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Abstract

An optimal estimation method for state and distributed parameters in 1-D hyperbolic system based on adjoint method is
proposed in this paper. A general form of the partial differential equations governing the dynamics of system is first introduced.
In this equation, the initial condition or state variable as well as some empirical parameters are supposed to be unknown and
need to be estimated. The Lagrangian multiplier method is used to connect the dynamics of the system and the cost function
defined as the least square error between the simulation values and the measurements. The adjoint state method is applied
to the objective functional in order to get the adjoint system and the gradients with respect to parameters and initial state.
The objective functional is minimized by Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. Due to the non-linearity of
both direct and adjoint system, the nonlinear explicit Lax–Wendroff scheme is used to solve them numerically. The presented
optimal estimation approach is validated by two illustrative examples, the first one about state and parameter estimation in
a traffic flow, and the second one in an overland flow system.

Key words: State estimation, Parameter estimation, Hyperbolic system, Adjoint method, Inverse problem, Saint-Venant
model, Lighthill-Whitham-Richards model

1 Introduction

In nature and ordinary life, one can find a lot of physical
laws described by hyperbolic partial differential equa-
tions of order one such as water flow, traffic flow, gas
dynamics or electrical lines for instance. Researchers in
control have investigated a large number of problems
concerning this type of systems with different purposes
for example to design an infinite-dimensional nonlinear
predictive control for open-channel flow [8]; to model
and control a dam-river system [14], [15]; to investi-
gate the receding horizon boundary control applied on
Lighthill-Whitham-Richards traffic flow model to avoid
shock waves [19]; to optimally control traffic in highway
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network using linear programming [12]; to apply the pre-
dictive control method on gas jet flames distribution [22].
One of the important problems arising in the simulation
and control of hyperbolic systems is that uncertainty
of the initial condition and empirical parameters can
cause large errors and inconsistency between the output
of control system and the real one. This motivated few
studies on observer design, and even output feedback
control, going back to works of Christofides et al [3, 4]
for instance, with pole placement and Kalman designs
, up to [9] more recently, with backstepping approaches
(as also in [21]). In the present paper, the purpose is to
develop a method based on optimal control theory to
optimally estimate the initial condition and distributed
parameters in such 1-D hyperbolic systems. Some au-
thors studied constant parameter estimation in hyper-
bolic system such as Becker et al. who used themethod of
influence coefficient to estimate Manning roughness co-
efficient in an unsteady open-channel flow [2]; H. Longxi
investigated a complex method to estimate the values of
all roughness of a channel network [16]; Y. Ding et al.
proposed an adjoint analysis method to find out rough-
ness coefficient in shallow water [5]. In the case of dis-
tributed parameters, Y. Ding et al. also considered the
same approach and applied it on the multi-reaches chan-
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nel flow network [6]; Richard et al. considered a numer-
ical scheme used to solve parameter identification issue
for 1-D hyperbolic system [7]; whereas Wenhuan inves-
tigated a quasi-Newton method to deal with the same
problem [23]. In a former paper of Bagchi et al. [1], the
parameter and system state of a discrete-time hyperbolic
system with noisy boundary condition are estimated si-
multaneously based on the maximization of a likelihood
function. More recently, we proposed an adjoint method
to estimate the initial conditions in an overland flow de-
scribed by a one dimensional Saint-Venant equation [18].
Notice that contemporaneously with it, Hasan et al. in-
vestigated a moving horizon technique to estimate state
and constant parameter in a 2x2 linear hyperbolic sys-
tem based on a distributed model for drilling applica-
tion [10]. In that study, the model was discretized first
and the adjoint method was applied to the resulting fi-
nite dimensional system. In the present paper, which
can be considered as an extended version of [18] to gen-
eral hyperbolic systems, the adjoint method is formu-
lated and solved directly on nonlinear infinite dimen-
sional models. More precisely, we deal with a parame-
ter and state estimation approach in a one-dimensional
nonlinear hyperbolic system, with a variable denoted by
u(x, t), and a flow denoted by f(u(x, t), x), respectively
depending on some initial condition denoted by ui0(x),
and some distributed parameters denoted by αi(x), both
supposed to be unknown, and thus needing to be esti-
mated. The adjoint analysis is formulated with the orig-
inal infinite dimensional system, to connect the sensitiv-
ity of variables needing to be estimated with the system
model and the measurements. These points are also the
main contributions of the present paper, and to the best
of our knowledge, there are very few researches realized
with such a spirit.
The rest of this paper is organized as follows: section 2
describes the dynamics of system and the formulation
of optimal estimation problem. The adjoint method is
applied to the optimization problem to get the adjoint
system and gradient of estimated variables is presented
in section 3. In section 4, two illustrative examples deal-
ing with parameter and state estimation in traffic flow
and overland flow system are presented. Some conclu-
sions and perspectives are given at the end of the paper.

2 Estimation problem statement

2.1 System dynamics

Let us consider a general form of 1-D hyperbolic system
of variable u(x, t) and flow f(u(x, t), x) a function of
u(x, t) and x. The spatial variable x and time variable
t belong to the set (x, t) ∈ [0, L] × R+, and the system
reads: 

∂u(x, t)

∂t
+
∂f(u(x, t), x)

∂x
= g(x, t)

u(x, 0) = ui0(x)

u(0, t) = ub0(t)

(1)

where the function ub0(t) is a predefined boundary
condition, the function ui0(x) denotes the initial con-
dition, and g(x, t) is a known function. Notice that
if it is clear enough in the sequel, notation f and
u will be used instead of f(u(x, t), x) and u(x, t)
in order to shorten the equation length. Let us as-
sume, without any loss of generality, that the func-
tion f(u, x) can be written in the following form
for some vectors α = [α1(x)...αi(x)...αK(x)]T and
ϕ = [ϕi(u)...ϕi(u)...ϕK(u)]T .

f =

K∑
i=1

αi(x)ϕi(u) (2)

On this basis, let us consider the problem of estimat-
ing time and space evolution of u when initial condi-
tion ui0(x) is unknown, together with function parame-
ter α(x). Once the initial state and parameter of system
are successfully recovered, all transient state profiles of
the system can be fully rebuilt by simulation.

2.2 Optimal estimation problem

For the estimation problem of parameter and state in
the considered hyperbolic system, one can use two main
approaches: empirical procedures or minimization ap-
proach based on optimal control theory. The first ap-
proach uses direct empirical formula with observation
data to get the parameter value and is suitable only for
simple parameter estimation. In the present work, due
to the complexity and non linearity of estimation prob-
lem, we use the second approach to minimize the errors
between simulations and some lumped observation val-
ues of variable u(x, t). In other words, we minimize a
cost function J defined as follows:

J =
1

2

N∑
j=1

T∫
0

{ L∫
0

δA(x− xj)u dx− umeasj (xj , t)

}2

dt

+
1

2
ε1

L∫
0

‖ui0(x)− ui0F (x)‖2dx

+
1

2
ε2

K∑
i=1

L∫
0

‖αi(x)− αiF (x)‖2dx

(3)
where T = optimization horizon (hours); L = consid-
ered spacial length where the system takes place (m); N
= number of observation values of u(x, t); umeasj (xj , t) =
measured value of u(x, t) at observation position xj with
xj ∈ [0, L]; αiF (x) = first guessed values of parameters;
uioF = first guessed values of initial condition; ε1 and ε2=
weighting factor applied to first guessing term to cali-
brate the estimated value and the guessed one and ad-
just the scale of objective function. The term δA(x−xj)
is an approximation of Delta-Dirac function described
by a Gaussian function with a very small variance σ2 as
δA(x− xj) = e−(x−xj)

2/σ2

.
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3 Adjoint-based approach

3.1 Variational analysis

From the previous analysis, the optimal values of state
and parameter must minimize the cost function in equa-
tion (3) and satisfy also the system equation (1). This
constraint and the continuity of the first partial deriva-
tive of both system dynamics and cost function lead to
use the Lagrange multiplier with Lagrangian variable
λ(x, t), which allows to combine the system equation and
cost function into only one new cost functionalL(λ, ρ, α),
shortened to L, as follows.

L = J +

T∫
0

L∫
0

λ

[
∂u

∂t
+
∂f

∂x
− g(x, t)

]
dxdt

︸ ︷︷ ︸
A

(4)

To deal with this optimization problem the common ad-
joint method is used in order to obtain the adjoint sys-
tem and establish the gradient of cost functional with
respect to the parameters and state needing to be esti-
mated. These gradients describe the sensitivity of cost
functions under the constraints of governing equation
and variation of parameters. First of all, we take the
first variation of the cost functional with respect to the
system variable u, initial condition ui0(x) and weighting
factor αi(x). The first variation δJ is given in equation
(5).

δJ =

N∑
j=1

T∫
0

L∫
0

δA(x− xj)

[ L∫
0

δA(x− xj)udx

− umeasj

]
δudxdt

+ ε2

K∑
i=1

L∫
0

[
αi(x)− αiF (x)

]
δαi(x)dx

+ ε1

L∫
0

[
ui0(x)− ui0F (x)

]
δui0(x)dx

(5)

Then using the integration by part technique the first
variation of second term, called A, of L can be obtained
and presented in equation (6).

A =

L∫
0

[
λu
]∣∣∣T

0
dx−

T∫
0

L∫
0

u
∂λ

∂t
dxdt+

T∫
0

[
λf
]∣∣∣L

0
dt

−
T∫

0

L∫
0

f
∂λ

∂x
dxdt−

T∫
0

L∫
0

λg dxdt

(6)

The first variation of A, calculated with respect to sys-
tem variable u(x, t), initial condition ui0(x) and param-

eters αi(x), is developed as follows:

δA =

L∫
0

λδu

∣∣∣∣∣
T

0

dx−
T∫

0

L∫
0

∂λ

∂t
δudxdt+

T∫
0

[
λ
∂f

∂u

]
δu

∣∣∣∣∣
L

0

dt

+

K∑
i=1

T∫
0

[
λ

∂f

∂αi(x)

]
δαi(x)

∣∣∣∣∣
L

0

dt−
T∫

0

L∫
0

∂f

∂u

∂λ

∂x
δudxdt

−
K∑
i=1

T∫
0

L∫
0

∂f

∂αi(x)

∂λ

∂x
δαi(x)dxdt

(7)
All the terms multiplied by δu in equations (5) and (7) is
collected together and set to zero to cancel all the value
of δu. This gives the first order of optimality condition or
the adjoint system of adjoint variable λ(x, t), described
in equation (8):

−∂λ
∂t
− ∂f

∂u

∂λ

∂x
+

N∑
j=1

δA(x− xj)×

[ L∫
0

δA(x− xj)udx

− umeasj

]
= 0

(8)

where
∂f

∂u
=

K∑
i=1

αi(x)
dϕi(u)

du
. The gradient of objec-

tive functional with respect to parameter αi(x), formed
by selecting all the terms related to δαi(x) in previous
equations of first variation, is not identical throughout
the considered spacial domain [0, L]. At positions x = 0
and x = L the gradients of αi(x) are presented in equa-
tions (9) and (10). At other positions, this gradient is in
equation (11).

∂L
∂αi(0)

= −
T∫

0

λ(0, t)
∂f

∂αi(0)
dt (9)

∂L
∂αi(L)

=

T∫
0

λ(L, t)
∂f

∂αi(L)
dt (10)

∂L
∂αi(x)

= −
T∫

0

L∫
0

∂f

∂αi(x)

∂λ

∂x
dxdt

+ ε2

L∫
0

[
αi(x)− αiF (x)

]
dx

(11)

where
∂f

∂αi(x)
= ϕi(u).

By using the same method, the gradient with respect
to initial condition ui0(x) is obtained and presented in
equation (12).

∂L
∂ui0(x)

= −
L∫

0

λ(x, 0)dx+ ε1

L∫
0

[
ui0(x)− ui0F (x)

]
dx

(12)
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The system dynamics and adjoint equations must be
discretized in order to be solved numerically. The con-
sidered spacial domain [0, L] is discretized into a set
of smaller sections [xj , xj+1]. As a result the gradients
of initial condition and parameters αi(x) at position
xj ,∀xj = j4 x where 0 < j ≤M − 1 with 4x = L/M ,
M being the number of point, become:

∂L
∂ui0(xj)

= −λ(xj , 0) + ε1
[
ui0(xj)− ui0F (xj)

]
(13)

∂L
∂αi(xj)

= −
T∫

0

∂f

∂αi(x)

∂λ

∂x

∣∣∣
x=xj

dt+ε2

[
αi(xj)−αiF (xj)

]
(14)

According to the optimization condition, the gradient of
ui0(x) must be zero to minimize the cost function. We
can obtain this condition, through optimization process,
by setting all the gradient at each discretization point
xj to zero.
After forming the adjoint system and gradients, all the
remaining terms of equations (5) and (7) are gathered
together and set to zero to satisfy the optimization con-
ditions and to get the initial and boundary condition of
adjoint variable λ(x, t).
L∫

0

λ(x, T )δu(x,T )dt+

T∫
0

λ(L, t)
∂f(u(L, t), L)

∂u(L, t)
δu(L, t)dt

−
T∫

0

λ(0, t)
∂f(u(0, t), 0)

∂u(0, t)
δu(0, t)dt = 0

(15)

where
∂f

∂u
(L, t) =

K∑
i=1

αi(L)
∂ϕ

∂u
(L, t). The boundary con-

dition of system variable u(0, t) is fixed beforehand, as a
result its variation δu(0, t) is zero for all values of t. The
first and second terms of equation (15) also vanish also
if we make λ(x, T ) equal to 0 and λ(L, t) must satisfy
equation (16).

λ(L, t)

K∑
i=1

αi(L)
∂ϕ

∂u
(L, t) = 0 ∀(x, t) ∈ [0, L]×R+ (16)

They are the necessary conditions to solve the adjoint
system (8). We can notice that the boundary condition
λ(L, t) of adjoint system depends on the value of the
partial derivative of function ϕ(u(L, t)) with respect to
system variable at position L. If this derivative does not
vanish, then, λ(L, t) must be equal to zero. This makes
the gradient of parameter αi(L) in equation (10) equal
to zero and we can not estimated the value of parame-
ter αi(L). We can also notice that the gradient of initial
condition uio(L) in equation (13) becomes much smaller
compared to other positions because we only have the
correction term with calibration factor ε1. With small
ε1 the estimation of uio(L) does not converge. However,
an ε1 large enough can reduce the biases on the esti-
mation of uio(xi), ∀xj = j 4 x where 0 ≤ j ≤ M − 1
with 4x = L/M , M being the number of point. In two

numerical examples presented later on in section 4, the
problem of null value of λ(L, t) is met. A temporary so-
lution is to consider that the values of uio(L) and αi(L)
are measured, and to only deal with the estimation dis-
tributed in the internal spatial section ∀xj = j4xwhere
0 ≤ j ≤ M − 1 with 4x = L/M , M being the number
of point. A specific analysis will be carried on to investi-
gate more deeply this incompleteness of adjoint method
for estimating the value of variable at the end of the con-
sidered domain.

3.2 Numerical implementation

3.2.1 Explicit Lax–Wendroff scheme for discretization

The Lax–Wendroff scheme belongs to the class of con-
servative schemes and was presented in 1960 by P.D.
Lax and B. Wendroff [11]. It is a numerical method for
solving the systems of one dimension hyperbolic conser-
vation laws with second order of accuracy in both space
and time. It can be easily extended to the case of general
1-D hyperbolic system (1) with non homogeneous term
g(x, t). The formula of this scheme can be derived by a
variety of approaches including Taylor series expansion
in time of variable u(x, t):

u(x, t+4t) = u(x, t)+4t∂u
∂t

+
4t2

2

∂2u

∂t2
+O(4t2) (17)

The first and second partial derivative of u(x, t) with
respect to t can be replaced by space derivatives of and
others term of equation (1), which are assumed to exist
with enough smoothness. The value of variable u at time
t + 4t is as follows, neglecting the higher order terms
O(4t2) in Taylor series expansion :

u(x, t+4t) = u(x, t) +4t

[
− ∂f

∂x
+ g

]
+
4t2

2

×

[
−
∂
∂f

∂u
∂x

[
− ∂f

∂x
+ g

]
− ∂f

∂u

[
− ∂2f

∂x2
+
∂g

∂x

]
+
∂g

∂t

]
(18)

All the space and time derivatives in equation (18) are
approximated by central differences. By denoting u(x+

i4x, t+n4t) by u(i, j) and
∂f

∂u
= h, the Lax–Wendroff

scheme for discretizing equation (1) becomes:

u(i, n+ 1) = u(i, n) +4t

[
− f(i+ 1, n)− f(i− 1, n)

24 x

+ g(i, n)

]
+
4t2

2

{
− h(i+ 1, n)− h(i− 1, n)

24 x

×

[
− f(i+ 1, n)− f(i− 1, n)

24 x
+ g(i, n)

]
− h(i, n)

×

[
− f(i+ 1, n)− 2f(i, n) + f(i− 1, n)

4x2

(19)
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+
g(i+ 1, n)− g(i− 1, n)

24 x

]
+
g(i, n+ 1)− g(i, n− 1)

24 t

}
(20)

The conventional truncation error analysis shows that
this 3-point scheme is second-order accurate in space and
time. Moreover, its stability and convergence is guaran-
teed by the Courant–Friedrichs–Lewy (CFL) condition.
In our case of one-dimensional hyperbolic system, this

CFL reads | umax |
4t
4x

6 Cmax. The typical value of

coefficient Cmax for this explicit Lax–Wendroff scheme
is 1. It is worth noting that this scheme has also been
chosen after comparison of its computational burdern
with other possible approaches. In particular, an alter-
native implicit four-point Preissman scheme was consid-
ered (see [18]) but appeared to be more time consuming.
For example, to numerically simulate the traffic flow of
subsequent subsection 4.1.1 (with 10 space discretization
steps and 300 time discretization steps), it takes 0.24 sec-
onds with Lax–Wendroff scheme, and 10.67 seconds with
Preissmann scheme, using the same simulation parame-
ters and same computation power (Intel(R) Core(TM)2
Duo CPU P8600 @2.40 GHz, 3Go RAM with Matlab
R2011b 32 bit).

3.2.2 Method for optimal estimation problem resolution

The optimization problem is solved by using optimiza-
tion tool called fmincon in Matlab. The gradient of cost
functional with respect to the initial condition and pa-
rameters got from equations (9), (10), (14) and (13) is
provided to this function as well. In order to prevent
the estimated variables for ui0(x) and αi(x) to become
negative and be out of the limits describing the physical
meaning, we imposed also a linear constraint. It is worth
to notice that the fmincon tool has itself a finite differ-
ence method to calculate the gradient of estimated vari-
able, which means that it is not obligatory to provide it
via adjoint method in some simple estimation problem.
In our two examples, due to the estimation size and the
complexity of considered nonlinear hyperbolic models,
the optimization problem converges with long estima-
tion time (in the case of traffic flow) or does not converge
(in the case of overland flow) without feeding gradients.

4 Illustrative examples

In order to validate the effectiveness of the proposed
method, we present hereafter two numerical examples
taken from two different application fields: traffic flow
dynamics on the one hand and overland flow dynamics
on the other hand. The validation procedure is developed
using free-error approach which means that all the mea-
surements or observed values of system variable u(x, t)
is got from the exact simulation of system with optimal
initial state and parameters without noise adding. These
measurements are used as input of optimization process.

The accuracy of estimation result depends on the num-
ber and position of observation values. In this work, the
number of sensors and their positions are selected man-
ually, and a full sensitivity analysis of distributed state
and parameter estimation with respect to the observa-
tions is left for future works.

4.1 State and lumped parameter estimation for traffic
flow

4.1.1 Dynamics of traffic flow system

The traffic flow here-considered is described by
the well-known Lighthill–Whitham–Richards (LWR)
model [13, 20] which was firstly introduced by Lighthill
andWhitham in 1955 and complemented by Richards in
1956. This is a macroscopic traffic flow model in which
the movement of an individual vehicle is neglected, and
only a set of vehicles with its characteristics like den-
sity and average velocity, is considered to formulate the
dynamics of traffic flow, as presented in equation (21).

∂ρ(x, t)

∂t
+
∂
[
ρ(x, t)v(x, t)

]
∂x

= 0 (21)
where x ∈ R; t ≥ 0 are space and time variables; ρ(x, t)
is the density of vehicles (vehicle/km) in x at time t;
v(x, t) is the average velocity of vehicles in x at time t
(km/hour). Wemake an assumption that the considered
highway is long enough to be divided into a set of small
sections, each of them with its own parameters. More-
over, on each section the velocity only depends on den-
sity ρ(x, t) through the simple function (22) below. This
means that when the highway is empty or ρ = 0, the ve-
hicles can get the maximal velocity v = vmax. When the
highway is full of vehicles ρ = ρmax, the vehicles can not
move v = 0.

v(x, t) = vmax

[
1− ρ(x, t)

ρmax

]
(22)

The parameters vmax and ρmax are supposed to be con-
stant. This assumption is reasonable in real high way
whose characteristics do not vary a lot along its length.
As a result, the flow function is f(ρ, x) = vmaxρ(x, t)−
vmaxρ

2(x, t)/ρmax. We consequently have the vectors
of parameters α = [vmax vmax/ρmax]T and ϕ(ρ) =
[ρ(x, t) − ρ2(x, t)]T and for f(ρ(x, t), x):

∂f(ρ(x, t), x)

∂α1
= ρ(x, t)

∂f(ρ(x, t), x)

∂α2
= −ρ2(x, t)

∂f(ρ(x, t), x)

∂ρ(x, t)
= α1 − 2α2ρ(x, t)

(23)

Let us insert the partial derivative of flow function
∂f(ρ(x, t), x)

∂ρ
= α1− 2α2ρ(x, t) into equation (8). Then

we can get the adjoint system corresponding to the di-
rect traffic flow in equation (21). The gradient of cost
functional L with respect to initial condition of vehicle
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density is the same as equation (13). The sensitivity of
constant parameters α1 and α2 is a little bit different
with the previous general calculation and described as
follows.

∂L
∂αi

=

T∫
0

[
λ
∂f

∂αi

]∣∣∣∣∣
L

0

dt−
T∫

0

L∫
0

∂f

∂αi

∂λ

∂x
dxdt

+ ε2

L∫
0

[
αi − αiF

]
dx

(24)

with the derivatives
∂f

∂α1
= ρ(x, t) and

∂f

∂α2
= −ρ2(x, t)

4.1.2 Estimation result

The estimation process for estimating the optimal values
of initial condition of vehicles density and two parame-
ters α1 and α2 is realized on a straight traffic road with
characteristics presented in Table A.1. The real value
of maximal vehicles velocity α1(x) is 150 (km/hour)
and the parameter α2 is 0.5 (km/hour × km/vehicle).
The high way length L = 100 (km) is divided into 10
sections with spatial discretization step 4x = 10 (km).
The real value of initial condition and parameters can
be also found in table A.1. The boundary condition is a
sum of four sinusoidal signals with different frequencies
and phases. The initial value feed to the optimization
tool is ρinit(x) = 20 (vehicle/km) ∀ x ∈ [0...L],
α1 = vmax(x) = 100 (km/hour), α2 = vmax/ρmax =
0.25 (km/hour × km/vehicle). Both the first guessed
value of initial condition and two parameters is set
to zero. The stopping criterion of optimization tool
fmincon is whenever the tolerance on the cost function
value J or tolerance on estimation variable is smaller
than the termination tolerance values. We took just
1 observation value at the end of considered domain,
from a simulation of direct system (21) with real value
of initial state and parameters. One can observe in Fig.
1 the estimation results for ρ(x, 0). It converges to the
respective real values indeed with some small bias val-
ues at some positions in the considered spatial section
∀xj = j 4 x where 0 ≤ j ≤ M − 1 with 4x = L/M ,
M being the number of point. The estimated value of
parameters α1 and α2 are 149.8782 and 0.4988 respec-
tively. These estimation biases are possibly caused by
the numerical errors on direct and adjoint system sim-
ulation and convergence limitation of BFGS method.
The estimated value of maximal vehicles density can be
easily found by simple division ρmax = α1/α2. At the
end of optimal estimation process the found minimal
value of cost function J is 0.0074 slightly larger than
zero, the theoretical value, due to estimation biases.
The relative errors between the real values of estimation
variables and estimated ones are 0.2330%, 0.3011%, and
0.0812% respectively for vmax, vmax/ρmax and ρ(x, 0)
which are pretty small. After some simulation realized
to determine the sensitivity of estimation result with
respect to the number and position of measurements,
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Fig. 1. Estimation of initial condition ρ(x, 0)

we can conclude that the more measurements we have,
the more accurate result we obtain. But the accuracy
improvement is not noticeable while being compared to
the cost we pay for sensor number increment. Moreover,
in this simulation, if the only one sensor is placed on
the last position of considered domain, we obtain better
optimization result than other positions.

4.2 State and distributed parameter estimation for hy-
draulic flow

4.2.1 Dynamics of over land flow system

By definition, an overland flow is water, caused by ex-
cess rainfall or surface runoff, that flows over ground
surface and towards some hydraulic channels. The dy-
namics of this type of water flow can be derived from
the well-known Saint-Venant equations by some assump-
tions about small bottom slope, local and convective ac-
celeration [18]. Finally the dynamics of overland flow is
as follow:

∂h

∂t
+
∂f(h, x)

∂x
= r(x, t)− i(x, t)

h(x, 0) = hi0(x)

h(0, t) = hb0(t)

(25)

where x = distance, (m); t = time, (s); h = water flow
depth, (m); f(h, x) = h5/3S

1/2
0 /n(x) = the flow per

unit width (m2/s) with the spacial distributed Manning
roughness coefficient n(x); r = rainfall intensity, (m/s);
i = infiltration intensity, (m/s); S0 = bed slope, (m/m).
The infiltration i(x, t) [17], caused by variable rainfall,
can be described by the famous simple Green-Ampt
model in equation (26):i(t) = Ki

(
Ψη(1− θ)

I(t)
+ 1

)
if t > tp

i(t) = r if t ≤ tp
(26)
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where Ki = effective hydraulic conductivity of the soil
of flow, ( cms ); Ψ = soil suction at wetting front, (cm);
η = soil porosity, (%); θ = relative initial soil moisture,
(unitless); I(t) = the cumulative infiltration, the ac-
cumulated depth of water infiltrating during the time
period t, (cm); tp = ponding time, (s) calculated by

tp =
ΨKiη(1− θ)
r(r −Ki)

. By comparing this to the general

form of flow in equation (2), we have the vector of only
one parameter α(x) = S

1/2
0 /n(x) and the correspond-

ing function of system variable ϕ(h) = h5/3. By insert-

ing the derivative
∂f(u, x)

∂h
=

5

3
α(x)h2/3 into equation

(8) we can obtain the adjoint system of overland flow.

Replacing the derivative
∂f(h, x)

∂α(x)
= h5/3 into equations

(9), (10) and (11), we can get the gradient of cost func-
tional L with respect to this parameter.

4.2.2 Estimation result

This example is assumed to be taking place on some hills
with characteristics described in Table. A.2. We need to
estimate the initial condition of flow height h(x, 0) ∀x ∈
[0...L] whose real value is depicted in Fig. 2 and dis-
tributed parameter α whose real value α(x) ∀x ∈ [0...L],
found via equation α(x) = S

1/2
0 /n(x) with chosen values

of n(x), is in Fig. 3 . With the same estimation method
as before, 2 observation values are taken out of 10 dis-
cretized sections (1 at the begin and 1 at the end) of con-
sidered domain and used as inputs for optimization pro-
cess. The initial values of estimated state and parameter
are 0.35(m) ∀x ∈ [0...L] and 7 ∀x ∈ [0...L] for, respec-
tively, h(x, 0) and α(x). After 192 iterations, the estima-
tion of h(x, 0) indeed converges to the desired value in
Fig. 2 and parameter α(x) also converges in Fig. 3. The
final value of cost function J is 1.1478× 10−18 which is
very small. Taking a look at the average relative errors of
estimated values of hio(x) and α(x), respectively equal to
3.4240×10−8% and 2.4165×10−8%, we can see that the
estimation accuracy is pretty good. The estimated Man-
ning coefficient n(x), obtained via optimized parameter
α(x), has also a small relative error (3.4240× 10−8%).

5 Conclusions

A general approach for parameter and state estimation
in 1-D hyperbolic system based on optimal control the-
ory and adjoint method has been developed and val-
idated in this paper. First of all, the system dynam-
ics and optimal estimation problem from lumped obser-
vation values have been formulated. Then the adjoint
based method has been introduced to get the adjoint
equation and gradients of objective functional, obtained
by Lagrange multiplier method. From these gradients,
the BFGS method has been used to find the optimal
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value of all parameter and state of variables which min-
imize the objective functional. The partial differential
equations of both direct and adjoint system have been
discretized and solved numerically by means of implicit
Lax–Wendroff scheme. Finally, two numerical examples
of hyperbolic system, overland flow modeled by Saint-
Venant equation and traffic flow modeled by LWR equa-
tion, have been provided to illustrate the effectiveness
of the proposed approach. Because of its generality, this
method can be applied to the state and parameter iden-
tification in any 1-D hyperbolic system. The observation
data in this work are obtained from the simulation of
system with optimal parameters and it my not represent
the complexity and uncertainty of natural problem. As
a result, a validation with real data or laboratory exper-
iments is in progress to evaluate the applicability of the
presented method to real problem. Moreover, more gen-
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eral problems such as output-feedback stabilization or
optimal control with output constraints and time vary-
ing parameters will be part of our future developments.

References

[1] A. Bagchi and P. ten Brummelhuis. Simultaneous ML
estimation of state and parameters for hyperbolic systems
with noisy boundary conditions. In 29th IEEE Conference
on Decision and Control, pages 222–224 vol.1, Honolulu, HI,
1990. IEEE.

[2] Leonard Becker and William W-G. Yeh. Identification of
parameters in unsteady open channel flows. Water Resources
Research, 8(4):956–965, August 1972.

[3] Panagiotis D. Christofides and Prodromos Daoutidis.
Feedback control of hyperbolic PDE systems. AIChE
Journal, 42(11):3063–3086, November 1996.

[4] Panagiotis D Christofides and Prodromos Daoutidis.
Distributed output feedback control of two-time-scale
hyperbolic PDE systems. International Journal of Applied
Mathematics and Computer Science, 8:713–732, 1998.

[5] Yan Ding, Yafei Jia, and Sam S Y Wang. Identification of
Manning’s Roughness Coefficients in Shallow Water Flows.
Journal of Hydraulic Engineering, 130(6):501–510, June
2004.

[6] Yan Ding and Sam S. Y. Wang. Identification of Manning’s
roughness coefficients in channel network using adjoint
analysis. International Journal of Computational Fluid
Dynamics, 19(1):3–13, January 2005.

[7] R.E. Ewing and Tao Lin. A direct method for parameter
estimation in a hyperbolic partial differential equation. In
27th IEEE Conference on Decision and Control, pages 1662–
1667, Austin, TX, 1988. IEEE.

[8] Didier Georges. Infinite-dimensional nonlinear predictive
control design for open-channel hydraulic systems. Networks
and Heterogeneous Media, 4(2):267–285, June 2009.

[9] Agus Hasan. Adaptive Boundary Control and Observer of
Linear Hyperbolic Systems With Application to Managed
Pressure Drilling. In ASME 2014 Dynamic Systems and
Control Conference, San Antonio, TX, October 2014. ASME.

[10] Agus Hasan and Lars Imsland. Moving horizon estimation in
managed pressure drilling using distributed models. In 2014
IEEE Conference on Control Applications (CCA), pages 605–
610, Juan Les Pins, Antibes, October 2014. IEEE.

[11] Peter Lax and Burton Wendroff. Systems of conservation
laws. Communications on Pure and Applied Mathematics,
13(2):217–237, 1960.

[12] Yanning Li, Edward Canepa, and Christian Claudel. Optimal
traffic control in highway transportation networks using
linear programming. In 2014 European Control Conference
(ECC), pages 2880–2887, Strasbourg, June 2014.

[13] Michael J Lighthill and Gerald Beresford Whitham. On
kinematic waves. ii. a theory of traffic flow on long crowded
roads. Proceedings of the Royal Society of London. Series
A. Mathematical and Physical Sciences, 229(1178):317–345,
1955.

[14] X Litrico and D Georges. Robust continuous-time and
discrete-time flow control of a dam–river system. (I)
Modelling. Applied Mathematical Modelling, 23(11):809–827,
November 1999.

[15] Xavier Litrico and Didier Georges. Robust continuous-
time and discrete-time flow control of a dam–river system.
(II) Controller design. Applied Mathematical Modelling,
23(11):829–846, November 1999.

[16] Han Longxi. Parameter estimation in channel network flow
simulation. Water Science and Engineering, 1(1):10–17, 2008.

[17] Larry W Mays. Water resources engineering. John Wiley &
Sons, 2010.

[18] Van Tri Nguyen, Didier Georges, and Gildas Besancon.
Optimal state estimation in an overland flow model using
the adjoint method. In 2014 IEEE Conference on Control
Applications (CCA), pages 2034–2039, Juan Les Pins,
Antibes, October 2014. IEEE.

[19] Thang V. Pham, Didier Georges, and Gildas Besançon.
Receding horizon boundary control of nonlinear conservation
laws with shock avoidance. Automatica, 48(9):2244–2251,
September 2012.

[20] P.I Richards. Shock waves on the highway. Operations
Research, 4(1):42–51, 1956.

[21] Rafael Vazquez, Miroslav Krstic, and Jean-Michel Coron.
Backstepping boundary stabilization and state estimation
of a 2x2 linear hyperbolic system. In IEEE Conference
on Decision and Control and European Control Conference,
volume 1, pages 4937–4942. IEEE, December 2011.

[22] Xubin Sun and Hong Wang. Dynamic System Control of
Gas Jet Flames Distribution by Predictive Control Method.
In 2005 IEEE International Symposium on, Mediterrean
Conference on Control and Automation Intelligent Control,
2005., pages 1458–1463, Limassol, 2005. IEEE.

[23] Wenhuan Yu. A Quasi-Newton Method for Estimating
the Parameter in a Nonlinear Hyperbolic System. Journal
of Mathematical Analysis and Applications, 231(2):397–424,
March 1999.

A Tables of simulations parameters

Parameter Value Unit
Highway length L 100 km

Observation horizon T 3 hour
Space step 4x 10 km
Time step 4t 0.01 hour

Calibration coefficients ε1=ε2=ε3 1× 10−7 Unitless
Observation number N 1 Unitless

Table A.1
Parameters used in traffic flow estimation example.

Parameters Value Unit
Length of plan 1000 m
Simulation time 1000 second
Space step 4x 100 m
Time step 4t 1 second
Bed slope S0 0.001 m

m

Ki 0.145 cm
s

Ψ 21.85 cm
η 0.434 %

θ 0.463 Unitless
Calibration coefficient ε1 =ε2 10−7 Unitless

Observation number N 2 Unitless
Table A.2
Parameters used in overland flow estimation example
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