some subsequence. We should extend this result for any
sequence. The proof is exactly the same as the one done by Béthuel, Gravejat and Smets in [2]
(see Subsection 1.3.4 in [2] for the details).

2.4 Proof of Theorem 1.1

We choose a positive number δc such that ‖(v0, w0) −Qc‖X(R) ≤ βc, whenever dE(m0, uc) ≤ δc.
We next apply Theorem 2.2 to the solution (v,w) ∈ C0(R,NV(R)) to (HLL) corresponding to
the solution m to (LL). This yields the existence of a speed c

∗ and a position function b such
that the convergences in Theorem 2.2 hold. In particular, since the weak convergence for m3 is
satisfied by Theorem 2.2, it is sufficient to show the existence of a phase function θ such that
exp(iθ(t))∂xm̌(·+ b(t), t) is weakly convergent to ∂xǔc∗ in L2(R) as t→ ∞. The locally uniform
convergence of exp(iθ(t))m̌(· + b(t), t) towards ǔc∗ then follows from the Sobolev embedding
theorem. We begin by constructing this phase function.

We fix a non-zero function χ ∈ C∞
c (R, [0, 1]) such that χ is even. Using the explicit formula of

ǔc∗ , we have
∫

R

ǔc∗(x)χ(x) dx = 2c∗
∫

R

χ(x)

cosh
(√

1− (c∗)2x
) dx 6= 0. (2.59)

Decreasing the value of βc if needed, we deduce from the orbital stability in [10] that
∣

∣

∣

∣

∫

R

m̌(x+ b(t), t)χ(x) dx

∣

∣

∣

∣

≥ |c∗|
∫

R

χ(x)

cosh
(
√

1− (c∗)2x
) dx 6= 0, (2.60)

for any t ∈ R.

Let Υ : R2 −→ R be the C1 function defined by

Υ(t, θ) := Im
(

e−iθ

∫

R

m̌(x+ b(t), t)χ(x) dx
)

.

From (2.60) we can find a number θ0 such that Υ(0, θ0) = 0 and ∂θΥ(0, θ0) > 0. Then, using
the implicit function theorem, there exists a C1 function θ : R → R such that Υ(t, θ(t)) = 0.
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In addition, using (2.60) another time, we can fix the choice of θ so that there exists a positive
constant Ac∗ such that

∂θΥ(t, θ(t)) = Re
(

e−iθ(t)

∫

R

m̌(x+ b(t), t)χ(x) dx
)

≥ Ac∗ > 0. (2.61)

This implies, differentiating the identity Υ(t, θ(t)) = 0 with respect to t, that

|θ′(t)| =
∣

∣

∣

∂tΥ(t, θ(t))

∂θΥ(t, θ(t))

∣

∣

∣
≤ 1

Ac∗

∣

∣∂tΥ(t, θ(t))
∣

∣, (2.62)

for all t ∈ R. Now, we differentiate the function Υ with respect to t, and we use the equation of
m̌ to obtain

∂tΥ(t, θ(t)) = Im
(

e−iθ

∫

R

χ(x)
(

∂xm̌(x+ b(t), t)b′(t)− im3(x+ b(t), t)∂xxm̌(x+ b(t), t)

+ im̌(x+ b(t), t)∂xxm3(x+ b(t), t)− im3(x+ b(t), t)m̌(x+ b(t), t)
)

dx
)

.

(2.63)

Since b ∈ C1
b (R,R), and since both ∂xm̌ and ∂tm̌ belong to C0

b (R,H
−1(R)), it follows that the

derivative θ′ is bounded on R.

We denote by ϕ the phase function defined by

ϕ(x+ b(t), t) := ϕ(b(t), t) +

∫ x

0
w(y + b(t), t) dy,

with ϕ(b(t), t) ∈ [0, 2π], which is associated to the function m̌(x + b(t), t) for any (x, t) ∈ R
2 in

the way that

m̌(x+ b(t), t) =
(

1−m2
3(x+ b(t), t)

) 1
2 exp

(

iϕ(x+ b(t), t)
)

.

It is sufficient to prove that

exp
(

i
(

ϕ(b(t), t) − θ(t)
)

)

−→ 1, (2.64)

as t→ ∞ to obtain

exp
(

i
(

ϕ(· + b(t), t)− θ(t)
)

)

−→ exp
(

iϕc∗(·)
)

:= exp
(

i

∫ ·

0
wc∗(y) dy

)

in L∞
loc(R),

as t → ∞. This implies, using Theorem 2.2 once again, and the Sobolev embedding theorem,
that

e−iθ(t)∂xm̌(·+ b(t), t) ⇀ ∂xǔc∗ in L2(R),

e−iθ(t)m̌(·+ b(t), t) → ǔc∗ in L∞
loc(R),

(2.65)

as t→ ∞. Now, let us prove (2.64). We have

e−iθ(t)

∫

R

m̌(x+ b(t), t)χ(x) dx

= exp
(

i[ϕ(b(t), t) − θ(t)]
)

∫

R

(

1−m2
3(x+ b(t), t)

)
1
2 exp

(

i

∫ x

0
w(y + b(t), t) dy

)

χ(x) dx.

We use the fact that Υ(t, θ(t)) = 0 to obtain

cos
(

ϕ(b(t), t) − θ(t)
)

Im
(

∫

R

(

1−m2
3(x+ b(t), t)

)
1
2 exp

(

i

∫ x

0
w(y + b(t), t) dy

)

χ(x) dx
)

+ sin
(

ϕ(b(t), t) − θ(t)
)

Re
(

∫

R

(

1−m2
3(x+ b(t), t)

) 1
2 exp

(

i

∫ x

0
w(y + b(t), t) dy

)

χ(x) dx
)

= 0.
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On the other hand, by (2.61), we have

cos
(

ϕ(b(t), t) − θ(t)
)

Re
(

∫

R

(

1−m2
3(x+ b(t), t)

) 1
2 exp

(

i

∫ x

0
w(y + b(t), t) dy

)

χ(x) dx
)

− sin
(

ϕ(b(t), t) − θ(t)
)

Im
(

∫

R

(

1−m2
3(x+ b(t), t)

) 1
2 exp

(

i

∫ x

0
w(y + b(t), t) dy

)

χ(x) dx
)

> 0.

We derive from Theorem 2.2 and (2.59) that

Im
(

∫

R

(

1−m2
3(x+b(t), t)

)
1
2 exp

(

i

∫ x

0
w(y+b(t), t) dy

)

χ(x) dx
)

→ Im
(

∫

R

ǔc∗(x)χ(x) dx
)

= 0,

and

Re
(

∫

R

(

1−m2
3(x+b(t), t)

)
1
2 exp

(

i

∫ x

0
w(y+b(t), t) dy

)

χ(x) dx
)

→ Re
(

∫

R

ǔc∗(x)χ(x) dx
)

> 0.

This is enough to derive (2.64).

Finally, we claim that θ′(t) −→ 0 as t → ∞. Indeed, we can introduce (2.65) into (2.63), and
we then obtain, using the equation satisfied by ǔc∗ , that

∂tΥ(t, θ(t)) −→ 0,

as t→ ∞. By (2.62), this yields θ′(t) −→ 0 as t → ∞, which finishes the proof of Theorem 1.1.

3 Proof of the orbital stability

First, we recall the orbital stability theorem, which was established in [10] (see Corollary 2,
Propositions 2 and 4 in [10]).

Theorem 3.1. Let c ∈ (−1, 1) \ {0} and (v0, w0) ∈ X(R) satisfying (2.4). There exist a unique
global solution (v,w) ∈ C0(R,NV(R)) to (HLL) with initial datum (v0, w0), and two maps c1 ∈
C1(R, (−1, 1) \ {0}) and a1 ∈ C1(R,R) such that the function ε1, defined by (2.5), satisfies the
orthogonality conditions

〈ε1(·, t), ∂xQc1(t)〉L2(R)2 = P ′(Qc1(t))(ε1(·, t)) = 0, (3.1)

for any t ∈ R. Moreover, ε1(·, t), c1(t) and a1(t) satisfy (2.7), (2.8) and (2.9) for any t ∈ R.

With Theorem 3.1 at hand, we can provide the proof of Theorem 2.1.

Proof. We consider the following map

Ξ((v,w), σ, b) :=
(

〈∂xQσ,b, ε〉L2×L2 , 〈χσ,b, ε〉L2×L2

)

,

where we have set ε = (v,w)−Qσ,b, and χσ,b = χσ(· − b) (we recall that χσ is the eigenfunction
associated to the unique negative eigenvalue −λ̃σ of the operator Hσ). The map Ξ is well-defined
for, and depends smoothly on, (v,w) ∈ H1(R)× L2(R), σ ∈ (−1, 1) \ {0}, and b ∈ R.

We fix t ∈ R. In order to simplify the notation, we substitute (c1(t), a1(t)) by (c1, a1). We
check that

Ξ(Qc1,a1 , c1, a1) = 0,
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and we compute
{

∂σΞ1(Qc1,a1 , c1, a1) = 0,
∂σΞ2(Qc1,a1 , c1, a1) = −〈χc1,a1 , ∂σQc1,a1〉L2×L2 .

Let c ∈ (−1, 1) \ {0} and suppose by contradiction that

〈χc, ∂cQc〉L2×L2 = 0.

Using the fact that Hc

(

∂cQc

)

= P ′(Qc), it comes

0 = 〈χc, ∂cQc〉L2×L2 = − 1

λ̃c
〈χc,Hc

(

∂cQc

)

〉L2×L2 = − 1

λ̃c
〈χc, P

′(Qc)〉L2×L2 .

Since Hc is self-adjoint, we also have

〈χc, ∂xQc〉L2×L2 = 0.

By Proposition 1 in [10], we infer that

0 > −λ̃c‖χc‖2L2×L2 = 〈χc,Hc(χc)〉L2×L2 ≥ Λc‖χc‖2L2×L2 > 0,

which provides the contradiction and shows that

〈χc, ∂cQc〉L2×L2 6= 0, (3.2)

for all c ∈ (−1, 1) \ {0}. In addition, we have
{

∂bΞ1(Qc1,a1 , c1, a1) =
∥

∥∂xQc1

∥

∥

2

L2 = 2(1 − c21)
1
2 > 0,

∂bΞ2(Qc1,a1 , c1, a1) = 0.

Therefore, the matrix

dσ,bΞ(Qc1,a1 , c1, a1) =

(

0 〈χc1,a1 , ∂σQc1,a1〉L2×L2

2(1 − c21)
1
2 0

)

is an isomorphism from R
2 to R

2.

Then, we can apply the version of the implicit function theorem in [3] in order to find a
neighbourhood V of Qc1,a1 , a neighbourhood U of (c1, a1), and a map γc1,a1 : U → V such that

Ξ((v,w), σ, b) = 0 ⇔ (c(v,w), a(v,w)) := (σ, b) = γc,a(v,w) ∀(v,w) ∈ V, ∀(σ, b) ∈ U .

In addition, there exists a positive constant Λ, depending only on c1 such that

‖ε(t)‖X + |c(t)− c1(t)|+ |a(t) − a1(t)| ≤ Λ‖ε1(t)‖X ≤ Λc1Acα0, (3.3)

where c(t) := c(v(t), w(t)), a(t) := a(v(t), w(t)) and ε(t) := (v(t), w(t)) −Qc(t),a(t), for any fixed
t ∈ R. Using the fact that (v(t), w(t)) stays into a neighbourhood of Qc1(t),a1(t) for all t ∈ R by
Theorem 3.1, and also the fact that c1 satisfies (2.8), we are led to the following lemma.

Lemma 3.1. Under the assumptions of Theorem 3.1, there exists a unique pair of functions
(a, c) ∈ C0

(

R,R2
)

such that
ε(t) := (v(t), w(t)) −Qc(t),a(t),

verifies the two following orthogonality conditions
〈

ε(t), ∂xQc(t),a(t)

〉

L2×L2 = 〈χc(t),a(t), ε(t)〉L2×L2 = 0. (3.4)

Moreover, we have (2.8).
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This completes the proof of orbital stability. Now, let us prove the continuous differentiability
of the functions a and c, as well as the inequality

∣

∣c′(t)
∣

∣+
∣

∣a′(t)− c(t)
∣

∣ ≤ Ac

∥

∥ε(·, t)
∥

∥

X(R)
, (3.5)

for all t ∈ R. The C1 nature of a and c can be derived from a standard density argument as in
[10]. Concerning (3.5), we can write the equation verified by ε, namely

∂tεv =
(

(

a′(t)−c(t)
)

∂xvc,a−c′(t)∂cvc,a
)

+∂x

(

(

(vc,a+εv)
2−1

)

(vc,a+εw)−
(

v2c,a−1
)

wc,a

)

, (3.6)

and

∂tεw =
(

a′(t)− c(t)
)

∂xwc,a − c′(t)∂cwc,a

+ ∂x

(

∂xxvc,a + ∂xxεv
1− (vc,a + εv)2

+
(

vc,a + εv
)

(

∂xvc,a + ∂xεv
)2

(

1− (vc,a + εv)2
)2

− ∂xxvc,a
1− v2c,a

− vc,a

(

∂xvc,a
)2

(

1− v2c,a
)2

)

+ ∂x

(

(vc,a + εv)
(

(wc,a + εw)
2 − 1

)

− vc,a
(

w2
c,a − 1

)

)

.

(3.7)

We differentiate with respect to time the orthogonality conditions in (2.6) and we invoke equations
(3.6) and (3.7) to write the identity

M

(

c′

a′ − c

)

=

(

Y
Z

)

. (3.8)

Here, M refers to the matrix of size 2 given by

M1,1 = 〈∂cQc, χc〉L2×L2 + 〈∂cχc,a, ε〉L2×L2 ,

M1,2 = 〈χc, ∂xQc〉L2×L2 − 〈∂xχc,a, ε〉L2×L2 ,

M2,1 = −〈∂xQc, ∂cQc〉L2×L2 + 〈∂c∂xQc,a, ε〉L2×L2 ,

M2,2 =
∥

∥∂xQc

∥

∥

2

L2×L2 − 〈∂xxQc,a, ε〉L2×L2 .

The vectors Y and Z are defined by

Y =
〈

∂xwc,a,
(

(vc,a + εv)
2 − 1

)

(wc,a + εw)−
(

v2c,a − 1
)

wc,a

〉

L2

+
〈

∂xvc,a,
(

(wc,a + εw)
2 − 1

)

(vc,a + εv)−
(

w2
c,a − 1

)

vc,a

〉

L2

−
〈

∂xxvc,a,
∂xxvc,a + ∂xxεv
1− (vc,a + εv)2

− ∂xxvc,a
1− v2c,a

〉

L2
+ c
〈

∂xχc,a, ε
〉

L2×L2 ,

and

Z =
〈

∂xxvc,a,
(

(vc,a + εv)
2 − 1

)

(wc,a + εw)−
(

v2c,a − 1
)

wc,a

〉

L2

+
〈

∂xxwc,a,
(

(wc,a + εw)
2 − 1

)

(vc,a + εv)−
(

w2
c,a − 1

)

vc,a

〉

L2

−
〈

∂xxxwc,a,
∂xxvc,a + ∂xxεv
1− (vc,a + εv)2

− ∂xxvc,a
1− v2c,a

〉

L2
+ c〈∂xxQc,a, ε〉L2×L2 .
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We next decompose the matrix M as M = D + H, where D is the diagonal matrix of size 2
with diagonal coefficients

D1,1 = 〈∂cQc, χc〉L2×L2 6= 0,

by (3.2), and

D2,2 = ‖∂xQc(t)‖2L2 = 2(1 − c(t)2)
1
2 ,

so that D is invertible. Concerning the matrix H, we check that

〈P ′(Qc), ∂xQc〉L2×L2 = 〈∂xQc, ∂cQc〉L2×L2 = 0.

Then,

H =

(

〈∂cχc,a, ε〉L2×L2 −〈∂xχc,a, ε〉L2×L2

〈∂c∂xQc,a, ε〉L2×L2 −〈∂xxQc,a, ε〉L2×L2

)

.

It follows from the exponential decay of Qc,a and its derivatives that

|H| ≤ Ac‖ε‖L2×L2 .

We can make a further choice of the positive number αc, such that the operator norm of the
matrix D−1H is less than 1/2. In this case, the matrix M is invertible and the operator norm
of its inverse is uniformly bounded with respect to t. Coming back to (3.8), we are led to the
estimate

∣

∣c′(t)
∣

∣+
∣

∣a′(t)− c(t)
∣

∣ ≤ Ac

(

∣

∣Y (t)
∣

∣+
∣

∣Z(t)
∣

∣

)

. (3.9)

It remains to estimate the quantities Y and Z. We write

∣

∣

∣

〈

∂xwc,a,
(

(vc,a + εv)
2 − 1

)

(wc,a + εw)−
(

v2c,a − 1
)

wc,a

〉

L2

∣

∣

∣

=
∣

∣

∣

〈

∂xwc,a, (ε
2
v + 2vc,aεv)wc,a + εw

(

(εv + vc,a)
2 − 1

)

〉

L2

∣

∣

∣ ≤ Ac‖ε‖L2×L2 .

Arguing in the same way for the other terms in Y and Z, we obtain

|Y |+ |Z| = O
(

‖ε‖L2×L2

)

,

which is enough to deduce (3.5) from (3.9).
To achieve the proof, we show (2.7). Using the Sobolev embedding theorem of H1(R) into C0(R),
we can write

max
x∈R

v(x, t) ≤
∥

∥vc(t)
∥

∥

L∞(R)
+
∥

∥v(·, t) − vc(t),a(t)
∥

∥

L∞(R)
≤
∥

∥vc(t)
∥

∥

L∞(R)
+ ‖ε(t)‖X(R).

By (2.3),
∥

∥vc
∥

∥

L∞(R)
< 1, so that by (2.8) there exists a small positive number γc such that

∥

∥vc(t)
∥

∥

L∞(R)
≤ 1− γc. We obtain

max
x∈R

v(x, t) ≤ 1− γc + ‖ε(t)‖X(R) ≤ 1− γc + αc.

For αc small enough, estimate (2.7) follows, with σc := −αc + γc.
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4 Proofs of localization and smoothness of the limit profile

4.1 Proof of Proposition 2.2

The proof relies on the conservation law for the density of momentum vw. Let R and t be two
real numbers, and recall that

IR(t) ≡ I
(v,w)
R (t) :=

1

2

∫

R

[

vw
]

(x+ a(t), t)Φ(x−R) dx,

where Φ is the function defined on R by

Φ(x) :=
1

2

(

1 + th
(

νcx
)

)

,

with νc :=
√
1− c2/8. First, we deduce from the conservation law for vw (see Lemma 3.1 in [10]

for more details) the identity

d

dt

[

IR+σt(t)
]

=− (a′(t) + σ)

∫

R

[

vw
]

(x+ a(t), t)Φ′(x−R− σt) dx

+

∫

R

[

v2 + w2 − 3v2w2 +
3− v2

(1− v2)2
(∂xv)

2
]

(x+ a(t), t)Φ′(x−R− σt) dx

+

∫

R

[

ln(1− v2)
]

(x+ a(t), t)Φ′′′(x−R− σt) dx.

(4.1)

Our goal is to provide a lower bound for the integrand in the right-hand side of (4.1).

Notice that the function Φ satisfies the inequality

|Φ′′′| ≤ 4ν2cΦ
′. (4.2)

In view of the bound (2.14) on a′(t) and the definition of σc, we obtain that

∣

∣a′(t) + σ
∣

∣

2 ≤ 9 + 7c2

8
. (4.3)

Hence, we deduce

d

dt

[

IR+σt(t)
]

≥
∫

R

[

4ν2c ln(1− v2) + v2 + w2 − 3v2w2

+ (∂xv)
2 −

√

9 + 7c2

8

∣

∣vw
∣

∣

]

(x+ a(t), t)Φ′(x−R− σt) dx := J1 + J2.

(4.4)

At this step, we decompose the real line into two domains, [−R0, R0] and its complement, where
R0 is to be defined below and we denote J1 and J2 the value of the integral in the right-hand
side of (4.4) on each region. On R \ [−R0, R0], we bound the integrand pointwise from below
by a positive quadratic form in (v,w). Exponentially small error terms arise from integration on
[−R0, R0].

For |x| ≥ R0, using Theorem 2.1, the Sobolev embedding theorem, and choosing α0 small
enough and R0 large enough, we obtain

∣

∣v(x+ a(t), t)
∣

∣ ≤ |εv(x, t)|+ |vc(t)(x)| ≤ Ac(α0 + exp(−
√

1− c2R0)) ≤
1

12
, (4.5)
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for any t ∈ R. Using the fact that ln(1 − s) ≥ −2s for all s ∈ [0, 12 ] and introducing (4.5) in
(4.4), we obtain

J1 ≥
1− c

2

8

∫

|x|≥R0

[

v2 + w2 + (∂xv)
2
]

(x+ a(t), t)Φ′(x−R− σt) dx. (4.6)

We next consider the case x ∈ [−R0, R0]. In that region, we have

|x−R− σt| ≥ −R0 + |R+ σt|.

Hence,
Φ′(x−R− σt) ≤ 2νce

2νcR0e−2νc|R+σt|. (4.7)

Since the function | ln | is decreasing on (0, 1], in view of (2.7) and (4.4),

∣

∣

∣J2

∣

∣

∣ ≤ Ac

∫

|x|≤R0

[

v2 + w2 + (∂xv)
2
]

(x+ a(t), t)Φ′(x−R− σt) dx.

Then, by (4.7) and the control on the norm of (v,w) in X(R) provided by the conservation of
the energy, we obtain

∣

∣

∣
J2

∣

∣

∣
≤ Bce

−2νc|R+σt|.

This finishes the proof of (2.28). It remains to prove (2.29). For that, we distinguish two cases.
If R ≥ 0, we integrate (2.28) from t = t0 to t = (t0 + t1)/2, choosing σ = σc and R = R − σct0,
and then from t = (t0+ t1)/2 to t = t1 choosing σ = −σc and R = R+σct1. If R ≤ 0, we use the
same arguments for the reverse choices σ = −σc and σ = σc. This implies (2.29), and finishes
the proof of Proposition 2.2.

4.2 Proof of Proposition 2.7

Let Ψ∗ and v∗ be the solutions of (2.32)-(2.34) expressed in terms of the hydrodynamical variables
(v∗, w∗) as in (2.30). We split the proof into five steps.

Step 1. There exists a positive number Ac, depending only on c, such that
∫ t+1

t

∫

R

∣

∣∂xΨ
∗(x+ a∗(t), s)

∣

∣

2
eνc|x| dx ds ≤ Ac, (4.8)

for any t ∈ R.

By (2.23) and (2.30),
|Ψ∗| ≤ Ac

(

|∂xv∗|+ |w∗|
)

. (4.9)

In view of Proposition 2.4 and the fact that |a∗(t)−a∗(s)| is uniformly bounded for s ∈ [t−1, t+2]
by (2.22), this yields

∫ t+2

t−1

∫

R

∣

∣Ψ∗(x+ a∗(t), s)
∣

∣

2
e2νc|x| dx ds ≤ Ac. (4.10)

We denote

F ∗ := −1

2
(v∗)2Ψ∗ +Re

(

Ψ∗(1− 2F (v∗,Ψ
∗
)
)

)

(

1− 2F (v∗,Ψ∗)
)

.

We recall that ‖v∗‖L∞(R×R) < 1−σc by (2.23). Using the Cauchy-Schwarz inequality, the Sobolev
embedding theorem and the control of the norm in X(R) provided by the conservation of energy,
we have F (v∗,Ψ∗) ∈ L∞(R× R). Hence,

|F ∗| ≤ Ac|Ψ∗|, (4.11)
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where Ac is a positive number depending only on c. Then, by (4.10),

∫ t+2

t−1

∫

R

∣

∣F ∗(x+ a∗(t), s)
∣

∣

2
e2νc|x| dx ds ≤ Ac, (4.12)

for any t ∈ R. Next, by Proposition 2.5, we have

∥

∥Ψ∗∥
∥

L4([t−1,t+2],L∞)
≤ Ac. (4.13)

Indeed, we fix t ∈ R and we denote (Ψ0
1, v

0
1) := (Ψ∗(·+a∗(t−1), t−1), v∗(·+a∗(t−1), t−1)) and

(Ψ1(s), v1(s)) := (Ψ∗(·+a∗(t−1), t−1+s), v∗(·+a∗(t−1), t−1+s)) the corresponding solution
to (2.32)-(2.34). Denote also (Ψ0

2, v
0
2) := (Ψc∗(t−1), vc∗(t−1)) and (Ψ2(s), v2(s)) := (Ψc∗(t−1)(x −

c∗(t − 1)s), vc∗(t−1)(x − c∗(t − 1)s)) the corresponding solution to (2.32)-(2.34), where Ψc∗(t) is
the solution to (2.32) associated to the soliton Qc∗(t). We have, by (2.35),

∥

∥Ψ1(s)−Ψ2(s)
∥

∥

L4([0,τc],L∞)
≤ A

(

∥

∥v01 − v02
∥

∥

L2 +
∥

∥Ψ0
1 −Ψ0

2

∥

∥

L2

)

.

Using (2.21), we obtain
∥

∥Ψ1(s)−Ψ2(s)
∥

∥

L4([0,τc],L∞)
≤ Ac,

where τc = τc(‖v01‖L2 , ‖v02‖L2 , ‖Ψ0
1‖L2 , ‖Ψ0

2‖L2) depend only on c. Since [0, 3] ⊆ ⋃

0≤k≤3/τc

[kτc, (k+

1)τc], we can infer (4.13) inductively .

In addition, by (4.9), we have

∥

∥Ψ∗(·+ a∗(t), ·)
∥

∥

L∞([t−1,t+2],L2)
≤ Ac. (4.14)

Hence, applying the Cauchy-Schwarz inequality to the integral with respect to the time variable,
(4.10), (4.13) and (4.14),

∫ t+2

t−1

∫

R

∣

∣Ψ∗(x+ a∗(t), s)
∣

∣

4
eνc|x| dx ds

≤
∫ t+2

t−1

∫

R

∣

∣Ψ∗(x+ a∗(t), s)
∣

∣

2
eνc|x| dx‖Ψ∗(s)‖2L∞(R) ds

≤
∥

∥Ψ∗(·+ a∗(t), ·)e νc
2
|·|∥
∥

2

L4([t−1,t+2],L2(R))

∥

∥Ψ∗(·+ a∗(t), ·)
∥

∥

2

L4([t−1,t+2],L∞(R))

≤
∥

∥Ψ∗(·+ a∗(t), ·)eνc|·|
∥

∥

L2([t−1,t+2],L2(R))

∥

∥Ψ∗(·+ a∗(t), ·)
∥

∥

L∞([t−1,t+2],L2(R))
∥

∥Ψ∗(·+ a∗(t), ·)
∥

∥

2

L4([t−1,t+2],L∞(R))

≤ Ac.

(4.15)

In order to use Proposition 2.6 on Ψ∗, it is sufficient to verify

sup
s∈[t−1,t+2]

∫

R

∣

∣Ψ∗(x+ a∗(t), s)
∣

∣

2
e2νc|x| dx ds ≤ Ac. (4.16)

Indeed, using (4.16) and (4.13), we can write

∫ t+2

t−1

∫

R

∣

∣Ψ∗(x+ a∗(t), s)
∣

∣

6
e2νc|x| dx ds

≤
∥

∥Ψ∗(·+ a∗(t), ·)eνc|·|
∥

∥

2

L∞([t−1,t+2],L2(R))

∥

∥Ψ∗(·+ a∗(t), ·)
∥

∥

4

L4([t−1,t+2],L∞(R))

≤ Ac,

(4.17)
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which proves that Ψ∗ satisfies the assumptions of Proposition 2.6. Then, we apply Proposition
2.6 with u := Ψ∗(·+ a∗(t), · + (t+ 1/2)), T := 1/2, F := |u|2u+ F ∗(·, t+ 1/2) and successively
λ := ±νc and we use (4.10) and (4.12) to obtain (4.8).

Now let us prove (4.16). First, we recall the next lemma stated by Kenig, Ponce and Vega [18].

Lemma 4.1. Let a ∈ [−2,−1] and b ∈ [2, 3]. Assume that u ∈ C0([a, b] : L2(R)) is a solution of
the inhomogeneous Schrödinger equation

i∂tu+ ∂xxu = H, (4.18)

with H ∈ L1([a, b] : L2(eβxdx)), for some β ∈ R, and

ua ≡ u(·, a), ub ≡ u(·, b) ∈ L2(eβxdx). (4.19)

There exist a positive number K such that

sup
a≤t≤b

‖u(·, t)‖L2(eβxdx)

≤ K(‖ua‖L2(eβxdx) + ‖ub‖L2(eβxdx) + ‖H‖L1([a,b],L2(eβxdx))).

(4.20)

In order to apply the lemma, we need to verify the existence of numbers a and b such that (4.19)
holds for u := Ψ∗(·+a∗(t), ·+t) and such that H := |u|2u+F ∗(·, ·+t) ∈ L1([a, b], L2(eβxdx)), for
β = ±νc respectively and any t ∈ R. Our first claim is a consequence of (4.10) and the Markov
inequality. Indeed, there exist s0 ∈ [−2,−1] and s1 ∈ [2, 3] such that

∫

R

∣

∣Ψ∗(x+ a∗(t), sj + t)
∣

∣

2
e2νc|x| dx ≤ Ac for j = 0, 1.

For the second claim, by (4.12) and the Cauchy-Schwarz estimate, it is sufficient to show that
|u|2u ∈ L1([−2, 3], L2(eνc|x|dx)). To prove this we use the Cauchy-Schwarz inequality for the
time variable, (4.10) and (4.13),

∫ 3

−2

(

∫

R

∣

∣Ψ∗(x+ a∗(t), s+ t)
∣

∣

6
e2νc|x| dx

)
1
2
ds

≤
∥

∥Ψ∗(·+ a∗(t), ·+ t)eνc|·|
∥

∥

L2([−2,3],L2)

∥

∥Ψ∗(·+ a∗(t), · + t)
∥

∥

2

L4([−2,3],L∞)

≤ Ac.

Now, we are allowed to apply Lemma 4.1 with a = s0 and b = s1 to deduce (4.16). This finishes
the proof of this first step.

In the next step, we prove that (4.8) remains true for all the derivatives of Ψ∗ and v∗.

Step 2. Let k ≥ 1. There exists a positive number Ak,c, depending only on k and c, such that

∫ t+1

t

∫

R

∣

∣∂kxΨ
∗(x+ a∗(t), s)

∣

∣

2
eνc|x| dx ds ≤ Ak,c, (4.21)

and
∫ t+1

t

∫

R

∣

∣∂kxv
∗(x+ a∗(t), s)

∣

∣

2
eνc|x| dx ≤ Ak,c, (4.22)

for any t ∈ R.
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The proof of Step 2 is by induction on k ≥ 1. We are going to differentiate (2.32) k times with
respect to the space variable and write the resulting equation as

i∂t
(

∂kxΨ
∗)+ ∂xx

(

∂kxΨ
∗) = Rk(v

∗,Ψ∗). (4.23)

where Rk(v
∗,Ψ∗) = ∂kx

(

|Ψ∗|2Ψ∗)+ ∂kxF
∗. We are going to prove by induction that (4.21), (4.22)

and
∫ t+1

t

∫

R

∣

∣Rk(v
∗,Ψ∗)(x+ a∗(t), s)

∣

∣

2
eνc|x| dx ds ≤ Ak,c, (4.24)

hold simultaneously for any t ∈ R. Notice that (4.21) implies that ∂kxΨ
∗ ∈ L2

loc(R, L
2(R)),

while (4.24) implies that Rk(v
∗,Ψ∗) ∈ L2

loc(R, L
2(R)). Therefore, if (4.21), (4.22) and (4.24) are

established for some k ≥ 1, then applying Proposition 2.6 to ∂kxΨ
∗ can be justified by a standard

approximation procedure.

For k = 1, (4.21) is exactly (4.8). (4.22) holds from Proposition 2.4 and the fact that |a∗(t)−
a∗(s)| is uniformly bounded for s ∈ [t− 1, t+ 2]. Next, we write

R1(v
∗,Ψ∗) = −v∗∂xv∗Ψ∗ − 1

2
(v∗)2∂xΨ

∗ +Re
(

∂xΨ
∗(1− 2F (v∗,Ψ

∗
)
)

)

(

1− 2F (v∗,Ψ∗)
)

− 2v∗|Ψ∗|2
(

1− 2F (v∗,Ψ∗)
)

− 2v∗Ψ∗Re
(

Ψ∗(1− 2F (v∗,Ψ
∗
)
)

− 2∂x
(

Ψ∗|Ψ∗|2
)

)

.

We will show that
Ψ∗ ∈ L∞([t− 1, t+ 2], L∞(R)), (4.25)

in order to control the derivative of the cubic non-linearity by |∂xΨ∗| and then we will use the
fact that F (v∗,Ψ∗) ∈ L∞(R× R), ‖v∗‖L∞(R×R) < 1 and the second equation in (2.34) to get

R1(v
∗,Ψ∗) ≤ K

(

|∂xΨ∗|+ |∂xv∗||Ψ∗|+ |Ψ∗|2
)

. (4.26)

Let us prove (4.25). We define the function H on R by

H(s) :=
1

2

∫

R

(|∂xΨ∗(x, s)|2 − |Ψ∗(x, s)|4)dx.

We differentiate it with respect to s, integrate by part and use (2.32) to obtain

H ′(s) = −Re
(

∫

R

∂sΨ
∗(x, s)

[

∂xxΨ∗ + 2Ψ∗|Ψ∗|2
]

(x, s)dx
)

= Re
(

∫

R

∂sΨ
∗(x, s)F ∗(x, s)dx

)

≤ ‖∂sΨ∗(s)‖H−1(R)‖F ∗(s)‖H1(R).

(4.27)

We have
|∂xF ∗| ≤ K

(

|∂xΨ∗|+ |∂xv∗||Ψ∗|+ |Ψ∗|2
)

,

using the fact that F (v∗,Ψ∗) ∈ L∞(R×R), ‖v∗‖L∞(R×R) < 1 and the second equation in (2.34).

Hence, by (4.8), (4.10), (4.15), and the fact that |∂xv∗| ≤ |Ψ∗| on R×R, we obtain

‖∂xF ∗‖L2([t−1,t+2],L2(R)) ≤ Ac. (4.28)

On the other hand, we infer from (2.32), (4.8), (4.12) and the fact that
Ψ∗ ∈ L4([t− 1, t+ 2], L∞(R))

⋂

L8([t− 1, t+ 2], L4(R)), that

‖∂sΨ∗‖L2([t−1,t+2],H−1(R)) ≤ Ac. (4.29)
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Next, we integrate (4.27) between t− 1 and t+ 2 and we apply the Cauchy-Schwarz inequality
to obtain H ∈ W 1,1([t − 1, t + 2]) for all t ∈ R using (4.28) and (4.29). Notice that all these
computations can be justified by a standard approximation procedure. This yields, by the
Sobolev embedding theorem, that H ∈ L∞([t − 1, t + 2]). We conclude that the derivative
∂xΨ

∗ ∈ L∞([t− 1, t+2], L2(R)). Indeed, we can use the Gagliardo-Nirenberg inequality and the
fact that Ψ∗ is uniformly bounded in L2(R) by a positive number to write

H(s) ≥ 1

2

∫

R

|∂xΨ∗(x, s)|2dx−A‖Ψ∗(s)‖3L2(R)‖∂xΨ∗(·)‖L2(R)

≥ 1

2

∫

R

|∂xΨ∗(x, s)|2dx−AK3‖∂xΨ∗(·)‖L2(R).

The function x 7→ 1
2x

2 − AM3x diverges to +∞ when x goes to +∞. Since H is bounded,
we infer that ‖∂xΨ∗(·)‖L2(R) is uniformly bounded on [t − 1, t + 2] for all t ∈ R. This finishes
the proof of (4.25) by the Sobolev embedding theorem. Then, by (4.26), (4.24) for k = 1 is a
consequence of (4.8), (4.15) and the fact that |∂xv∗| ≤ |Ψ∗| on R× R.

Assume now that (4.21), (4.22) and (4.24) are satisfied for any integer 1 ≤ k ≤ k0 and any
t ∈ R. Let us prove these three estimates for k = k0 + 1. We apply Proposition 2.6 with
u := ∂k0x Ψ∗(·+a∗(t), ·+(t+1/2)), T := 1/2 and successively λ := ±νc. In view of (4.21), (4.23),
(4.24), and the fact that |a∗(t)− a∗(s)| is uniformly bounded for s ∈ [t− 1, t+ 2], this yields

∫ t+1

t

∫

R

|∂k0+1
x Ψ∗(x+ a∗(t), s)|2eνc|x| dx ds ≤ Ac, (4.30)

so that (4.21) is satisfied for k = k0 + 1.

Let k ∈ {1, ..., k0}. We use the induction hypothesis and (4.30) to infer that

∂k−1
x Ψ∗ ∈ L2([t, t+ 1],H2(R)).

Also, we have
∂k−1
x Ψ∗ ∈ H1([t, t+ 1], L2(R))

using (4.23) and (4.24). This yields, by interpolation,

∂k−1
x Ψ∗ ∈ H

2
3 ([t, t+ 1],H

2
3 (R)).

Hence, using the Sobolev embedding theorem, we obtain

∂k−1
x Ψ∗ ∈ L∞([t, t+ 1], L∞(R)) for all t ∈ R. (4.31)

On the other hand, since |∂xv∗| ≤ |Ψ∗|, we have, by (4.25), ∂xv
∗ ∈ L∞([t, t + 1], L∞(R)). For

k ∈ {2, ..., k0}, we differentiate the second equation in (2.34) k times and we use (4.31) to obtain

|∂kxv∗| ≤ K
(

k−1
∑

j=1

|∂jxΨ∗|+
k−2
∑

j=0

|∂jxv∗|
)

, (4.32)

where K is a positive constant. We infer from (4.31) by induction that

∂kxv
∗ ∈ L∞([t, t+ 1], L∞(R)) for all t ∈ R, (4.33)

for all k ∈ {2, ..., k0}. Then, we just compute explicitly Rk0+1(v
∗,Ψ∗) and we use (4.31) and

(4.33) to obtain

∣

∣Rk0+1(v
∗,Ψ∗)

∣

∣ ≤ Ak0+1,c,K

(

k0+1
∑

j=0

|∂jxΨ∗|+
k0
∑

j=1

|∂jxv∗|
)

.
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Hence, by (4.21) for all k ≤ k0, (4.22) and (4.30), we obtain (4.24) for k = k0 + 1. Finally,
we introduce (4.21) for all k ≤ k0 + 1 and (4.22) for all k ≤ k0 into (4.32) to deduce (4.22) for
k = k0 + 1. This finishes the proof of this step.

In order to finish the proof of Proposition 2.7, we now turn these L2
loc in time estimates into

L∞ in time estimates, and then into uniform estimates.

Step 3. Let k ≥ 0. There exists a positive number Ak,c, depending only on k and c, such that
∫

R

∣

∣∂kxΨ
∗(x+ a∗(t), t)

∣

∣

2
eνc|x| dx ≤ Ak,c, (4.34)

for any t ∈ R. In particular, we have
∥

∥∂kxΨ
∗(·+ a∗(t), t)e

νc
2
|·|∥
∥

L∞(R)
≤ Ak,c, (4.35)

for any t ∈ R, and a further positive constant Ak,c, depending only on k and c.

Here, we use the Sobolev embedding theorem in time and (4.23) for the proof. By the Sobolev
embedding theorem, we have

∥

∥∂kxΨ
∗(·+ a∗(t), t)e

νc
2
|·|∥
∥

2

L2(R)
≤K

(

∥

∥∂s
(

∂kxΨ
∗(·+ a∗(t), s)e

νc
2
|·|)∥
∥

2

L2([t−1,t+1],L2(R))

+
∥

∥∂kxΨ
∗(·+ a∗(t), s)e

νc
2
|·|∥
∥

2

L2([t−1,t+1],L2(R))

)

,

while, by (4.23),

∥

∥∂s
(

∂kxΨ
∗(·+ a∗(t), s)e

νc
2
|·|)∥
∥

2

L2([t−1,t+1],L2(R))
≤2
(

∥

∥∂k+2
x Ψ∗(·+ a∗(t), s)e

νc
2
|·|∥
∥

2

L2([t−1,t+1],L2(R))

+
∥

∥Rk(Ψ
∗)(·+ a∗(t), s)e

νc
2
|·|∥
∥

2

L2([t−1,t+1],L2(R))

)

,

so that we finally deduce (4.34) from (4.21) and (4.24). Estimate (4.35) follows from applying
the Sobolev embedding theorem to (4.34).

Similarly, the function v∗ satisfies

Step 4. Let k ∈ N. There exists a positive number Ak,c, depending only on k and c, such that
∫

R

(

∂kxv
∗(x+ a∗(t), t)

)2
eνc|x| dx ≤ Ak,c, (4.36)

and
∥

∥∂kxv
∗(·+ a∗(t), t)e

νc
2
|·|∥
∥

L∞(R)
≤ Ak,c, (4.37)

for any t ∈ R.

The proof is similar to the proof of Step 3 using the first equation in (2.34) instead of (2.32).
We use the Sobolev embedding theorem to write

∥

∥∂kxv
∗(·+ a∗(t), t)eνc |·|

∥

∥

2

L2(R)
≤K

(

∥

∥∂s
(

∂kxv
∗(·+ a∗(t), s)eνc|·|

)∥

∥

2

L2([t−1,t+1],L2(R))

+
∥

∥∂kxv
∗(·+ a∗(t), s)eνc|·|

∥

∥

2

L2([t−1,t+1],L2(R))

)

.

By the first equation in (2.34), (4.21), (4.23) and (4.33), we have

∥

∥∂s
(

∂kxv
∗(·+ a∗(t), s)eνc|·|

)∥

∥

2

L2([t−1,t+1],L2(R))
≤ Ac.

This leads to (4.36). The uniform bound in (4.37) is then a consequence of the Sobolev embedding
theorem.

Finally, we provide the estimates for the function w∗.
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Step 5. Let k ∈ N. There exists a positive number Ak,c, depending only on k and c, such that
∫

R

∣

∣∂kxw
∗(x+ a∗(t), t)

∣

∣

2
eνc|x| dx ≤ Ak,c, (4.38)

and
∥

∥∂kxw
∗(·+ a∗(t), t)e

νc
2
|·|∥
∥

L∞(R)
≤ Ak,c, (4.39)

for any t ∈ R.

The proof relies on the last two steps. First, we write

v∗Ψ∗ = −1

2
∂x

(

(1− (v∗)2)
1
2 exp iθ∗

)

.

Since (1− v∗(x, t)2)1/2 exp iθ∗(x, t) → 1 as x→ −∞ for any t ∈ R, we obtain the formula

2F (v∗,Ψ∗) = 1− (1− (v∗)2)
1
2 exp iθ∗. (4.40)

Hence, using (2.30), we have

w∗ = 2 Im
(Ψ∗(1− 2F (v∗,Ψ∗)

)

1− (v∗)2

)

. (4.41)

Combining (2.7) and (4.40), we recall that

|1− 2F (v∗,Ψ∗)|
1− (v∗)2

≤ Ac. (4.42)

Hence, we obtain
|w∗| ≤ Ac|Ψ∗|.

Then, (4.38) and (4.39) follow from (4.34) and (4.35) for k = 0. For k ≥ 1, we differentiate (4.41)
k times with respect to the space variable, and using (4.35), (4.37) and (4.42), we are led to

|∂kxw∗| ≤ Ak,c

(

k
∑

j=0

|∂jxΨ∗|+
k−1
∑

j=1

|∂jxv∗|
)

.

We finish the proof of this step using Steps 3 and 4. This achieves the proof of Proposition
2.7.

5 Proof of the Liouville theorem

5.1 Proof of Proposition 2.8

First, by (2.38) and the explicit formula for vc and wc in (2.3), there exists a positive number
Ak,c such that

∫

R

(

(

∂kxε
∗
v(x, t)

)2
+
(

∂kxε
∗
w(x, t)

)2
)

eνc|x| dx ≤ Ak,c, (5.1)

for any k ∈ N and any t ∈ R. In view of the formulae of Hc in (A.42) and for u∗ in (2.41), a
similar estimate holds for u∗, for a further choice of the constant Ak,c. As a consequence, we are
allowed to differentiate with respect to the time variable the quantity

I∗(t) :=
∫

R

xu∗1(x, t)u
∗
2(x, t) dx,
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in the left-hand side of (2.43). Moreover, we can compute

d

dt

(

I∗
)

=− 2

∫

R

µ
〈

Hc∗(∂xu
∗), u∗

〉

R2 +

∫

R

µ
〈

Hc∗
(

JRc∗ε
∗), u∗

〉

R2

−
(

c∗
)′
∫

R

µ
〈

Hc∗(∂cQc∗), u
∗〉

R2 +
(

c∗
)′
∫

R

µ
〈

∂cHc∗(ε
∗), u∗

〉

R2

+
(

(a∗)′ − c∗
)

∫

R

µ
〈

Hc∗(∂xε
∗), u∗

〉

R2 ,

(5.2)

where we have set µ(x) = x for any x ∈ R.

At this stage, we split the proof into five steps. The proof of these steps is similar to the proof
of Proposition 7 in [2]. We first show

Step 1. There exist two positive numbers A1 and R1, depending only on c, such that

I∗
1 (t) := −2

∫

R

µ
〈

Hc∗(∂xu
∗), u∗

〉

R2 ≥ 1− c
2

8

∥

∥u∗(·, t)
∥

∥

2

X(R)
−A1

∥

∥u∗(·, t)
∥

∥

2

X(B(0,R1))
, (5.3)

for any t ∈ R.

We introduce the explicit formulae of the operator Hc∗ in the definition of I∗
1(t) to obtain

I∗
1(t) =2

∫

R

µ∂x

( ∂xxu
∗
1

1− v2c∗

)

u∗1 − 2

∫

R

µ
(

1− (c∗)2 − (5 + (c∗)2)v2c∗ + 2v4c∗
) ∂xu

∗
1

(1− v2c∗)
2
u∗1

+ 2

∫

R

µc∗
1 + v2c∗

1− v2c∗
(∂xu

∗
2)u

∗
1 − 2

∫

R

µ(c∗)2
(1 + v2c∗)

2

(1− v2c∗)
3
(∂xu

∗
1)u

∗
1

+ 2

∫

R

µc∗
1 + v2c∗

1− v2c∗
(∂xu

∗
1)u

∗
2 − 2

∫

R

µ
(

1− v2c∗
)

(∂xu
∗
2)u

∗
2.

Integrating by parts each term, we obtain

I∗
1(t) =

∫

R

ι∗1(x, t) dx,

with

ι∗1 =
( 2

1− v2c∗
+ 2x

∂xvc∗ vc∗

1− v2c∗

)

(

∂xu
∗
1

)2 − 2c∗
(1 + v2c∗

1− v2c∗
+

4x∂xvc∗ vc∗
(

1− v2c∗
)2

)

u∗2u
∗
1

+
(

1− v2c∗ − 2x∂xvc∗ vc∗
)(

u∗2
)2

+
1 + 2

(

(c∗)2 − 3
)

v2c∗ +
(

2(c∗)2 − 3
)

v4c∗ − 2v6c∗
(

1− v2c∗
)3

(

u∗1
)2

+ 4x∂xvc∗ vc∗

(

(c∗)2 − 3
)

+
(

2(c∗)2 − 3
)

v2c∗ − 3v4c∗
(

1− v2c∗
)4

(

u∗1
)2
.

Let δ be a small positive number. We next use the exponential decay of the function vc and its
derivatives to guarantee the existence of a radius R, depending only on c and δ (in view of the
bound on c∗ − c in (2.21)), such that

ι∗1(x, t) ≥
(

2− δ
)(

∂xu
∗
1

)2
(x, t) +

(1− c
2

4
− δ
)(

(u∗1)
2(x, t) + (u∗2)

2(x, t)
)

,

when |x| ≥ R.
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Then, we choose δ small enough and fix the number R1 according to the value of the corre-
sponding R, to obtain

∫

|x|≥R1

ι∗1(x, t) dx ≥ 1− c
2

8

∫

|x|≥R1

(

(∂xu
∗
1(x, t))

2 + u∗1(x, t)
2 + u∗2(x, t)

2
)

dx. (5.4)

On the other hand, it follows from (2.3), and again (2.8), that

∫

|x|≤R1

ι∗1(x, t) dx ≥
(1− c

2

8
−A1

)

∫

|x|≤R1

(

(∂xu
∗
1(x, t))

2 + u∗1(x, t)
2 + u∗2(x, t)

2
)

dx,

for a positive number A1 depending only on c. Combining with (5.4), we obtain (5.3).

Step 2. There exist two positive numbers A2 and R2, depending only on c, such that

∣

∣I∗
2 (t)

∣

∣ :=

∣

∣

∣

∣

∫

R

µ
〈

Hc∗
(

JRc∗ε
∗), u∗

〉

R2

∣

∣

∣

∣

≤ 1− c
2

64

∥

∥u∗(·, t)
∥

∥

2

X(R)
+A2

∥

∥u∗(·, t)
∥

∥

2

X(B(0,R2))
, (5.5)

for any t ∈ R.

We refer to the proof of Step 2 in the proof of Proposition 7 in [2] for mare details.

Next, we infer from (2.9), (2.57), the explicit formula of Hc∗ in (A.42) and the exponential
decay of the function ∂cQc∗ and its derivatives, that

Step 3. There exist two positive numbers A3 and R3, depending only on c, such that

∣

∣I∗
4(t)

∣

∣ :=

∣

∣

∣

∣

(c∗)′
∫

R

µ
〈

Hc∗(∂cQc∗), u
∗〉

R2

∣

∣

∣

∣

≤ 1− c
2

64

∥

∥u∗(·, t)
∥

∥

2

X(R)
+A3

∥

∥u∗(·, t)
∥

∥

2

X(B(0,R3))
, (5.6)

for any t ∈ R.

We decompose the real line into two regions [−R,R] and its complement for any R > 0. We

use the fact that |x| ≤ e
νc|x|

4 for all |x| ≥ R, to write

∣

∣I∗
4 (t)

∣

∣ ≤R|(c∗)′(t)|
∫

|x|≤R

∣

∣Hc∗(t)(∂cQc∗(t))(x)
∣

∣

∣

∣u∗(x, t)
∣

∣ dx

+ δ|(c∗)′(t)|
∫

|x|≥R

∣

∣Hc∗(t)(∂cQc∗(t))(x)
∣

∣

∣

∣u∗(x, t)
∣

∣e
νc|x|

4 dx,

for any t ∈ R. We deduce from (2.9), the explicit formula of Hc∗ in (A.42) and the exponential
decay of the function ∂cQc∗ and its derivatives that

∣

∣I∗
4(t)

∣

∣ ≤ Ac

(

R
∥

∥u∗(·, t)
∥

∥

X(B(0,R))
+ δ
∥

∥u∗(·, t)
∥

∥

X(R)

)

∥

∥ε∗(·, t)
∥

∥

L2(R)2
,

for any t ∈ R. Hence, by (2.57),

∣

∣I∗
4(t)

∣

∣ ≤ Ac

(R2

δ

∥

∥u∗(·, t)
∥

∥

2

X(B(0,R))
+ 2δ

∥

∥u∗(·, t)
∥

∥

2

X(R)

)

.

We choose δ so that 2Acδ ≤ (1− c
2)/64, and we denote by R4 the corresponding number R, we

obtain (5.6), with A4 = AcR
2
4/δ.

Similarly, we use (2.9), (2.21) and (2.57) to obtain
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Step 4. There exists two positive numbers A4 and R4, depending only on c, such that

∣

∣I∗
3 (t)

∣

∣ :=

∣

∣

∣

∣

(c∗)′
∫

R

µ
〈

∂cHc∗(ε
∗), u∗

〉

R2

∣

∣

∣

∣

≤ 1− c
2

64

∥

∥u∗(·, t)
∥

∥

2

X(R)
+A4

∥

∥u∗(·, t)
∥

∥

2

X(B(0,R4))
, (5.7)

for any t ∈ R.

We argue as in Steps 3 to show

Step 5. There exist two positive numbers A5 and R5, depending only on c, such that

∣

∣I∗
5(t)

∣

∣ :=

∣

∣

∣

∣

(

(a∗)′ − c∗
)

∫

R

µ
〈

Hc∗(∂xε
∗), u∗

〉

R2

∣

∣

∣

∣

≤ 1− c
2

64

∥

∥u∗(·, t)
∥

∥

2

X(R)
+A5

∥

∥u∗(·, t)
∥

∥

2

X(B(0,R5))
,

(5.8)

for any t ∈ R.

Finally, combining the estimates in Steps 1 to 5 with the identity (5.2), we obtain

d

dt

(

I∗(t)
)

≥ 1− c
2

16

∥

∥u∗(·, t)
∥

∥

2

X(R)
−
(

A1 +A2 +A3 +A4 +A5

)∥

∥u∗(·, t)
∥

∥

2

X(B(0,R∗))
,

this allow us to conclude the proof of (2.43) with R∗ = max{R1, R2, R3, R4, R5} and A∗ =
A1 +A2 +A3 +A4 +A5.

5.2 Proof of Lemma 2.1

When u ∈ H3(R)×H1(R), the function ∂xu is in the space H2(R)×L2(R) which is the domain
of Hc. The scalar product in the right-hand side of (2.46) is well-defined in view of (2.45). Next,
we use the formula for Hc in (A.42) to express Gc(u) as

〈

SMcu,Hc(−2∂xu)
〉

L2(R)2

=2

∫

R

∂xvc
vc

(

1− c2 − (5 + c2)v2c + 2v4c
(1− v2c )

2
+ c2

(1 + v2c )
2

(1− v2c )
3
− 2c2

v2c (1 + v2c )

(1− v2c )
3

)

u1∂xu1

− 2

∫

R

∂xvc
vc

∂x

( ∂xxu1
1− v2c

)

+ 2

∫

R

∂xvc(1− v2c )

vc
u2∂xu2

+ 2c

∫

R

(

2
vc∂xvc
1 − v2c

u1∂xu2 −
∂xvc(1 + v2c )

vc(1− v2c )
∂x
(

u1u2
)

)

.

(5.9)

We recall that vc solves the equation

∂xxvc = (1− c2 − 2v2c )vc, (5.10)

which leads to

(∂xvc)
2 = (1− c2 − v2c )v

2
c , and ∂x

(∂xvc
vc

)

= −v2c . (5.11)

Then, the third integral in the right-hand side of (5.9) can be written as

2

∫

R

∂xvc(1− v2c )

vc
u2∂xu2 =

∫

R

µcu
2
2, (5.12)
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with µc := 2(∂xvc)
2 + (1− v2c )v

2
c . Similarly, the last integral is given by

∫

R

(

2
vc∂xvc
1− v2c

u1∂xu2 −
∂xvc(1 + v2c )

vc(1− v2c )
∂x
(

u1u2
)

)

= −
∫

R

(

v2cu1u2 + 2
vc∂xvc
1− v2c

u2∂xu1

)

. (5.13)

Combining (5.12) and (5.13) with (5.9), we obtain the identity

〈

SMcu,Hc(−2∂xu)
〉

L2(R)2
= I +

∫

R

µc

(

u2 −
cv2c
µc
u1 −

2cvc∂xvc
µc(1− v2c )

∂xu1

)2
,

where

I =

∫

R

2

(

∂xvc
vc

(1− c2 − (5 + c2)v2c + 2v4c
(1− v2c )

2
+ c2

1 + v2c
(1− v2c )

2

)

− 2c2
v3c∂xvc

µc(1− v2c )

)

u1∂xu1

−
∫

R

∂xvc
vc

u1∂x

( ∂xxu1
1− v2c

)

− c2
∫

R

v4c
µc
u21 − 4c2

∫

R

(∂xvc)
2v2c

µc(1− v2c )
2
(∂xu1)

2.

Using (5.10) and (5.11), we finally deduce that

I =
3

2

∫

R

v4c
µc

(

∂xu1 −
∂xvc
vc

u1

)2
,

which finishes the proof of (2.46).

5.3 Proof of Proposition 2.9

We first rely on (2.3) and (2.46) to check that the quadratic formGc is well-defined and continuous
on X(R). Next, setting

v = (vcu1, vcu2), (5.14)

and using (5.10), we can express it as

Gc(u) = Kc(v) :=

∫

R

v2c
µc

(

∂xv1 −
2∂xvc
vc

v1

)2
+

∫

R

µc
v2c

(

v2 +
cλc

µc(1− v2c )
v1 − 2

cvc∂xvc
µc(1− v2c )

∂xv1

)2
,

(5.15)
where we have set λc := −µc + 4(∂xvc)

2. From (2.48) and (5.14) we deduce that

Ker(Kc) = Span(vcQc). (5.16)

Let w be the pair defined in the following way

w =
(

v1, v2 − 2
cvc∂xvc
µc(1− v2c )

∂xv1

)

.

We compute
Kc(v) =

〈

Tc(w), w
〉

L2(R)2
, (5.17)

with

Tc(w) =




−3∂x

(

v2c
µc
∂xw1

)

+
(

8v4c (∂xvc)
2−2v6c (1−v2c )
µ2
c

+ 4(∂xvc)2

µc
+ c2(2c2−1+v2c )

2v2c
µc(1−v2c )

2

)

w1 − c(2c2−1+v2c )
(1−v2c )

w2

− c(2c2−1+v2c )
(1−v2c )

w1 +
µc

v2c
w2



 .

(5.18)
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The operator Tc in (5.18) is self-adjoint on L2(R)2, with domain Dom(Tc) = H2(R)×L2(R). In
addition, combining (5.15) with (5.17) we deduce that Tc is non-negative, with a kernel equal to

Ker(Tc) = Span
{(

v2c ,
2cv2c (∂xvc)

2

µc(1 − v2c )

)}

.

At this stage, we divide the proof into three steps.

Step 1. Let c ∈ (−1, 1) \ {0}. There exists a positive number Λ1, depending continuously on c,
such that

〈Tc(w), w〉L2(R)2 ≥ Λ1

∫

R

(

w2
1 + w2

2

)

, (5.19)

for any pair w ∈ X1(R) such that

〈

w,
(

v2c ,
2cv2c (∂xvc)

2

µc(1− v2c )

)〉

L2(R)2
= 0. (5.20)

We claim that the essential spectrum of Tc is given by

σess(Tc) =
[

τc,+∞
)

, (5.21)

with

τc = τ1,c −
1

2
τ

1
2
2,c > 0. (5.22)

Here, we have set

τ1,c =
4(1− c2) + c2(2c2 − 1)2

2(3 − 2c2)
+

3− 2c2

2

and

τ2,c =
(4(1− c2) + c2(2c2 − 1)2

3− 2c2
− (3− 2c2)

)2
+ 4c2(2c2 − 1)2.

In particular, 0 is an isolated eigenvalue in the spectrum of Tc. Inequality (5.19) follows with Λ1

either equal to τc, or to the smallest positive eigenvalue of Tc. In view of the analytic dependence
on c of the operator Tc, Λ1 depends continuously on c .

Now, let us prove (5.21). We rely on the Weyl criterion. It follows from (2.47) and (5.10) that

µc(x)

v2c (x)
→ 3− 2c2, and

(∂xvc)
2(x)

µc(x)
→ 1− c2

3− 2c2
,

as x→ ±∞. Coming back to (5.18), we introduce the operator T∞ given by

T∞(w) =

(

− 3
3−2c2 ∂xxw1 +

4(1−c2)+c2(2c2−1)2

3−2c2 w1 − c(2c2 − 1)w2

−c(2c2 − 1)w1 + (3− 2c2)w2

)

.

By the Weyl criterion, the essential spectrum of Tc is equal to the spectrum of T∞.

We next apply again the Weyl criterion to establish that a real number λ belongs to the spectrum
of T∞ if and only if there exists a complex number ξ such that

λ2 −
( 3

3− 2c2
|ξ|2 + 4(1− c2) + c2(2c2 − 1)2

3− 2c2
+ 3− 2c2

)

λ+ 3|ξ|2 + 4(1− c2) = 0.

This is the case if and only if

λ =
4(1− c2) + c2(2c2 − 1)2 + 3|ξ|2

2(3 − 2c2)
+

3− 2c2

2

± 1

2

((4(1− c2) + c2(2c2 − 1)2 + 3|ξ|2
3− 2c2

− (3− 2c2)
)2

+ 4c2(2c2 − 1)2
)

1
2
.
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This leads to
σess(Tc) = σ(T∞) =

[

τc,+∞
)

,

with τc as in (5.22). This completes the proof of Step 1.

Step 2. There exists a positive number Λ2, depending continuously on c, such that

Kc(v) ≥ Λ2

∫

R

(

(∂xv1)
2 + v21 + v22

)

, (5.23)

for any pair v ∈ X1(R) such that

〈v, v−1
c Sχc〉L2(R)2 = 0. (5.24)

We start by improving the estimate in (5.19). Given a pair w ∈ X1(R), we observe that

∣

∣

∣

∣

〈Tc(w), w〉L2(R)2 − 3

∫

R

v2c
µc

(∂xw1)
2

∣

∣

∣

∣

≤ Ac

∫

R

(w2
1 + w2

2).

Here and in the sequel, Ac refers to a positive number, depending continuously on c. For
0 < τ < 1, we have

〈Tc(w), w〉L2(R)2 ≥
(

1− τ
)

〈Tc(w), w〉L2(R)2 + 3τ

∫

R

v2c
µc

(∂xw1)
2 −Acτ

∫

R

(w2
1 + w2

2).

Since v2c/µc ≥ 1/(3− 2c2), this yields

〈Tc(w), w〉L2(R)2 ≥
(

(

1− τ
)

Λ1 −Acτ
)

∫

R

(w2
1 + w2

2) +
3τ

3− 2c2

∫

R

(∂xw1)
2,

under condition (5.20). For τ small enough, this leads to

〈Tc(w), w〉L2(R)2 ≥ Ac

∫

R

(

(∂xw1)
2 + w2

1 + w2
2

)

, (5.25)

when w satisfies condition (5.20).

Since the pair w depends on the pair v, we can write (5.25) in terms of v. By (5.17), Kc(v) is
equal to the left-hand side of (5.25). We deduce that (5.25) may be expressed as

Kc(v) ≥ Ac

∫

R

(

(∂xv1)
2 + v21

)

+Ac

∫

R

(

v2 −
2cvc(∂xvc)

µc(1− v2c )
∂xv1

)2
.

We recall that, given two vectors a and b in a Hilbert space H, we have

∥

∥a− b
∥

∥

2

H
≥ τ

∥

∥a
∥

∥

2

H
− τ

1− τ

∥

∥b
∥

∥

2

H
,

for any 0 < τ < 1. Then, we deduce that

Kc(v) ≥ Ac

∫

R

(

(∂xv1)
2 + v21 + τv22

)

− τAc

1− τ

∫

R

( vc(∂xvc)

µc(1− v2c )
∂xv1

)2
.

We choose τ small enough so that we can infer from (2.3) that

Kc(v) ≥ Ac

∫

R

(

(∂xv1)
2 + v21 + v22

)

, (5.26)
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when w satisfies condition (5.20), i.e. when v is orthogonal to the pair

vc =
(

v2c − ∂x

(2cv2c (∂xvc)
2

µc(1− v2c )

)

,
2cv2c (∂xvc)

2

µc(1− v2c )

)

. (5.27)

Next, we verify that (5.26) remains true, decreasing possibly the value of Ac, when we replace
this orthogonality condition by

〈v, vcQc〉L2(R)2 = 0. (5.28)

We remark that
〈vc, vcQc〉L2(R)2 6= 0.

Indeed, we would deduce from (5.26) that

0 = Kc(vcQc) ≥ Ac

∫

R

(

(∂xv
2
c )

2 + v4c + (vcwc)
2
)

> 0,

which is impossible. In addition, the number 〈vc, vcQc〉L2(R)2 depends continuously on c in view
of (5.27). Given a pair ṽ satisfying (5.28), we denote by λ the real number such that v = λvcQc+ṽ
is orthogonal to vc. Since vcQc belongs to the kernel of Kc, we obtain using (5.26),

Kc(ṽ) = Kc(v) ≥ Ac

∫

R

(

(∂xv1)
2 + v

2
1 + v

2
2

)

. (5.29)

On the other hand, since ṽ satisfies (5.28), we have

λ =
〈v, vcQc〉L2(R)2

‖vcQc‖2L2(R)2
.

Using the Cauchy-Schwarz inequality, this yields

λ2 ≤ Ac

(∫

R

(

v4c + (vcwc)
2
)

)(∫

R

(

v
2
1 + v

2
2

)

)

,

hence, by (2.3) and (5.29),
λ2 ≤ AcKc(v) = AcKc(ṽ).

Using (5.29), this leads to

∫

R

(

(∂xṽ1)
2 + ṽ21 + ṽ22

)

≤2

(

λ2
∫

R

v2c
(

(∂xvc)
2 + v2c + w2

c

)

+

∫

R

(

(∂xv1)
2 + v

2
1 + v

2
2

)

)

≤ AcKc(ṽ),

We finish the proof of this step applying again the same argument. We write v = λvcSQc + ṽ,
with 〈ṽ, vcQc〉L2(R)2 = 0. Since vcQc belongs to the kernel ofKc, we infer from the same argument
that

Kc(v) = Kc(ṽ) ≥ Λ2

∫

R

(∂xṽ1)
2 + ṽ21 + ṽ22 . (5.30)

Using the orthogonality condition in (5.24), we obtain

λ = −
〈ṽ, v−1

c Sχc〉L2(R)2

〈Qc, Sχc〉L2(R)2
.

By the Cauchy-Schwarz inequality, we are led to

λ2 ≤ Ac‖v−1
c Sχc‖2L2×L2

∫

R

(

ṽ21 + ṽ22
)

.
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Invoking the exponential decay of χc in (A.46), we deduce

‖v−1
c Sχc‖2L2×L2 ≤ Ac.

As a consequence, we can derive from (5.30) that

λ2 ≤ AcKc(ṽ) = AcKc(v).

Combining again with (5.30), we are led to
∫

R

(

(∂xv1)
2 + v21 + v22

)

≤2

(

λ2
∫

R

v2c
(

(∂xvc)
2 + v2c + w2

c

)

+

∫

R

(

(∂xṽ1)
2 + ṽ21 + ṽ22

)

)

≤AcKc(v).

which completes the proof of Step 2.

Step 3. End of the proof.

Since the pair v depends on the pair u as in (5.14), we can write (5.23) in terms of u. The left
hand side of (5.23) is equal to Gc(u) by (5.15). Moreover, for the right-hand side, we have

∫

R

(

(∂xv1)
2 + v21 + v22

)

=

∫

R

v2c
(

(∂xu1)
2 + (2v2c + c2)u21 + u22

)

.

We deduce that (5.23) may be written as

Gc(u) ≥ Ac

∫

R

v2c
(

(∂xu1)
2 + u21 + u22

)

, (5.31)

when vcu verifies the orthogonality condition (5.24), which means that u verifies the orthogonality
condition (2.52). We recall that

vc(x) ≥ Ace
−|x|,

by (2.3), which is sufficient to obtain (2.51). This completes the proof of Proposition 2.9.

5.4 Proof of Proposition 2.10

First we check that we are allowed to differentiate the quantity

J ∗(t) :=
〈

Mc∗(t)u
∗(·, t), u∗(·, t)

〉

L2(R)2
.

Indeed, by (2.41), (5.1), and (A.42), there exists a positive number Ak,c such that
∫

R

(

(

∂kxu
∗
1(x, t)

)2
+
(

∂kxu
∗
2(x, t)

)2
)

eνc|x| dx ≤ Ak,c. (5.32)

Next, using (2.42) and (2.45), we obtain

d

dt

(

J ∗) =2
〈

SMc∗u
∗,Hc∗(JSu

∗)
〉

L2(R)2
+ 2
〈

SMc∗u
∗,Hc∗(JRc∗ε

∗)
〉

L2(R)2

+ 2
(

(a∗)′ − c∗
)〈

SMc∗u
∗,Hc∗(∂xε

∗)
〉

L2(R)2

− 2
(

c∗
)′〈
SMc∗u

∗,Hc∗(∂cQc∗)
〉

L2(R)2

+
(

c∗
)′〈
∂cMc∗u

∗, u∗
〉

L2(R)2
+ 2
(

c∗
)′〈
Mc∗u

∗, S∂cHc∗(ε
∗)
〉

L2(R)2
.

(5.33)

The proof of (2.53) is the same as in [2]. We will give only the main ideas of the proof. We will
estimate all the terms in the right-hand side of (5.33) except the fourth term which vanishes.

For the first one, we infer from Proposition 2.9 the following estimate.
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Step 1. There exists a positive number B1, depending only on c, such that

J ∗
1 (t) := 2

〈

SMc∗u
∗,Hc∗(JSu

∗)
〉

L2(R)2
≥ B1

∫

R

[

(∂xu
∗
1)

2 + (u∗1)
2 + (u∗2)

2
]

(x, t)e−2|x| dx,

for any t ∈ R.

For the second term, by (2.21), (2.57) and (5.1), we have

Step 2. There exists a positive number B2, depending only on c, such that

∣

∣J ∗
2 (t)

∣

∣ := 2
∣

∣

∣

〈

SMc∗u
∗,Hc∗(JRc∗ε

∗)
〉

L2(R)2

∣

∣

∣
≤ B2

∥

∥ε∗(·, t)
∥

∥

1
2

X(R)

∥

∥u∗(·, t)
∥

∥

2

X(R)
,

for any t ∈ R.

For the third one, we use (2.21) to obtain

Step 3. There exists a positive number B3, depending only on c, such that

∣

∣J ∗
3 (t)

∣

∣ := 2
∣

∣(a∗)′ − c∗
∣

∣

∣

∣

∣

〈

SMc∗u
∗,Hc∗(∂xε

∗)
〉

L2(R)2

∣

∣

∣
≤ B3

∥

∥ε∗(·, t)
∥

∥

1
2

X(R)

∥

∥u∗(·, t)
∥

∥

2

X(R)
,

for any t ∈ R.

We now prove the following statement for the fourth term.

Step 4. We have
J ∗
4 (t) := 2(c∗)′

〈

SMc∗u
∗,Hc∗(∂cQc∗)

〉

L2(R)2
= 0,

for any t ∈ R.

Since Hc∗(∂cQc∗) = P ′(Qc∗) = SQc∗ and Mc∗Qc∗ = S∂xQc∗, we have

〈

SMc∗u
∗,Hc∗(∂cQc∗)

〉

L2(R)2
=
〈

Mc∗u
∗, Qc∗

〉

L2(R)2
=
〈

u∗, S∂xQc∗
〉

L2(R)2

=
〈

ε∗,Hc∗(∂xQc∗)
〉

L2(R)2
= 0.

This is the reason why we do not need to establish a quadratic dependence of (c∗)′(t) on ε∗.

Next, we use (2.3), (2.9), (2.21) and (2.45) to bound the fifth term in the following way.

Step 5. There exists a positive number B5, depending only on c, such that

∣

∣J ∗
5 (t)

∣

∣ :=
∣

∣(c∗)′
∣

∣

∣

∣

∣

〈

∂cMc∗u
∗, u∗

〉

L2(R)2

∣

∣

∣
≤ B5

∥

∥ε∗(·, t)
∥

∥

1
2

X(R)

∥

∥u∗(·, t)
∥

∥

2

X(R)
,

for any t ∈ R.

Finally, we have in the same way.

Step 6. There exists a positive number B6, depending only on c, such that

∣

∣J ∗
6 (t)

∣

∣ :=
∣

∣(c∗)′
∣

∣

∣

∣

∣

〈

Mc∗u
∗, S∂cHc∗(ε

∗)
〉

L2(R)2

∣

∣

∣
≤ B6

∥

∥ε∗(·, t)
∥

∥

1
2

X(R)

∥

∥u∗(·, t)
∥

∥

2

X(R)
,

for any t ∈ R.

We conclude the proof of Proposition 2.10 by combining the six previous steps to obtain (2.53),
with B∗ := max

{

1/B1, B2 +B3 +B5 +B6}.
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5.5 Proof of Corollary 2.1

Corollary 2.1 is a consequence of Propositions 2.8 and 2.10. We combine the two estimates (2.43)
and (2.53) with the definition of N(t) to obtain

d

dt

(

〈N(t)u∗(·, t), u∗(·, t)〉L2(R)2

)

≥
(1− c

2

16
−A∗B

2
∗e

2R∗
∥

∥ε∗(·, t)
∥

∥

1
2

X(R)

)

∥

∥u∗(·, t)
∥

∥

2

X(R)
,

for any t ∈ R. In view of (2.21), we fix the parameter βc such that

∥

∥ε∗(·, t)
∥

∥

1
2

X(R) ≤
1− c

2

32A∗B2∗e2R∗
,

for any t ∈ R, to obtain (2.54). In view of (2.3), (2.21) and (2.45), we notice that there exists a
positive number Ac, depending only on c, such that

∥

∥Mc∗(t)

∥

∥

L∞(R)
≤ Ac, (5.34)

for any t ∈ R. Moreover, since the map t 7→ 〈N(t)u∗(·, t), u∗(·, t)〉L2(R)2 is uniformly bounded by
(5.32) and (5.34), estimate (2.55) follows by integrating (2.54) from t = −∞ to t = +∞. Finally,
statement (2.56) is a direct consequence of (2.55).

A Appendix

A.1 Weak continuity of the hydrodynamical flow

In this section, we prove the weak continuity of the hydrodynamical flow which is stated in the
following proposition.

Proposition A.1. We consider a sequence (vn,0, wn,0)n∈N ∈ NV(R)N, and a pair (v0, w0) ∈
NV(R) such that

vn,0 ⇀ v0 in H1(R), and wn,0 ⇀ w0 in L2(R), (A.1)

as n→ +∞. We denote by (vn, wn) the unique solution to (HLL) with initial datum (vn,0, wn,0)
and we assume that there exists a positive number Tn such that the solutions (vn, wn) are defined
on (−Tn, Tn), and satisfy the condition

sup
n∈N

sup
t∈(−Tn,Tn)

max
x∈R

vn(x, t) ≤ 1− σ, (A.2)

for a given positive number σ. Then, the unique solution (v,w) to (HLL) with initial datum
(v0, w0) is defined on (−Tmax, Tmax), with3

Tmax = lim inf
n→+∞

Tn,

and for any t ∈ (−Tmax, Tmax), we have

vn(t)⇀ v(t) in H1(R), and wn(t)⇀ w(t) in L2(R), (A.3)

as n→ +∞.
3See Theorem 1 in [10] for more details.
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First we prove a weak continuity property of the flow of equations (2.32)–(2.34). Next, we
deduce the weak convergence of wn from (4.41).

More precisely, we consider now a sequence of initial conditions (Ψn,0, vn,0) ∈ L2(R)×H1(R),
such that the norms ‖Ψn,0‖L2 and ‖vn,0‖L2 are uniformly bounded with respect to n and we
assume that

sup
n∈N

‖vn,0‖L∞(R) < 1. (A.4)

Then, there exist two functions Ψ0 ∈ L2(R) and v0 ∈ H1(R) such that, going possibly to a
subsequence,

Ψn,0 ⇀ Ψ0 in L2(R), (A.5)

vn,0 ⇀ v0 in H1(R), (A.6)

and, for any compact subset K of R,

vn,0 → v0 in L∞(K), (A.7)

as n → +∞. We claim that this convergence is conserved along the flow corresponding to
equations (2.32)-(2.34)4.

Proposition A.2. We consider two sequences (Ψn,0)n∈N ∈ L2(R)N and (vn,0)n∈N ∈ H1(R)N,
and two functions Ψ0 ∈ L2(R) and v0 ∈ H1(R), such that assumptions (A.4)–(A.7) are satisfied,
and we denote by (Ψn, vn), respectively (Ψ, v), the unique global solutions to (2.32)-(2.34) with
initial datum (Ψn,0, vn,0), respectively (Ψ0, v0), which we assume to be defined on [0, T ] for a
positive number T . For any fixed t ∈ [0, T ], we have

Ψn(·, t) ⇀ Ψ(·, t) in L2(R), (A.8)

and
vn(·, t) ⇀ v(·, t) in H1(R), (A.9)

when n→ +∞.

Proof. We split the proof into four steps.

Step 1. There exist three functions Φ ∈ L2([0, T ], L2(R)) and v ∈ L2([0, T ],H1(R)) such that,
up to a further subsequence,

Ψn(t)⇀ Φ(t) in L2(R), (A.10)

vn(·, t)⇀ v(·, t) in H1(R), (A.11)

vn(·, t) −→ v(·, t) in L∞
loc(R), (A.12)

for all t ∈ [0, T ], and

|Ψn|2Ψn ⇀ |Φ|2Φ in L2([0, T ], L2(R)), (A.13)

when n→ +∞.
4We only consider here positive time but the proof remains available for negative time.
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Proof. We recall that there exists a constant M such that

‖Ψn,0‖L2 ≤M and ‖vn,0‖H1 ≤M,

uniformly on n. Applying Proposition 2.5 to the pairs (Ψn, vn) and (0, 0), we obtain

‖Ψn‖C0
T
L2
x
+ ‖vn‖C0

T
H1

x
+ ‖Ψn‖L4

T
L∞
x

≤ A
(

‖Ψn,0‖L2 + ‖vn,0‖H1

)

.

This leads to

‖Ψn‖L4
T
L∞
x

≤ 2AM, ‖Ψn‖L∞
T
L2
x
≤ 2AM, and ‖vn‖L∞

T
H1

x
≤ 2AM. (A.14)

Hence, there exist two functions Φ ∈ L∞([0, T ], L2(R))
⋂

L4([0, T ], L∞(R)) and
v ∈ L∞([0, T ],H1(R)) such that

Ψn
∗
⇀ Φ in L∞([0, T ], L2(R))

and
vn

∗
⇀ v in L∞([0, T ],H1(R))

Let us prove (A.10) and (A.11). We argue as in [2] and we introduce a cut-off function χ ∈ C∞
c (R)

in the way that χ ≡ 1 on [−1, 1] and χ ≡ 0 on (−∞, 2] ∪ [2,+∞). Denote χp(·) := χ(·/p)
for any integer p ∈ N

∗. By (A.14), the sequences (χpΨn)n∈N and (χpvn)n∈N are bounded in
C0([0, T ], L2(R)) and C0([0, T ],H1(R)) respectively. In view of the Rellich-Kondrachov theorem,
the sets {χpΨn(·, t), n ∈ N} and {χpvn(·, t), n ∈ N} are relatively compact in H−2(R) and
H−1(R) respectively, for any fixed t ∈ [0, T ]. In addition, since the couple (Ψn, vn) is solution to
(2.32)-(2.34), we have (∂tΨn, ∂tvn) belongs to C0([0, T ],H−2(R)×H−1(R)) and satisfies

‖∂tΨn(·, t)‖H−2(R) ≤ KM and ‖∂tvn(·, t)‖H−1(R) ≤ KM .

This leads to the fact that the couple (χpΨn, χpvn) is equicontinuous in C0([0, T ],H−2(R) ×
H−1(R)). Then, we apply the Arzela-Ascoli theorem and the Cantor diagonal argument, to find
a further subsequence (independent of p), such that, for each p ∈ N

∗,

χpΨn → χpΦ in C0([0, T ],H−2(R)), (A.15)

and
χpvn → χpv in C0([0, T ],H−1(R)), (A.16)

as n→ +∞. Combining this with (A.14) we infer that (A.10) and (A.11) hold. By the Sobolev
embedding theorem, (A.12) is a consequence of (A.11).

Now, let us prove (A.13). Using the Hölder inequality, we infer that

∫ T

0

∫

R

|Ψn(x, t)|6dxdt ≤ ‖Ψn‖2L∞L2
x
‖Ψn‖4L4

T
L∞
x
.

By (A.14), we conclude that
‖|Ψn|2Ψn‖L2

T
L2
x
≤M. (A.17)

Then, there exists a function Φ1 ∈ L2(R× [0, T ]) such that up to a further subsequence,

|Ψn|2Ψn ⇀ Φ1 in L2(R× [0, T ]).

Let us prove that Φ1 ≡ |Φ|2Φ. To obtain this it is sufficient to prove that, up to a subsequence,

Ψn −→ Φ in L2([0, T ], L2([−R,R])), (A.18)
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for any R > 0, i.e the sequence (Ψn) is relatively compact in L2([−R,R]× [0, T ]). Indeed, using
the Holder inequality, we obtain

‖|Ψn|2Ψn − |Φ|2Φ‖
L

6
5
T,R

= ‖(Ψn − Φ)(|Ψn|2 + |Φ|2) + ΨnΦ(Ψn − Φ)‖
L

6
5
T,R

≤ 2‖|Ψn − Φ|(|Ψn|2 + |Φ|2)‖
L

6
5
T,R

≤ 2‖Ψn − Φ‖L2
T,R

(

‖Ψn‖2L6
T,R

+ ‖Φ‖2
L6
T,R

)

,

(A.19)

for any R > 0. By (A.17), (Ψn) is uniformly bounded in L6(R× [0, T ]) and Φ ∈ L6(R× [0, T ]).
Then

|Ψn|2Ψn −→ |Φ|2Φ in L
6
5 ([−R,R]× [0, T ]).

So that Φ1 ≡ |Φ|2Φ. Now, let us prove that the sequence (Ψn) is relatively compact in
L2([−R,R]× [0, T ]). The main point of the proof is the following claim.

Claim 1. Let Ψ be a solution of (2.32) in C0([0, T ], L2(R))
⋂

L4([0, T ], L∞(R)). Then,

Ψ ∈ L2([0, T ],H
1
2
loc(R)).

Proof. The proof relies on the Kato smoothing effect for the linear Schrödinger group (see [21]).
Denote S(t) = eit∂xx , and

F(Ψ, v) :=
1

2
v2Ψ− Re

(

Ψ
(

1− 2F (v,Ψ)
)

)

(

1− 2F (v,Ψ)
)

. (A.20)

We recall that there exists a positive constant M such that

sup
x∈R

∫ +∞

−∞
|D

1
2
x S(t)f(x)|2dt ≤M‖f‖2L2 , (A.21)

and
∥

∥

∥

∫

R

S(−t′)D
1
2
x h(·, t′)dt′

∥

∥

∥

L2
≤M‖h‖L1

xL
2
t
, (A.22)

when f ∈ L2(R) and h ∈ L1(R, L2(R)) (see [21] for more details). We prove that there exists a
positive constant M such that

‖D
1
2
xΨ‖L∞

x L2
T
≤M‖Ψ0‖L2 +M‖Ψ‖L2

T,x

(

‖Ψ‖2L6
T,x

+ T
1
2

(

‖v‖2L∞
T,x

+ ‖1− 2F (v,Ψ)‖2L∞
T,x

)

)

. (A.23)

The claim is a consequence of this estimate, so that it is sufficient to prove (A.23).

We write

Ψ(x, t) = S(t)Ψ0(x) + i

∫ t

0
S(t− t′)

(

2(|Ψ|2Ψ)(x, t′) + F(Ψ, v)(x, t′)
)

dt′,

for all (x, t) ∈ R. First, using (A.21), we obtain

sup
x∈R

∫ +∞

−∞
|D

1
2
x S(t)Ψ0(x)|2dt ≤M‖Ψ0‖2L2 .

For the nonlinear term, we can argue as in [13] to prove that

∥

∥

∥

∫ t

0
S(t− t′)D

1
2
x g(·, t′)dt′

∥

∥

∥

L∞
x L2

T

≤M‖g‖L1
T
L2
x
. (A.24)
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Using a duality argument, it is equivalent to prove that for any smooth function h that satisfies
‖h‖L1

xL
2
t
≤ 1, we have

∣

∣

∣

∫

R×[0,T ]2
S(t− t′)D

1
2
x g(x, t

′)h(x, t)dt′dxdt
∣

∣

∣ ≤M‖g‖L1
T
L2
x
. (A.25)

The left-hand side can be written, using the Cauchy-Schwarz and Stricharz estimates, and (A.22),
as

∣

∣

∣

∫

R

(

∫ T

0
S(−t′)D

1
2
x g(x, t

′)dt′
)(

∫ T

0
S(−t)h(x, t)dt

)

dx
∣

∣

∣

=
∣

∣

∣

∫

R

(

∫ T

0
S(−t′)g(x, t′)dt′

)(

∫ T

0
S(−t)D

1
2
x h(x, t)dt

)

dx
∣

∣

∣

≤M
∥

∥

∥

∫ T

0
S(−t′)g(x, t′)dt′

∥

∥

∥

L2
≤M‖g‖L1

T
L2
x
.

This achieves the proof of (A.24). Similarly, we have

∥

∥

∥

∫ t

0
S(t− t′)D

1
2
x g(·, t′)dt′

∥

∥

∥

L∞
x L2

T

≤M‖g‖
L

5
6
T,x

. (A.26)

We next apply (A.24) and (A.26) on the nonlinear terms to obtain, using the Cauchy-Schwarz
and Hölder estimates,

∥

∥

∥

∫ t

0
D

1
2
x S(t− t′)(|Ψ|2Ψ)(·, t′)dt′

∥

∥

∥

L∞
x L2

T

≤M‖Ψ3‖
L

6
5
T,x

≤M‖Ψ‖L2
T,x

‖Ψ‖2L6
T,x
,

and

∥

∥

∥

∫ t

0
D

1
2
x S(t− t′)F(Ψ, v)(·, t′)dt′

∥

∥

∥

L∞
x L2

T

≤M‖F(Ψ, v)‖L1
T
L2
x

≤M‖Ψ‖L1
T
L2
x

(

‖v‖2L∞
T,x

+ ‖1− 2F (v,Ψ)‖2L∞
T,x

)

≤MT
1
2 ‖Ψ‖L2

T,x

(

‖v‖2L∞
T,x

+ ‖1− 2F (v,Ψ)‖2L∞
T,x

)

.

Since v ∈ L∞([0, T ],H1(R)) and Ψ ∈ L∞([0, T ], L2(R)), we know that Ψ ∈ L∞([0, T ], L2(R))
and F (Ψ, v) ∈ L∞(R× [0, T ]). Using the fact that Ψ ∈ L6(R× [0, T ]), we finish the proof of this
claim.

Applying this claim to the sequence (Ψn) yields that (Ψn) is uniformly bounded in the space

L2([0, T ],H
1
2
loc(R)). On the other hand, we have F(Ψn, vn) ∈ L∞([0, T ], L2(R)), since

vn ∈ L∞([0, T ],H1(R)), Ψn ∈ L∞([0, T ], L2(R)) and F (Ψn, vn) ∈ L∞(R × [0, T ]). Then, using
(2.32) and (A.17), we obtain that (Ψn) is uniformly bounded in H1([0, T ],H−2(R)). Hence, by

interpolation (Ψn) ∈ H
1
10 ([0, T ],H

1
4
loc(R)) so that it converges in L2([−R,R] × [0, T ]) for any

R > 0. This finishes the proofs of (A.18) and of Step 1.

Step 2. We have
F(Ψn, vn)⇀ F(Φ, v) in L2(R), (A.27)

for any t ∈ [0, T ], and

F(Ψn, vn) −→ F(Φ, v) in L1([0, T ], L2
loc(R)). (A.28)
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Proof. Let φ ∈ L2(R). We compute

∫

R

(

v2n(x, t)Ψn(x, t)− v
2(x, t)Φ(x, t)

)

φ(x)dx
=
∫

R

(

v2n(x, t)− v
2(x, t)

)

Ψn(x, t)φ(x)dx +
∫

R

(

Ψn(x, t)− Φ(x, t)
)

v
2(x, t)φ(x)dx.

(A.29)

The second term in the right-hand side goes to 0 when n goes to +∞, since v
2(t)φ ∈ L2(R)

for all t on one hand and using (A.10) on the other hand. For the first term in the right-hand
side, we consider a cut-off function χ with support into [−1, 1] and denote χR(x) = χ( xR) for all
(x,R) ∈ R× (0,+∞). We set

In(t) :=

∫

R

(

v2n(x, t)− v
2(x, t)

)

Ψn(x, t)φ(x)dx,

I(1)n (t) :=

∫

R

(

v2n(x, t)− v
2(x, t)

)

Ψn(x, t)χR(x)φ(x)dx,

and

I(2)n (t) :=

∫

R

(

v2n(x, t)− v
2(x, t)

)

Ψn(x, t)
(

1− χR(x)
)

φ(x)dx,

so that In(t) = I
(1)
n (t) + I

(2)
n (t). By the Cauchy-Schwarz inequality, we have

|I(1)n (t)| ≤ ‖Ψn(t)‖L2(R)‖φ‖L2(R)‖v2n(t)− v
2(t)‖L∞([−R,R]). (A.30)

Using (A.12) and (A.14), we infer that

I(1)n (t) → 0 for any t ∈ [0, T ], (A.31)

as n goes to +∞. Next, we write

|I(2)n (t)| ≤
(

‖vn(t)‖2L∞(R) + ‖v(t)‖2L∞(R)

)

‖Ψn(t)‖L2(R)‖(1 − χR)φ‖L2(R).

Since φ ∈ L2(R), we have
lim

R→∞
‖(1− χR)φ‖L2(R) = 0.

In view of (A.14), this is sufficient to prove that

In(t) → 0 (A.32)

as n goes to +∞, for all t ∈ [0, T ]. This yields

(v2nΨn)(t)⇀ (v2Φ)(t) in L2(R), (A.33)

for any t ∈ [0, T ]. Now, we prove

v2nΨn −→ v
2Φ in L1([0, T ], L2

loc(R)). (A.34)

We write as in (A.29),

‖v2nΨn − v
2Φ‖L1

T
L2
R
≤ ‖(v2n − v

2)Ψn‖L1
T
L2
R
+ ‖(Ψn − Φ

)

v
2‖L1

T
L2
R
.

For the first term in the right-hand side, we infer from the Cauchy-Schwarz inequality, that

‖(v2n − v
2)Ψn‖L1

T
L2
R
≤ ‖v2n − v

2‖L2
T
L2
R
‖Ψn‖L2

T
L∞
R

≤ ‖vn − v‖L4
T
L4
R

(

‖vn‖L4
T
L4
R
+ ‖v‖L4

T
L4
R

)

T
1
2 ‖Ψn‖L4

T
L∞
R
.
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On the other hand, by (A.14), vn is uniformly bounded on L2([0, T ],H1(R)). By the first equation
of (2.34) and (A.14), vn is uniformly bounded in H1([0, T ],H−1(R)). We deduce that vn is

uniformly bounded in H
1
3 ([0, T ],H

1
3 (R)) and so that vn converges to v in L4([0, T ], L4([−R,R]))

when n goes to +∞. Hence, using (A.14) once again, we obtain

‖(v2n − v
2)Ψn‖L1

T
L2
R
→ 0,

as n goes to +∞. For the second term we have by the Cauchy-Schwarz inequality and the
Sobolev embedding theorem,

‖(Ψn − Φ)v2‖L1
T
L2
R
≤ ‖Ψn − Φ‖L2

T
L2
R
‖v2‖L2

T
L∞
R

≤M2T 1/2‖Ψn − Φ‖L2
T
L2
R
.

This yields using (A.18),
‖(Ψn − Φ)v2‖L1

T
L2
R
−→ 0,

as n goes to +∞, which proves (A.34). Next, we set

G(vn,Ψn) = Ψn

(

1− F (vn,Ψn)
)(

1− F (vn,Ψn)
)

.

We have by (2.33),
∂xF (vn,Ψn) = vnΨn and ∂xF (v,Φ) = vΦ.

Using the same arguments as in the proof of (A.32), we obtain

∂xF (vn,Ψn)⇀ ∂xF (v,Φ) in L2(R)),

for any t ∈ [0, T ]. Hence,
F (vn,Ψn) −→ F (v,Φ) in L∞

loc(R), (A.35)

for any t ∈ [0, T ]. Using (A.10), (A.35) and the same arguments as in the proof of (A.33), we
conclude that

G(vn,Ψn)⇀ G(v,Φ) in L2(R), (A.36)

for any t ∈ [0, T ]. Next, we use (A.18) and (A.35) to prove that

G(vn,Ψn) −→ G(v,Φ) in L1([0, T ], L2
loc(R)). (A.37)

This finishes the proof of this step.

Step 3. (Φ, v) is a weak solution of (2.32)–(2.34).

Proof. By (A.18), we have

i∂tΨn → i∂tΦ in D′(R× [0, T ]), and ∂2xxΨn → ∂2xxΦ in D′(R× [0, T ]),

as n → +∞. It remains to invoke (A.13) and (A.35) and to take the limit n → +∞ in the
expression

∫ T

0

∫

R

(

i∂tΨn + ∂2xxΨn + 2|Ψn|2Ψn +
1

2
v2nΨn −Re

(

Ψ
(

1− 2F (vn,Ψn)
))(

1− 2F (vn,Ψn)
))

h = 0,

where h ∈ C∞
c (R × [0, T ]), in order to establish that (Φ, v) is solution to (2.32) in the sense of

distributions. In addition, using the same arguments as above and (A.35) we prove that (Φ, v) is
solution to (2.34) in the sense of distributions. Moreover, we infer from (A.5) that Φ(·, 0) = Ψ0

and from (A.6) that v(·, 0) = v0.
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In order to prove that the function (Φ, v) coincides with the solution (Ψ, v) in Proposition A.2,
it is sufficient, in view of the uniqueness result given by Proposition 2.5, to establish that

Step 4. Φ ∈ C([0, T ], L2(R)) and v ∈ C([0, T ],H1(R)).

Proof. First, we prove that Φ ∈ C([0, T ], L2(R)). This is a direct consequence of the identity

Φ(x, t) = S(t)Φ0 +

∫ t

0
S(t− t′)

(

2(|Φ|2Φ)(·, t′) + F(Φ, v)(·, t′)
)

dt′. (A.38)

Indeed, let us denote

G(Φ, v)(t) =

∫ t

0
S(t− t′)

(

2(|Φ|2Φ)(·, t′) + F(Φ, v)(·, t′)
)

dt′.

Since S(t)Φ0 ∈ C([0, T ], L2(R)), it is enough to show that G(Φ, v) ∈ C([0, T ], L2(R)). We take
(t1, t2) ∈ [0, T ]2 and we write

G(Φ, v)(t1)−G(Φ, v)(t2) =

∫ t1

0

(

S(t1 − t′)− S(t2 − t′)
)(

2(|Φ|2Φ)(·, t′) +F(Φ, v)(·, t′)
)

dt′

−
∫ t2

t1

S(t− t′)
(

2(|Φ|2Φ)(·, t′) + F(Φ, v)(·, t′)
)

dt′.

For the second term in the right-hand side, we use the Stricharz and Cauchy-Schwarz inequalities
to obtain

∥

∥

∥

∫ t2
t1
S(t− t′)

(

2(|Φ|2Φ)(·, t′) + F(Φ, v)(·, t′)
)

dt′
∥

∥

∥

L2

≤M‖2|Φ|2Φ+F(Φ, v)‖L1([t1,t2],L2(R))

≤M |t1 − t2|
1
2 ‖|Φ|2Φ‖L2

T,x
+M |t1 − t2|‖F(Φ, v)‖L∞

T
L2
x
.

(A.39)

For the first term, we write

S(t1 − t′)− S(t2 − t′) = S(t1 − t′)
(

1− S(t2 − t1)
)

.

Hence,

∥

∥

∥

∫ t1

0

(

S(t1 − t′)− S(t2 − t′)
)(

2(|Φ|2Φ)(·, t′) + F(Φ, v)(·, t′)
)

dt′
∥

∥

∥

L2

=
∥

∥

∥

(

1− S(t2 − t1)
)

G(Φ, v)(t1)
∥

∥

∥

L2
.

(A.40)

Taking the limit t2 → t1 in (A.39) and (A.40), we obtain that Φ ∈ C([0, T ], L2(R)).

Now, let us prove (A.38). Denote Φ̃ the function given by the right-hand side of (A.38). We
will prove that

Ψn(t)⇀ Φ̃(t) in L2(R), (A.41)

for all t ∈ R. This yields Φ ≡ Φ̃ by uniqueness of the weak limit. Let R > 0 and denote by χR

the function defined in Step 2. Set

G(1)
n (·, t) =

∫ t

0
S(t− t′)χR

(

2(|Ψn|2Ψn)(·, t′) + F(Ψn, vn)(·, t′)
)

dt′,

G(2)
n (·, t) =

∫ t

0
S(t− t′)(1− χR)

(

2(|Ψn|2Ψn)(·, t′) + F(Ψn, vn)(·, t′)
)

dt′,
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G(1)(·, t) =
∫ t

0
S(t− t′)χR

(

2(|Φ|2Φ)(·, t′) + F(Φ, v)(·, t′)
)

dt′,

and

G(2)(·, t) =
∫ t

0
S(t− t′)(1 − χR)

(

2(|Φ|2Φ)(·, t′) + F(Φ, v)(·, t′)
)

dt′,

for all t ∈ R, so that G(Φ, v) = G(1)+G(2) and G(Ψn, vn) = G
(1)
n +G

(2)
n . Since S(t)Ψn,0 ⇀ S(t)Φ0

in L2(R) as n → +∞ for all t ∈ R, it is sufficient to show that G(Ψn, vn)(t) ⇀ G(Φ, v)(t) in
L2(R) as n→ +∞ for all t ∈ R. We write

(

G(Ψn, vn)(t)−G(Φ, v)(t), ϕ
)

L2 =

∫ +∞

−∞

[

G(1)
n (x, t)−G(1)(x, t)

]

ϕ(x)dx

+

∫ +∞

−∞

[

G(2)
n (x, t)−G(2)(x, t)

]

ϕ(x)dx

= IRn (t) + JR
n (t).

For the first integral, using the Cauchy-Schwartz inequality, the Strichartz estimates for the
admissible pairs (6, 6) and (∞, 2), the Hölder inequality as well as (A.19), there exists a positive
constant M such that for all t ∈ [0, T ] we have

|IRn (t)| ≤ ‖G(1)
n (t)−G(1)(t)‖L2‖ϕ‖L2

≤M‖ϕ‖L2

(

‖|Ψn|2Ψn − |Φ|2Φ‖
L

6
5
T,R

+ ‖F(Ψn, vn)−F(Φ, v)‖L1
T
L2
R

)

≤M‖ϕ‖L2

(

‖F(Ψn, vn)−F(Φ, v)‖L1
T
L2
R
+ ‖Ψn − Φ‖L2

T,R

(

‖Ψn‖2L6
T,R

+ ‖Φ‖2L6
T,R

))

.

Then, using (A.18) and (A.28), we obtain for all t ∈ R

|IRn (t)| −→ 0 as n→ ∞.

Next, using the Hölder inequality we have

|JR
n (t)|

≤2
(

∫ T

0

∫ ∞

−∞

∣

∣

∣
|Ψn|2Ψn(x, t

′)− |Φ|2Φ(x, t′)
∣

∣

∣

6
5
dxdt′

) 5
6
(

∫ T

0

∫

|x|≥R
|S(t− t′)ϕ|6dxdt′

) 1
6

+

∫ T

0

(

∫ ∞

−∞

∣

∣

∣
F(Ψn, vn)(x, t

′)−F(Φ, v)(x, t′)
∣

∣

∣

2
dx
) 1

2
dt′ sup

t′∈[0,T ]

(

∫

|x|≥R
|S(t− t′)ϕ(x)|2dx

) 1
2
.

The terms in the right-hand side are bounded by a constant independent of n. Besides, since
(6, 6) and (∞, 2) are admissible pairs, we have ‖S(t)ϕ‖L6

T,x
≤M‖ϕ‖L2(R) and

‖S(t)ϕ‖L∞
T
L2(R) ≤M‖ϕ‖L2(R), so that, by the dominated convergence theorem and the fact that

t 7→ S(t) is uniformly continuous from [0, T ] to L2(R), we obtain

lim
R→∞

∫ T

0

∫

|x|≥R
|S(t)ϕ|6dxdt = lim

R→∞
sup

t∈[0,T ]

(

∫

|x|≥R
|S(t)ϕ(x)|2dx

) 1
2
= 0.

Hence,
lim

R→∞
|JR

n (t)| = 0 uniformly with respect to n ∈ N,

for any t ∈ [0, T ]. This completes the proof of (A.41) and then of (A.38). This leads to the fact
that Φ ∈ C0([0, T ], L2(R)).
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Now, let us prove that v ∈ C0([0, T ],H1(R)). Since (Φ, v) verifies the first equation in (2.34),
Φ ∈ L∞([0, T ], L2(R)) and F (Ψ, v) ∈ L∞([0, T ], L∞(R)), we have v ∈ H1([0, T ],H−1(R)). This
yields, using the Sobolev embedding theorem, v ∈ C0([0, T ],H−1(R)). Let (t1, t2) ∈ [0, T ]2. We
can write that

∫

R

∣

∣v(t1, x)− v(t2, x)
∣

∣

2
dx =

〈

v(t1, x)− v(t2, x), v(t1, x)− v(t2, x)
〉

H−1,H1

≤ ‖v(t1, x)− v(t2, x)‖H−1‖v(t1, x)− v(t2, x)‖H1 .

Since v ∈ C0([0, T ],H−1(R))∩L∞([0, T ],H1(R)), we obtain v ∈ C0([0, T ], L2(R)). Next, we write

∥

∥F (v,Φ)(t1)− F (v,Φ)(t2)
∥

∥

L∞(R)

≤ ‖v(t1)− v(t2)‖L2‖Φ(t1)‖L2 + ‖Φ(t2)−Φ(t1)‖L2‖v(t2)‖L2 .

Using the fact that Φ, v ∈ C0([0, T ], L2(R)), we infer that F (v,Φ) ∈ C0([0, T ], L∞(R)). Then, by
the second equation in (2.34), v ∈ C0([0, T ],H1(R)). This finishes the proof of this step.

This achieves the proof of Proposition A.2.

Finally, we give the proof of Proposition A.1.

Proof. In view of Proposition A.2, it is sufficient to prove the convergence of wn. The proof
follows the arguments in the proof of (A.27). Let φ ∈ L2(R). We rely on (4.41) to write

∫

R

[

w∗(t, x)− wn(t, x)
]

φ(x)dx

= 2

∫

R

Im
(Ψ∗(t, x)

(

1− 2F (v∗,Ψ∗)(t, x)
)

1− (v∗)2(t, x)
− Ψn(t, x)

(

1− 2F (vn,Ψn)(t, x)
)

1− (vn)2(t, x)

)

φ(x)dx

= 2

∫

R

Im
( Ψ∗(t, x)
1− (v∗)2(t, x)

− Ψn(t, x)

1− (vn)2(t, x)

)

φ(x)dx

− 4

∫

R

Im
(Ψ∗(t, x)F (v∗,Ψ∗)(t, x)

1− (v∗)2(t, x)
− Ψn(t, x)F (vn,Ψn)(t, x)

1− (vn)2(t, x)

)

φ(x)dx,

for all t ∈ [0, T ]. Then, we use the same arguments as in the proof of (A.27) to show that the
two last terms in the right-hand side go to 0 when n goes to +∞. This finishes the proof of the
proposition.

A.2 Exponential decay of χc

In this subsection, we recall the explicit formula and some useful properties of the operator Hc,
and then study its negative eigenfunction χc. For c ∈ (−1, 1) \ {0}, the operator Hc is given in
explicit terms by

Hc(ε) =

(

Lc(εv) + c2 (1+v2c )
2

(1−v2c )
3 εv − c1+v2c

1−v2c
εw

−c1+v2c
1−v2c

εv + (1− v2c )εw

)

, (A.42)

where ε = (εv , εw), and

Lc(εv) = −∂x
(

∂xεv
1− v2c

)

+
(

1− c2 − (5 + c2)v2c + 2v4c

) εv
(1− v2c )

2
.
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In view of (A.42), the operator Hc is an isomorphism from H2(R)×L2(R) ∩ Span(∂xQc)
⊥ onto

Span(∂xQc)
⊥. In addition, there exists a positive number Ac, depending continuously on c, such

that
∥

∥H−1
c (f, g)

∥

∥

Hk+2(R)×Hk(R)
≤ Ac

∥

∥(f, g)
∥

∥

Hk(R)2
, (A.43)

for any (f, g) ∈ Hk(R)2 ∩ Span(∂xQc)
⊥ and any k ∈ N.

The following proposition establishes the coercivity of the quadratic form Hc under suitable
orthogonality conditions.

Proposition A.3. Let c ∈ (−1, 1) \ {0}. There exists a positive number Λc, depending only on
c, such that

Hc(ε) ≥ Λc‖ε‖2H1×L2 , (A.44)

for any pair ε ∈ H1(R)× L2(R) satisfying the two orthogonality conditions

〈∂xQc, ε〉L2×L2 = 〈χc, ε〉L2×L2 = 0. (A.45)

Moreover, the map c 7→ Λc is uniformly bounded from below on any compact subset of (−1, 1)\{0}.

The proof relies on standard Sturm-Liouville theory (see e.g. the proof of Proposition 1 in [10]
for more details).

Now, we turn to the analysis of the pair χc.

Lemma A.1. The pair χc belongs to C∞(R) × C∞(R). In addition, there exist two positive
numbers Ac and ac, depending continuously on c, such that ac >

√
1− c2 and

|∂kxχc| ≤ Ace
−ac|x| on R for k ∈ {0, 1, 2}. (A.46)

Proof. We denote χc := (ζc, ξc). Since Hc(χc) = −λ̃cχc, we have the following system

− ∂x

(

∂xζc
1− v2c

)

+
(

1− c2 − (5 + c2)v2c + 2v4c

) ζc
(1− v2c )

2
+ c2

(1 + v2c )
2

(1 − v2c )
3
ζc

− c
1 + v2c
1− v2c

ξc = −λ̃cζc,
(A.47)

c
1 + v2c
1− v2c

ζc = (1− v2c + λ̃c)ξc. (A.48)

It follows from standard elliptic theory that χc ∈ H2(R)×L2(R). Since the coefficients in (A.48)
are smooth, bounded from below and above, we infer from a standard bootstrap argument that
χc ∈ C∞(R) × C∞(R). Notice in particular that, by the Sobolev embedding theorem, χc and
∂xχc are bounded on R. Then, we deduce from the first statement in (5.11) that5

− ∂xxζc + (1 + λ̃c)ζc − cξc = O(v2c ), (A.49)

ζc =
1 + λ̃c
c

ξc +O(v2c ). (A.50)

Note that, we have

Bc exp(−
√

1− c2|x|) ≤ vc(x) ≤ Ac exp(−
√

1− c2|x|) for all x ∈ R, (A.51)

5The notation O(v2c ) refers to a quantity, which is bounded by Acv
2
c (pointwisely), where the positive number

Ac depends only on c.
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where Bc and Ac are two positive numbers.

In order to prove (A.46), we now introduce (A.50) into (A.49) to obtain,

− ∂xxζc + b2cζc = O(exp(−2
√

1− c2|x|)), (A.52)

ξc =
c

1 + λ̃c
ζc +O(exp(−2

√

1− c2|x|)), (A.53)

with b2c =
1−c2+2λ̃c+(λ̃c)2

1+λ̃c
> 1− c2. Next, we set

gc := −∂xxζc + b2cζc, (A.54)

so that gc(x) = O(exp(−2
√
1− c2|x|)) for all x ∈ R. Using the variation of constant method, we

obtain, for all x ∈ R,

ζc(x) = A(x)ebcx +Ace
bcx +B(x)e−bcx +Bce

−bcx,

with

A(x) =
−1

2bc

∫ x

0
e−bctgc(t)dt,

and

B(x) =
−1

2bc

∫ x

0
ebctgc(t)dt.

Since ζc ∈ L2(R), this leads to

ζc(x) = O
(

exp
(

− 2
√

1− c2|x|
)

+ exp(−bc|x|)
)

.

Hence, we can take ac = min{2
√
1− c2, bc} and invoke (A.50) to obtain (A.46) for k = 0. Using

(5.10), (5.11), (A.47), (A.48) and (A.51), we extend (A.46) to k ∈ 1, 2.
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