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Introduction

Consider the following state estimation problem [START_REF]Automation for Robotics[END_REF] (i)

ẋ (t) = f (x (t)) , t ∈ R (ii) g (t k ) ∈ Y (k) , k ∈ N (1)
Our objective is to find an inner and an outer approximation of the set X (t) of all state vectors that are consistent with (1) at time t. If we define by flow map ϕ t 1 ,t 2 as follows:

x (t 1 ) = x 1 and ẋ (t) = f (x (t)) ⇒ x 2 = ϕ t 1 ,t 2 (x 1 ) .

(2)

The set of all causal feasible states at time t is defined by

X (t) = t k ≤t ϕ tk,t • g -1 (Y (k)) . (3) 
In this paper, we show how it is possible to find both an inner and an outer approximations for X (t). Some existing methods are able to find an outer approximation [KJWM99] [GRMA13], but, to my knowledge, none of them is able to get an inner approximation. The main idea is to copy a classical contractor approach [START_REF] Jaulin | Contractor Programming[END_REF] for state estimation, but to use separators [START_REF]Separators: a new interval tool to bracket solution sets; application to path planning[END_REF] instead of contractors.

Separators

In this section, we present separators and show how they can be used by a paver in order to bracket the solution sets. The algebra for separators is a direct extension of contractor algebra [START_REF] Jaulin | Contractor Programming[END_REF].

If S i = S in i , S out i , i ∈ {1, 2} are separators, we define S 1 ∩ S 2 = S in 1 ∪ S in 2 , S out 1 ∩ S out 2 (intersection) S 1 ∪ S 2 = S in 1 ∩ S in 2 , S out 1 ∪ S out 2 (union) f -1 (S 1 ) = f -1 (S in 1 ), f -1 (S out 1 ) (inverse) (4) If S i are sets of R n , we have [JSD14] (i) S 1 ∩ S 2 ∼ S 1 ∩ S 2 (ii) S 1 ∪ S 2 ∼ S 1 ∪ S 2 (iii) f -1 (S 1 ) ∼ f -1 (S 1 ) .
(5)

Interval analysis [START_REF]Interval Analysis[END_REF] [KK96] combined with contractors [START_REF] Jaulin | Contractor Programming[END_REF] has been shown to be able to give an outer approximation of set. For the inner subpaving, the De Morgan rules make it possible to express the complementary set X of X. Then, basic contractor techniques can be used to get an inner characterization X -. Now, the task is not so easy and the role of separators is to make it automatic.

Transformation of separators

A transformation is an invertible function f such as an analytical expression if known for both f and f -1 . The set of transformation from R n to R n is a group with respect to the composition •.

Symmetries, translations, homotheties, rotations, . . . are linear transformations. Theorem. Consider a set X and a transformation f . Denote by [f ] and f -1 two inclusion functions for f and

f -1 . If S X is a separator for X then a separator S Y for Y = f (X) is [y] → [f ] • S in X • f -1 ([y]) ∩ [y] , [f ] • S out X • f -1 ([y]) ∩ [y] (6) or equivalently f (X) ∼ [f ] • S in X • f -1 ∩ Id, [f ] • S out X • f -1 ∩ Id ( 7 
)
where Id is the identity contractor.

Remark. The separator defined by ( 6) corresponds to what we call the transformation of a separator by f and we write S Y = f (S X ). As a consequence, thanks to the theorem, we can add to (5) the property (iv) f (X) ∼ f (S X ) .

which will be used later for our state estimation problem.

Proof. The separator

S Y is equivalent to Y = f (X) if S out Y ([y]) ∩ Y = [y] ∩ Y S in Y ([y]) ∩ Y = [y] ∩ Y. ( 8 
) Since S out Y ([y]) ⊂ [y] and S out Y ([y]) ⊂ [y], it suffices to prove that (i) S out Y ([y]) ⊃ [y] ∩ Y (ii) S in Y ([y]) ⊃ [y] ∩ Y. (9) 
Let us first prove (i). We have

[y] ∩ Y = f f -1 ([y]) ∩ f -1 (Y) f is bijective = f f -1 ([y]) ∩ X X = f -1 (Y) ⊂ f f -1 ([y]) ∩ X f -1 is an inclusion function for f -1 ⊂ f (S out X f -1 ([y]) ) S out X is a contractor for X ⊂ [f ] • S out X • f -1 ([y]) [f ] is an inclusion function for f (10) Thus [y] ∩ Y ⊂ [f ] • S out X • f -1 ([y]) ∩ [y] = S out Y ([y]).
Let us now prove (ii). We have

[y] ∩ Y = f f -1 ([y]) ∩ f -1 Y f is bijective = f f -1 ([y]) ∩ X X = f -1 Y ⊂ f f -1 ([y]) ∩ X f -1 is an inclusion function for f -1 ⊂ f (S in X f -1 ([y]) ) S in X is a contractor for X ⊂ [f ] • S in X • f -1 ([y]) [f ] is an inclusion function for f (11) Thus [y] ∩ Y ⊂ [f ] • S out X • f -1 ([y]) ∩ [y] ∩ Y = S in Y ([y]
) which terminates the proof. Example. Consider the constraint

2 0 0 1 cos α sin α -sin α cos α y 1 -1 y 2 -2 ∈ [1, 3] . ( 12 
)
If we apply an efficient forward-backward contractor in a paver, we get the contractions illustrated by the paving of Figure 1, left. Now, if we take

x 1 x 2 = 2 0 0 1 cos α sin α -sin α cos α y 1 -1 y 2 -2 = f -1 (y) (13) 
or equivalently

y 1 y 2 = cos α -sin α sin α cos α 1 2 0 0 1 x 1 x 2 + 1 2 = f (x) , (14) 
we get

y = f (x) , and x ∈ [1, 3] . (15) 
An optimal separator S X can be built for x and the separator transform provides us a separator S Y for Y. As illustrated by Figure 1, right, the resulting separator S Y is more efficient than the classical one based on forward-backward contractors. Note that in case we are not able to have an inner approximation for f -1 , the problem of finding an inner approximation of the image of a set f (X) becomes much more difficult. See, e.g., [START_REF]Inner and outer approximation of the polar diagram of a sailboat[END_REF] [GJ10].

State estimation

If S X(0) is a separator for X (0) and if S Y(k) are separators for Y (k), then a separator for the set

X (t) defined by (3) is S X(t) = tk≤t ϕ tk,t • g -1 S Y(k) . (16) 
In this formula, g -1 S Y(k) is a separator. Due to the fact that ϕ tk,t is bijective and that we are able to find an inclusion function for ϕ t k ,t and ϕ -1 tk,t [START_REF]Computing Reachable Sets for Uncertain Nonlinear Hybrid Systems using Interval Constraint Propagation Techniques[END_REF], the separator ϕ t k ,t • g -1 S Y(k) is clearly defined using the separator transform. To illustrate the method, let us consider a robot described by where v (t) and θ (t) are measured with an accuracy of ±0.03. The observation equation is due to the fact that the robot measures every 0.1 sec its distance to the origin with an accuracy of ±0.3.

   ẋ (t) = v (t) cos θ (t) v (t) sin θ (t) (evolution) x (t k ) ∈ y (t k ) + [-0.3, 0.3] , t k = 0.1 • k, k ∈ N (observation) (17) 
The actual (but unknown) trajectory for the robot is

x (t) = 2 + 3 cos t 2 sin t . (18) 
For t ∈ 0.2 * k, k = 0, . . . , 7, the sets X (t) obtained by our observer are represented on Figure 2. Black boxes are inside X (t), grey boxes are outside and the white boxes cover the boundary. For t = 0, X (t) is a ring which becomes a small set for t = 1.4 once the robot has moved sufficiently.

The fact that the white area covering the boundary becomes thick is mainly due to the state errors inside the evolution equation. 

Fig. 1 .

 1 Fig. 1. Left. Contractions obtained using a classical forward-backward propagation; Right. Contractions obtained using the separator transform. The frame corresponds to the box [-6, 6] 2 .

Fig. 2 .

 2 Fig. 2. Inner and outer approximations of the set of all feasible state vectors X (t) , for t ∈ 0, 0.2, . . . , 1.4. The frame boxes are [-6, 6] 2 .

  ∩ S. A separator S is pair of contractors S in , S out such that, for all [x] ∈ IR n , we haveS in ([x]) ∪ S out ([x]) = [x].A set S is consistent with the separator S (we write S ∼ S), if S ∼ S out and S ∼ S in . where S = {x | x / ∈ S}. Using a separator inside a paver we can easily to classify part of the search space that are inside or outside a solution set S associated with S.

	C([x]) ⊂ [x] and [x] ⊂ [y] ⇒ C([x]) ⊂ C([y]). A set S is consistent with the
	contractor C (we will write S ∼ C) if for all [x], we have C([x]) ∩ S = [x]

An interval of R is a closed connected set of R. A box [x] of R n is the Cartesian product of n intervals. The set of all boxes of R n is denoted by IR n . A contractor C is an operator IR n → IR n such that