
HAL Id: hal-01236494
https://hal.science/hal-01236494v2

Submitted on 19 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Upscaling a model for the thermally-driven motion of
screw dislocations

Thomas Hudson

To cite this version:
Thomas Hudson. Upscaling a model for the thermally-driven motion of screw dislocations. Archive
for Rational Mechanics and Analysis, 2017, �10.1007/s00205-017-1076-5�. �hal-01236494v2�

https://hal.science/hal-01236494v2
https://hal.archives-ouvertes.fr


UPSCALING A MODEL FOR THE THERMALLY�DRIVEN MOTION OF

SCREW DISLOCATIONS

T. HUDSON

Abstract. We formulate and study a stochastic model for the thermally�driven motion of interacting
straight screw dislocations in a cylindrical domain with a convex polygonal cross�section. Motion is
modelled as a Markov jump process, where waiting times for transitions from state to state are
assumed to be exponentially distributed with rates expressed in terms of the potential energy barrier
between the states. Assuming the energy of the system is described by a discrete lattice model, a
precise asymptotic description of the energy barriers between states is obtained. Through scaling of
the various physical constants, two dimensionless parameters are identi�ed which govern the behaviour
of the resulting stochastic evolution. In an asymptotic regime where these parameters remain �xed,
the process is found to satisfy a Large Deviations Principle. A su�ciently explicit description of
the corresponding rate functional is obtained such that the most probable path of the dislocation
con�guration may be described as the solution of Discrete Dislocation Dynamics with an explicit
anisotropic mobility which depends on the underlying lattice structure.

1. Introduction

Dislocations are topological line defects whose motion is a key factor in the plastic behaviour of
crystalline solids. After their existence was hypothesised in order to explain a discrepancy between
predicted and observed yield stress in metals [39, 40, 45], they were subsequently experimentally
identi�ed in the 1950s via electron microscopy [29, 9]. Dislocations are typically described by a curve
in the crystal, called the dislocation line, which is where the resulting distortion is most concentrated,
and their Burgers vector, which re�ects the mismatch in the lattice they induce [30].
Although the discovery of dislocations is now over 80 years distant, the study of these objects

remains of signi�cant interest to Materials Scientists and Engineers today. In particular, a cubic
centimetre of a metallic solid may contain between 105 and 109m of dislocation lines [33], leading to
a dense networked geometry, and inducing complex stress �elds in the material which are relatively
poorly understood. Accurately modelling the behaviour of dislocations therefore remains a major
hurdle to obtaining predictive models of plasticity on a single crystal scale.
In this work, we propose and study a discrete stochastic model for the thermally�driven motion of

interacting straight screw dislocations in a cylindrical crystal of �nite diameter. The basic assump-
tions of this model are that all screw dislocations are aligned with the axis of the cylinder, and that
the motion of dislocations proceeds by random jumps between `adjacent' equilibria, with the rate of
jumps being governed by the temperature and the energy barrier between states: this is the minimal
additional potential energy which must be gained in order to pass to from one state to another. To
describe the system, we prescribe a lattice energy functional, variants of which have been extensively
studied in recent literature [41, 32, 2, 31, 1].
By rescaling the model in space and time, we identify two dimensionless parameters, and with a

speci�c family of scalings corresponding to a regime in which dislocations are dilute relative to the
lattice spacing, the time over which the system is observed is long and the system temperature is
low, we �nd we may apply the theory of Large Deviations described in [21] to obtain a mesoscopic
evolution law for the most probable trajectory of a dislocation con�guration.
The major novelties of this work are the demonstration of uniqueness (up to symmetries of the

model) of equilibria containing dislocations, a precise asymptotic characterisation of the energy
barriers between dislocation con�gurations, and the rigorous identi�cation of both a parameter regime
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in which the two�dimensional Discrete Dislocation Dynamics framework [3, 46, 13, 12] is valid, as well
as a new set of explicit nonlinear anisotropic mobilities which depend upon the underlying lattice
structure. The nonlinearity and anisotropy of the mobilities obtained is in contrast to the linear
isotropic mobility often assumed in Discrete Dislocation Dynamics simulations.

1.1. Kinetic Monte Carlo models. The stochastic model we formulate is based on the observation
that at low temperatures, thermally�driven particle systems spend long periods of time close to
local equilibria, or metastable states, before transitioning to adjacent states, and repeating the same
process. It is a classical assertion that such transitions are approximately exponentially distributed
at low temperatures, with a rate which depends upon the temperature and energy barrier which
must be overcome to pass into a new state; the transition rate from state µ to state ν, R(µ→ ν), is
given approximately by the formula

R(µ→ ν) = A(µ→ ν) e−βB(µ→ν), (1.1)

where

• β := (kBT )−1 is the inverse of the thermodynamic temperature of the system, with kB being
Boltzmann's constant and T being the absolute temperature;
• B(µ→ ν) is the energy barrier, that is, the additional potential energy relative to the energy
at state µ that the system must acquire in order to pass to the state ν; and
• A(µ → ν) is the entropic prefactor which is related to the `width' of the pathway by which
the system may pass from the state µ to the state ν with minimal potential energy.

The discovery and re�nement of the rate formula (1.1) is ascribed to Arrhenius [6], Eyring [20], and
Kramers [34], and a review of the physics literature on this subject may be found in [27]. For Itô SDEs
with small noise (the usual mathematical interpretation of the correct low�temperature dynamics of
a particle system) (1.1) has recently been rigorously validated in the mathematical literature: for a
review of recent progress on this subject, we refer the reader to [7].
We may use the observation above to generate a simple coarse�grained model for the thermally�

driven evolution of a particle system. Begin by labelling the local equilibria of the system, µ, and
prescribe a set of neighbouring equilibria Nµ which may be accessed from µ, along with the transition
rates R(µ→ ν), for ν ∈ Nµ. Given that the system is in a state µ at time 0, we model a transition
from µ to a new state ν ′ ∈ Nµ as a jump at a random time τ , where

τ ∼ min
ν∈Nµ

Exp
(
R(µ→ ν)

)
= Exp

( ∑
ν∈Nµ

R(µ→ ν)
)

and P[µ→ ν ′ | t = τ ] =
R(µ→ ν ′)∑
ν∈NµR(µ→ ν)

.

This de�nes a Markov jump process on the set of all states: such processes are sometimes called
Kinetic Monte Carlo (KMC) models, and are highly computationally e�cient for certain problems
in Materials Science [47]. As an example of their use, KMC models have recently been particularly
successful in the study of pattern formation during epitaxial growth [8, 44]. Due to the ease with
which samples from exponential random variables may be computed, KMC models allow attainment
of signi�cantly longer timescales than Molecular Dynamics simulations of a particle system, with the
tradeo� being that �ne detail on the precise mechanisms by which phenomena occur may be lost.
A major hurdle in the prescription of a computational KMC model is the de�nition of the rates

R(µ → ν). In practice, these must be derived or pre�computed by some means, normally via a
costly ab initio or Molecular Dynamics computation run on the underlying particle system to be
approximated. Likewise, a large part of the analysis we undertake here is devoted to rigorously
deriving an asymptotic expression for energy barrier B(µ → ν), which then informs our choice of
R(µ→ ν) using formula (1.1).
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1.2. Modeling screw dislocations. In order to use the KMC framework described above to model
the motion of dislocations, we must give an energetic description of the system which allows us to
de�ne both corresponding metastable states µ and the energy barriers B(µ → ν). In several recent
works [41, 32, 2, 31, 1], variants of an anti�plane lattice model have been studied in which the notion
of the energy of a con�guration of straight screw dislocations can be made mathematically precise,
and in which screw dislocations may be identi�ed using the topological framework described in [4].
Here, we will follow [32, 31] in considering the energy di�erence

En(y; ỹ) :=
∑
e∈Dn,1

[
ψ(dy(e))− ψ(dỹ(e))

]
,

which compares the energy of deformations y and ỹ of a long cylindrical crystal with cross�section
nD: the scaled cross�section nD ⊂ R2 is a convex lattice polygon in either the square, triangular or
hexagonal lattice, Dn,1 denotes a set of pairs of interacting columns of atoms, d is a �nite di�erence
operator, y and ỹ are anti�plane displacement �elds, and ψ is a periodic inter�column interaction
potential, here taken to be ψ(s) := 1

2
λ dist(s,Z)2.

We de�ne a locally stable equilibrium to be a displacement y such that u = 0 minimises En(y+u; y)
among all perturbations which are su�ciently small in the energy norm

‖u‖1,2 :=

( ∑
e∈Dn,1

|du(e)|2
)1/2

.

Con�gurations containing dislocations are identi�ed by considering bond�length 1�forms associated
with dy, the de�nition of which is recalled in �2.5. In analogy with the procedure described in �1.3 of
[30], this construction allows us to de�ne the Burgers vector in a region of the crystal subject to the
deformation y as the integral of the bond�length 1�form around the boundary of the region. This
de�nes a �eld µ, which we call the dislocation con�guration, and we say that the displacement �eld
y contains the dislocations µ.
The results of [31, 2, 1] demonstrate that there are a large number of locally stable equilibria in

this model which contain dislocations for a range of underlying lattice structures. Nevertheless, since
these existence results are ultimately all based upon compactness methods, they do not provide a
�ne description of the equilibria, nor a guarantee of uniqueness up to lattice symmetries, for a �xed
choice of the dislocation con�guration µ. The �rst achievement of this work is therefore Theorem 3.1,
which provides a novel construction of the equilibria corresponding to dislocation con�gurations in
the particular case where ψ(s) := 1

2
λ dist(s,Z)2. This construction uses a form of lattice duality

to show that these minima may be characterised as the `discrete harmonic conjugate' (interpreted
in an appropriate sense) of lattice Green's functions satisfying Dirichlet boundary conditions on a
�nite lattice domain. In particular, this representation enables us to show that, given a dislocation
con�guration, there exist corresponding equilibria which are unique up to lattice symmetries.

1.3. Energy barriers. For two dislocation con�gurations µ and ν, we de�ne the energy barrier for
the transition from µ to ν as

Bn(µ→ ν) := min
γ∈Γn(µ→ν)

max
t∈[0,1]

En(γ(t);uµ),

where uµ, uν are locally stable equilibria containing dislocation con�gurations µ and ν respectively,
and Γn(µ → ν) is the space of continuous paths connecting these equilibria. The second major
achievement of this work is Theorem 3.2, which gives a precise asymptotic formula for Bn(µ → ν)
as the domain and dislocation con�guration are scaled, in terms of the gradient of the renormalised
energy [14, 43, 2]. In the course of proving this result, in �5 we constructively demonstrate the
existence of transition states u↑, such that

En(u↑;uµ) = Bn(µ→ ν).

The construction of u↑ again uses the form of lattice duality we describe and lattice Green's functions
on the �nite domain. Moreover, the properties of Green's functions allow us to compute Bn(µ→ ν)
explicitly in terms of a single �nite di�erence of the dual lattice Green's function. In Theorem 4.6,
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we obtain a precise asymptotic description of this �nite di�erence in terms of the gradient of the
continuum renormalised energy as the domain is rescaled, and hence to provide an asymptotic formula
for Bn(µ → ν). Our strategy for proving Theorem 4.6 is t develop a theory akin to the classical
gradient estimates for solutions of Poisson's equation (see �3.4 of [24]) in a discrete setting.

1.4. Upscaling via a Large Deviations Principle. Once we have obtained the asymptotic repre-
sentation of Bn(µ→ ν) given in Theorem 3.2, we apply formula (1.1) to de�ne the rates Rn(µ→ ν)
and hence the stochastic model considered. We then seek to understand the behaviour of this
model in the regime where the distance between dislocations is signi�cantly larger than the lattice
spacing. Scaling the various physical constants inherent in the model enables us to identify two
non�dimensional constants which govern the evolution.
Fixing these constants leads us to consider the asymptotic regime in which the temperature is

low, the diameter of the cylindrical domain and the spacing between dislocations is large relative
with the lattice spacing, and the time over which the process is observed is long. In this regime, we
�nd that the processes satisfy a Large Deviations Principle, which provides a means of describing
the asymptotic probability of rare events in random processes. A general theoretical framework for
proving such results has been developed over the last 50 years, and major treatises on the subject
describing a variety of approaches include [22, 18, 16, 21].
More precisely, a sequence of random variables Xn taking values on a metric space M is said to

satisfy a Large Deviations Principle if there exists a lower semicontinuous functional I : M → [0,+∞]
such that for any open set A ⊆M ,

lim inf
n→∞

1
n

logP[Xn ∈ A] ≥ − inf
x∈A
I(x),

and for any closed set B ⊆M , we have that

lim sup
n→∞

1
n

logP[Xn ∈ B] ≤ − inf
x∈B
I(x).

The function I is called the rate function of the Large Deviations Principle, and is called good if
each of the sub�level sets {x | I(x) ≤ a} for a ∈ R is compact in M (a property normally referred to
as coercivity in the Calculus of Variations literature). The existence of a Large Deviations Principle
may be interpreted as saying that, for any Borel set A,

P[Xn ∈ A] ' exp
(
− n inf

x∈A
I(x)

)
, as n→∞,

i.e. the probability of observing events disjoint from I−1(0) becomes exponentially small as n→∞.
In the setting considered here, the random variablesXn correspond to trajectories of the dislocation

con�guration through an appropriate state space. In order to prove a Large Deviations Principle, we
apply the theory developed in [21] and summarise the main results of this treatise in a form suited
to our application in Theorem 3.3. The existence of a Large Deviations Principle is then asserted in
Theorem 3.4, which also gives an explicit description of the `most probable' trajectory of the system.
This trajectory corresponds to a solution of the equations usually simulated in the study of Discrete
Dislocation Dynamics [3, 13, 12], with an explicit anisotropic mobility functionML

A,B which depends
upon the underlying lattice structure.
We conclude our study by discussing the interpretation of this result, and show that the additional

regimes identi�ed in [10] also apply here: in particular, we show it is possible to recover the linear
gradient �ow structure normally used in Discrete Dislocation Dynamics simulations [3, 13, 12] in
a further parametric limit, but we argue that in the appropriate parameter regimes, a stochastic
evolution problem may be more appropriate to model dislocation evolution.

1.5. Structure and notation. In order to give a precise statement of our main results, �2 is devoted
to describing the geometric framework which is both used to describe the Burgers vector of a lattice
deformation in our model and the notion of duality which we use in the subsequent analysis.
In �3, we state and discuss our main results. These are Theorem 3.1, which characterises equilibria

containing dislocations, Theorem 3.2, which provides a precise asymptotic formula for the energy
barrier between equilibria, and Theorem 3.4, which asserts the existence of a Large Deviations
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Principle for the Markov processes and asymptotic regime we consider. The proofs of these results
are given in �4, �5 and �6 respectively.
Since we introduce signi�cant amounts of notation in order to concisely state our results, Table 1

is provided for convenience.

2. Preliminaries

As stated in the introduction, the construction of the local minima corresponding to dislocation
con�gurations we give below relies upon a particular dual construction which corresponds in some
sense to the construction of a `discrete harmonic conjugate'. This construction is most conveniently
expressed using a discrete theory of di�erential forms, which also provides the basis for a de�nition
of the Burgers vector of a deformation. The reader already familiar with this theory may wish to
refer to Table 1 for our choice of notation and skip to �2.3, where the particular examples necessary
for the subsequent analysis are given.

2.1. Lattice complex. We begin by recalling some facts about lattice complexes, which provide the
correct tools to study dislocations in the model we consider. Lattice complexes are a particular class
of CW complex, which are objects usually studied in algebraic topology, and were de�ned with a
particular view to applications in the modelling of dislocations in crystals in [4]: we follow the same
basic de�nitions and terminology here. For further details on the de�nitions below, we refer the
reader to Section 2 of [4], and for background on such constructions in a general setting, see either
the Appendix of [28], or [38].
To provide some intuition to those less familiar with the notions described here, we remark at the

outset that a lattice complex may be thought of as a `skeleton' of sets of increasing dimension which
is built on the lattice points and �lls Rd. The elements of this skeleton are p�cells, where p refers to
the `dimension' of the particular element. The key idea behind the de�nition of a lattice complex is
that it provides a means by which to make rigorous sense of

• the boundaries of sets;
• operators analogous to the gradient, divergence, and curl, and
• versions of the Divergence and Stokes' theorems which relate the above notions.

Since these are likely to be familiar, we will point out some analogies with these more familiar calculus
concepts along the way. The reader is invited to refer to Figure 1 for an illustration of the particular
lattice complexes used in the subsequent analysis.

2.1.1. Construction of a lattice complex. Given a Hausdor� topological space S, a 0�cell is simply a
member of some �xed subset of points in S. Higher�dimensional cells are then de�ned iteratively:
for p ≥ 1, a p�dimensional cell (or p�cell) is e ⊂ S for which there exists a homeomorphism mapping
the interior of the p�dimensional closed ball in Rp onto e, and mapping the boundary of the ball onto
a �nite union of cells of dimension less than p.
A CW complex is a Hausdor� topological space along with a collection of cells as de�ned above,

such that S is the disjoint union of all cells. The CW complex is d�dimensional if the maximum
dimension of any cell is d, and S is referred to as the underlying space of the complex: Sp will denote
the set of all p�cells in the complex.
Each p�cell may be assigned an orientation consistent with the usual notion for set in Rd, and

we write −e to mean the p�cell with opposite orientation to that of e. We may de�ne an operator
∂, called the boundary operator, which maps oriented p�cells to consistently oriented (p − 1)�cells,
which intuitively are `the boundary' of the original cell. Similarly, the coboundary operator δ may
be de�ned, mapping an oriented p�cell, e, to all consistently oriented p+1�cells which have e as part
of their boundary.
We now recall from [4] that a lattice complex is a CW complex such that:

• the underlying space is all of Rd,
• the set of 0�cells forms an d�dimensional lattice, and
• the cell set is translation and symmetry invariant.
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Table 1. Notation conventions.

Symbol Description

L m�dimensional multilattice identi�ed with a lattice complex
Tr, Sq,Hx Triangular, square and hexagonal lattices in R2

K,K∗,V ,V∗ Constants depending on L
D Convex lattice polygon

cl, ϕl Position and interior angle of corner l of D

Lp,L
∗
p Set of p�cells in the primal and dual lattice complexes induced by L

Dn,p,D
∗
n,p Set of p�cells in the primal and dual lattice subcomplexes induced by nD

Ext(Dn,p) Set of p�cells in Dn,p at the `edge' of the complex induced by nD
Int(Dn,p) Set of p�cells in Dn,p which lie `away from the edge of nD'

e A p�cell
[e0, e1] 1�cell e such that ∂e = e1 ∪ −e0.
e+ a p�cell obtained by translating e by the vector a
∂, δ Boundary and coboundary operators
d, δ Di�erential and codi�erential on forms de�ned on the lattice complex
∆ Hodge Laplacian on forms

W (Lp),W (Dn,p) Set of p�forms on L and D
L 2(Lp) Hilbert space of square�integrable p�forms on L
W0(Dn,p) Set of p�forms on D which vanish on Ext(Dn,p)

(·)∗ Duality mapping on p�cells and p�forms

En(y; ỹ) Energy di�erence between deformations y and ỹ
ψ Potential giving energy per unit length of interaction between columns of atoms

[du] Set of bond�length 1�forms corresponding to du
uµ Locally stable equilibrium containing dislocations µ

Rn(µ→ ν) Exponential transition rate to pass from µ to ν
An(µ→ ν) Entropic prefactor for transition from µ to ν
Bn(µ→ ν) Potential energy barrier to transition from µ to ν
Γn(µ→ ν) Space of paths in deformation space connecting uµ and uν

u↑ Transition state, i.e. deformation where Bn(µ→ ν) is attained
α↑, α↓ Bond�length 1�forms corresponding to the transition state

1e p�form which is ±1 on ±e and 0 otherwise

GL Green's function for the full lattice L
Qr Polygonal set of radius r in the lattice
ωre Harmonic measure for Qr evaluated at e ∈ Ext(Qr

0)
Gµ∗ Solution to ∆∗Gµ∗ = µ∗ in W0(D∗n,0)

Gy Continuum Green's function, solving −∆Gy = 1
V δy in D, Gy = 0 on ∂D

M ε
n Set of `well�separated' dislocation positions

M ε
∞ Set of macroscale `well�separated' dislocation positions

β Inverse thermodynamic temperature
Tn Characteristic timescale of observation

D([0, T ];M) Skorokhod space of càdlàg functions from [0, T ] to a metric space M
Ωn, Hn In�nitesimal and nonlinear generators of the KMC process

HL
A,B,LL

A,B The Hamiltonian and Lagrangian for KMC process
E Renormalised energy

ΨL
A,B Dissipation potential

J L
A,B Large Deviations rate functional
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Throughout, we will denote such a lattice complex L, and the set of p�cells of the corresponding
complex will be Lp. Due to the translation invariance of L, it will be particularly convenient to
consider translations of lattice p�cells, so for e ∈ Lp and a vector a ∈ Rd, we de�ne

e+ a :=
{
x ∈ Rd

∣∣x = y + a, y ∈ e
}
.

We will always assume that we have chosen coordinates such that {0} ∈ L0 and, abusing notation,
we will write 0 to refer to this 0�cell.
A second convenient notational convention we will occasionally use is the representation of a 1�cell

through its boundary; we write

e = [e0, e1] to mean e ∈ L1 such that ∂e = e1 ∪ −e0.

2.1.2. Spaces of p�forms and calculus on lattices. For the application considered here, we wish to
describe deformations of a crystal. These are appropriately described in the lattice complex frame-
work as p�forms, which are real�valued functions on p�cells which change sign if the orientation of
the cell on which they are evaluated is reversed. We de�ne W (Lp) to be the space of all p�forms,
that is

W (Lp) :=
{
f : Lp → R

∣∣ f(e) = −f(−e), for any e ∈ Lp
}
.

It is straightforward to check that this is a vector space under pointwise addition. We also de�ne
the set of compactly�supported p�forms,

Wc(Lp) :=
{
f ∈ W (Lp)

∣∣∣⋃{e | f(e) 6= 0} is compact in Rd
}
,

where here and throughout, A denotes the closure of A ⊂ Rd.
Let A ⊂ Lp be �nite; then for f ∈ W (Lp), we de�ne the integral∫

A

f :=
∑
e∈A

f(e).

The di�erential and codi�erential are respectively the linear operators d : W (Lp) → W (Lp−1) and
δ : W (Lp)→ W (Lp+1), de�ned to be

df(e) :=

∫
∂e

f and δf(e) :=

∫
δe

f.

For a 0�form on a lattice complex, the di�erential is simply the �nite di�erence operator de�ned for
a pair of nearest neighbours, and in a continuous setting the same operator is the gradient. Similary,
δ acting on 1�forms is either (the negative of) the discrete or continuum divergence operator. In a
three�dimensional complex, both d acting on 1�forms and δ acting on 2�forms may be thought of
as the curl operator.
The bilinear form

(f, g) :=

∫
Lp

fg

is well�de�ned whenever f ∈ Wc(Lp) or g ∈ Wc(Lp). Moreover, if f ∈ Wc(Lp) and g ∈ Wc(Lp+1), we
have the integration by parts formula

(df, g) = (f, δg); (2.1)

this statement should be compared with that of the Divergence Theorem and variants, using the
vector calculus interpretation of d and δ given above. Furthermore, by de�ning the space L 2(Lp) :={
f ∈ W (Lp)

∣∣ (f, f) < +∞
}
, this bilinear form de�nes an inner product. It is straightforward to

show that this is then a Hilbert space with the induced norm, which we denote ‖u‖2 := (u, u)1/2.
We recall the de�nition of the Hodge Laplacian as the operator

∆ : W (Lp)→ W (Lp) with ∆f := (δd + dδ)f (2.2)

when p 6= 0 and p 6= m, and in the cases where p = 0 and p = m, ∆ = δd and ∆ = dδ respectively.
Note that, in a continuum setting, this de�nition of the Laplacian agrees with the interpretation of
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d as the gradient on 0�forms and δ as the negative of the divergence on 1�forms. Any function
satisfying ∆f = 0 on A ⊂ Lp is said to be harmonic on A.
Finally, 1e will always denote the p�form

1e(e
′) :=

{
±1 e′ = ±e,

0 otherwise.

2.2. Dual complex. The common notion of duality which occurs in algebraic topology relating to
CW complexes is that of the cohomology. This is usually presented as an abstract algebraic structure,
since it is only this structure which is needed to deduce topological information about a CW complex.
In some cases it may also be given a more concrete identi�cation, which will be particularly important
for the subsequent analysis.
Given an m�dimensional lattice complex, when possible, we de�ne the dual complex as follows:

• For any e ∈ Lm, let e
∗ :=

∫
e
x dx, the barycentre of set e in Rd, and let

L∗0 := {e∗ | e ∈ Lm}.

• For a collection of elementary m�cells A ∈ Lm, let

A∗ :=
⋃
e∈A

e∗. (2.3)

• Now, iterate over p = m− 1,m− 2, . . . , 0: for each p, let e ∈ Lp, and consider δe ∈ Lp+1 as a
sum of elementary p�cells. Find the corresponding cells in L∗m−p−1. De�ne e∗ ∈ L∗m−p to be
the convex hull of (δe)∗ with (δe)∗ removed, assigning e∗ the same orientation as e. For A, a
sum of elementary p�cells, we again de�ne A∗ via (2.3).

We de�ne boundary and coboundary operators on the dual lattice complex, ∂∗ and δ∗, so that

∂∗e∗ = (δe)∗, and δ∗e∗ = (∂e)∗. (2.4)

By construction, ∗ : Lp → L∗m−p de�nes an isomorphism of the additive group structure usually
de�ned on lattice complexes (see �2.2 of [4]). The equalities stated in (2.4) may then be interpreted
as the statement of the Poincaré duality theorem (see for example Section 3.3 of [28]), and the
construction described above is succinctly represented in the following commutation diagram.

Lp+1 Lp Lp−1

L∗m−p−1 L∗m−p L∗m−p+1

* * *

∂ ∂

δ∗ δ∗

δ δ

∂∗ ∂∗

Since the di�erential and codi�erential operators inherit features from the structure of the CW
complex on which p�forms are de�ned, we now show that similar duality properties hold for the
di�erential complexes on L and L∗. For any f ∈ W (Lp), we de�ne f

∗ ∈ W (L∗m−p) via

f ∗(e∗) := f(e).

Again, it may be checked that ∗ : W (Lp) → W (L∗m−p) is an isomorphism; in fact, ∗ de�nes an
isometry of the spaces L 2(Lp) and L 2(L∗m−p). The di�erential, denoted d∗ : W (L∗p)→ W (L∗p−1(L∗)),
and codi�erential, denoted δ∗ : W (L∗p−1)→ W (L∗p), are then

d∗f ∗(e∗) :=

∫
∂∗e∗

f ∗ =

∫
δe

f = δf(e), and δ∗f ∗(e∗) :=

∫
δ∗e∗

f ∗ =

∫
∂e

f = df(e).
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Figure 1. The square, triangular and hexagonal lattices respectively, and their duals.
Primal lattices are shown in grey, dual lattices in red; 2�cells are left uncoloured.
Particular primal cells are highlighted in black, and their respective dual cells are
given in blue.

Again, this relationship is concisely expressed in the following diagram.

W (Lp+1) W (Lp) W (Lp−1)

W (L∗m−p−1) W (L∗m−p) W (L∗m−p+1)

* * *

d d

δ∗ δ∗

δ δ

d∗ d∗

2.3. Examples: the square, triangular and hexagonal lattices. In the analysis which follows,
we focus exclusively on 2�dimensional lattice complexes, and in particular the triangular, square and
hexagonal lattices denoted Tr, Sq and Hx respectively. Let R4 and R6 be the rotation matrices

R4 :=

(
0 −1
1 0

)
and R6 :=

(
1
2
−
√

3
2√

3
2

1
2

)
.

For convenience, we de�ne e1 := a1 := (1, 0)T , and

ei := Ri−1
4 e1 for i ∈ {1, 2, 3, 4}, and aj := Rj−1

6 a1 for j ∈ {1, . . . , 6}.
The triangular, square and hexagonal lattices are de�ned to be

Tr := [a1, a2] · Z2, Sq := Z2, and Hx :=
√

3R4Tr ∪
[√

3R4Tr + e1

]
;

the nearest neighbour directions in Sq are therefore ei, and ai in Tr or Hx. We may de�ne lattice
complexes based on these sets (see �2.3.2 and �2.3.3 of [4] and [5]), and moreover

Tr∗ =
√

3
3
R4Hx + 1

3
(a2 + a3), Sq∗ = Sq + 1

2
(e1 + e2), and Hx∗ =

√
3R4Tr +

√
3

3
(a1 + a2).

Figure 1 illustrates the three lattices and the duality mapping between L and L∗.
At this point, we give the de�nitions of some lattice�dependent constants which will arise during

our analysis:

K :=

 3 if L = Hx,
4 if L = Sq,
6 if L = Tr.

and V :=

 2 if L = Hx,
4 if L = Sq,
6 if L = Tr,

(2.5)

For convenience, we will write V∗ and K∗ to mean the relevant constants for the dual lattice. Note
that K is the number of nearest neighbours in the lattice.

2.4. Finite lattice subcomplexes. For the particular application we will consider, we will make
use of �nite subcomplexes of the full lattice complex, and so we now make precise the notation we
use as well as the particular assumptions made throughout our analysis. The reader may �nd it
useful to refer to Figure 2, which illustrates the construction in a couple of simple cases.
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2.4.1. Induced subcomplexes. Given a �nite subset A0 ⊂ L0, we de�ne the induced lattice subcomplex
by inductively de�ning

Ap :=
{
e ∈ Lp

∣∣ ∂e ⊂ Ap−1

}
.

This is a well�de�ned CW complex when the corresponding boundary ∂A and coboundary δA oper-
ators are de�ned by restriction, i.e.

∂Ae := ∂e ∩ Ap−1, and δAe = (δe) ∩ Ap+1 for all e ∈ Ap.

The induced di�erential and codi�erential operators dA and δA are then de�ned in the same way as
d and δ, using ∂A and δA in place of ∂ and δ, and we may de�ne the spaces W (Ap) and L 2(Ap).
It will be convenient to distinguish what we term the exterior and interior p�cells of the CW

complex A, respectively de�ned to be

Ext(Ap) := {e ∈ Ap | δe 6= δAe}, and Int(Ap) := Ap \ Ext(Ap).

The former set may be thought of as the `edge' of the lattice subcomplex, and the latter as the
`interior' of the lattice subcomplex.
We now de�ne a subcomplex of the dual lattice complex which we call the dual subcomplex induced

by A0. Let A
∗
m := {e∗ ∈ L∗m | e ∈ A0}, and inductively de�ne

A∗m−p :=
{
e∗ ∈ L∗m−p

∣∣ e∗ ∈ ∂∗a∗ for some a∗ ∈ A∗m−p+1}

for p ≥ 1. We remark that this de�nition is not equivalent to de�ning sets of sets of dual p�cells by
directly taking the dual of the primal p�cells; however, we do have the inclusion[

Ap
]∗ ⊆ A∗m−p for each p,

where equality always holds when p = m by de�nition. The other inclusions follow by induction
on p: note that e ∈ Ap with p ≥ 1 implies that e ∈ δAa for some a ∈ Ap−1, δ

Aa ⊆ δa, and hence
e∗ ∈ ∂∗a∗ for some a∗ ∈ A∗m−p+1. As before, we may de�ne ∂A

∗
and δA

∗
by restriction, which in turn

leads us to de�ne operators dA∗ and δA∗ analogously.
Similarly, let

Ext(A∗p) :=
{
e∗ ∈ A∗p

∣∣ δ∗e∗ 6= δD
∗
e∗
}
, and Int(A∗p) := A∗p \ Ext(A∗p).

By construction, Ext(A∗2) = ∅, and e ∈ Ext(A∗n−p) if and only if there exists no a ∈ Ap with e = a∗

(see Figure 2 for an illustration).
From now on, it will always be clear from the context whether we are referring to the relevant

operators on L and L∗, or on A and A∗, so for the sake of concision, we will suppress A from our
notation.

2.4.2. Subcomplexes induced by a domain. We will say that an induced lattice subcomplex is path�
connected if for any e, e′ ∈ A0, there exists γ ⊂ A1 such that

∂γ = e ∪ −e′,

and call such γ ⊂ A1 a path which connects e and e′. We will say a lattice subcomplex is simply�
connected if for any γ′ ⊂ A1 such that ∂γ = ∅, γ = ∂A for some A ∈ A2.
Throughout our analysis, D will always denote a closed convex lattice polygon, i.e. a non�empty

compact convex subset of R2 which has corners cl ∈ L and internal angles ϕl where l = 1, . . . , L
indexes the corners, following [25]. We consider the scaled domains nD, for n ∈ N, noting that nD
remains a lattice polygon, and denote Dn to be the largest induced lattice subcomplex with respect
to inclusion such that

• Dn,p ⊂ nD for all p,
• D∗n,p ⊂ nD for all p,
• Dn and D∗n are both path connected and simply connected.

It can be shown that such a complex always exists as long as n is su�ciently large, since D is convex:
we give an example on the right�hand side of Figure 2.
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Figure 2. On the left, an example of primal (in black) and dual (in red) induced
subcomplexes for a general subset of the triangular lattice: A0 is the set of black
points. On the right, a lattice polygon D in the square lattice, and the corresponding
primal and dual subcomplexes, which are both path� and simply�connected.

2.4.3. Counting and distances. For a collection of p�cells A ⊂ Dn,p, we write #A to designate the

smallest number of elementary p�cells ei such that A =
⋃#A
i=1 ei.

We de�ne diam(D) to be

diam(D) := max
{
|x− y|

∣∣x, y ∈ D
}
,

and we note that there exists a constant CL > 0 which depends only on the underlying lattice L such
that

max
{

min
{

#γ
∣∣ γ ⊂ Dn,1, ∂γ = e− e′

} ∣∣∣ e′, e ∈ Ext(Dn,0)
}
≤ CLn diam(D).

We write dist(A,B) to mean the shortest distance between two sets A,B ⊂ Rd, i.e.

dist(A,B) := inf
{
|x− y|

∣∣x ∈ A, y ∈ B}.
2.4.4. Spaces of p�forms on lattice subcomplexes. The space of p�forms on the lattice subcomplex
induced by nD is denoted

W (Dn,p) :=
{
u : Dn,p → R

∣∣u(e) = −u(−e)
}
.

As for the space of forms de�ned on L, we de�ne the inner product and induced norm

(u, v) :=

∫
Dn,p

u v, and ‖u‖2 := (u, u)1/2.

Since Dn,p is �nite, these are always well�de�ned; we will also make occasional use of the norm

‖u‖∞ := max
e∈Dn,p

|u(e)|.

We denote the subspace of p�forms vanishing on Ext(Dn,p)

W0(Dn,p) :=
{
u ∈ W (Dn,p)

∣∣u = 0 on Ext(Dn,p)
}
,

which is clearly a vector space, and the bilinear form

((u, v)) :=

∫
Dn,1

dudv

is a well�de�ned inner product on W0(Dn,0). W0(Dn,0) is thus a Hilbert space with the corresponding
norm, denoted ‖u‖1,2 := ((u, u))1/2. We now demonstrate positive�de�niteness of the inner product,
since we will use the resulting version of Poincaré inequality below.
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Since Dn is path�connected, for any e ∈ Int(Dn,0), there exists γ ⊂ Dn,1 such that ∂γ = e ∪ −e′,
with e′ ∈ Ext(Dn,0) and #γ ≤ CL

0n diam(D). For any u ∈ W0(Dn,0), we then have u(e) =
∫
γ
du, so

applying the Cauchy�Schwarz inequality, we have

|u(e)|2 =

∣∣∣∣ ∫
γ

du

∣∣∣∣2 ≤ #γ

∫
γ

|du|2 ≤ #γ

∫
Dn,1

|du|2.

Integrating over Dn,0, and noting that there exists a constant CL
1 > 0 which depends only on the

underlying lattice L such that #Dn,0 ≤ CL
1n

2diam(D)2, we have∫
Dn,0

|u|2 ≤ CL
2n

3diam(D)3

∫
Dn,1

|du|2, (2.6)

where CL
2 = CL

0C
L
1 . We note that the same inequality also holds for u ∈ W0(D∗n,0) by a similar

argument.

2.4.5. Duality for p�forms on lattice subcomplexes. We de�ne the duality mapping ∗ : W (nDn,p) →
W0(D∗n,2−p) as follows:

u∗(a) =

{
u(e) a = e∗ ∈ Int(D∗n,2−p),

0 a ∈ Ext(D∗n,2−p).

We note that this mapping is well�de�ned since as noted in �2.4.1, a ∈ Ext(D∗n,2−p) if and only if
there exists no e ∈ Dp with a = e∗. This duality mapping de�nes an isomorphism from W (Dn,p) to
W0(D∗n−p) as vector spaces; as, in addition

(u, u) =

∫
nDn,p

|u|2 =

∫
Int(nD∗n,p)

|u∗|2 =

∫
nD∗n,p

|u∗|2 = (u∗, u∗),

it follows that ∗ de�nes an isometry of the spaces L 2(nDn,p) to L 2(D∗n,2−p). Moreover, for any
e ∈ nDn,p, we verify that

du(e) =

∫
∂e

u =

∫
(∂e)∗
u∗ =

∫
δ∗e∗
u∗ = δ∗u∗(e∗),

and δu(e) =

∫
δe

u =

∫
(δe)∗
u∗ =

∫
∂∗e∗
u∗ = d∗u∗(e∗).

(2.7)

2.5. Dislocation con�gurations. We now recall some de�nitions from [31] which will permit us to
give a kinematic description of screw dislocations in the setting of our model. Given u ∈ W (Dn,0),
we de�ne the associated set of bond�length 1�forms

[du] :=
{
α ∈ W (Dn,1)

∣∣ ‖α‖∞ ≤ 1
2
, α− du ∈ Z

}
.

A dislocation core is any positively�oriented 2�cell e ∈ D2 such that

dα(e) =

∫
∂e

α 6= 0.

Let µ ∈ W (D2), with µ : D2 → {−1, 0,+1}. We will say that u is a deformation containing the
dislocation con�guration µ if

∃α ∈ [du] such that dα = µ.

The 2�form µ represents the Burgers vectors of the dislocations in the con�guration, which are the
topological `charge' of dislocations; see [30, 33] for general discussion of the notion of the Burgers
vector and its importance in the study of dislocations, and [4, 31] for further discussion of the physical
interpretation of this speci�c de�nition.
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For the purposes of our analysis, we de�ne sets of admissible dislocation con�gurations. For ε > 0,
n ∈ N, and bi ∈ {±1} for i = 1, . . . ,m, we de�ne the set M ε

n(b1, . . . , bm) of 2�forms

M ε
n(b1, . . . , bm) :=

{
µ =

m∑
i=1

bi1ei

∣∣∣ ei ∈ D2 positively oriented, dist(ei,Ext(Dn,0)) ≥ nε,

dist(ei, ej) ≥ εn, for all i, j ∈ {1, . . . ,m}, i 6= j
}
.

Each 2�form in this set represents a collection of m dislocations with respective Burgers vectors
b1, . . . , bm and cores e1, . . . , em: these dislocations are separated from each other and from the bound-
ary by a distance of at least εn. Since we will assume that the number of dislocations m, and the
Burgers vectors b1, . . . , bm are �xed throughout, we will suppress the dependence on (b1, . . . , bm) from
now on.

3. Main Results

3.1. Energy and equilibria. As stated in the introduction, we follow [4, 41, 2, 32, 1, 31] and
consider a nearest�neighbour anti�plane lattice model for the cylinder of crystal. Let ψ : R→ R be
given by ψ(x) := 1

2
λdist(x,Z)2; we consider the energy di�erence functional

En(y; ỹ) :=

∫
Dn,1

[
ψ(dy)− ψ(dỹ)

]
.

This functional is a model for potential energy per unit length of a long cylindrical crystal, and points
Dn,0 correspond to columns of atoms which are assumed to be periodic in the direction perpendicular
to the plane considered. For further motivation of this model, we refer the reader to �1 of [1].
Following De�nition 1 of [31], we will say that y ∈ W (Dn,0) is a locally stable equilibrium if there

exists ε > 0 such that

En(y + u; y) ≥ 0 whenever ‖u‖1,2 ≤ ε.

Due to the periodicity of ψ, we note that any locally stable equilibrium generates an entire family
of equilibria: letting z ∈ W (Dn,0) taking values in H + Z for some H ∈ R, if y is a locally stable
equilibrium, then so is y+ z. These equilibria are physically indistinguishable, since they correspond
to a vertical `shifts' of columns by an integer number of lattice spacings, and a rigid vertical translation
of the entire crystal by H. We therefore de�ne the equivalence relation

u ∼ v if and only if u = v + z, where z : Dn,0 → Z +H for some H ∈ R, (3.1)

and denote the equivalence classes of this relation as JyK.
We recall that Theorem 3.3 in [31] gives su�cient conditions such that locally stable equilibra

containing dislocations exist in the case of a more general choice of ψ than that chosen here. Our
�rst main result is similar, but in addition provides a very precise representation of the corresponding
bond�length 1�form in the case considered here, and asserts the uniqueness (up to lattice symmetries)
of local equilibria containing a given dislocation con�guration.

Theorem 3.1. Fix ε > 0 and D a convex lattice polygon; then for all n su�ciently large, the
following statements hold:

(1) For every 2�form µ ∈ M ε
n, there exists a corresponding locally stable equilibrium uµ which

contains the dislocation con�guration µ;
(2) Each such equilibrium uµ is unique up to the equivalence relation de�ned in (3.1); and
(3) For any u ∈ JuµK, there is a unique bond�length 1�form α ∈ [du] satisfying α∗ = d∗Gµ∗,

where µ∗ is the 0�form dual to µ, and Gµ∗ ∈ W0(Dn,0) is the solution to

∆∗Gµ∗ = µ∗ in Int(D∗n,0), with Gµ∗ = 0 on Ext(D∗n,0). (3.2)
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Strategy of proof. The proof of this theorem is the main focus of �4. We begin by showing that if u
is a locally stable equilibrium containing dislocations µ, then α ∈ [du] must necessarily satisfy

‖α‖∞ < 1
2
, dα = µ on D2, and δα = 0 on Dn,0. (3.3)

We show that these conditions are satis�ed by at most one α ∈ W (Dn,1), and using the duality
transformation described in �2.2, we verify that α ∈ W (Dn,1) satisfying α∗ = d∗Gµ∗ veri�es the
latter two conditions. Showing that ‖α‖∞ = ‖d∗Gµ∗‖∞ < 1

2
is the most technical aspect of the

proof, and requires us to develop a theory which is analogous to obtaining interior estimates for
solutions of a boundary value problem for Poisson's equation in the continuum setting. To conclude,
we obtain the class JuµK by `integrating' α.

3.2. Energy barriers. Let C
(
[0, 1]; W (Dn,0)

)
denote the space of continuous paths from [0, 1] to

W (Dn,0). For µ and ν ∈M ε
n, we de�ne the set of continuous paths which move any local equilibrium

in JuµK to any other local equilibrium in JuνK to be

Γn(µ→ ν) :=
{
γ ∈ C

(
[0, 1]; W (Dn,0)

) ∣∣ γ(0) ∈ JuµK, γ(1) ∈ JuνK,

∀t ∈ [0, 1], α ∈ [dγ(t)] implies dα = µ or dα = ν
}
.

In the case where we will apply this de�nition, i.e. where ν−µ = bi[1q−1p] with q∗ = p∗+a∗ for some
nearest�neighbour direction a∗ in the dual lattice, corresponding to a single dislocation `hopping' to
an adjacent site, the �nal condition on the paths in the above de�nition ensures that the Burgers
vectors of the con�gurations along the path vary only on the 2�cells p and q. In other words, we
make the modelling assumption that dislocations move strictly from one site to an adjacent site, and
not via a more complicated route.
We de�ne the energy barrier for the transition from µ to ν for µ, ν ∈M ε

n to be

Bn(µ→ ν) := min
γ∈Γn(µ→ν)

max
t∈[0,1]

En(γ(t);uµ). (3.4)

Our second main result concerns an asymptotic representation of this quantity.

Theorem 3.2. Suppose that µ, ν ∈M ε
n are 2�forms such that ν−µ = bi[1q−1p] for some i, where

q∗ = p∗ + a∗ for some nearest neighbour direction a∗ in L∗. For i = 1, . . . ,m, let xi ∈ D be such
that dist(xi,

1
n
e∗i ) ≤ 1

n
. Then there exist a constant c0 which depends only on the underlying lattice

complex L such that

Bn(µ→ ν) = λc0 + 1
2
λn−1

[
b2
i∇ȳj(xj) · a∗ +

∑
i | i 6=j

bjbi∇Gxi(xj) · a∗
]

+ o(n−1),

where

(1) λ is given in the de�nition of ψ,
(2) ȳj solves the boundary value problem

∆ȳj = 0 in D, ȳj(·) = 1
Vπ log(| · −xj|) on ∂D,

(3) Gy is the solution to

∆Gy = V
2
δy in D, with Gy = 0 on ∂D,

where we recall the de�nition of V from (2.5), and
(4) o(n−1) satis�es no(n−1)→ 0 as n→∞, uniformly for all µ ∈M ε

n.
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Strategy of proof. The proof of this result is the main focus of �5. Our main task is the explicit
construction of a transition state, i.e. u↓ ∈ W (Dn,0) such that

En(u↓;uµ) = min
γ∈Γn(µ→ν)

max
t∈[0,1]

En
(
γ(t);uµ

)
.

This may be seen as a generalisation of the notion of a critical point, but is not a true critical point,
since En is not di�erentiable at u↓. Nevertheless, we show that α ∈ [du↓] has a dual which is closely
related to the interpolation of d∗Gµ∗ and d∗Gν∗ which are solutions of (3.2). This dual representation,
combined with the precise asymptotics obtained for d∗Gµ∗ in order to prove Theorem 3.1, allow us
to derive the expression of Bn(µ→ ν).

3.3. Remarks on the model. Here, we collect a few remarks concerning the choice of model, the
notion of duality we use, and some further links between the results above and the way in which
dislocations are modelled in continuum elastoplasticity.

More general potentials. The derivation of the energy we consider as given in �2.2 of [2] suggests that
potential ψ should be chosen to be smooth, in keeping with the usual assumptions on interatomic
potentials. On the other hand, our results rely heavily on the de�nition of ψ, since the structure
of the potential chosen permits us both to prove the characterisation and uniqueness of α given
in Theorem 3.1, and to be precise about the set on which B(µ → ν) is attained. This ultimately
provides us with a means by which to prove Theorem 3.2.
In spite of this, a result similar to Theorem 3.2 may hold in cases where ψ is more general, but

is su�ciently `close' to the choice made here (see for example the structural assumptions made in
�5 of [2]). Since the interatomic distances rapidly approach those predicted by linear elasticity as
one moves away from a dislocation core (see Theorem 3.5 in [17]), and much of the potential energy
is carried by the elastic �eld at signi�cant distances from the dislocation core where a harmonic
approximation of the energy is valid, heuristically one might expect that the energy barrier should
be similar to that given in Theorem 3.2. However, due to the complexity of possible transitions in
a more general case, such a result does not seem tractable without very strong assumptions on the
potential, and signi�cant additional technicalities: we therefore do not pursue such results here.

Dynamics in the in�nite lattice. We remark that a signi�cant amount of our analysis is devoted to
verifying the �rst condition in (3.3) holds. This aspect of the proof of Theorem 3.1 would be signi�-
cantly simpli�ed if we were to consider the problem in an in�nite domain, since in this case integral
representations of the lattice Green's function are available via Fourier�analysis. Nevertheless, we
pursue the evolution on a �nite domain here, both because this is a case of physical relevance, and
because we are able to demonstrate that the boundary a�ects the evolution of the con�guration in
exactly the manner described in �2.1 of [46].

Equilibrium conditions and geometry. Finally, we remark that the two latter conditions in (3.3) are
analogous to the requirement that a continuum strain �eld ε satis�es

curl(ε) = µ and div(C : ε) = 0.

These are the conditions usually prescribed on a strain �eld ε which contain dislocations described
by a measure µ in a linear elastic setting (see for example (1.1) in [14]).
We also note that the precise notion of duality which we use is speci�c to two�dimensional modelling

of dislocations, as it is only in this case that L1 and L∗1 are related by duality. The fact that dual
1�cells are orthogonal segments suggest that one should view the construction of α by duality as a
version of the Cauchy�Riemann equations for harmonic conjugate functions.

3.4. KMC model for dislocation motion. With the asymptotic expression for Bn(µ→ ν) given
by Theorem 3.2, we are now in a position to apply (1.1) and formulate the KMC model for dislocation
motion we wish to study. In doing so, we make several modeling assumptions, which we now discuss
in detail.
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Our �rst assumption is that the only possible transitions are from µ ∈M ε
n to ν ∈M ε

n satisfying

ν − µ = bi[1q − 1p] for some i ∈ {1, . . . ,m},
with p∗ = q∗ + a∗ for some dual lattice nearest�neighbour direction a∗.

This requirement prevents the following possible situations from arising:

(1) Multiple dislocations cannot move together in a coherent way: it seems reasonable to dismiss
this possibility since we consider a regime where dislocations are far apart.

(2) Single dislocations cannot make successive correlated jumps over several lattice sites. Since
we consider a low temperature regime, we expect the probability of multiple correlated jumps
to be negligible.

(3) Dislocations cannot be spontaneously generated in the material during the course of the
evolution. In this case, we expect the energy barrier for dipole creation to be higher than
that for the motion of single dislocations, so once again, we expect such events to be of very
small probability and we therefore neglect them.

We therefore assume that the transition time for a dislocation µ to ν is exponentially distributed
with rate

Rn(µ→ ν) := An(µ→ ν) exp
(
− βBn(µ→ ν)

)
, (1.1)

where:

(1) Bn(µ→ ν) is the energy barrier for the transition from µ to ν de�ned by (3.4),
(2) β = (kBT )−1 is the inverse thermodynamic temperature, and
(3) An(µ → ν) is the pre�exponential rate factor which is related to the entropic `width' of the

pathways connecting µ and ν, and hence also depends on the inverse temperature β.

Formula (1.1) may be interpreted as follows: the exponential factor encodes the probability that
thermal �uctuations will result in the system achieving the potential energy necessary for a transition
to happen. The prefactor then determines how often such energy levels will lead to a transition: if
the passage between states in the energy landscape is very `narrow', then even if the system achieves
su�cient energy to exit, it may only rarely �nd the the pathway to achieve such a transition.
Our second main assumption will be that An(µ→ ν) = A0 + o(1), as β →∞ and n→∞, where
A0 is independent of µ and ν. In the case of a �nite�dimensional system with a smooth potential
energy V , having local minima at x and y, and a saddle point at z with a single unstable direction
where the minimal energy barrier between x and y is achieved, the form of the prefactor is (see
formula (25) in [34] for the original one�dimensional derivation, or [27] for an overview of variants
derived in a variety of situations)

A(µ→ ν) =

√
γ2 + 4|λ1(z)| − γ

2π

√
det∇2V (x)

| det∇2V (z)|
+ o(1). (3.5)

Here γ is a friction coe�cient, with units of time−1, and λ1(z) is the eigenvalue of the Hessian at
z which corresponds to the unstable direction. The rate can be reduced if either the eigenvalues
of ∇2V (x) are made smaller, reducing its determinant, or if the positive eigenvalues of ∇2V (z) are
increased. The former means the potential energy `basin' around x is wider, and the latter means
that the `mountain pass' in the energy landscape through which the system can travel most easily to
arrive at state ν is narrower. This coe�cient therefore encodes entropic e�ects related to the shape
of the energy landscape.
In our model, we have shown that there is a discontinuity in the �rst derivative at the energy barrier

between states, so the exact expression (3.5) cannot be valid; however, in directions for which second
derivatives exist, the Hessian of the energy at the transition state and at equilibria are identical,
motivating the assumption that An is constant as n → ∞ and β → ∞. We remark that it is usual
in practice (except in symmetric situations where multiple transition pathways with the same energy
barrier exist) to choose a constant prefactor in KMC simulations, since eigenvalue decompositions of
the Hessian of the energy are often be unavailable, and transition events may be too rare to obtain
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a su�ciently accurate numerical estimate of the rate. In order to describe the limit, we de�ne the
set of admissible (macroscale) dislocation positions to be

M ε
∞ :=

{
(x1, . . . , xm) ∈ Dm

∣∣xi ∈ D, |xi − xj| ≥ ε, dist(xi, ∂D) ≥ ε,∀i, j with i 6= j
}
,

and identify M ε
n with a subset of this space by the embedding

ιn : M ε
n →M ε

∞, where ιn

( m∑
i=1

bi1ei

)
=
(

1
n
e∗1, . . . ,

1
n
e∗m
)
. (3.6)

It is clear that this map is well�de�ned, and by endowing M ε
n with the metric

rn(µ, ν) =
m∑
i=1

1
n
dist
(
e∗i , (e

′
i)
∗) where µ =

m∑
i=1

bi1ei and ν =
m∑
i=1

bi1e′i ,

and M ε
∞ with the metric

r∞(µ, ν) =
m∑
i=1

dist(xi, x
′
i) where µ = (x1, . . . , xm) and ν = (x′1, . . . , x

′
m),

ιn is an isometric embedding. It is straightforward to see that each of these spaces is compact.
Given a di�erentiable function f : M ε

∞ → R, we will write ∂if(x) to mean the R2�valued function
such that

∂if(x) · a = f(x1, . . . , xi + a, . . . , xm)− f(x1, . . . , xm) + o(|a|) for all a ∈ R2.

Let D([0, T ]; M ε
n) denote the Skorokhod space of càdlàg maps from [0, T ] ⊂ R with values in M ε

n,
and denote the space of continuous real�valued functions de�ned on M ε

n to be C(M ε
n;R): this is in

fact the space of all real�valued functions on M ε
n, since the metric rn induces the discrete topology.

De�ne

Nµ :=
{
ν ∈M ε

n

∣∣ rn(µ, ν) = dL
}
, where dL =


√

3
3

L = Tr,
1 L = Sq,√
3 L = Hx.

Since we expect our modelling assumptions to break down as dislocations either approach one another
or the domain boundary, we stop the evolution in such an event. We therefore denote what we term
the boundary of M ε

n, de�ned to be

∂M ε
n :=

{
µ =

m∑
i=1

bi1ei ∈M ε
n

∣∣∣∃ν /∈M ε
n such that rn(µ, ν) = dL

}
.

We consider the sequence of Markov processes Y n ∈ D
(
[0, T ]; M ε

n

)
which are killed on the boundary

∂M ε
n, having in�nitesimal generator Ωn : C

(
M ε

n;R
)
→ C

(
M ε

n;R
)
where

[Ωnf ](µ) :=


∑
ν∈Nµ

TnRn(µ→ ν)[f(ν)− f(µ)], µ ∈M ε
n \ ∂M ε

n,

0 µ ∈ ∂M ε
n,

andRn(µ→ ν) is de�ned in (1.1). SinceRn(µ→ ν) is strictly positive and bounded for all µ, ν ∈M ε
n

and n ∈ N, Ωn is a bounded linear operator. De�ning Xn
t := ιn(Y n

t ), it follows that Xn
t is a Markov

process on the space M ε
∞.

3.5. The Feng�Kurtz approach to Large Deviations Principles. The last of our main results
will be to show that in a speci�c asymptotic regime, the Markov processes Xn satisfy a Large
Deviations Principle. To do so, we apply the general theory developed in [21], which provides
an approach to proving such results by demonstrating the convergence of a sequence of nonlinear
semigroups. For convenience, we provide the following theorem as a synthesis of the results of
Theorem 6.14 and Corollary 8.29 in [21], adapted to our application.

Theorem 3.3. Suppose that the following conditions hold:



UPSCALING THERMALLY�DRIVEN DISLOCATION MOTION 18

(1) M is a compact subset of RN , viewed a metric space with the usual metric induced by the
Euclidean norm.

(2) For all n ∈ N, (Mn, rn) is a complete separable metric space and there exists a sequence
ιn : Mn → M of Borel measurable maps such that for any x ∈ M , there exists zn ∈ Mn

satisfying ιn(zn)→ x.
(3) For each n ∈ N, Ωn : C(Mn;R) → C(Mn;R) is the in�nitesimal generator of a Markov

process on Mn. Suppose the martingale problem is well�posed, i.e. for any initial distribution
µ0 on Mn, the distribution of the Markov process at all later times is uniquely determined,
and the mapping from y ∈ Mn to trajectories with initial distribution δy is Borel measurable
under the weak topology on the space of probability measures de�ned on D([0,+∞);Mn).

(4) For any n ∈ N, and any f ∈ C(Mn;R), de�ne the nonlinear generator

Hnf(x) := 1
n
e−nf(x)

[
Ωnenf

]
(x). (3.7)

Let H be an operator mapping C1(M ;R) to the space of bounded measurable functions on M ,
which is represented as

Hf(x) = H
(
x,∇f(x)

)
,

where H : M × RN → R satis�es the following conditions:
• H is uniformly continuous on the interior of M ×Br(0) for all r > 0,
• H is di�erentiable in p on the interior of M × RN ,
• H(x, p) = 0 for all p ∈ RN when x ∈ ∂M , and
• For all x ∈M , p 7→ H(x, p) is a convex function.

For each pair (f, g) such that g = Hf , there exists a sequence (fn, gn) such that gn = Hnfn,
‖f ◦ ιn−fn‖ → 0, gn is uniformly bounded, and for any sequence zn ∈Mn satisfying ιn(zn)→
x, we have

gl(x) ≤ lim inf
n→∞

gn(zn) ≤ lim sup
n→∞

gn(zn) ≤ gu(x), (3.8)

where gl and gu are respectively the lower and upper�semicontinuous regularizations of g,

gl(x) := lim
r→0

inf
y∈Br(x)

g(y) and gu(x) := lim
r→0

sup
y∈Br(x)

g(y).

(5) There exists L : M × RN → [0,+∞] such that

L(x, ξ) = sup
p∈RN

{
ξ · p−H(x, p)

}
,

lim
|ξ|→∞

L(x, ξ)

|ξ|
= +∞ for all x ∈M and ξ ∈ RN , (3.9)

and for each x0 ∈M , there exists x ∈W1,1([0, T ];RN) satisfying x(0) = x0 and∫ T

0

L
(
x(t), ẋ(t)

)
dt = 0. (3.10)

Then the sequence of M�valued processes Xn := ιn(Yn) with Xn(0) = ιn(yn), where yn ∈ Mn and
ιn(yn)→ x0 as n→∞, satisfy a Large Deviations Principle with rate functional

J (x) :=


∫ ∞

0

L(x, ẋ) dt x ∈W1,1
(
[0,+∞);RN

)
with x(0) = x0,

+∞ otherwise.
(3.11)

�6 contains the proof of this result, which amounts to checking that the assumptions above correspond
to a series of conditions in [21].
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3.6. Asymptotics for the KMCmodel. An important condition of Theorem 3.3 is the veri�cation
of the convergence of the nonlinear generator, Hn. It will be this which motivates our particular choice
of regime after we have non�dimensionalised the model. Since we are interested in the physically�
relevant case of observing a large system over a long timescale, we let Tn � 1 be the timescale of
observation, which will be taken relative to the typical timescale on which a dislocation con�guration
changes. We then multiply all rates by this timescale, which we view as corresponding to observing
the process over a long timescale.
Now, recalling the de�nition of the nonlinear generator given in (3.7), suppose that f ∈ C1(M ε

∞;R),
and and let xn = ( 1

n
e∗1, . . . ,

1
n
e∗m). By Taylor expanding f , we �nd that

Hn(f ◦ ιn)(xn) =
m∑
i=1

K∗∑
j=1

TnRn(µ→ ν)

n

[
exp

(
∂if(xn) · si,j + o(1)

)
− 1
]

as n→∞,

where si,j are the nearest neighbour directions in L∗ at e∗i , and K∗ is the number of nearest neighbours
in L∗. Now, by applying Theorem 3.2 and the assumption that An(µ → ν) = A0 + o(1), we have
that

TnRn(µ→ ν)

n
=
TnA0e−βλc0

n
exp

[
− βλ

2n
∂iE(xn) · si,j

]
+ o
(Tn
n

)
,

where E(x) :=
m∑
i=j

b2
j ȳj(xj)−

m∑
i,j=1
i<j

1
2
bibjGxi(xj).

Here, following [2] we have de�ned the renormalised energy, E . −∂iE(x) is the Peach�Köhler force on
the dislocation at xi, and hence the gradient �ow dynamics of E corresponds to Discrete Dislocation
Dynamics. We identify two parameters in this expression,

A :=
TnA0e−βλc0

n
and B :=

βλ

2n
,

which are dimensionless, upon recalling that:

(1) Tn has units of time,
(2) n is the diameter of the domain relative to a �xed reference domain, and hence is dimension-

less,
(3) β = (kBT )−1 is the inverse thermodynamic temperature of the system per particle,
(4) λ has units of energy per particle, and
(5) A0 is the rate of successful exits from µ→ ν, and has units of time−1.

We may think of A0e−βλc0 as being the number of times a dislocation hops a single spacing in the full
lattice per unit time, when subject to zero stress. Dividing by n and multiplying by Tn, this becomes
the proportion of the domain crossed per proportion of time over which the system is observed. The
product βλ is the ratio between the potential energy required to allow transitions to occur relative
to the available thermal energy; dividing by n gives this quantity relative to the ratio between the
lattice spacing and the domain diameter.
We therefore consider the asymptotic regime where n → ∞ with A and B are held constant:

assuming that λ and A0 remain constant as n, β and Tn vary, this entails that β and Tn tend to
in�nity, and hence we consider a regime in which a large system is observed at low temperature for
a long time. In this regime, we obtain the following result, which is proved in �6 as an application of
Theorem 3.3. It corresponds to a rigorous validation of the equations of two�dimensional Discrete
Dislocation Dynamics [3, 12, 13] for screw dislocations in the given physical parameter regime.

Theorem 3.4. Suppose that L = Hx, L = Sq or L = Tr and Xn
0 = ιn(xn) where xn → x0 ∈ M ε

∞
as n→∞. Then the sequence of processes Xn

t satis�es a Large Deviation Principle with a good rate
function as n→∞ with A and B �xed.
Moreover, in each case, the rate function is minimised by the unique solution of the ODE

ẋ =ML
A,B

[
−∇E(x)

]
, with x(0) = x0, (3.12)
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where E : M ε
∞ → R is the renormalised energy, andML

A,B is the mobility function

ML
A,B[ξ] :=



m∑
i=1

6∑
j=1

A sinh(Bξi · aj)aj L = Hx,

m∑
i=1

4∑
j=1

A sinh(Bξi · ej)ej L = Sq,

m∑
i=1

∑6
j=1A sinh(Bξi · aj)aj∑3

j=1 2 cosh(Bξi · 1
3

[
a2j + a2j−1

]) L = Tr,

(3.13)

where aj and ej are as de�ned in �2.3.

3.7. Generalised gradient �ows and mobility functions. As has been noted in [36, 10], there
is a close link between minimisers of Large Deviations rate functionals and gradient �ows: we also
observe this phenomenon here in the cases where L = Hx and L = Sq. In those cases, it is shown in
�6.2 that the rate functional takes the form

J L
A,B(x) = B

∫ T

0

ΦL
A,B(ẋ) + ΨL

A,B(−∇E
(
x)
)

+ 〈∇E(x), ẋ〉 dt

whereML
A,B = ∇ΨL

A,B, and ΦL
A,B is the Legendre�Fenchel transform of ΨL

A,B. This entails that the
minimiser of the rate functional is a solution of a generalised gradient �ow in the sense described
in [37]. Furthermore, as in Theorem 3.1 of [10], we may recover a quadratic dissipation in the limit
where A→∞ and B → 0.

Proposition 3.5. Suppose that A→∞ and B → 0 with AB → ω. Then

ML
A,B[ξ]→ 1

2
ωV∗ξ

uniformly on compact subsets of R2m, where V∗ is the constant V for L∗. Consequently, for su�cently
small T , solutions x : [0, T ]→ Dm of (3.12) converge uniformly converge to the solution of

ẋ = −1
2
ωV∗∇E(x), with x(0) = x0

as A→ +∞ and B → 0 with AB → ω.

The proof of this result follows directly from representing ML
A,B via series expansion, and we omit

it. Recalling the interpretation of A and B given in �3.6, this could be viewed as suggesting a Large
Deviations Principle in the regime where the thermal energy is much larger than the energy barrier
to dislocation motion, but where the proportion of the cylinder crossed by a dislocation during the
observed time is small. However, recalling the de�nition of A and B from �3.4, we note that

AB =
Tn
n2
A0βλ exp

(
c0βλ

)
.

If β, λ and A0 are �xed as n → ∞, choosing AB → ω corresponds to a di�usive scaling of the
Markov process. We would therefore expect that randomness would persists on a macroscopic scale
in such an asymptotic regime, a connection which should be explored in future work.
Finally, we remark that is also possible to consider the other scaling regime analysed in [10], in

which B → ∞ with log(A) = −c1B for some c1. In terms of the parameters described in �3.4, this
entails that

log
TnA0

n
= βλ

(
c0 −

c1

2n

)
.

Assuming that λ and A0 remain �xed, the only way in which this scaling regime can be attained is
if n remains small and �xed, with β →∞ and Tn →∞. Since our analysis relies upon the fact that
n→∞ to ensure that lower�order terms vanish in Rn(µ→ ν), we cannot be certain that this limit
corresponds to a physically�relevant limit, and thus we do not study it here.
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4. Proof of Theorem 3.1

In this section, we develop discrete elliptic estimates which will allow us to prove Theorem 3.1;
many of the tools used are analogous to those used in the regularity theory of scalar elliptic partial
di�erential equations. To motivate our approach, and to provide the reader with some intuition, we
recall the following result, proved in �3.4 of [24]: given Q = {x ∈ R2 | |x · e1|, |x · e2| ≤ d}, f ∈ C(Q)
and u ∈ C2(Q) ∩ C(Q) satisfying ∆u = f , then∣∣∇u(0) · ei

∣∣ ≤ 2

d
sup
∂Q
|u|+ d

2
sup
Q
|f |.

Our approach will be to apply the discrete analogue of the techniques used to prove this bound,
i.e. the maximum principle and elementary potential theory. The application of these techniques in
combination with �ne residual estimates, will then allow us to conclude the proof.

4.1. The discrete Poisson boundary value problem. We begin by proving existence of solutions
to the Poisson boundary value problem in a general path�connected subcomplex Dn,0.

Lemma 4.1. Suppose Dn,0 is a path�connected lattice subcomplex; let g : Ext(Dn,0) → R, and
f : Int(Dn,0)→ R then there exists a unique solution u ∈ W (Dn,0) to the problem

∆u = f in Int(Dn,0) with u = g on Ext(Dn,0).

Proof. We employ a discrete version of the Dirichlet principle: extend g to a 0�form by de�ning
g(e) := 0 for all e ∈ Int(Dn,0), and let I : W0(Dn,0)→ R be given by

I(v) := 1
2
(d(v + g),d(v + g))−

∫
Int(Dn,0)

fv.

It is straightforward to verify that this functional is twice Gateau�di�erentiable, with

〈DI(v), u〉 = (d(v + g),du)−
∫

Int(Dn,0)

fu, and 〈D2I(v)u, u〉 = ((u, u)).

It follows that I is strictly convex, so has a unique minimiser. By setting u = 1e for any e ∈ Int(Dn,0),
this minimiser v satis�es

∆(v + g) = f in Int(Dn,0),

and v + g = g on Ext(Dn,0) by de�nition. �

Our next auxiliary result is to prove the following discrete maximum principle.

Lemma 4.2. Suppose that u ∈ W (Dn,0). Then

∆u ≥ 0 on Int(Dn,0) implies min
e∈Dn,0

u(e) = min
e∈Ext(Dn,0)

u(e), and

∆u ≤ 0 on Int(Dn,0) implies max
e∈Dn,0

u(e) = max
e∈Ext(Dn,0)

u(e).

Proof. We prove only the former statement, the proof of the latter being almost identical. Suppose
that u satis�es ∆u ≥ 0 on Int(Dn,0), and that there exists e ∈ Int(Dn,0) such that

u(e) = min
e′∈Dn,0

u(e′).

Either e ∈ Ext(Dn,0), so there is nothing to prove, or else e ∈ Int(Dn,0). Since

∆u(e) =
∑

e′∈Dn,0
dist(e′,e)=1

[u(e)− u(e′)] ≥ 0,

it follows that u(e) = u(e′) for all e′ with dist(e, e′) = 1. Iterating, and using the fact that Dn,0 is
�nite, we �nd that mine∈Dn,0 u(e) = mine∈Ext(Dn,0) u(e), as required. �
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4.2. Green's functions in the full lattice. We next assert the following lemma, concerning the
existence of a full lattice Green's function GL.

Lemma 4.3. Suppose that L = Sq, Tr, or Hx. Then there exists a lattice Green's function
GL ∈ W (L0) such that

GL(0) = 0, ∆GL = 10.

In addition:

(1) GL is invariant under the group of lattice point symmetries, i.e. if R : R2 → R2 is an
orthogonal linear transformation such that RL0 = L0, then

GL(Re) = GL(e).

(2) sup
e∈L1
|dGL(e)| = K−1, where K is de�ned in (2.5).

(3) There exists a constant CL ∈ R such that if u(e) := GL(e) + CL + 1
Vπ log |dist(0, e)| for

e ∈ L \ {0}, then

|u(e)| . |dist(e, 0)|−1 log |dist(e, 0)| (4.1)

and |du(e)| . |dist(e, 0)|−2 log |dist(e, 0)|. (4.2)

The usual method of constructing GL is via the Fourier transform, and the existence of such a
Green's function in the case of Bravais lattices is a classical assertion, as is the symmetry asserted
in (1). The bounds (4.1) and (4.2) are proved in Theorem 3.5 of [17] for all Bravais lattices, thus
covering the cases where L = Sq and L = Tr. It therefore remains to prove (2) and the other results
in the L = Hx case: the main observation used here is that Hx may be viewed as a subset of Tr.

Proof. We �rst prove (2) for L = Sq and L = Tr. Fix a to be a nearest neighbour direction in the
lattice. By the symmetry of GL from (1), we have

1 = ∆GL(0) = KGL(0)−KGL(0 + a) = −KGL(0 + a).

Hence dGL([0, 0 + a]) = K−1. Now consider v ∈ W (L0) de�ned to be

v(e) := GL(e+ a)−GL(e).

It follows that ∆v = 10−a − 10. Applying Lemma 4.2 on the lattice subcomplex induced by the set

B′r :=
{
e ∈ L0

∣∣ dist(e, 0) ≤ r, e 6= 0, 0− a
}
,

we note that the maximum and minimum of v are attained on Ext(B′r,0), since GL is harmonic on
Int(B′r,0). Now, applying (3) and letting r tend to in�nity implies the desired result, noting that
v(0) = −v(0− a) = K−1.
It remains to prove the theorem for the case where L = Hx. Recall from �2.3 that Hx may be

written as

Hx =
√

3R4Tr ∪
(√

3R4Tr + e1

)
,

and de�ne GHx ∈ W (Hx0) to be

GHx(e) :=


3GTr(RT4 e/

√
3) e ∈

√
3R4Tr,∑

e′|dist(e′,e)=1

GHx(e′) e ∈
√

3R4Tr + e1,
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where GTr is the lattice Green's function for L = Tr. We note that ∆GHx(e) = 0 by de�nition for
e ∈
√

3R4Tr + e1, and for e ∈
√

3R4Tr,

∆GHx(e) = 9GTr(e/
√

3)−
∑

e′|dist(e′,e)=1

[ ∑
e′′ |dist(e′′,e′)=1

GHx(e′′)

]
,

= 6GTr(e/
√

3)−
∑

e′|dist(e′,e)=
√

3

GTr(e′/
√

3),

= 10(e).

Moreover GHx(0) = GTr(0) = 0, and the symmetry of GTr also implies (1) for GHx.
Let CTr be the constant in statement (3) for the case where L = Tr, and for e ∈ Hx \ {0}, de�ne

uHx(e) := GHx(e) + 1
2π

log
∣∣dist

(
e/
√

3, 0
)∣∣+ 3CTr = GHx(e) + 1

2π
log |dist(e, 0)|+ 3CTr − 1

4π
log(3).

we see that for e ∈
√

3R4Tr, u
Hx satis�es (4.1) by the assertion for the case where L = Tr. For

e ∈
√

3R4Tr \ {0}, de�ne vTr(e) := GTr(e/
√

3) + 1
6π

log
∣∣dist

(
e/
√

3, 0
)∣∣; then for e ∈

√
3R4Tr + e1, we

have

uHx(e) = 1
2π

log
∣∣dist

(
e/
√

3, 0
)∣∣+

∑
e′|dist(e,e′)=1

(
vTr(e′)− 1

6π
log
∣∣dist

(
e′/
√

3, 0
)∣∣).

Since log |x| is harmonic away from 0, Taylor expanding to third�order about the point e and using
the symmetry of Hx implies that

1
2π

log
∣∣dist

(
e/
√

3, 0
)∣∣− ∑

e′|dist(e,e′)=1

1
6π

log
∣∣dist

(
e′/
√

3, 0
)∣∣ . |dist(e, 0)|−3. (4.3)

Applying this estimate and (4.1) for L = Tr, we obtain that

|u(e)| . |dist(e, 0)|−1 log |dist(e, 0)|

for all e ∈ Hx \ {0}.
To demonstrate (4.2), suppose without loss of generality that e ∈

√
3R4Tr and e+a ∈

√
3R4Tr+ e1

for some nearest neighbour direction a. Recalling the de�nition of ai from �2.3, for some i, we have

|duHx([e, e+ a])| =
∣∣vTr(e+

√
3ai+1

)
+ vTr

(
e+
√

3ai
)
− 2vTr(e)

∣∣
+ 1

2π
log
∣∣dist(e+ a, 0

)
/
√

3
∣∣− ∑
e′|dist(e+a,e′)=1

1
6π

log
∣∣dist(e′, 0)/

√
3
∣∣.

Using the de�nition of vTr, and then applying statement (3) in the case L = Tr as well as (4.3) gives
the result. �

4.3. The harmonic measure and interior di�erential estimates. We now de�ne the harmonic
measure, which allows us to express functions which are harmonic in a region in terms of their
boundary values. In order to do so, we introduce Qr, which should be thought of as `balls of radius
r' in the lattice, and are de�ned to be:

Qr :=

{
[−r, r]2 ∩ L L = Sq,{

x ∈ R2
∣∣∣ ∣∣x · (a1 + a2)

∣∣, |x · (a2 + a3)|, |x · (a3 + a4)| ≤ 1
2
r
}
∩ L L = Tr,Hx.

(4.4)

Lemma 4.4. Let Qr be as de�ned in (4.4). Then for each e ∈ Ext(Qr
0), there exists ωre ∈ W (Qr

0))
satisfying

∆ωre = 0 in Int(Qr
0), with ωre =

1e

#Ext(Qr
0)

on Ext(Qr
0).

In addition, ωre satis�es the following properties:
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(1) If u ∈ W (Qr
0) is harmonic in Qr

0, then for any e′ ∈ Dn,0,

u(e′) =
∑

e∈Ext(Qr0)

ωre(e
′)u(e).

(2) There exists a constant CL > 0 depending only on L such that

|dωre([0, 0 + a])| ≤ CL log(r)r−2 (4.5)

for any nearest�neighbour direction a.

The function ωre is called the harmonic measure, and enjoys a variety of interpretations, both
probabilistic and and analytic: for further detail, we refer the reader to [23]. Its principal use will
be as a tool by which we can estimate the e�ect of the boundary conditions on the solution in the
domain interior.
The existence of ωre and statement (1) follow directly from Lemma 4.1. In the case where L = Sq,

a proof of (4.5) with the improved upper bound CLr−2 is given in Lemma 3 of [26] using an explicit
construction of ωre . Further results on the harmonic measure in the square lattice may also be found
in Chapter 8 of [35].

Proof. It remains to prove (2). We use the discrete analogue of Green's formula:∫
Int(Qr0)

u∆v − v∆u =

∫
Ext(Qr0)

u∆v − v∆u =
∑

e∈Ext(Qr0)

[
u(e)

(∫
δe

dv

)
− v(e)

(∫
δe

dv

)]
,

which follows by applying (2.1) to the extension of u, v,du and dv by 0 to the full lattice complex.
Now, consider v which is the solution to

∆v = 0, v(e) = GL(e+ a)−GL(e) on Ext(Qr
0).

Such v clearly exists by Lemma 4.1, and by applying Lemma 4.2 and then Lemma 4.3, we obtain
that

sup
e′∈Qr1

|dv(e′)| ≤ 2 sup
e′∈Qr0

|v(e′)| ≤ 2 sup
e′∈Ext(Qr0)

|v(e′)| ≤ CLr−1 log(r). (4.6)

De�ning u ∈ W (Qr
0) to be u(e) := GL(e + a) − GL(e) − v(e), u vanishes on Ext(Qr

0), and we have
that ∆u = 1e+a − 1e, and hence

dωre([0, 0 + a]) =

∫
Int(Qr0)

ωre∆u− u∆ωre =

∫
Ext(Qr0)

ωre∆u− u∆ωre =
∆u(e)

#Ext(Qr
0)
.

Now, applying (4.2) and (4.6), we obtain

|∆u(e)| ≤ CLr−2 log(r)

which completes the proof. �

The harmonic measure now allows us to obtain the following interior bound on the di�erential of
a harmonic lattice form u.

Lemma 4.5. Suppose that u ∈ W (Dn,0) satis�es ∆u = 0 and and u = g on Ext(Dn,0) with
g : Ext(Dn,0)→ R. Then there exists a constant CL > 0 depending only on L such that

|du(e)| ≤ CL log(dist(e,Ext(Dn,0))

dist(e,Ext(Dn,0))
sup

e′∈Ext(Dn,0)

|g(e′)| for any e ∈ Dn,1.

Proof. Suppose that e = [e0, e1] ∈ Dn,1, and let x ∈ D be the vector corresponding to e0. Let Qr

be as de�ned in (4.4), where r = bdist(e0,Ext(Dn,0))c; then x + Qr
0 ⊂ Dn,0, and statement (1) in

Lemma 4.4 implies that

w(e) =
∑

e′∈Ext(x+Qr0)

ωre′(e)w(e′), so dw(e) =
∑

e′∈Ext(a+Qr0)

dωre′(e)w(e′).
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Applying statement (2) of Lemma 4.4 and Lemma 4.2, it follows that

|dw(e)| ≤ sup
e′∈Ext(x+Qr0)

|w(e′)|
∑

e′∈Ext(x+Qr0)

|dωre′(e)| ≤ CL log(r)

r
sup

e′∈Ext(Dn,0)

|g(e′)|. �

4.4. Asymptotics for Green's functions on �nite subcomplexes. We have now collected the
necessary analytical tools with which we will prove Theorem 3.1: our �nal auxiliary result is the
following precise description of the di�erential of solutions to (3.2).

Theorem 4.6. Suppose that µ =
∑m

i=1 bi1ei ∈M ε
n, and let Gµ∗ ∈ W (D∗n,0) be the solution to (3.2).

Let e ∈ D∗n,0 with [e, e+ a] ∈ D∗1, and let x ∈ R2 correspond to the dual 0�cell e; then we have

d∗Gµ∗([e, e+ a]) = bid
∗GL∗([e− xi, e+ a− xi]) + n−1

[
bi∇ȳi( 1

n
x) · a +

∑
j 6=i

bj∇Gxj( 1
n
x) · a

]
+O

(
n−1−δ log(n)

)
,

where:

(1) GL∗ is the full lattice Green's function for L∗, whose existence was asserted in Theorem 4.3,
(2) e∗i minimises dist(x, e∗i ) over all i = 1, . . . ,m,
(3) for each i, xi ∈ D satis�es dist(xi,

1
n
e∗i ) ≤ 1

n
,

(4) Gy is the continuum Dirichlet Green's function on D corresponding to the point y, i.e. the
solution to

−∆Gy(·) = V
2
δ(· − y) in D, with Gy = 0 on ∂D,

(5) ȳi solves
−∆ȳi = 0 in D, with ȳi(s) = 1

Vπ log(|s− xi|) on ∂D,

(6) δ > 0 is an exponent which depends only on ϕl, the interior angles at the corners of the lattice
polygon D, and

(7) O(n−1−δ log(n)) denotes an error term which is uniform for all µ ∈M ε
n.

The proof of this result is technical, so we �rst outline the main strategy, which is similar in spirit
to the approach taken in the proof of Theorem 3.3 in [31]. We decompose Gµ∗ as a sum of

(1) full lattice Green's functions restricted to D∗n,0,
(2) continuum boundary correctors ȳi, and
(3) discrete correctors.

Each of these components are treated separately, applying Lemma 4.3, the regularity theory of [25],
the maximum principle proved in Lemma 4.2 and the interior estimate of Lemma 4.5 to analyse each
piece. Since the entire proof takes place in the dual complex D∗n, for brevity we drop ∗ from our
notation throughout.

Decomposition of Gµ. For i = 1, . . . ,m, let xi ∈ R2 be the vector corresponding to the point ei. We
begin by decomposing

Gµ(e) =
m∑
i=1

biG
L(e− xi) +

m∑
i=1

ȳni (e) + u(e) + v(e), (4.7)

where:

(1) GL is the full (dual) lattice Green's function,
(2) ȳni (x) := ȳi(

1
n
x), where ȳi solves ∆ȳi = 0 on D with boundary values

ȳi(x) = 1
Vπbi log(|x− xi|),

(3) u is the solution to the discrete Poisson problem

∆u = 0 with u(e) = −
m∑
i=1

[
biG

L(e− xi) + ȳni (e)
]
on Ext(Dn,0), and
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(4) v is the solution to the discrete Poisson problem

∆v = −
m∑
i=1

∆ȳni with v(e) = 0 on Ext(Dn,0).

In combination, Lemma 4.3, the theory of boundary value problems on polygons in [25], and
Lemma 4.1 allow us to conclude that each of the terms in this decomposition is well�de�ned. Fur-
thermore, equality follows since solutions to the Poisson problem are unique by Lemma 4.1.

Regularity of ȳi. We now recall some facts concerning the regularity of ȳj from [25]. Applying
Theorem 6.4.2.6 in [25], there exists σ ∈ (0, 1) such that ȳi lies in the space

X := C4,σ(D) + span
{
Sl,m

∣∣m ∈ N, 0 < m < (4 + σ)ϕl/π
}
,

where Sl,m is given in polar coordinates (rl, θl) about the cl, the lth corner of D as

Sl,m(rl, θl) :=

{
r
mπ/ϕl
l sin

(
mπ
ϕl
θl
)
η(rl), mπ/ϕl /∈ N,

r
mπ/ϕl
l log(rl)

[
sin
(
mπ
ϕl
θl
)

+ θl cos
(
mπ
ϕl
θl
)]
η(rl), mπ/ϕl ∈ N.

We recall that ϕl is the interior angle at cl, and we set η ∈ C∞0 (R) to be a cuto� function so that
η(x) = 1 for |x| su�ciently small, and supp{Sl,m}∩ supp{Sl′,n} = ∅ for any n,m ∈ N and any l 6= l′.
We note that ȳi only fails to be C4,σ at the corners of the domain D, and since D is convex,

π/ϕl > 1, which implies that Sl,m ∈ C1,δ(D). Hence ȳi ∈ C1,δ(D) with δ := minl{π/ϕl − 1} ∈ (0, 1
2
].

X is a Banach space when endowed with the norm∥∥∥∥v +
∑

0<m<(4+σ)ϕl/π

Cl,mSl,m

∥∥∥∥
X

:= ‖v‖C4,σ(D) +
∑

0<m<(4+σ)ϕl/π

|Cl,m|. (4.8)

Furthermore, it can be checked that the mapping

S :
{
x ∈ D | dist(x, ∂D) ≥ ε/2

}
→ X where S(xi) := ȳi

is continuous, and is hence bounded, since the domain of S is compact.

Estimating dGL and dȳnj . Applying (4.2) for any ej which is not the closest point to e in the support
of µ, we have that∣∣∣∣dGL(e− xj, e+ a− xj)−

∫ 1

0

1

Vπ
e+ ta− xj
|e+ ta− xj|2

· a dt

∣∣∣∣ . log |dist(e− xj, 0)|
dist(e− xj, 0)2

= O
(
n−2 log(n)

)
,

which holds uniformly for µ ∈ M ε
n since dist(e, ej) ≥ 1

2
dist(ei, ej) ≥ 1

2
εn. Furthermore, using the

homogeneity and regularity of (x, y) 7→ x−y
|x−y|2 to Taylor expand under the integral, we have

dGL([e− xj, e+ a− xj]) = n−1 1

Kπ

1
n
e− xj

| 1
n
e− xj|2

· a +O(n−2 log(n)). (4.9)

Using the representation of ȳj ∈ X and Taylor expanding, we have∣∣dȳnj ([e, e+ a])− n−1∇ȳj( 1
n
e) · a

∣∣ ≤ n−2

L∑
l=1

|dist( 1
n
e, cl)|π/ϕl−2‖ȳj‖X . (4.10)

Estimating du. We now use Lemma 4.5 to estimate du. De�ning g : Ext(Dn,0)→ R to be

g(e) :=
m∑
j=1

bjG
L(e− xj) + ȳnj (e). (4.11)

By applying (4.1) and again invoking the de�nition and regularity of ȳnj to Taylor expand near the
boundary, we have that

‖g‖`∞(Ext(Dn,0)) . n−1‖ȳ‖X +O
(
n−1 log(n)

)
,
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where the latter term is uniform in n for �xed ε. Lemma 4.5 now implies that

|du(e)| . n−1 log(n)
∣∣dist

(
e,Ext(Dn,0)

)∣∣−1
. (4.12)

Estimating ∆ȳnj . For the purpose of estimating dv, we �rst obtain bounds on ∆ȳnj . Let e ∈ Dn,0 \
Ext(Dn,0), and x ∈ D be the corresponding vector. We use the regularity of ȳj to Taylor expand,
obtaining

∆ȳnj (e) =
m∑
j=1

K∑
i=1

∫ 1

0

∇ȳj( 1
n
(x+ tsi)) · 1

n
si dt,

=
m∑
j=1

K∑
i=1

∫ 1

0

1
2
n−3∇3ȳj(

1
n
x)[si, si, si] + 1

6
n−4(1− t)3∇4ȳj(

1
n
(x+ tsi))[si, si, si, si] dt, (4.13)

where si are nearest neighbour directions in the dual lattice, and the terms involving ∇ȳj and ∇2ȳj
cancel respectively by lattice symmetry and the fact that ȳj is harmonic. If the dual lattice is Sq or
Tr, then the terms involving ∇3ȳj also cancel, which entails that∣∣∆ȳnj (e)

∣∣ ≤ 1
6
n−4

m∑
i=1

∫ 1

0

(1− t)3
∣∣∇4ȳj

(
1
n
(x+ tsi)

)∣∣ dt.
By using the description of ȳj as a sum of v ∈ C4,σ(D) and Sj,m, it can be seen that each of the
integrands in the estimate above is bounded any e ∈ Dn,0 and si, and moreover∣∣∆ȳnj (e)

∣∣ ≤ 1
6
Kn−4‖ȳ‖X

∑
l

∣∣dist
(

1
n
e, cl
)∣∣π/ϕl−4

. (4.14)

Returning to the case where the dual lattice is Hx, we �rst Taylor expand to third�order to obtain
that

|∆ȳnj (e)| ≤ 1
2
n−3

∑
l

dist( 1
n
e, cl)

π/ϕl−3‖ȳ‖X . (4.15)

De�ne
A :=

{
e ∈ Int(Dn,0)

∣∣ e, e+ e1 ∈ Int(Dn,0)
}

; (4.16)

then for all e ∈ A, we have∣∣∣∣12n−3

3∑
i=1

(
∇3ȳj(

1
n
e)[a2i, a2i, a2i]−∇3ȳj

(
1
n
(e+ e1)

)
[a2i, a2i, a2i]

)∣∣∣∣
=

∣∣∣∣12n−4

3∑
i=1

∫ 1

0

∇4ȳj(
1
n
(e+ te1))[e1, ai, ai, ai]

∣∣∣∣,
≤ 3

2
n−4

∑
l

dist( 1
n
e, cl)

π/ϕl−4‖ȳ‖X .

Using this estimate, and the argument used above in the case where the dual lattice was Tr, for any
e ∈ A, we deduce that∣∣∆ȳnj (e) + ∆ȳnj (e+ e1)

∣∣ ≤ 2n−4
∑
l

dist( 1
n
e, cl)

π/ϕl−4‖ȳ‖X . (4.17)

Estimating dv. It remains to bound dv. We proceed by constructing upper and lower bounds on v
by using estimates (4.14), (4.15) and (4.17) and the full lattice Green's function. Recalling the result
of Lemma 4.3, for any x ∈ D, we note that

∆
[
GL(· − x) + 1

Vπ log |n diam(D)|
]

= 1e in Int(Dn,0), and

GL(· − x) + 1
Vπ log |n diam(D)| ≥ 0 on Ext(Dn,0).

Next, we de�ne neighbourhoods of each corner of the domain

Bl,ε :=
{
e ∈ Int(Dn,0)

∣∣ dist( 1
n
e, cl) ≤ ε

}
.



UPSCALING THERMALLY�DRIVEN DISLOCATION MOTION 28

Recalling that δ := min{ π
ϕl
− 1} ∈ (0, 1

2
], estimate (4.14) implies that

|∆ȳnj (e)| . n−4εδ−3‖ȳj‖X on Int(Dn,0) \
⋃
l

Bl,ε. (4.18)

We now de�ne

v±(e) := −
[ ∑
e′∈Dn,0

∆ȳnj (e′)GL(e− e′)
]
± Cn,

where Cn is a small constant depending upon n that we will choose later. We note that ∆[v−v±] = 0,
so choosing Cn such that v+ ≥ 0 and v− ≤ 0 on Ext(Dn,0), Lemma 4.2 would imply that

v−(e) ≤ v(e) ≤ v+(e) for all e ∈ Int(Dn,0).

When the dual lattice is either Tr or Sq, applying estimate (4.18), and summing,

|v±(e)| . ‖ȳ‖X
[ ∑
e′∈Int(Dn,0)
e′ /∈

⋃
lBl,ε

n−4εδ−3
∣∣GL
(
e− e′

)∣∣+ n−1−δ
∑

e∈
⋃
lBl,ε

dist(e′, ncl)
δ−3
∣∣GL
(
e− e′

)∣∣]+ Cnn
2.

Treating each sum separately, we see that∑
e′∈Int(Dn,0)
e′ /∈

⋃
lBl,ε

∣∣GL
(
e− e′

)∣∣ . [ ∑
e′∈Int(Dn,0)
e′ /∈

⋃
lBl,ε

log
∣∣dist(e, e′) + 1

∣∣] . n2 log(n),

∑
e′∈

⋃
lBl,ε

|dist(e′, ncl)|δ−3
∣∣GL
(
e− e′

)∣∣ . log(n)
∑

e∈
⋃
lBl,r

|dist(e′, ncl)|δ−3 . log(n),

recalling that statement (3) of Theorem 4.3 implies that |GL(e)| . log |dist(e, 0)|, diam(nD) = O(n),
and the sum on the second line converges since δ ≤ 1

2
< 1.

These estimates imply that

|v±(e)| . ‖ȳ‖Xn−1−δ log(n) + Cnn
2,

so choosing Cn = O(n−3−δ log(n)) gives

|v(e)| = O
(
n−1−δ log(n)

)
, and hence |dv(e)| = O

(
n−1−δ log(n)

)
(4.19)

for all e ∈ Dn,1.
When the dual lattice is Hx, recall the de�nition of A from (4.16), and set

A′ := {e ∈ Int(Dn,0) | e− e1 /∈ Int(Dn,0)}.
For any e′ ∈ A let x′ ∈ D be the corresponding vector. We apply (4.15), (4.17), and the conclusions
of Theorem 4.3 to deduce that∣∣GHx(e− x′)∆ȳnj (e) +GHx(e+ e1 − x′)∆ȳnj (e+ e1)

∣∣
≤ |GHx(e− x′)|n−4|dist( 1

n
e, cl)|π/ϕl−4 + |dGHx(e− x′, e+ e1 − x′)|n−3|dist( 1

n
e, cl)|π/ϕl−3

≤ log |dist(e, x′)|n−4|dist( 1
n
e, cl)|π/ϕl−4 +

log |dist(e, x′)|
dist(e, x′)

n−3|dist( 1
n
e, cl)|π/ϕl−3.

By summing over e′ ∈ A, we obtain∑
e′∈A

∣∣GHx(e−x′)∆ȳnj (e′)+GHx(e+e1−x′)∆ȳnj (e′+e1)
∣∣ . ‖ȳj‖X [ log(n)n−2εδ−3+n−1−δ log(n)

]
. (4.20)

Next, we sum (4.15) over A′, noting that #A′ = O(n), to obtain∑
e′∈A′
|GL(e− x′)||∆ȳnj (e′)| . ‖ȳj‖X log(n)

[ ∑
e′∈A′

e′ /∈
⋃
lBl,ε

n−3εδ−2 + n−1−δ
∑
e′∈A′

e′∈
⋃
lBl,ε

dist(e′, ncl)
δ−2

]
,

. ‖ȳj‖X
[
εδ−2 log(n)n−2 + n−1−δ log(n)

]
. (4.21)



UPSCALING THERMALLY�DRIVEN DISLOCATION MOTION 29

Putting (4.20) and (4.21) together, and applying similar arguments to that made for the other cases
above, we deduce that (4.19) also holds in the case where the dual lattice is Hx.

Conclusion. Combining (4.9), (4.10), (4.12) and (4.19) and noting that

∇ȳj(x) +
1

Vπ
x− xj
|x− xj|2

= ∇Gxj(x),

we have proved Theorem 4.6.

Theorem 4.6 implies the following corollary.

Corollary 4.7. Given ε > 0 and a convex lattice polygon D ⊂ R2, for all n su�ciently large,

sup
e∈D∗n,1

|d∗Gµ∗(e)| < 1
2

for any µ ∈M ε
n.

Proof. Let e∗ ∈ D∗n,1, and let e∗i ∈ argmin
{

dist(e∗, e∗i )
∣∣ e∗i ∈ supp{µ}

}
. Applying Theorem 4.6, and

splitting Gxi(x) = 1
Vπ log(|x− xi|) + ȳi(x), we obtain the estimate

|dGµ∗(e)| ≤ sup
e∈L∗1
|d∗GL∗(e)|+ n−1

[
(m−1)ε
Vπ +

m∑
i=1

‖ȳi‖X
]

+O
(
n−1−δ log(n)

)
,

where we recall the de�nition of the norm ‖ . ‖X from (4.8). Further, from �4.4 we have that ‖ȳi‖X is
uniformly bounded for xi ∈

{
x ∈ D

∣∣ dist(x, ∂D) ≥ ε
}
, and so applying statement (2) of Theorem 4.3,

we have the result. �

4.5. Proof of Theorem 3.1. We now complete the proof of Theorem 3.1 using the results above.
Our �rst step is to verify the necessity of the equilibrium conditions given in (3.3).
Let u be a locally stable equilibrium containing the dislocation con�guration µ ∈M ε

n. By inspect-
ing the proof of Lemma 5.1 in [2], it follows that if du(e) ∈ 1

2
+Z for some e ∈ Dn,1, then there exist

lower energy states arbitrarily close to u, and so any α ∈ [du] has ‖α‖∞ < 1
2
. By de�nition, we have

that dα = µ. Finally, let v ∈ W (Dn,0); then for t su�ciently small, ‖α + tdv‖∞ < 1
2
, hence

En(u+ tv;u) =

∫
Dn,1

ψ(α + tdv)− ψ(α) =

∫
Dn,1

λt αdv + 1
2
λt2|dv|2.

It follows that (α,dv) = 0 for any v ∈ W (Dn,0), hence δα = 0.
Next, we show that if α satis�es the equilibrium conditions (3.3), then it is unique. Suppose that

α and α′ satisfy (3.3). We de�ne β = α − α′, and note that β∗ ∈ W0(D∗n,1) satis�es d∗β∗ = 0 and
δ∗β∗ = 0. Since nD∗ is simply connected, the former condition implies that β∗ = d∗w for some
w ∈ W0(D∗n,0), which must satisfy ∆∗w = 0: by the uniqueness of the solution proved in Lemma 4.1,
it follows that w = 0, hence β = 0, and thus α = α′.
Since ∗ is a bijection between W (Dn,1) and W0(D∗n,1), there exists α ∈ W (Dn,1) such that α∗ =

d∗Gµ∗ . Furthermore, by using (2.7), we have that

dα(e) = δ∗d∗Gµ∗(e
∗) = µ∗(e∗) = µ(e), for e ∈ D2,

and δα(e) = (d∗)2Gµ∗(e
∗) = 0 for e ∈ Dn,0.

Finally, we note that ‖α‖∞ = ‖dGµ∗‖∞, hence applying Corollary 4.7, it follows that α satis�es (3.3)
if n is su�ciently large.
To demonstrate that α ∈ [duµ] for some uµ ∈ W (Dn,0), �x e′ ∈ Dn,0, and de�ne uµ(e′) = 0.

Using the fact that Dn is path�connected, let γe be the path such that ∂γe = e′ ∪ −e, and de�ne
uµ(e) :=

∫
γe
α. Letting b = [e0, e1] ∈ Dn,1, we �nd that

du(b) =

∫
γe1

α−
∫
γe0

α,=

∫
γe1∪−γe0∪−b

α +

∫
b

α.
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Noting that ∂(γe1 ∪ −γe0 ∪ −b) = ∅, we apply the fact that Dn is simply connected to assert that
γe1 − γe0 − b = ∂A, for some A ∈ D2, hence

du(b) = α(b) +

∫
∂A

α = α(b) +

∫
A

µ ∈ α(b) + Z.

It follows that α ∈ [duµ]. To prove that uµ is unique up to the equivalence (3.1), we note that if
α ∈ [du] and α ∈ [dv], then by the de�nition of a bond�length 1�form (see �2.5), it follows that

du(e) = dv(e) + Z(e) for all e ∈ Dn,1, with Z : Dn,1 → Z.

Moreover, dZ = 0, so Z = dz, and it is straightforward to check that z : Dn,0 → H + Z for some
H ∈ R, completing the proof of Theorem 3.1.

5. Proof of Theorem 3.2

This section is devoted to the proof of Theorem 3.2, and we proceed in several steps. We �rst
demonstrate that there exists u which `solves' the min�max problem used to de�ne Bn(µ→ ν) via a
compactness method. We then identify necessary conditions for such a solution, and show that these
necessary conditions identify a pair of bond�length 1�forms. The required bond�length 1�forms are
then constructed via duality using an interpolation of dual Green's functions, and we verify that the
necessary conditions are satis�ed to conclude.

5.1. The min�max problem. To establish existence of a solution, we transform the problem via
taking the quotient of the space of deformations with respect to the equivalence relation de�ned in
(3.1); in other words, we identify deformations `up to lattice symmetries'. This space turns out to
be compact, hence the existence of a critical point follows directly by a compactness argument.

5.1.1. Quotient space. Recall from (3.1) that ∼ is the equivalence relation on u ∈ W (Dn,0)

u ∼ v whenever u = v + z + C for some z : Dn,0 → Z and some C ∈ R.

De�ne the quotient space Q := W (Dn,0)/∼ of equivalence classes JuK; we claim that this is a metric
space when endowed with the metric

dQ(JuK, JvK) = ‖α‖2, where α ∈ [du− dv], for any u ∈ JuK and v ∈ JvK.

If u ∼ v, then du ∈ dv + Z, and hence [du] = [dv]. Symmetry is immediate, and 0 ∈ [du − dv]
implies that u− v ∼ 0, hence dQ(u, v) = 0 implies that u ∼ v. Finally, for the triangle inequality, by
checking cases it may be shown that

β ∈ [du], β′ ∈ [dv] and α ∈ [du+ dv] imply that |α(e)| ≤ |β(e)|+ |β′(e)| for all e ∈ Dn,1.

The triangle inequality follows, and hence the metric is well�de�ned. Moreover, the space is complete
and totally bounded, so the Heine�Borel theorem applies, and Q is compact. We recall that the
mapping u 7→ JuK is the natural embedding of W (Dn,0) in Q.

5.1.2. Rede�ning the energy. As noted in �3.1, for any u, u′, v ∈ W (Dn,0) such that u ∼ u′, En(u, v) =

En(u′, v). It follows that the mapping Ẽn : Q → R,

Ẽn(JuK) := En(u, v) for some u ∈ JuK

is well�de�ned. Suppose that u ∈ JuK, and u′ ∈ Ju′K, and that α ∈ [du− du′]. Then∣∣Ẽn(JuK)− Ẽn(Ju′K)
∣∣ =

∣∣∣∣ ∫
Dn,1

ψ(du′ + α)− ψ(du′)

∣∣∣∣ . C

∫
Dn,1

|α| . ‖α‖2 = dQ

(
JuK, Ju′K

)
,

where we use the fact that ψ is uniformly Lipschitz, and then apply the Cauchy�Schwarz inequality.
It follows that Ẽn is uniformly Lipschitz on Q.
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5.1.3. Space of continuous paths. De�ne the metric space C([0, 1]; Q) of continuous functions from
[0, 1] to Q, with the usual metric

d∞Q (γ, γ′) := sup
t∈[0,1]

dQ

(
γ(t), γ′(t)

)
.

The mapping γ 7→ maxt∈[0,1] Ẽn(γ(t)) is continuous with respect to this metric, since Ẽn is uniformly
continuous on Q.
We suppose that n is large enough such that the conclusion of Theorem 3.1 holds, and write JuµK to

mean the equivalence class containing uµ, which is the set of all locally stable equilibria corresponding
to the dislocation positions µ ∈M ε

n. De�ne the sets of paths

Γ̃n(µ→ ν) :=
{
γ ∈ C([0, 1]; Q)

∣∣ γ(0) = JuµK, γ(1) = JuνK, α ∈ [dγ(t)] has dα ∈ {µ, ν},∀t ∈ [0, 1]
}

;

this should be thought of as the set of paths through phase space which move dislocations from µ to
ν without visiting any intermediate states.

5.1.4. Existence. We recall that the energy barrier was de�ned to be

Bn(µ→ ν) = inf
γ∈Γn(µ,ν)

sup
t∈[0,1]

En(γ(t);uµ).

The following lemma now demonstrates the existence of a transition state.

Lemma 5.1. If n is su�ciently large, for any µ, ν ∈M ε
n such that Γn(µ→ ν) is non�empty, there

exists u↑ ∈ W (Dn,0) such that
En(u↑;uµ) = Bn(µ→ ν).

We will call u↑ a transition state for the transition from µ to ν.

Proof. We �rst note that since Q is compact, C([0, 1]; Q) is compact. By assumption, Γn(µ→ ν) is

non�empty, and so the space Γ̃n(µ → ν) is non�empty by applying the natural embedding γ(t) 7→
Jγ(t)K. Moreover, we have that

max
t∈[0,1]

En(γ(t);uµ) = max
t∈[0,1]

Ẽn
(
Jγ(t)K

)
.

Since γ̃ 7→ maxt∈[0,1] Ẽn(γ̃(t)) is continuous, there exists a minimiser

γ̃ ∈ argmin
{

max
t∈[0,1]

Ẽn(γ̃(t))
∣∣∣ γ̃ ∈ Γ̃n(µ→ ν)

}
,

where Γ̃n(µ→ ν) denotes the closure of Γ̃n(µ → ν) in Q. As t 7→ Ẽn
(
γ̃(t)

)
is also continuous, it

follows that there exists u↑ ∈ Ju↑K with Ju↑K = γ(t∗) ∈ Γn(µ→ ν) for some t∗ ∈ [0, 1], which satis�es

En(u↑;uµ) = min
γ̃∈Γ̃n(µ→ν)

max
t∈[0,1]

Ẽn
(
γ̃(t)

)
= min

γ∈Γn(µ→ν)
max
t∈[0,1]

E
(
γ(t);uµ

)
. �

5.2. Necessary conditions. We now identify necessary conditions on the transition states identi�ed
in Lemma 5.1. We remark that the proof of the following lemma relies crucially on the particular
choice of potential ψ.

Lemma 5.2. Suppose that u↑ ∈ W (Dn,0) is a transition state for the transition from µ to ν, where
ν − µ = bi[1q − 1p] and q∗ = p∗ + a for some nearest�neighbour direction in the dual lattice, a. Then
u↑ ∈

{
u ∈ W (Dn,0)

∣∣α ∈ [du] has α(l) = ±1
2

}
, where l∗ = [p∗, q∗], and moreover there exist exactly

two α↑, α↓ ∈ [du↑], satisfying

(1) dα↑ = µ, dα↓ = ν,
(2) δα↑(a) = δα↓(a) = 0 for all a± /∈ ∂l,
(3) δα↑(e0) + δα↑(e1) = 0 and δα↓(e0) + δα↓(e1) = 0 for e0 and e1 such that l = [e0, e1], and
(4) −α↑(l) = α↓(l) = 1

2
bi.
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Proof. We begin by proving that all transition states lie in the set

B :=
{
u ∈ W (Dn,0)

∣∣α ∈ [du] has α(e) = ±1
2
for some e ∈ Dn,1

}
.

We remark that any γ ∈ Γn(µ → ν) must pass through B, since it is only on this set that we may
have α, α′ ∈ [dγ(t)] with

dα(p) = bi, dα(q) = 0, and dα′(p) = 0, dα′(q) = bi.

Suppose that γ ∈ Γn(µ→ ν) solves the minimisation problem (3.4), and attains a transition state
u↑ = γ(t∗) at t = t∗. Suppose further that u↑ /∈ B.
Taking an interval with t∗ ∈ [t1, t2] such that γ(t) /∈ B for all t ∈ [t1, t2], and γ(t1), γ(t2) 6= γ(t∗),

we de�ne

β(t) :=

{
γ(t) t /∈ [t1, t2],

t2−t
t2−t1γ(t1) + t−t1

t2−t1γ(t2) t ∈ [t1, t2].

This is a valid competitor for the minimum problem, and moreover by using strict convexity of ψ(x)
for x ∈ [n− 1

2
+, n+ 1

2
] for any n ∈ Z, we obtain

En(γ(t∗);uµ) ≤ sup
t∈(t1,t2)

En(β(t);uµ) < max
{
En(γ(t1);uµ), En(γ(t2);uµ)

}
≤ En(γ(t∗);uµ),

which is a contradiction.
Suppose once more that γ is a minimal path, and maxt∈[0,1]E[γ(t);uµ] attaining a transition state

at t = t∗. Suppose also that α ∈ [dγ(t∗)] has α(e) = ±1
2
for some e 6= ±l. Let a ∈ ∂e such that

e /∈ ±∂l. Then by considering γ(t∗) + s1a, and following the strategy of proof of Lemma 5.1 in [2],
it may be checked that there exists δ > 0 such that for all s ∈ [0, δ) or for all s ∈ (−δ, 0],

(1) α ∈ [d(γ(t∗) + s1a)] satis�es dα ∈ {µ, ν}, and
(2) E[γ(t∗) + s1a; γ(t∗)] < 0 if s 6= 0.

By rede�ning γ to pass through γ(t∗) + s1a in a neighbourhood of t∗, it follows that γ(t∗) cannot be
a transition state, and hence if u is a transition state with α ∈ [du], α(e) = ±1

2
if and only if e = ±l.

By considering paths β which have β(t∗) = γ(t∗) + s1a with a /∈ ∂l, we obtain that

En(γ(t∗);uµ) ≤ En(γ(t∗) + s1a;uµ)

for all s su�ciently small. If α ∈ [dγ(t∗)], we have that∫
Dn,1

αd1a = δα(a) = 0.

By considering γ(t∗) + s[1e0 + 1e1 ], where l = [e0, e1], we obtain that

δα(e0) + δα(e1) = 0,

hence we have proved that a transition state must satisfy conditions (1)�(4).
Next, we prove that dα↑ = µ, α↑(l) = 1

2
and conditions (2) and (3) de�ne a unique 1�form, which

is an elastic strain at the transition state. Suppose that α↑ and α
′
↑ satisfy these conditions. De�ning

θ := α↑ − α′↑, we have that dθ = 0, hence θ = dv for some 0�form v since Dn is simply connected.
Furthermore, dv(l) = θ(l) = 0, ∆v(b) = s and ∆v(c) = −s for some s ∈ R. Then we have

(θ, θ) = (dv,dv) = (∆v, v) = s[v(b)− v(c)]sdv(l) = 0,

implying that θ = 0, and hence α↑ is unique. It may be similarly veri�ed that α↓ exists and is unique,
completing the proof. �
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5.3. Construction of the transition state. In Theorem 3.1, we found that the bond length 1�
forms corresponding to local equilibria containing dislocations are related to dual Green's functions.
By considering this relationship, it is natural to consider strains dual to interpolations of these Green's
functions as possible candidates for the transition state u. We therefore de�ne Gt := (1−t)Gµ∗+tGν∗ ,
where t ∈ [0, 1], Gµ∗ and Gν∗ solve (3.2). We note that for any e∗ ∈ D∗n,0,

∆∗Gt(e∗) = (1− t)∆∗Gµ∗(e
∗) + t∆∗Gν∗(e

∗) = (1− t)µ∗(e∗) + tν∗(e∗);

and in particular, ∆∗Gt(p∗) = bj(1− t) and ∆∗Gt(q∗) = bjt.

As in Lemma 5.2, set l ∈ Dn,1 with l∗ = [p∗, q∗]. Since Lemma 5.2 entails that the the transition
state must have α↓(l) = 1

2
bi, we choose t ∈ [0, 1] such that

∆∗Gt(p∗) + d∗Gt(l∗) = 1
2
bj, ⇔ (1− t)bj + d∗Gt(l∗) = 1

2
bj, (5.1)

and ∆∗Gt(q∗)− d∗Gt(l∗) = 1
2
bj, ⇔ tbj − d∗Gt(l∗) = 1

2
bj. (5.2)

Solving, we �nd that

t =
1
2
bj + d∗Gµ∗(l

∗)

bj + d∗Gµ∗(l∗)− d∗Gν∗(l∗)
. (5.3)

Noting that d∗Gµ∗(l
∗) = d∗GL∗([0, 0+a])+o(1) = 1

K∗ bj+o(1) and similarly, d∗Gν∗(l
∗) = − 1

K∗ bj+o(1),
as n→∞ by applying Theorem 4.6 and statement (2) of Lemma 4.3, we see that t ∈ [0, 1]; indeed,
t→ 1

2
as n→∞.

We now de�ne α↑ and α↓ via

α∗↑(e
∗) :=

{
d∗Gt(e∗) e∗ 6= ±l∗,
∓1

2
bj e∗ = ±l∗, and α∗↓(e

∗) :=

{
d∗Gt(e∗) e∗ 6= ±l∗,
∓1

2
bj e∗ = ±l∗,

where t is given by (5.3). Letting αµ ∈ [duµ], for any e ∈ D2 with e 6= p, q, by duality we have

d[α↑ − αµ](e) = ∆∗Gt(e∗)−∆∗Gµ∗(e
∗) = t

[
∆∗Gν∗(e

∗)−∆∗Gµ∗(e
∗)
]

= 0.

Again, by duality we also have

d[α↑ − αµ](p) = ∆∗Gt(p∗) + d∗Gt(l∗) + 1
2
bj −∆∗Gµ∗(p

∗) = 0,

d[α↑ − αµ](q) = ∆∗Gt(q∗)− d∗Gt(l∗)− 1
2
bj −∆∗Gµ∗(p

∗) = 0.

Similarly, d[α↓ − αν ] = 0. It follows therefore that there exist v↑ and v↓ such that α↑ ∈ [duµ + dv↑],
and α↑ ∈ [duµ + dv↓].
We also note that if a /∈ ±∂l and l = [e0, e1], then

δ[α↑ − αµ](a) = (d∗)2(Gt −Gµ∗)(a
∗) = 0,

δ[α↑ − αµ](e0) + δ[α↑ − αµ](e1) = (d∗)2[Gt −Gµ∗ ](e
∗
0) + (d∗)2[Gt −Gµ∗ ](e

∗
1) = 0.

It follows that α↑ and α↓ satisfy conditions (1)�(4) of Lemma 5.2, and hence we have constructed
the bond�length one forms corresponding to the transition state.
Finally, we de�ne γ ∈ Γn(µ→ ν) via

γ(t) :=

{
uµ + 2tv↑ t ∈ [0, 1

2
],

uµ + v↑ + (2t− 1)v↓ t ∈ (1
2
, 1],

which demonstrates that Γn(µ→ ν) is non�empty, and hence Bn(µ→ ν) exists.
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5.4. Proof of Theorem 3.2. We now use the dual representation of α↑, α↓, αµ and αν to give an
asymptotic expression for Bn(µ→ ν) as n→∞. We use duality to compute

Bn(µ→ ν) = En(uµ + u↑;uµ),

= 1
2
λ
[
(α↑, α↑)− (αµ, αµ)

]
,

= 1
2
λ
[
(d∗Gt,d∗Gt)− (d∗Gµ∗ ,d

∗Gµ∗)− d∗Gt(l∗)2 + 1
4

]
,

= 1
2
λ
[
2t(d∗Gν∗ − d∗Gµ∗ ,d

∗Gµ∗) + t2(d∗Gν∗ − d∗Gµ∗ ,d
∗Gν∗ − d∗Gµ∗)− d∗Gt(l∗)2 + 1

4

]
,

= 1
2
λ
[
2t(∆∗Gν∗ −∆∗Gµ∗ , Gµ∗) + t2(∆∗Gν∗ −∆∗Gµ∗ , Gν∗ −Gµ∗)− d∗Gt(l∗)2 + 1

4

]
,

= 1
2
λ
[
tbjd

∗Gµ∗(l
∗) + tbjd

∗Gt(l∗)− d∗Gt(l∗)2 + 1
4

]
= 1

2
λ
[
tbjd

∗Gµ∗(l
∗) + 1

2
bjd
∗Gt(l∗) + 1

4

]
= 1

2
λ
[

1
2
bjd
∗Gµ∗(l

∗) + 1
2
tbj
(
d∗Gµ∗(l

∗) + d∗Gν∗(l
∗)
)

+ 1
4

]
, (5.4)

where we use (2.1) and the de�nition of Gµ∗ and Gν∗ as Green's functions; to arrive at the penultimate
line, we factorise and use (5.2), and use the de�nition of Gt to obtain the �nal line. As a consequence
of Theorem 4.6, we have

bjd
∗Gµ∗(l

∗) = b2
jdG

L∗([0, 0 + a]) + n−1
[
b2
j∇ȳj(xj) · a +

∑
i 6=j

bjbi∇Gxi(xj) · a
]

+ o(n−1), (5.5)

bj
[
d∗Gµ∗(l

∗)− d∗Gν∗(l
∗)
]

= 2b2
jdG

L∗([0, 0 + a]) + o(n−1), (5.6)

and bj
[
d∗Gµ∗(l

∗) + d∗Gν∗(l
∗)
]

= 2n−1
[
b2
j∇ȳj(xj) · a +

∑
i 6=j

bjbi∇Gxi(xj) · a
]

+ o(n−1) (5.7)

Using (5.6), it follows that

t =

1
2
bj + b2

jdG
L∗([0, 0 + a]) + n−1

[
b2
j∇ȳj(xj) · a +

∑
i 6=j bibj∇Gxi(xj) · a

]
+ o(n−1)

bj + 2b2
jdG

L∗([0, 0 + a]) + o(n−1)
,

=
1

2
+ n−1

bj∇ȳj(xj) · a +
∑

i 6=j bi∇Gxi(xj) · a
1 + 2bjdGL∗([0, 0 + a])

+ o(n−1). (5.8)

Substituting (5.5), (5.7) and (5.8) into (5.4), we obtain

Bn(µ→ ν) = 1
8
λ+ 1

4
λdGL∗([0, 0 + a]) + 1

2
λn−1

[
∇ȳj(xj) · a +

∑
i 6=j

bjbi∇Gxj(xi) · a
]

+ o(n−1).

Finally, setting c0 := 1
8

+ 1
4
dGL∗([0, 0 + a]) completes the proof of Theorem 3.2.

6. Proofs of Large Deviations results

This section is devoted to the proofs of the Large Deviations Principles. �6.1 veri�es Theorem 3.3
by using the results of [21]. Theorem 3.4 is then split into the cases where L∗ is a Bravais lattice,
i.e. L = Hx or L = Sq, and where L∗ is a multi�lattice, i.e. where L = Tr. These separate cases are
covered by Lemma 6.1 and Lemma 6.2, and the proofs of these results constitute the remainder of
the section.

6.1. Proof of Theorem 3.3. Where not otherwise stated, all references given in this section are to
results in [21].
Conditions (1)�(4) assumed in Theorem 3.3 are particular cases of assumptions of Theorem 6.14.

The only additional conditions we need to verify to apply this theorem are �rst, that the equation

Fδ
(
x, f(x),∇f(x)

)
:= f(x)− δH

(
x,∇f(x)

)
− h(x) = 0, (6.1)

where Fδ : E × R × RN → R, satis�es a comparison principle for all δ > 0 su�ciently small, and
second, that the domain of H is dense in C(E;R). The second condition is immediate, since H is
de�ned on C1(E;R).
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We recall that a comparison principle is the statement that viscosity sub� and supersolutions of
(6.1) are globally ordered. When x lies on the boundary ofM , H vanishes, hence Fδ(x, r, p) = r−h(x)
for all x ∈ ∂M . Thus any subsolution f and supersolution f must satisfy

f(x) ≤ f(x) for all x ∈ ∂M.

Theorem 3.3 in [15] asserts that Fδ satis�es a comparison principle on the interior of M if

(1) There exists γ > 0 such that

γ(r − s) ≤ Fδ(x, r, p)− Fδ(x, s, p)

for all x in the interior of M , r, s ∈ R and p ∈ RN ; and
(2) There exists a function ω : [0,+∞)→ [0,+∞) with limt→0 ω(t) = 0, such that

Fδ
(
x, r, α(x− y)

)
− Fδ

(
y, r, α(x− y)

)
≤ ω

(
α|x− y|2 + |x− y|

)
for all x and y in the interior of M , γ ∈ R and r ∈ R.

It is straightforward to verify that the former condition holds with γ = 1 for Fδ as de�ned in (6.1);
since we have assumed uniform continuity and di�erentiability of H on the interior of M × RN , the
second condition is also straightforward to verify, since M × {α(x − y) |x, y ∈ M} is compact in
M ×RN . Thus, a comparison principle holds on the entirety of M , and it follows that the conclusion
of Theorem 6.14 holds, i.e. the sequence of Markov processes satis�es a Large Deviations Principle.
To conclude that the rate function takes a variational form, we will �rst apply Corrolary 8.29.

This requires us to check the conditions of Theorem 8.27. In the case considered here, the operators
H† = H‡ = H, thus we need only check that Conditions 8.9, 8.10 and 8.11 hold.
To verify Condition 8.9, we note the following, which demonstrate that each of the subconditions

(1)�(5) are satis�ed.

(1) In our case,

Af(x, u) = u · ∇f(x), (6.2)

which is well�de�ned on C1(M ;R); this set separates points, so Condition 8.9.1 is veri�ed.
(2) Here, Γ := M × RN : for any x0 ∈ M , de�ne x(t) = x0 for all t ∈ [0,+∞) and λ(ds× du) =

δ0(du)× ds to verify Condition 8.9.2.
(3) Condition 8.9.3 is satis�ed by assumption (5).

(4) Condition 8.9.4 is trivially satis�ed by taking K̂ = M , since M is compact.
(5) Condition 8.9.5 is satis�ed due to our assumption that L satis�es the growth condition (3.9).

Condition 8.10 is satis�ed upon taking λ(ds×du) = δẋ(s)(u)ds×du, where x is the function whose
existence was asserted in (3.10).
Finally, to verify Condition 8.11, we follow the Legendre�Fenchel transform approach described in

�8.3.6.2. De�ne

qf (x) :=

{
∂pH

(
x,∇f(x)

)
x ∈M \ ∂M,

0 x ∈ ∂M.

This is well�de�ned, is continuous on the interior of M , and there exists a solution to the ODE
ẋ = qf (x) with x(0) = x0 and x(t) ∈ M for all t ∈ [0,+∞), for any initial condition x0 ∈ M .
Therefore, Condition 8.11 holds upon choosing x to be this solution, and λ(du×ds) = δqf (x(s))(du)×ds.
We have thus veri�ed the assumptions of Corollary 8.29, which allows us to conclude that the rate

functional has a variational representation as a control problem, given in (8.18) in [21]. To conclude
that the rate function takes the precise form we have here, where the solution to the minimisation
problem over admissible controls is stated explicitly, we may apply an identical proof to that given
for Theorem 10.22, noting that, under our assumptions, I0(x) is 0 if x = x0, and +∞ otherwise. We
have therefore proved Theorem 3.3.
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6.2. Proof of Theorem 3.4: the cases L = Hx and L = Sq. When the lattice is Hx or Sq, the
respective dual lattices are isomorphic to Tr and Sq, and hence the set of nearest neighbour directions
in the dual lattice is always the same; on the other hand, since Tr∗ is isomorphic to Hx, which is
a multi-lattice, di�erent techniques are required, and we therefore treat this case separately in the
following section.
Take f ∈ C1(M ε

∞;R); as M ε
∞ is compact, there exists a uniform modulus of continuity ωf :

[0,+∞) → [0,+∞) with limr→0 ωf (r) = 0, such that for x = (x1, . . . , xm) ∈ M ε
∞ and y ∈ M ε

∞.
Thus, for all x ∈M ε

∞, n ∈ N and s ∈ R2 such that xi + 1
n
s ∈M ε

∞, we have∣∣f(x1, . . . , xj + 1
n
s, . . . , xm)− f(x)− 1

n
∂jf(x) · s

∣∣ ≤ |s|
n
ωf
(
|x− y|

)
.

As n → ∞ in the parameter regime we prescribed in �3.6, with x in the interior of M ε
∞, and a

sequence xn ∈M ε
n with dist

(
ιn(xn), x

)
→ 0 as n→∞, we have

Hnf ◦ ιn(xn) = Hf(x) +O
(
ωf
(
dist(ιn(xn), x)

))
, setting

Hf(x) :=
m∑
i=1

K∗∑
j=1

A
[

exp
(
∂jf(x) · sj

)
− 1
]

exp
[
−B

(
∇ȳi(xi) +

∑
k 6=j

bibk∇Gxj(xi)
)
· sj
]
,

where sj are the nearest neighbour directions in L∗. If xn ∈ ∂M ε
n, then Hnf ◦ ιn(xn) = 0, so we de�ne

Hf(x) := 0 for x ∈ ∂M ε
∞.

Recall the de�nition of ȳi as the solution to

−∆ȳi = 0 in D, and ȳi(x) = 1
Vπ log(|x− xi|) on ∂D.

Following the approach of [2] and [1], we de�ne the renormalised energy for x ∈M ε
∞ to be

E(x) := −
m∑

i,j=1
i 6=j

bibj
2Vπ

log
(
|xi − xj|

)
+

m∑
i,j=1

bibj ȳi(xj).

Recalling the de�nition of Gy from Theorem 3.2, we have that

∂iE(x) = ∇ȳi(xi) +
∑
j 6=i

bibj∇Gxj(xi).

For x in the interior of M ε
∞, this allows us to write

Hf(x) =
m∑
i=1

K∗∑
j=1

A
(

cosh
[(
∂if(x)−B∂iE(x)

)
· aj
]
− cosh

[
−B∂iE(x) · aj

])
.

We de�ne the Hamiltonian, HL
A,B : M ε

∞ × R2m → R, as

HL
A,B(x, p) :=


m∑
i=1

K∗∑
j=1

A
[

cosh
([
pi −B∂iE(x)

]
· sj
)
− cosh

(
−B∂iE(x) · sj

)]
x ∈M ε

∞ \ ∂M ε
∞,

0 x ∈ ∂M ε
∞,

where p = (p1, . . . , pm) with pi ∈ R2 for each i. The Lagrangian is the Legendre�Fenchel transform
(for further details on this topic, see �26 in [42]) of the Hamiltonian of HL

A,B with respect to its
second argument, i.e.

LL
A,B(x, ξ) := sup

p∈R2m

{
〈ξ, p〉 − HL

A,B(x, p)
}
,
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where 〈·, ·〉 is the inner product on R2m given by 〈ξ, p〉 :=
∑m

i=1 ξi · pi. We now follow [10] in de�ning

ΨHx
A,B,Ψ

Sq
A,B : R2m → R via

ΨHx
A,B(f) :=

m∑
i=1

6∑
j=1

A
B

[cosh(Bfi · aj)− 1],

ΨSq
A,B(f) :=

m∑
i=1

4∑
j=1

A
B

[cosh(Bfi · ej)− 1],

which permits us to write

HL
A,B(x, p) = B

[
ΨL
A,B

(
1
B
p−∇E(x)

)
−ΨL

A,B

(
−∇E(x)

)]
.

ΨL
A,B is (strictly) convex, and hence has a convex dual, given by its Legendre�Fenchel transform,

denoted ΦL
A,B. Moreover, by properties of the Legendre�Fenchel transform, we have that

∇ΦL
A,B(ξ) = 1

B
p−∇E(x) ⇔ ξ = ∇ΨL

A,B

(
1
B
p−∇E(x)

)
⇔ p ∈ argmax

p′
{〈ξ, p′〉 − HL

A,B(x, p′)}.

Using this fact, we have that

LL
A,B(x, ξ) = 〈B∇ΦL

A,B(ξ) +B∇E(x), ξ〉 − HL
A,B

(
x,B∇ΦL

A,B(ξ) +B∇E(x)
)

= 〈B∇ΦL
A,B(ξ) +B∇E(x), ξ〉 −BΨL

A,B

(
∇ΦL

A,B(ξ)
)

+BΨL
A,B

(
−∇E(x)

)
Using the property that 〈u, v〉 = ΨL

A,B(u) + ΦL
A,B(v), we then have

LL
A,B(x, ξ) = BΦL

A,B(ξ) +BΨL
A,B

(
−∇E(x)

)
+B〈∇E(x), ξ〉,

which leads us to de�ne the rate functional J L
A,B : D([0, T ]; M ε

∞)→ R with

J L
A,B(x) :=


∫ ∞

0

LL
A,B

(
x, ẋ
)

dt x ∈W1,1
(
[0,+∞); M ε

∞
)
,

+∞ otherwise,

and LL
A,B(x, q) :=

 ΦL
A,B(q) + ΨL

A,B

(
−∇E(x)

)
+ 〈∇E(x), q〉 x ∈M ε

∞ \ ∂M ε
∞,

0 x ∈ ∂M ε
∞ and q = 0,

+∞ x ∈ ∂M ε
∞ and q 6= 0.

We may now state the following result, asserting a Large Deviation Principle for the sequence of
processes in this case.

Lemma 6.1. Suppose that L = Hx or L = Sq, and that Xn
0 = ιn(xn) where xn → x0 ∈ M ε

n

as n → ∞ with δ > ε. Then the processes Xn
t satisfy a Large Deviations principle with good rate

function J L
A,B.

This result is very similar to those obtained in Chapter 5, �2 of [22], or �10.3 of [21], the main
di�erence being that there is no di�usive part of the process. We also refer the reader to [11] for
related results concerning a discrete�time model on a lattice.

Proof. As stated, we wish to apply Theorem 3.3 to prove Lemma 6.1. The main conditions we are
required to check are (3), (4) and (5), since conditions (1) and (2) are straightforward to check when
Mn = M ε

n, M = M ε
∞, and ιn is as de�ned in (3.6).
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Verifying Condition (3). M ε
n is a �nite state space and is endowed with a topology which is equivalent

to the discrete topology. Therefore, by the Lebesgue Decomposition Theorem (see for example
Theorem 3 of �1.6 in [19]) all measures µ on M ε

n may be expressed as

µ(dx) =
∑
y∈M ε

n

f(y)δy(dx),

where the density f : M ε
n → R is continuous (as are all real�valued functions on M ε

n). Next, �x a
probability measure µy(dx, 0) = δy(dx) on M ε

n, and de�ne

µy(dx, t) =
∑
z∈M ε

n

fy(z, t)δz(dx),

where fy : M ε
n × [0,+∞) → R solves ∂tfy(x, t) = ΩT

nf(x, t) with ΩT
n being the adjoint of Ωn, and

fy(x, 0) = δy(x). It is straightforward to see that fy exists and is unique, since ΩT
n is a bounded

linear operator, and therefore the ODE system ∂tfy = ΩT
nfy has a unique solution for all time, so

the martingale problem is well�posed. Moreover, the mapping from y to µy is trivially measurable,
since the topology on Mn is the discrete topology.

Verifying Condition (4). HL
A,B clearly satis�es the regularity conditions required, since E is harmonic

on the interior of M , and cosh is smooth, and hence HL
A,B is smooth on the interior of M × R2m.

The third condition holds by de�nition, and since x 7→ cosh(Bx · a) is a convex function on R2 for
any �xed a ∈ R2, HL

A,B is convex in p for any x ∈M ε
∞.

We take g = Hf for f ∈ C1(M ε
∞;R) and fn = f ◦ ιn, which trivially satis�es the required

convergence condition. Since f ∈ C1(M ε
∞;R), it is straightforward to check that gn = Hnfn is

uniformly bounded, since ∇f is uniformly continuous, and HL
A,B is smooth, so the convergence

statement made at the beginning of �6.2 holds uniformly for sequences ιn(xn) which approximate
points in the interior of M ε

∞. When (x, p) is in the interior of M ε
∞ × R2m, HL

A,B is continuous, so
veri�cation of (3.8) follows from the same arguments. When x ∈ ∂M ε

∞, there are two possible limits,
either 0 or the limiting value for limy→xHL

A,B(y, p) for sequences of points y lying in the interior of
M ε
∞. Supposing ιn(xn)→ x ∈ ∂M , we therefore have

min
{

lim
y→x
HL
A,B(y, p), 0

}
≤ lim inf

n→∞
Hnfn(xn) ≤ lim sup

n→∞
Hnfn(xn) ≤ max

{
lim
y→x
HL
A,B(y, p), 0

}
,

which veri�es the statement (3.8).

Verifying Condition (5). For x ∈ ∂M ε
∞, we have that

LL
A,B(x, ξ) =

{
0 ξ = 0,

+∞ ξ 6= 0
,

so (3.9) is trivially satis�ed. Next, using hyperbolic trigonometric identities and the fact that
| sinh(x)| ≤ cosh(x) for all x ∈ R, we obtain

cosh
(
[p−∇E(x)] · a

)
− cosh

(
[−∇E(x)] · a

)
≤ 2 cosh(|p|) cosh(|∇E(x)|).

Applying this estimate to the de�nition of HL
A,B, we �nd that for some M su�ciently large,

HL
A,B(x, p) ≤M

m∑
i=1

cosh(|pi|).

De�ne ψ(y) := M cosh(|y|) for y ∈ R2; it may be veri�ed that the Legendre�Fenchel transform of
this function, ψ∗, is

ψ∗(y) = |y| sinh−1
( |y|
M

)
−
√

1 +
|y|2
M2

.

By the ordering properties of the Legendre�Fenchel transform, we therefore have

LL
A,B(x, ξ) ≥

m∑
i=1

ψ∗(ξi),
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and since sinh−1(r)→∞ as r →∞, we have that ψ(ξi)
|ξi| →∞ as |ξi| → ∞, thus LL

A,B satis�es (3.9).

Next, recalling that ΨL
A,B and ΦL

A,B are conjugate functions, we have that for any α, β ∈ R2m,

ΨL
A,B(α) + ΦL

A,B(β) ≥ 〈α, β〉,

where equality holds if and only if β = ∇ΨL
A,B(α). This implies that LL

A,B(x, ẋ) ≥ 0 for all (x, ẋ) ∈
M ε
∞ × R2m, and LL

A,B(x, ẋ) = 0 when x lies in the interior of M ε
∞ if and only if

ẋ = ∇ΨL
A,B

(
−∇E(x)

)
.

Given that the function on the right�hand side is uniformly Lipschitz for x in the interior of M ε
∞, it

follows that there exists a solution x ∈ C([0, T ];M) to the ODE

ẋ(t) = ∇ΨL
A,B

(
−∇E(x(t))

)
, x(0) = x0,

where T is chosen such that x(T ) ∈ ∂M ε
∞, and x0 lies in the interior of M ε

∞. Then, setting x(t) =
x(T ) for all t > T , we have that ẋ(t) = 0 for all t > T , and thus∫ ∞

0

LL
A,B

(
x(t), ẋ(t)

)
dt = 0;

we have therefore veri�ed condition (5) of Theorem 3.3, so applying its conclusion, we have proved
the result. �

To conclude the proof of Theorem 3.4, we note that, by properties of the Legendre�Fenchel trans-
form, for x ∈M ε

∞ \ ∂M ε
∞, LL

A,B(x, q) ≥ 0,

LL
A,B(x, q) = 0 if and only if q = ∇ΨL

A,B

(
−∇E(x)

)
,

and by de�nition,ML
A,B = ∇ΨL

A,B.

6.3. Proof of Theorem 3.4: the case L = Tr. The case where L = Tr is more complicated
than the cases treated above, since Tr∗ is isomorphic to Hx, which is a multi�lattice rather than a
simple Bravais lattice. The value of Ωnf therefore oscillates depending upon the speci�c sublattice
on which each dislocation lies, and so the veri�cation of the convergence condition in Theorem 3.3
requires an additional step in this case. The technique which we use to prove convergence bears
signi�cant similarities to the use of a periodic `corrector' as used in the theory of homogenisation for
di�erential operators with rapidly oscillating coe�cients, and our approach may be viewed as the
discrete analogue of the strategy used in Example 1.10 in [21].
For clarity, we �rst �x some notation which we use throughout the proof: recall from �2.3 the

de�nition of ai, and the fact that Tr∗ is the union of 2 translated copies of
√

3
3
Tr. It will therefore be

convenient to de�ne

a∗i = 1
3
(a2i + a2i−1) for i = 1, 2, 3, Tr∗+ := Tr + a∗1, and Tr∗− := Tr − a∗2.

By de�nition, we have that Tr∗ = Tr∗+∪Tr∗−; the subscripts refer to the fact that the nearest neighbour
directions in Tr∗ are{

a∗1, a
∗
2, a
∗
3

}
for e∗ ∈ Tr∗+ and

{
− a∗1,−a∗2,−a∗3

}
for e∗ ∈ Tr∗−.

With this notation, if µ∗ = (e∗1, . . . , e
∗
m) with r∞(µ∗, x) = O(n−1), we have

Ωnf(µ) =
∑

i|e∗i∈Tr
∗
+

3∑
j=1

nA exp
[
−B∂iE(x) · a∗j + o(1)

][
f(e∗1, . . . , e

∗
i + a∗j , . . . , e

∗
m)− f(µ)

]
+

∑
i|e∗i∈Tr

∗
−

3∑
j=1

nA exp
[
B∂iE(x) · a∗j + o(1)

][
f(e∗1, . . . , e

∗
i − a∗j , . . . , e

∗
m)− f(µ)

]
.

We see that the generator oscillates in value depending upon whether each e∗i ∈ Tr∗+ or e∗i ∈ Tr∗−.
To obtain a Large Deviations Principle, we must show that the nonlinear generator converges in the
sense of condition (4) in Theorem 3.3. We suppose that f ∈ C1

(
M ε
∞;R), and de�ne a sequence
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fn(µ) = f ◦ ιn(µ) + 1
n
hf (ιn(µ);µ), where hf : M ε

∞ × (Tr∗)m → R will be de�ned shortly. For
convenience, we also de�ne T isµ := (e1, . . . , ei + s, . . . , em), and calculate

Hnf(µ) = 1
n
e−nf(µ)Ωnenf (µ)

= A
∑

i|e∗i∈Tr
∗
+

3∑
j=1

exp
[
−B∂iE(x) · a∗j

][
exp

(
∂if(x) · a∗j + hf (x, e1, T

i
a∗j
µ)− hf (x, µ)

)
− 1
]

+ A
∑

i|e∗i∈Tr
∗
−

3∑
j=1

exp
[
B∂iE(x) · a∗j

][
exp

(
− ∂if(x) · a∗j + hf (x, T

i
−a∗j

µ)− hf (x, µ)
)
− 1
]

+ o(n−1).

Our aim is now to de�ne hf such that for some g ∈ C(M ε
∞;R),

sup
µ∈M ε

n

∣∣Hn(f ◦ ιn + 1
n
hf )(µ)− g ◦ ιn(µ)

∣∣→ 0 as n→∞.

As long as hf (x, µ) is uniformly bounded for (x, µ) ∈M ε
∞ × (Tr∗)m, this will imply the convergence

condition required in Theorem 3.3. We make the ansatz that

hf (x; e∗1, . . . , e
∗
m) =

m∑
i=1

hf,i(x; e∗i ), where hf,i(x; e∗i ) =

{
h+
f,i(x) e∗i ∈ Tr∗+,

h−f,i(x) e∗i ∈ Tr∗−;

thus, each hf,i : M ε
∞ × Tr∗ → R depends only on whether e∗i ∈ Tr∗+ or e∗i ∈ Tr∗−. In order that

Hn(f ◦ ιn + 1
n
hf )− g ◦ ιn tends to zero independently of the choice of sublattice for each e∗i , we then

choose h±f,i(x) to satisfy the `corrector problem'

g(x) =
m∑
i=1

3∑
j=1

A
[

exp
([
∂if(x)−B∂iE(x)

]
· a∗j + h−f,i(x)− h+

f,i(x)
)
− exp

(
−B∂iE(x) · a∗j

)]
=

m∑
i=1

3∑
j=1

A
[

exp
([
B∂iE(x)− ∂if(x)

]
· a∗j + h+

f,i(x)− h−f,i(x)
)
− exp

(
B∂iE(x) · a∗j

)]
. (6.3)

Equating terms which contain ±[h+
f,i(x)− h−f,i(x)] and solving, we set

h±f,i(x) = ±1
2

log

(
(γ+
i − γ−i ) +

√
(γ+
i − γ−i )2 + 4δ+

i δ
−
i

2δ+
i

)
,

and thus g(x) = A
m∑
i=1

√
1
4
(γ+
i + γ−i )2 + δ+

i δ
−
i − γ+

i γ
−
i − 1

2
(γ+
i + γ−i ),

where γ±i =
3∑
j=1

exp
(
∓B∂iE(x) · a∗j

)
and δ±i =

3∑
j=1

exp
(
±
[
∂if(x)−B∂iE(x)

]
· a∗j
)
.

By the convexity of the exponential function and the fact that a∗1 + a∗2 + a∗3 = 0, we have γ±i , δ
±
i ≥ 3;

in addition,
√

(γ+
i − γ−i )2 + 4δ+

i δ
−
i + γ+

i − γ−i ≥ 0, so h±f,i(x) is well�de�ned for all x. Since γ±i and

δ±i are continuous functions of x ∈M ε
∞, we also have that h±f,i(x) depend continuously on x, and is

thus uniformly bounded for x ∈M ε
∞.
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By now expressing g(x) in terms of hyperbolic trigonometric functions, we de�ne Hf(x) :=
HTr
A,B

(
x,∇f(x)

)
, where the limiting Hamiltonian HTr

A,B(x, p) is de�ned to be

HTr
A,B(x, p) :=

m∑
i=1

√
ΥA,B

[
∂iE(x)

]2
+ ΨTr

A,B

[
1
B
pi − ∂iE(x)

]
−ΨTr

A,B

[
− ∂iE(x)

]
−ΥA,B

[
∂iE(x)

]
,

for x ∈M ε
∞ \ ∂M ε

∞, and HTr
A,B(x, p) := 0 for x ∈ ∂M ε

∞,

where ΨTr
A,B[ξ] := A2

6∑
j=1

cosh
[
Bξi · aj

]
, and ΥA,B[ξ] := A

3∑
j=1

cosh[Bξi · a∗j ].

We de�ne the conjugate function LTr
A,B : M ε

∞ × R2m → R ∪ {+∞} to be

LTr
A,B(x, ξ) := sup

p∈R2m

{
ξ · p−HTr

A,B(x, p)
}
,

and the corresponding rate functional J : D([0,+∞); M ε
∞)→ R ∪ {+∞} to be

J Tr
A,B(x) :=


∫ ∞

0

LTr
A,B

(
x, ẋ
)

dt x ∈W1,1
(
[0,+∞);R2m

)
,

+∞ otherwise.

We now state the following theorem, which asserts the existence of a Large Deviations Principle for
the model for dislocation motion for the case L = Tr.

Lemma 6.2. Suppose that L = Tr, and that Xn
0 = ιn(xn) where xn → x0 ∈M ε

∞ as n→∞. Then
the processes Xn

t satisfy a Large Deviations Principle with good rate function J Tr
A,B.

Once more, we prove this result by checking the conditions of Theorem 3.3.

Proof. As in the proof of Lemma 6.1, conditions (1) and (2) are straightforward to verify with
Mn = M ε

n and M = M ε
∞, and condition (3) holds by an identical argument.

Verifying Condition (4). It is clear from the arguments of the previous section thatHTr
A,B(x, p) satis�es

the necessary regularity conditions, and by de�nition the HTr
A,B vanishes for x ∈ ∂M ε

∞; the convexity
condition is also evident for x ∈ ∂M ε

∞. Next, let x lie in the interior of M ε
∞: then the second

derivative of HTr
A,B(x, p) with respect to pi is

∂2
pi
HTr
A,B(x, p) =

1
2B2∇2ΨTr

A,B[ 1
B
pi − ∂iE(x)](

ΥA,B[∂iE(x)]2 + ΨTr
A,B[ 1

B
pi − ∂iE(x)]−ΨTr

A,B[−∂iE(x)]
)1/2

−
1

4B2∇ΨTr
A,B[ 1

B
pi − ∂iE(x)]⊗∇ΨTr

A,B[ 1
B
pi − ∂iE(x)](

ΥA,B[∂iE(x)]2 + ΨTr
A,B[ 1

B
pi − ∂iE(x)]−ΨTr

A,B[−∂iE(x)]
)3/2

.

To verify convexity of HTr
A,B, we check that this matrix is positive de�nite. This reduces to verifying

that, as symmetric matrices,

1
2

(
ΥA,B[ζ]2 −ΨTr

A,B[ζ] + ΨTr
A,B[ξ]

)
∇2ΨTr

A,B[ξ]− 1
4
∇ΨTr

A,B[ξ]⊗∇ΨTr
A,B[ξ] ≥ 0 for all ξ, ζ ∈ R2.

Pre�multiplying by vT and post�multiplying the matrices in the above expression by v for some
v ∈ R2, we have

∇2ΨTr
A,B[ξ] : [v, v] =

6∑
j=1

A2B2 cosh[Bξ · aj](v · aj)2,

and
(
v · ∇ΨTr

A,B[ξ]
)2

=

( 6∑
i=1

A2B sinh[Bξ · aj](v · aj)
)2

.
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It is immediate that ∇2ΨTr
A,B[ξ] : [v, v] ≥ 0 for all v ∈ R2, since cosh is bounded below by 1, and the

vectors aj span R2. Next, we note that

1
2
ΨTr
A,B[ξ]∇2ΨTr

A,B[ξ] : [v, v]− 1
4

(
v · ∇ΨTr

A,B[ξ]
)2

=
1

2

6∑
j,k=1

A4B2 cosh[Bξ · aj] cosh[Bξ · ak](v · aj)2

− 1

4

6∑
j,k=1

A4B2 sinh[Bξ · aj] sinh[Bξ · aj](v · aj)(v · ak).

Using the identity (v · aj)(v · ak) = 1
2
[v · (aj + ak)]

2 − 1
2
(v · aj)2 − 1

2
(v · ak)2 and the symmetry of the

vectors aj, we have

1
4

6∑
j,k=1

sinh[Bξ · aj] sinh[Bξ · ak](v · aj)(v · ak)

= 1
8

6∑
j,k=1

sinh[Bξ · aj] sinh[Bξ · ak][v · (aj + ak)]
2 − 1

4

6∑
j,k=1

sinh[Bξ · aj] sinh[Bξ · ak](v · aj)2. (6.4)

The latter sum vanishes, since sinh is an odd function and v ·ak = −v ·ak+3 for k = 1, 2 or 3. Splitting
the sum, interchanging indices j and k and then using convexity and the fact that cosh is postive,
we have

1
2

6∑
j,k=1

cosh[Bξ · aj] cosh[Bξ · ak](v · aj)2 = 1
2

6∑
j,k=1

cosh[Bξ · aj] cosh[Bξ · ak]
(

1
2
(v · aj)2 + 1

2
(v · ak)2

)
≥ 1

8

6∑
j,k=1

cosh[Bξ · aj] cosh[Bξ · ak]
[
v · (aj + ak)

]2
. (6.5)

Combining (6.4) and (6.5), and using the addition formula for hyperbolic cosine, then bounding cosh
below by 1 and dropping all terms except for those where j = k, we �nd that

1
2
ΨTr
A,B[ξ]∇2ΨTr

A,B[ξ] : [v, v]− 1
4

(
v · ∇Ψ[ξ]

)2

≥ 1
8
A4B2

6∑
j,k=1

cosh
[
Bξ · (aj + ak)

]
[v · (aj + ak)]

2,

≥ 1
2
A4B2

6∑
j=1

(v · aj) = 3
2
A4B2|v|2 (6.6)

It remains to verify that
(
ΥA,B[ζ]2 − ΨTr

A,B[ζ]
)

1
2
∇2ΨTr

A,B[ξ] ≥ 0 for all ξ, ζ ∈ R2. This is immediate
upon noting that

ΥA,B[ζ]2 −ΨTr
A,B[ζ] = 1

4
(γ+
i + γ−i )2 − γ+

i γ
−
i = 1

4
(γ+
i − γ−i )2 =

( 6∑
j=1

A sinh[Bξ · aj]
)2

≥ 0, (6.7)

and using the positive�de�niteness of ∇2ΨTr
A,B[ξ]. Estimates (6.6) and (6.7) entail that ∂2

pi
HTr
A,B(x, p)

is strictly positive de�nite for all x in the interior of M ε
∞, and therefore HTr

A,B satis�es the convexity
condition.
To verify that the convergence requirement of Condition (4) is satis�ed, we de�ne hn : M ε

n → R
to be hn(µ) := h

(
ιn(µ), µ). Then as hf (x, e

∗
1, . . . , e

∗
m) is uniformly bounded for all x ∈ M ε

∞ and
e∗i ∈ Tr∗, so ∥∥f ◦ ιn + 1

n
hn − f ◦ ιn

∥∥ ≤ cn−1 → 0 as n→∞.
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Since ∇f , ∂iE and x 7→ hf (x, µ) are uniformly continuous on M ε
∞, and HTr

A,B is smooth and hence

uniformly continuous on the interior of M ε
∞×Br(0) for any r > 0, we have that x 7→ HTr

A,B

(
x,∇f(x)

)
is uniformly continuous. Using the fact that hf was chosen to satisfy (6.3), it is now straightforward
to check that ∥∥Hn

(
f ◦ ιn + 1

n
hn
)
(µ)−Hf ◦ ιn

∥∥→ 0 as n→∞,

and so convergence is veri�ed.

Verifying Condition (5). Given that HTr
A,B is a signi�cantly more complex function than the Hamilto-

nians obtained in the previous cases, we do not have as explicit an expression for LTr
A,B as we obtained

in the cases where L = Sq and L = Hx. We therefore verify Condition (5) indirectly using properties
of the Legendre�Fenchel transform.
First, we verify that LTr

A,B(x, ξ) ≥ 0. We note that since HTr
A,B(x, p) is smooth and strictly convex

in p, LTr
A,B(x, ξ) is also smooth and strictly convex, and HTr

A,B(x, p) = supξ∈R2m

{
p · ξ − LTr

A,B(x, ξ)
}
.

It follows that

0 = HTr
A,B(x, 0) = sup

ξ∈R2m

{
− LTr

A,B(x, ξ)
}

= − inf
ξ∈R2m

LTr
A,B(x, ξ).

To verify the growth condition (3.9), we estimateHTr
A,B(x, p) above. Using the elementary inequality√

a+ b ≤
√
a+
√
b for any a, b ≥ 0, the AM�GM inequality, and the property that γ±i ≥ 3, we �nd√

1
4
(γ+
i − γ−i )2 + δ+

i δ
−
i − 1

2
(γ+
i + γ−i ) ≤ 1

2
|γ+
i − γ−i |+

√
δ+
i δ
−
i − 1

2
(γ+
i + γ−i )

≤ 1
2
(δ+
i + δ−i )−min{γ+

i , γ
−
i } ≤ 1

2
(δ+
i + δ−i ). (6.8)

Noting that cosh(v ·aj) ≤ cosh(
√

3
3
|v|), formula (6.8), along with the de�nition of HTr

A,B, the convexity
of cosh and the fact that ∂iE(x) is uniformly bounded for all x ∈ M ε

∞, implies that there exists a
constant C > 0 independent of x such that

HTr
A,B(x, p) ≤

m∑
i=1

3∑
j=1

A cosh
(
[pi −B∂iE(x)] · a∗j

)
≤

m∑
i=1

3
2
A cosh

[√
3

3
|pi|
]

+ C.

A similar argument to that used in the proof of Theorem 6.1 now allows us to conclude that (3.9)
also holds in this case.
Next, we note that

0 = ∂ξLTr
A,B(x, ξ) if and only if ξ = ∂pHTr

A,B(x, 0).

Computing ∂pHTr
A,B, we �nd that if x solves

ẋi =
∇ΨTr

A,B[−∂iE(x)]

2ΥA,B[∂iE(x)]
with x(0) = x0, (6.9)

where x0 is in the interior of M ε
∞, then (3.10) is veri�ed. As ΨTr

A,B and ΥA,B are smooth, ΥA,B is
bounded below, and ∂E(x) is bounded on M ε

∞, an identical argument to that given in the proof of
Theorem 6.1 entails that this condition is satis�ed.
Having now veri�ed all conditions of Theorem 3.3, its application implies Lemma 6.2. �

Finally, upon noting that LTr
A,B is minimised when (6.9) is satis�ed, and setting

MTr
A,B(ξ) =

∇ΨTr
A,B[ξ]

2 ΥA,B[ξ]
,

we have proved Theorem 3.4.



UPSCALING THERMALLY�DRIVEN DISLOCATION MOTION 44

Acknowledgements

Thanks: The author would like to thank Giovanni Bonaschi and Giacomo Di Gesú for informative
discussions on Large Deviations Principles while carrying out this work, and the two anonymous
referees for helpful suggestions of a variety of improvements to this paper.

Funding: This study was funded by a public grant overseen by the French National Research Agency
(ANR) as part of the �Investissements d'Avenir� program (reference: ANR-10-LABX-0098).

Con�ict of interest: The author declares that there is no con�ict of interest regarding this work.

References

[1] R. Alicandro, L. De Luca, A. Garroni, and M. Ponsiglione. Dynamics of discrete screw dislocations on glide
directions. Journal of the Mechanics and Physics of Solids, 92:87 � 104, 2016.

[2] Roberto Alicandro, Lucia De Luca, Adriana Garroni, and Marcello Ponsiglione. Metastability and dynamics
of discrete topological singularities in two dimensions: a Γ-convergence approach. Arch. Ration. Mech. Anal.,
214(1):269�330, 2014.

[3] RJ Amodeo and NM Ghoniem. Dislocation dynamics. i. a proposed methodology for deformation micromechanics.
Physical Review B, 41(10):6958, 1990.

[4] M. P. Ariza and M. Ortiz. Discrete crystal elasticity and discrete dislocations in crystals. Arch. Ration. Mech.
Anal., 178(2):149�226, 2005.

[5] MP Ariza and M Ortiz. Discrete dislocations in graphene. Journal of the Mechanics and Physics of Solids,
58(5):710�734, 2010.

[6] Svante Arrhenius. Über die reaktionsgeschwindigkeit bei der inversion von rohrzucker durch säuren. Zeitschrift
für physikalische Chemie, 4:226�248, 1889.

[7] N. Berglund. Kramers' law: validity, derivations and generalisations. Markov Process. Related Fields, 19(3):459�
490, 2013.

[8] Henry A. Boateng, Tim P. Schulze, and Peter Smereka. Approximating o�-lattice kinetic Monte Carlo. Multiscale
Model. Simul., 12(1):181�199, 2014.

[9] W Bollmann. Interference e�ects in the electron microscopy of thin crystal foils. Physical Review, 103(5):1588,
1956.

[10] Giovanni A. Bonaschi and Mark A. Peletier. Quadratic and rate-independent limits for a large-deviations func-
tional. Continuum Mechanics and Thermodynamics, pages 1�29, 2015.

[11] A. Bovier and V. Gayrard. Sample path large deviations for a class of markov chains related to disordered mean
�eld models. WIAS preprints, 1999. Preprint No.487.

[12] V. V. Bulatov and W. Cai. Computer Simulations of Dislocations, volume 3 of Oxford Series on Materials
Modelling. Oxford University Press, 2006.

[13] Wei Cai and Vasily V Bulatov. Mobility laws in dislocation dynamics simulations. Materials Science and Engi-
neering: A, 387:277�281, 2004.

[14] Paolo Cermelli and Giovanni Leoni. Renormalized energy and forces on dislocations. SIAM J. Math. Anal.,
37(4):1131�1160 (electronic), 2005.

[15] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User's guide to viscosity solutions of second order
partial di�erential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1�67, 1992.

[16] Amir Dembo and Ofer Zeitouni. Large deviations techniques and applications, volume 38 of Stochastic Modelling
and Applied Probability. Springer-Verlag, Berlin, 2010. Corrected reprint of the second (1998) edition.

[17] V. Ehrlacher, C. Ortner, and A. Shapeev. Analysis of boundary conditions for crystal defect atomistic simulations.
ArXiv e-prints, 2015. preprint.

[18] Richard S. Ellis. Entropy, large deviations, and statistical mechanics. Classics in Mathematics. Springer-Verlag,
Berlin, 2006. Reprint of the 1985 original.

[19] Lawrence C. Evans and Ronald F. Gariepy. Measure theory and �ne properties of functions. Studies in Advanced
Mathematics. CRC Press, Boca Raton, FL, 1992.

[20] Henry Eyring. The activated complex in chemical reactions. The Journal of Chemical Physics, 3(2):107�115, 1935.
[21] Jin Feng and Thomas G. Kurtz. Large deviations for stochastic processes, volume 131 of Mathematical Surveys

and Monographs. American Mathematical Society, Providence, RI, 2006.
[22] Mark I. Freidlin and Alexander D. Wentzell. Random perturbations of dynamical systems, volume 260 of

Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer,
Heidelberg, third edition, 2012. Translated from the 1979 Russian original by Joseph Szücs.

[23] John B. Garnett and Donald E. Marshall. Harmonic measure, volume 2 of New Mathematical Monographs.
Cambridge University Press, Cambridge, 2008. Reprint of the 2005 original.

[24] David Gilbarg and Neil S. Trudinger. Elliptic partial di�erential equations of second order. Classics in Mathemat-
ics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.



UPSCALING THERMALLY�DRIVEN DISLOCATION MOTION 45

[25] P. Grisvard. Elliptic problems in nonsmooth domains, volume 69 of Classics in Applied Mathematics. SIAM,
Philadelphia, PA, 2011.

[26] Maru Alamirew Guadie. Harmonic Functions On Square Lattices: Uniqueness Sets and Growth Properties. PhD
thesis, Norwegian University of Science and Technology, Trondheim, 2013.

[27] Peter Hänggi, Peter Talkner, and Michal Borkovec. Reaction-rate theory: �fty years after kramers. Rev. Mod.
Phys., 62:251�341, Apr 1990.

[28] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[29] PB Hirsch, RW Horne, and MJ Whelan. LXVIII. Direct observations of the arrangement and motion of disloca-

tions in aluminium. Philosophical Magazine, 1(7):677�684, 1956.
[30] John Price Hirth and Jens Lothe. Theory of Dislocations. Krieger Publishing Company, Malabar, Florida, 1982.
[31] T. Hudson and C. Ortner. Analysis of stable screw dislocation con�gurations in an antiplane lattice model. SIAM

J. Math. Anal., 47(1):291�320, 2015.
[32] Thomas Hudson and Christoph Ortner. Existence and stability of a screw dislocation under anti-plane deforma-

tion. Arch. Ration. Mech. Anal., 213(3):887�929, 2014.
[33] Derek Hull and David J Bacon. Introduction to dislocations, volume 37. Butterworth-Heinemann, 2011.
[34] H. A. Kramers. Brownian motion in a �eld of force and the di�usion model of chemical reactions. Physica,

7:284�304, 1940.
[35] Gregory F. Lawler and Vlada Limic. Random walk: a modern introduction, volume 123 of Cambridge Studies in

Advanced Mathematics. Cambridge University Press, Cambridge, 2010.
[36] A. Mielke, M. A. Peletier, and D. R. M. Renger. On the relation between gradient �ows and the large-deviation

principle, with applications to Markov chains and di�usion. Potential Anal., 41(4):1293�1327, 2014.
[37] Alexander Mielke. On evolutionary Γ-convergence for gradient systems. In Adrian Muntean, Jens Rademacher,

and Antonios Zagaris, editors, Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits
and Ergodicity, pages 187�249. Springer International Publishing, Cham, 2016.

[38] James R. Munkres. Elements of algebraic topology. Addison-Wesley Publishing Company, Menlo Park, CA, 1984.
[39] E. Orowan. Zur Kristallplastizität. III. Zeitschrift für Physik, 89:634�659, 1934.
[40] M. Polanyi. Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte. Zeitschrift für Physik,

89:660�664, 1934.
[41] Marcello Ponsiglione. Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous.

SIAM J. Math. Anal., 39(2), 2007.
[42] R. Tyrrell Rockafellar. Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press, Prince-

ton, NJ, 1997. Reprint of the 1970 original, Princeton Paperbacks.
[43] Etienne Sandier and Sylvia Serfaty. From the Ginzburg-Landau model to vortex lattice problems. Comm. Math.

Phys., 313(3):635�743, 2012.
[44] Tim P. Schulze, Peter Smereka, and Weinan E. Coupling kinetic Monte-Carlo and continuum models with appli-

cation to epitaxial growth. J. Comput. Phys., 189(1):197�211, 2003.
[45] G. I. Taylor. The mechanism of plastic deformation of crystals. Part I. Theoretical. Proceedings of the Royal

Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 145(855), 1934.
[46] Erik van der Giessen and Alan Needleman. Discrete dislocation plasticity: a simple planar model. Modelling and

Simulation in Materials Science and Engineering, 3(5):689, 1995.
[47] Arthur F Voter. Introduction to the kinetic monte carlo method. In Radiation E�ects in Solids, pages 1�23.

Springer, 2007.

T. Hudson, CERMICS, École des Ponts ParisTech, 6 et 8, Avenue Blaise Pascal, 77455 Champs�
sur�Marne, France

E-mail address: hudsont@cermics.enpc.fr


	1. Introduction
	1.1. Kinetic Monte Carlo models
	1.2. Modeling screw dislocations
	1.3. Energy barriers
	1.4. Upscaling via a Large Deviations Principle
	1.5. Structure and notation

	2. Preliminaries
	2.1. Lattice complex
	2.2. Dual complex
	2.3. Examples: the square, triangular and hexagonal lattices
	2.4. Finite lattice subcomplexes
	2.5. Dislocation configurations

	3. Main Results
	3.1. Energy and equilibria
	3.2. Energy barriers
	3.3. Remarks on the model
	3.4. KMC model for dislocation motion
	3.5. The Feng–Kurtz approach to Large Deviations Principles
	3.6. Asymptotics for the KMC model
	3.7. Generalised gradient flows and mobility functions

	4. Proof of Theorem 3.1
	4.1. The discrete Poisson boundary value problem
	4.2. Green's functions in the full lattice
	4.3. The harmonic measure and interior differential estimates
	4.4. Asymptotics for Green's functions on finite subcomplexes
	4.5. Proof of Theorem 3.1

	5. Proof of Theorem 3.2
	5.1. The min–max problem
	5.2. Necessary conditions
	5.3. Construction of the transition state
	5.4. Proof of Theorem 3.2

	6. Proofs of Large Deviations results
	6.1. Proof of Theorem 3.3
	6.2. Proof of Theorem 3.4: the cases L=Hx and L=Sq
	6.3. Proof of Theorem 3.4: the case L=Tr

	Acknowledgements
	References

