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We construct a new bigraded Hopf algebra whose bases are indexed by square matrices with entries in the alphabet {0, 1, . . . , k}, k 1, without null rows or columns. This Hopf algebra generalizes the one of permutations of Malvenuto and Reutenauer, the one of k-colored permutations of Novelli and Thibon, and the one of uniform block permutations of Aguiar and Orellana. We study the algebraic structure of our Hopf algebra and show, by exhibiting multiplicative bases, that it is free. We moreover show that it is self-dual and admits a bidendriform bialgebra structure. Besides, as a Hopf subalgebra, we obtain a new one indexed by alternating sign matrices. We study some of its properties and algebraic quotients defined through alternating sign matrices statistics.

Introduction

The combinatorial class of permutations is naturally endowed with two operations. One of them, called shifted shuffle product, takes two permutations as input and put these together by blending their letters. The other one, called deconcatenation coproduct, takes one permutation as input and takes it apart by cutting it into prefixes and suffixes. These two operations satisfy certain compatibility relations, resulting in that the vector space spanned by the set of permutations forms a Hopf algebra [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF], namely the Malvenuto-Reutenauer Hopf algebra, also known as FQSym [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF].

This Hopf algebra plays a central role in algebraic combinatorics for at least two reasons. On the one hand, FQSym contains, as Hopf subalgebras, several structures based on well-known combinatorial objects as e.g., standard Young tableaux [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF], binary trees [START_REF] Hivert | The Algebra of Binary Search Trees[END_REF], and integer compositions [GKL + 95]. The construction of these substructures revisits many algorithms coming from computer science and combinatorics. Indeed, the insertion of a letter into a Young tableau (following Robinson-Schensted [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF]) or in a binary search tree [START_REF] Knuth | The Art of Computer Programming[END_REF] are algorithms which prove to be as enlightening as surprising in this algebraic context [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF][START_REF] Hivert | An analogue of the plactic monoid for binary search trees[END_REF][START_REF] Hivert | The Algebra of Binary Search Trees[END_REF]. On the other hand, the polynomial realization of FQSym allows to associate a polynomial with any permutation [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF] providing a generalization of symmetric functions, the free quasi-symmetric functions. This generalization offers alternative ways to prove several properties of (quasi)symmetric functions.

It is thus natural to enrich this theory by proposing generalizations of FQSym. In the last years, several generalizations were proposed and each of these depends on the way we regard permutations. By regarding a permutation as a word and allowing repetitions of letters, Hivert introduced in [START_REF] Hivert | Combinatoire des fonctions quasi-symétriques[END_REF] (see [START_REF] Novelli | Polynomial realizations of some trialgebras[END_REF] for a detailed study) a Hopf algebra WQSym on packed words. Additionally, by allowing some jumps for the values of the letters of permutations, Novelli and Thibon defined in [START_REF] Novelli | Hopf algebras and dendriform structures arising from parking functions[END_REF] another Hopf algebra PQSym which involves parking functions. These authors also showed in [START_REF] Novelli | Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions[END_REF] that the k-colored permutations admit a Hopf algebra structure FQSym (k) . Furthermore, by regarding a permutation σ as a bijection associating the singleton {σ(i)} with any singleton {i}, Aguiar and Orellana constructed [START_REF] Aguiar | The Hopf algebra of uniform block permutations[END_REF] a Hopf algebra structure UBP on uniform block permutations, i.e., bijections between set partitions of [n], where each part has the same cardinality as its image. Finally, by regarding a permutation within its permutation matrix, Duchamp, Hivert and Thibon introduced in [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF] a Hopf algebra MQSym which involves some kind of integer matrices.

In this paper we propose a new generalization of FQSym by regarding permutations as permutation matrices. For this purpose, we consider the set of 1-packed matrices that are square matrices with entries in the alphabet {0, 1} which have at least one 1 by row and by column. By equipping these matrices with a product and a coproduct, we obtain a bigraded Hopf algebra, denoted by PM 1 . By only considering the gradation offered by the size (resp. the number of nonzero entries) of matrices, we obtain a simply graded Hopf algebra denoted by PMN 1 (resp. PML 1 ). Note that since permutation matrices form a Hopf subalgebra of PMN 1 (and PML 1 ) isomorphic to FQSym, PMN 1 (and PML 1 ) provides a generalization of FQSym. Now, by allowing the entries different from 0 of a packed matrix to belong to the alphabet {1, . . . , k} where k is a positive integer, we obtain the notion of a k-packed matrix. The definition of PM 1 (and PMN 1 and PML 1 ) obviously extends to these matrices and leads to the Hopf algebra PM k (and PMN k and PML k ) involving k-packed matrices. Besides, since any k-packed matrix is also a k + 1-packed matrix, (PM k ) k 1 is an increasing infinite sequence of Hopf algebras for inclusion.

Our results are presented as follows. We give in Section 1 some elementary definitions about k-packed matrices, enumerate them according to their size, and then define the Hopf algebra of k-packed matrices by describing its product and its coproduct. Section 2 is devoted to the study of the algebraic properties of PM k . In order to show that PM k is free as an algebra, we define, by introducing a partial order relation on the k-packed matrices, two multiplicative bases: the bases of the elementary and homogeneous elements. We then describe the dual Hopf algebra PM k of PM k in explaining the product and the coproduct and show that PM k is self-dual. In Section 3, we show how several well-known Hopf algebras are linked with PM k . In particular, we show that the Hopf algebra of the k-colored permutations FQSym (k) embeds into PMN k (and PML k ) and that the dual UBP of the Hopf algebra of uniform block permutations embeds into PMN 1 . We also exhibit an injective algebra morphism from PML 1 to MQSym. We conclude this section by providing a method to construct Hopf subalgebras of PM k , analogous to the construction of Hopf subalgebras of FQSym by good congruences [START_REF] Hivert | Dual graded graphs in combinatorial Hopf algebras[END_REF][START_REF] Giraudo | Combinatoire algébrique des arbres[END_REF]. The analogs of the sylvester [START_REF] Hivert | An analogue of the plactic monoid for binary search trees[END_REF][START_REF] Hivert | The Algebra of Binary Search Trees[END_REF], plactic [START_REF] Lascoux | ), volume 109 of Quad[END_REF][START_REF] Lothaire | Algebraic combinatorics on words[END_REF], hypoplactic [START_REF] Krob | Noncommutative symmetric functions IV : Quantum linear groups and Hecke algebras at q = 0[END_REF][START_REF] Krob | Noncommutative symmetric functions V : A degenerate version of Uq(gl N )[END_REF], Bell [START_REF] Rey | Algebraic constructions on set partitions[END_REF], and Baxter [START_REF] Giraudo | Algebraic and combinatorial structures on pairs of twin binary trees[END_REF] congruences are still good congruences in our context and give rise to Hopf subalgebras of PM k . We end this article by Section 4 where we show that PMN 1 contains a Hopf subalgebra whose bases are indexed by alternating sign matrices, denoted by ASM. We consider then some well-known statistics on the six-vertex model with domain wall boundary conditions [START_REF] Korepin | Calculation of norms of Bethe wave functions[END_REF], that are combinatorial objects in bijection with alternating sign matrices [START_REF] Kuperberg | Another proof of the alternating-sign matrix conjecture[END_REF][START_REF] Bressoud | Proofs and Confirmations, The Story of the Alternating Sign Matrix Conjecture[END_REF]. We study these statistics from the algebraic point of view offered by the Hopf algebra ASM. This section is concluded with a complete study of quotients of ASM by equivalence relations defined through these statistics.
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(1.1.2) N r (M ) = {5} and N c (M ) = {1, 3}.
A k-packed matrix M of size n is a matrix in 0 M k,n, in which each row and each column contains at least one entry different from 0, that is to say if the subsets N r (M ) and N c (M ) are empty.

We shall denote in the sequel by P k,n, the set of k-packed matrices of size n with exactly nonzero entries, by P k,n,-the set of all k-packed matrices of size n, by P k,-, the set of all k-packed matrices with exactly nonzero entries, and by P k the set of all k-packed matrices. The k-packed matrix of size 0 is denoted by ∅. For instance, the seven 1-packed matrices of size 2 are (1.1.3)

1 0 0 1 , 0 1 1 0 , 1 1 1 0 , 1 1 0 1 , 1 0 1 1 , 0 1 1 1 , 1 1 1 1 .
Besides, the ten 1-packed matrices of P 1,-,3 are (1.1.4)

1 1 1 0 , 1 1 0 1 , 1 0 1 1 , 0 1 1 1 , 1 0 0 0 1 0 0 0 1 , 1 0 0 0 0 1 0 1 0 , 0 1 0 1 0 0 0 0 1 , 0 0 1 1 0 0 0 1 0 , 0 1 0 0 0 1 1 0 0 , 0 0 1 0 1 0 1 0 0 .
Let us now define some operations on packed matrices. We shall denote by Z m n the n × m null matrix. Given M 1 and M 2 two k-packed matrices of respective sizes n 1 and n 2 , set

(1.1.5) M 1 M 2 := M 1 Z n2 n1 Z n1 n2 M 2 and M 1 M 2 := Z n2 n1 M 1 M 2 Z n1 n2 .
Note that these two matrices are k-packed matrices of size n 1 + n 2 . We shall respectively call and the over and under operators. These two operators are obviously associative.

Given a matrix M whose entries are elements of the alphabet A k , the compression of M is the matrix cp(M ) obtained by deleting in M all null rows and columns. Let M be a k-packed matrix. The tuple (M 1 , . . . , M r ) is a column decomposition of M , and we write

M = M 1 • • • • • M r , if for all i ∈ [
r] the cp(M i ) are square matrices (and not necessarily column matrices) and

(1.1.6) M = M 1 . . . M r .
Similarly, the tuple (M 1 , . . . , M r ) is a row decomposition of M , and we write

M = M 1 • • • • • M r , if for all i ∈ [r]
the cp(M i ) are square matrices (and not necessarily row matrices) and

(1.1.7)

M =    M 1 . . . M r    .
For instance, here are a 1-packed matrix of size 5, one of its column decompositions and one of its row decompositions:

(1.1.8)

   0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1    =    0 1 1 0 0 1 0 0 0 1 0 0 0 0 0    •    0 0 0 0 1 1 0 0 1 1    = 0 1 1 0 0 0 0 1 0 0 • 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 .
These two decompositions have the following property.

Lemma 1.1. Let M be a packed square matrix and (M 1 , M 2 ) be a column (resp. row) decomposition of M . Then, there is no integer i such that the ith rows (resp. columns) of M 1 and M 2 contain both a nonzero entry.

Proof. We prove here the lemma only when (M 1 , M 2 ) is a column decomposition of M . The case of a row decomposition can be proven in an analogous way.

Let us denote by n the size of M and assume that M 1 (resp. M 2 ) has n 1 (resp. n 2 ) columns. The lemma follows from the fact that since (M 1 , M 2 ) is a column decomposition of M , there are n 1 nonzero rows in M 1 , n 2 nonzero rows in M 2 , and n = n 1 + n 2 . Lemma 1.1 provides a sufficient condition to ensure that a given pair (M 1 , M 2 ) of matrices cannot be a column (resp. row) decomposition of a matrix M . Nevertheless, it is not a necessary condition. Indeed, let (1.1.9) M :=

1 1 0 0 0 1 0 0 1 and (M 1 , M 2 ) := 1 1 0 0 0 0 , 0 1 1 .
Then, even if there is no nonzero entry on the same row in M 1 and M 2 , (M 1 , M 2 ) is not a column decomposition of M .

1.2. Enumeration. Using the sieve principle, we obtain the following enumerative result.

Proposition 1.2. For any k 1, n 0, and 0, the number #P k,n, of k-packed matrices of size n with exactly nonzero entries is

(1.2.1) #P k,n, = 0 i,j n (-1) i+j n i n j ij k .
Proof. For any subsets R and C of [n] let us define the set

(1.2.2) S(R, C) := {M ∈ M k,n, : N r (M ) = R and N c (M ) = C} .
Since #P k,n, = #S(∅, ∅), we shall compute #S(∅, ∅) to prove (1.2.1).

For that, let us consider the order relation defined on the set of pairs (R, C) of subsets of [n] by

(1.2.3) (R 1 , C 1 ) (R 2 , C 2 ) if and only if R 1 ⊆ R 2 and C 1 ⊆ C 2 .
We have, by setting r := #R and c

:= #C, (1.2.4) (R,C) (R ,C ) #S(R , C ) = (n -r) (n -c) k since (1.2.4) is the number of matrices M ∈ M k,n, such that R ⊆ N r (M ) and C ⊆ N c (M ).
Then, by Möbius inversion on the Boolean lattice, we obtain

(1.2.5) #S(∅, ∅) = (∅,∅) (R,C) (-1) r+c (n -r) (n -c) k ,
and (1.2.1) follows.

Table 1 shows the first few values of #P k,n, . The enumeration in the case k = 1 is Sequence A055599 of [Slo]. Vect (P k,n, ) be the bigraded vector space spanned by the set of all k-packed matrices. The elements F M , where the M are k-packed matrices, form a basis of PM k . We shall call this basis the fundamental basis of PM k .

Given M 1 and M 2 two k-packed matrices of respective sizes n 1 and n 2 , set

(1.3.2) M 1 • n 2 := M 1 Z n1 n2 and n 1 • M 2 := Z n2 n1 M 2 .
The column shifted shuffle M 1 ¢ M 2 of M 1 and M 2 is the set of all matrices obtained by shuffling the columns of M 1 • n 2 with the columns of n 1 • M 2 .

Let us endow PM k with a product • linearly defined, for any k-packed matrices M 1 and M 2 , by

(1.3.3) F M1 • F M2 := M ∈ M1¢M2 F M .
For instance, in PM 1 one has

F 0 1 1 1 • F 1 0 0 1 = F   0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1   + F   0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1   + F   0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0   + F   0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1   + F   0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0   + F   0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0   . (1.3.4)
Moreover, we endow PM k with a coproduct ∆ linearly defined, for any k-packed matrix M , by

(1.3.5) ∆ (F M ) := M =M1•M2 F cp(M1) ⊗ F cp(M2) .
For instance, in PM 1 one has

(1.3.6) ∆F   1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0   = F   1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0   ⊗ F ∅ + F 1 1 0 1 0 1 0 1 0 ⊗ F [ 1 ] + F ∅ ⊗ F   1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0   .
Note that by definition, the product and the coproduct of PM k are multiplicity free.

Theorem 1.3. The vector space PM k endowed with the product • and the coproduct ∆ is a bigraded and connected bialgebra where homogeneous components are finite-dimensional.

Proof. First, it is plain that the product of PM k respects the bigradation. Moreover, Lemma 1.1 implies that it is also the case for its coproduct. Since ∅ is the only packed matrix of size 0 without nonzero entries, PM k is connected. Besides, since for all n, 0, the sets P k,n, are finite, homogeneous components of PM k are finite-dimensional.

The associativity of • arises from the associativity of the shifted shuffle operation on words on a totally ordered alphabet. Indeed, a packed matrix M can be seen as a word u where the ith letter of u is the ith column of M . Moreover, the coassociativity of ∆ comes from the fact that (

M 1 • M 2 ) • M 3 is a column decomposition of a packed matrix M if and only if M 1 • (M 2 • M 3 ) also is.
It remains to show that ∆ is an algebra morphism. Let M 1 and M 2 be two packed matrices. The obvious fact that (L, R) is a column decomposition of a matrix M appearing in the shifted shuffle of M 1 and M 2 if and only if L (resp. R) appears in the shifted shuffle of L 1 and L 2 (resp. R 1 and R 2 ) where (L 1 , R 1 ) is a column decomposition of M 1 and (L 2 , R 2 ) is a column decomposition of M 2 , ensures that ∆ is an algebra morphism.

Since PM k is, by Theorem 1.3, a bigraded and connected bialgebra, it admits an antipode and hence, is a Hopf algebra. The antipode S of PM k satisfies, for any k-packed matrix M , (1.3.7)

S (F M ) = 1 M =M1•••••M Mi =∅, i∈[ ] (-1) F cp(M1) • . . . • F cp(M ) .
For instance, in PM 1 one has SF 0 1 1

1 0 0 0 1 0 = -F 0 1 1 1 0 0 0 1 0 + F [ 1 ] • F 1 1 1 0 = F 1 0 0 0 1 1 0 1 0 + F 0 1 0 1 0 1 1 0 0 + F 0 0 1 1 1 0 1 0 0 -F 0 1 1 1 0 0 0 1 0 . (1.3.8)
Note besides that S is not an involution. Indeed,

S 2 F 0 1 1 1 0 0 0 1 0 = F 1 1 0 1 0 0 0 0 1 + F 1 0 1 1 0 0 0 1 0 + F 0 1 1 0 1 0 1 0 0 + F 0 1 1 1 0 0 0 1 0 -F 1 0 0 0 1 1 0 1 0 -F 0 1 0 1 0 1 1 0 0 -F 0 0 1 1 1 0 1 0 0 . (1.3.9)
Notice that since any k-packed matrix is also a k + 1-packed matrix, the vector space PM k is included in PM k+1 . Hence, and by Theorem 1. 

Algebraic properties

2.1. Multiplicative bases and freeness.

2.1.1. Poset structure. We endow the set P k with a binary relation → defined in the following way.

If M 1 and M 2 are two k-packed matrices of size n, we have

M 1 → M 2 if there is an index i ∈ [n -1]
such that, denoting by s the number of 0 ending the ith column of M 1 , and by p the number of 0 starting the (i + 1)st column of M 1 , one has s + p n and M 2 is obtained from M 1 by exchanging its ith and (i + 1)st columns (see Figure 1).

We now endow P k with the partial order relation M defined as the reflexive and transitive closure of →. Figure 2 shows an interval of this partial order.

Notice that by regarding a permutation σ of S n as its permutation matrix (i.e., the 1-packed matrix M of size n satisfying M ij = 1 if and only if σ j = i), the poset (P k,n,-, M ) restricted to permutation matrices is the right weak order on permutations [START_REF] Th | Analyse algébrique d'un scrutin[END_REF]. 

  1 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1     0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 1     1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0     0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0     1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0     0 0 1 0 0 0 1 1 1 0 0 1 0 1 0 0     0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0     0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0   Figure 2.
The Hasse diagram of an interval for the order M on packed matrices.

( 

1) A B M M if and only if there are two packed matrices A and B such that

A M A , B M B , and M ∈ A ¢ B ; (2) M M A B if

and only if there are two packed matrices A and B such that

A M A, B M B, and M ∈ A ¢ B . Proof. Assume that A B M M .
E M := M M M F M and H M := M MM F M .
By triangularity, these two families are bases of PM k . For instance, in PM 1 one has

(2.1.2) E   1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0   = F   1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0   + F   0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0   + F   0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0   , and (2.1.3) H   0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0   = F   0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0   + F   0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 1   + F   1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0   + F   1 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1   .
Proposition 2.2. The elements appearing in a product of PM k expressed in the fundamental basis form an interval for the M -partial order. More precisely, for any k-packed matrices M 1 and M 2 ,

(2.1.4)

F M1 • F M2 = M1 M2 M M MM1 M2 F M .
Proof. It is plain that the left and right-hand side of (2.1.4) are multiplicity-free. Then, it is enough to show that the sets

M 1 ¢ M 2 and [M 1 M 2 , M 1 M 2 ] are equal. This is a consequence of Lemma 2.1.
Proposition 2.3. The product of PM k satisfies, for any k-packed matrices M 1 and M 2 ,

(2.1.5)

E M1 • E M2 = E M1 M2 and H M1 • H M2 = H M1 M2 .
Proof. We shall prove the product rule for the elementary basis by expanding E M1 •E M2 and E M1 M2 over the fundamental basis. First, since any element F N , where N is a packed matrix, appearing in E M1 • E M2 is obtained by shifting and shuffling two matrices

N 1 and N 2 such that M 1 M N 1 and M 2 M N 2 , E M1 • E M2
is multiplicity-free over the fundamental basis. Moreover, by definition of the elementary basis, E M1 M2 is multiplicity-free over the fundamental basis.

Therefore, it is enough to prove that the sets (2.1.6)

{N ∈ N 1 ¢ N 2 : M 1 M N 1 and M 2 M N 2 } and (2.1.7) {N ∈ P k : M 1 M 2 M N }
are equal. This is exactly (1) of Lemma 2.1.

The proof for the homogeneous basis is analogous.

2.1.3. Freeness. Given a k-packed matrix M = ∅, we say that M is connected (resp. anti-connected) if, for all k-packed matrices M 1 and M 2 , M = M 1 M 2 (resp. M = M 1 M 2 ) implies M 1 = M or M 2 = M .
Theorem 2.4. The Hopf algebra PM k is freely generated as an algebra by the elements E M (resp. H M ) where the M are connected (resp. anti-connected) k-packed matrices.

Proof. Since any packed matrix M can be written as

(2.1.8) M = M 1 . . . M r ,
where the M i are connected packed matrices, by Proposition 2.3, we have

(2.1.9)

E M = E M1 • . . . • E Mr ,
showing that the E M , where M is a connected packed matrix, generate PM k as an algebra. Besides, the obvious unicity of the factorization (2.1.8) shows that this family is free.

The proof for the homogeneous basis is analogous.

Theorem 2.4 also implies that PMN k and PML k are freely generated by the E M (resp. H M ) where the M are connected (resp. anti-connected) k-packed matrices. Hence, the generating series G k,n (t) and G k, (t) of algebraic generators of PMN k and PML k satisfy respectively

(2.1.10) G k,n (t) = 1 - 1 H k,n (t) and G k, (t) = 1 - 1 H k, (t)
.

The 

F M1 • F M2 = M ∈P k ∆ (F M ) , F M1 ⊗ F M2 F M . Let us set (2.2.2) M 1 • n 2 := M 1 Z n2 n1 and n 1 • M 2 := Z n1 n2 M 2 .
The row shifted shuffle M 1 * M 2 of M 1 and M 2 is the set of all matrices obtained by shuffling the rows of M 1 • n 2 with the rows of n 1 • M 2 . By a routine computation, we obtain the following expression for the product of PM k :

(2.2.3)

F M1 • F M2 = M ∈M1 * M2 F M .
For instance, in PM 1 one has

F 0 1 1 1 • F 1 0 0 1 = F   0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1   + F   0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1   + F   0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 1   + F   0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0   + F   0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0   + F   0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0   . (2.2.4)
Let M be a k-packed matrix. By duality, the coproduct in

PM k satisfies (2.2.5) ∆ (F M ) = M1,M2∈P k F M1 • F M2 , F M F M1 ⊗ F M2 .
By a routine computation, we obtain the following expression for the coproduct of PM k :

(

2.2.6) ∆ (F M ) = M =M1•M2 F cp(M1) ⊗ F cp(M2) .
For instance, in PM 1 one has

(2.2.7) ∆F   0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0   = F   0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0   ⊗ F ∅ + F 1 0 1 1 ⊗ F 1 0 0 1 + F 0 0 1 1 0 0 1 1 0 ⊗ F [ 1 ] + F ∅ ⊗ F   0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0   .
Let us denote by M T the transpose of M .

Proposition 2.5. The map φ : PM k → PM k linearly defined for any k-packed matrix M by

(2.2.8) φ (F M ) := F M T is a Hopf isomorphism.
Proof. The product and the coproduct of PM k in the fundamental basis handle the columns of the matrices while the product and the coproduct of PM k in the adjoint basis of the fundamental basis handle the rows. Since the transpose of a matrix swaps its rows and its columns, φ is a Hopf isomorphism.

Since the transpose of any packed matrix of P k,n, also belongs to P k,n, , Proposition 2.5 also implies that PMN k and PML k are self-dual for the isomorphism φ.

Primitive elements.

For any k-packed matrix M , define (2.2.9)

W M := F M1 • . . . • F Mr
where the M i are connected packed matrices (see Section 2.1.3) and M = M 1 . . . M r . Then, we have (2.2.10)

W M = F M + M ∈R F M
where any matrix M of R satisfies M T M M T since the product in PM k consists in shifting and shuffling rows of matrices. Thus, by triangularity, the W M form a basis of PM k . Moreover, for any k-packed matrices M 1 and M 2 , the product of PM k is expressed as

(2.2.11) W M1 • W M2 = W M1 M2 .
Let us denote by V M , where the M are k-packed matrices, the adjoint elements of the W M .

Proposition 2.6. The elements V M , where M are connected k-packed matrices, form a basis of the vector space of primitive elements of PM k .

Proof. Since W M is indecomposable, by duality, V M is primitive. Moreover, let X be a primitive element of PM k . Then, X is expressed as

(2.2.12) X = M ∈P k c M V M .
Let M be a nonconnected k-packed matrix and M = M 1 M 2 be a nontrivial factorization. Then, by duality, the coefficient of

V M1 ⊗ V M2 in ∆(X) is c M . Since X is primitive, c M = 0, showing that X is a sum of V M where M are connected k-packed matrices.
By Proposition 2.6, the V M , where M are connected k-packed matrices, generate the Lie algebra of primitive elements of PM k . The first few dimensions of the Lie algebras of primitive elements of PMN 1 , PMN 2 , PML 1 , PML 2 are respectively given by (2.1.11), (2.1.12), (2.1.13), and (2.1.14).

Bidendriform bialgebra structure.

2.3.1. Dendriform algebra structure. An algebra (A, •) admits a dendriform algebra structure [START_REF] Loday | [END_REF] if its product can be split into two operations (2.3.1)

• =≺ + , where ≺, : A ⊗ A → A are non-degenerated linear maps such that, by denoting by A + the augmentation ideal of A, for all x, y, z ∈ A + , the following relations hold

(x ≺ y) ≺ z = x ≺ (y • z), (2.3.2a) (x y) ≺ z = x (y ≺ z), (2.3.2b) (x • y) z = x (y z). (2.3.2c)
For any nonempty matrix M , we shall denote by last c (M ) its last column. Let us endow PM k + with two products ≺ and linearly defined, for any nonempty k-packed matrices M 1 and M 2 of respective sizes n 1 and n 2 , by

(2.3.3) F M1 ≺ F M2 := M ∈M1¢M2 lastc(M )=lastc(M1•n2) F M and (2.3.4) F M1 F M2 := M ∈ M1¢M2 lastc(M )=lastc(n1•M2) F M .
In other words, the matrices appearing in a ≺-product (resp. -product) in the fundamental basis involving M 1 and M 2 are the matrices M obtained by shifting and shuffling the columns of M 1 and M 2 such that the last column of M comes from M 1 (resp. M 2 ). For example,

F 0 1 1 1 ≺ F 1 0 0 1 = F   0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0   + F   0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0   + F   0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0   , (2.3.5) F 0 1 1 1 F 1 0 0 1 = F   0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1   + F   0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1   + F   0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1   . (2.3.6)
Since the last column of any matrix appearing in the shifted shuffle of two matrices comes from one of the two operands, for any nonempty packed matrices M 1 and M 2 , one obviously has

(2.3.7) F M1 • F M2 = F M1 ≺ F M2 + F M1 F M2 .
Proposition 2.7. The Hopf algebra PM k admits a dendriform algebra structure for the products ≺ and .

Proof. We have to prove that (2.3.2a), (2.3.2b), and (2.3.2c) hold. Let M 1 , M 2 , and M 3 be three packed matrices of respective sizes n 1 , n 2 and n 3 .

By definition of ≺ and , and since ¢ is associative, the set S of matrices indexing the support of (

F M1 F M2 ) ≺ F M3 satisfies S = {M ∈ (M 1 ¢ M 2 ) ¢ M 3 : last c (M ) = last c (n 1 • M 2 • n 3 )} = {M ∈ M 1 ¢ (M 2 ¢ M 3 ) : last c (M ) = last c (n 1 • M 2 • n 3 )}.
(2.3.8)

Hence, S also is the set of matrices indexing the support of F M1 (F M2 ≺ F M3 ). Since the shifted shuffle of packed matrices is multiplicity-free, (2.3.2b) holds.

By definition of ≺ and , and since ¢ is associative, the set T of matrices indexing the support of (

F M1 ≺ F M2 ) ≺ F M3 satisfies T = {M ∈ (M 1 ¢ M 2 ) ¢ M 3 : last c (M ) = last c (M 1 • (n 2 + n 3 ))} = {M ∈ M 1 ¢ (M 2 ¢ M 3 ) : last c (M ) = last c (M 1 • (n 2 + n 3 ))}.
(2.3.9) Hence, by (2.3.7), T also is the set of matrices indexing the support of

F M1 ≺ (F M2 • F M3 ).
Since the shifted shuffle of packed matrices is multiplicity-free, (2.3.2a) holds. By a very similar argument, (2.3.2c) also holds.

2.3.2. Codendriform coalgebra structure. By dualizing the notion of dendriform algebra structure, one obtains the notion of codendriform coalgebra structure [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF]. A coalgebra (C, ∆) admits a codendriform coalgebra structure if its coproduct can be split into two operations

(2.3.10) ∆ = 1 ⊗ I + ∆ ≺ + ∆ + I ⊗ 1,
where ∆ ≺ , ∆ : C → C ⊗ C are non-degenerated linear maps such that following relations hold

(∆ ≺ ⊗ I) • ∆ ≺ =(I ⊗ ∆) • ∆ ≺ , (2.3.11a) (∆ ⊗ I) • ∆ ≺ =(I ⊗ ∆ ≺ ) • ∆ , (2.3.11b) ( ∆ ⊗ I) • ∆ =(I ⊗ ∆ ) • ∆ , (2.3.11c)
where ∆ := ∆ ≺ + ∆ .

For any nonempty matrix M , we shall denote by last r (M ) its last row. Let us endow PM k with two coproducts ∆ ≺ and ∆ linearly defined, for any nonempty k-packed matrix M , by

(2.3.12) ∆ ≺ (F M ) := M =L•R lastr(L•r)=lastr(M ) F cp(L) ⊗ F cp(R) and (2.3.13) ∆ (F M ) := M =L•R lastr( •R)=lastr(M ) F cp(L) ⊗ F cp(R) ,
where r (resp. ) is the number of columns of R (resp. L). In other words, the pairs of matrices appearing in a ∆ ≺ -coproduct (resp. ∆ -coproduct) in the fundamental basis are the pairs (L, R) of packed matrices such that the last row of L (resp. R) comes from the last row of M . For example,

∆ ≺ F     1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0     =F 1 0 0 0 1 1 0 0 1 ⊗ F 0 0 1 1 0 0 1 1 0 + F    1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0    ⊗ F [ 1 ] , (2.3.14) ∆ F    
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0

    =F [ 1 ] ⊗ F    1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0    . (2.3.15)
Since by Lemma 1.1, one cannot vertically split a packed matrix by separating two nonzero entries on a same row, for any nonempty packed matrix M , one has

(2.3.16) ∆ (F M ) = 1 ⊗ F M + ∆ ≺ (F M ) + ∆ (F M ) + F M ⊗ 1.
Proposition 2.8. The Hopf algebra PM k admits a codendriform coalgebra structure for the coproducts ∆ ≺ and ∆ .

Since the proof of this statement is similar to that of Proposition 2.7 it has been omitted.

Bidendriform bialgebra structure.

A bialgebra (B, •, ∆) admits a bidendriform bialgebra structure [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF] if B admits both a dendriform algebra (B, ≺, ) and a codendriform coalgebra (B, ∆ ≺ , ∆ ) structure with some extra compatibility relations between (≺, ) and (∆ ≺ , ∆ ).

Theorem 2.9. The Hopf algebra PM k admits a bidendriform bialgebra structure for the products ≺, and the coproducts ∆ ≺ , ∆ .

Proof. By Propositions 2.7 and 2.8, PM k admits a dendriform algebra and a codendriform coalgebra structure.

The required extra compatibility relations (see [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF]) between (≺, ) and (∆ ≺ , ∆ ) are established by arguments similar to the ones used in the proofs of Propositions 2.7 and 2.8. Theorem 2.9 also implies that PMN k and PML k admit a bidendriform bialgebra structure. Recall that an element x of a Hopf algebra admitting a bidendriform bialgebra structure is totally primitive if ∆ ≺ (x) = 0 = ∆ (x). Following [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF], the generating series T k,n (t) and T k, (t) of totally primitive elements of PMN k and PML k satisfy respectively (2.3.17)

T k,n (t) = H k,n (t) -1 H k,n (t) 2 and T k, (t) = H k, (t) -1 H k, (t) 2 .
The 

Related Hopf algebras

In this section, we list some already known Hopf algebras and describe their links with PM k . Next, we provide a method to construct Hopf subalgebras of PM k .

Links with known algebras.

3.1.1. Hopf algebra of colored permutations. Recall that a k-colored permutation is a pair (σ, c) where σ is a permutation of size n and c is a word of length n on the alphabet A k \ {0}.

In [START_REF] Novelli | Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions[END_REF], the authors endowed the vector spaces FQSym (k) spanned by the set of all k-colored permutations with a Hopf algebra structure. The elements F (σ,c) , where the (σ, c) are k-colored permutations, form the fundamental basis of FQSym (k) . These Hopf algebras provide a generalization of FQSym since FQSym = FQSym (1) . Proposition 3.1. The map α k : FQSym (k) → PMN k linearly defined, for any k-colored permutation (σ, c) by

(3.1.1) α k F (σ,c) := F M (σ,c)
where

M (σ,c) is the k-packed matrix satisfying M (σ,c) ij = c j δ i,σj is an injective Hopf morphism.
In particular, Proposition 3.1 shows that PMN 1 contains FQSym. Notice that the map α k is still well-defined on the codomain PML k instead of PMN k .

Hopf algebra of uniform block permutations.

Recall that a uniform block permutation, or a UBP for short, of size n is a bijection π : π d → π c where π d and π c are set partitions of [n], and, for any e ∈ π d , e and π(e) have same cardinality.

For instance, the map π defined by is a UBP of size 6.

In [START_REF] Aguiar | The Hopf algebra of uniform block permutations[END_REF], the authors endowed the vector space UBP spanned by the set of all UBPs with a Hopf algebra structure. The elements F π , where the π are UBPs, form the fundamental basis of UBP. The dimensions of UBP form Sequence A023998 of [Slo] For example, with the UBP π defined in (3.1.2), we have

(3.1.6) β (F π ) = F     0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0     .
Corollary 3.3. The Hopf algebra UBP is a free, cofree, and self-dual Hopf algebra which admits a bidendriform bialgebra structure.

Proof. By Proposition 3.2 and the definition of the product on the fundamental basis of UBP (see [START_REF] Aguiar | The Hopf algebra of uniform block permutations[END_REF]), we can see UBP as a Hopf subalgebra of PMN 1 restricted on the elements F M where the M are 1-packed matrices such that there are UBPs π satisfying M π = M . This shows that UBP inherits from the bidendriform bialgebra structure of PMN 1 (see Theorem 2.9). Now, since UBP admits a bidendriform bialgebra structure, by [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF], it is free, cofree, and self-dual.

By using same arguments as those used in Section 2.1, one can build multiplicative bases of UBP by setting, for any UBP π,

(3.1.7) E M π := M π MM π F M π and H M π := M π M M π F M π .
This gives another way to prove the freeness of UBP by using same arguments as those of Theorem 2.4. Moreover, since for any UBP π, there exists a UBP π -1 such that the transpose of M π is M π -1 , by Proposition 2.5, the map φ : UBP → UBP linearly defined for any UBP π by

(3.1.10) φ (F M π ) := F M π T
is an isomorphism.

Algebra of matrix quasi-symmetric functions.

In [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF] (see also [START_REF] Hivert | Combinatoire des fonctions quasi-symétriques[END_REF]), the authors defined the vector space MQSym spanned by the set of the (not necessarily square) matrices with entries in N, and such that each row and each column contains at least one nonzero entry. In this section, we simply call matrices such sort of matrices. The elements MS M such that M is a matrix form the quasi-multiword basis of MQSym. The degree of a MS M is given by the sum of the entries of M .

This vector space is endowed with an algebra structure where the product of two basis elements is provided by the augmented shuffle ¡. Let M 1 and M 2 be two matrices. Any matrix M of M 1 ¡M 2 is obtained by concatenating N 1 and N 2 where N 1 (resp. N 2 ) is obtained from M 1 (resp. M 2 ) by inserting some null rows and so that N 1 and N 2 have both a same number of rows and each row of M has at least one nonzero entry. For example, (3.1.11)

MS 2 1 0 1 • MS [ 1 3 ] = MS 2 1 0 0 0 1 0 0 0 0 1 3 + MS 2 1 0 0 0 1 1 3 + MS 2 1 0 0 0 0 1 3 0 1 0 0 + MS 2 1 1 3 0 1 0 0 + MS 0 0 1 3 2 1 0 0 0 1 0 0 .
Let us endow the set of matrices indexing MQSym with a binary relation defined in the following way. If M 1 and M 2 are two matrices such that M 1 has n rows and m columns, we have M 1 M 2 if there is an index i ∈ [n -1] such that, denoting by s the number of 0 which end the ith row of M 1 , and by p the number of 0 which start the (i + 1)st row of M 1 , one has s + p m and M 2 is obtained from M 1 by overlaying its ith and (i + 1)st rows (see Figure 3). We now endow the set of matrices that index MQSym with the partial order relation MQ defined as the reflexive and transitive closure of . Figure 4 shows an interval of this partial order. Lemma 3.4. Let A and B be two k-packed matrices. Then, (3.1.12)

{C : C MQ C , C ∈ A * B} = {C ∈ A ¡B : A MQ A , B MQ B } ,
where * is the row shifted shuffle of k-packed matrices and ¡ is the augmented shuffle of matrices. Proof. Let M 1 and M 2 be two 1-packed matrices. By definition of γ, γ(F M1 •F M2 ) is multiplicity-free over the quasi-multiword basis of MQSym. Moreover, since the augmented shuffle is multiplicityfree, γ(F M1 ) • γ(F M2 ) also is. Lemma 3.4 implies that these two elements are equal and then, that γ is an algebra morphism. The injectivity of γ follows by triangularity.

  1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1   1 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1
For instance, one has

(3.1.14) γF   1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1   = MS   1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1   + MS 1 1 1 0 0 1 1 0 0 0 0 1 + MS 1 1 0 0 0 0 1 0 0 1 1 1 + MS 1 1 1 0 0 1 1 1 .
Notice that γ is not a Hopf morphism since it is not a coalgebra morphism. Indeed, we have

(3.1.15) ∆γF 1 1 1 0 = 1 ⊗ MS 1 1 1 0 + MS 1 1 1 0 ⊗ 1, but (3.1.16) (γ ⊗ γ)∆F 1 1 1 0 = 1 ⊗ MS 1 1 1 0 + MS [ 1 1 ] ⊗ MS [ 1 ] + MS 1 1 1 0 ⊗ 1.

Diagram of embeddings. The following diagram summarizes the relations between known

Hopf algebras related to PM k and, more specifically, to its simple gradations PMN k and PML k . Plain arrows are Hopf algebra morphisms and the dotted arrow is an algebra morphism. The Hopf algebra ASM is the subject of Section 4. The starting point of these constructions is to define a congruence ≡ on the free monoid A * where A is a totally ordered infinite alphabet. Then, when ≡ satisfies some properties [START_REF] Hivert | Dual graded graphs in combinatorial Hopf algebras[END_REF][START_REF] Giraudo | Combinatoire algébrique des arbres[END_REF], the elements (3.2.1)

PMN k PML k PMN 2 PML 2 PMN 1 PML 1 FQSym (k) FQSym (2) FQSym UBP ASM PML 1 MQSym β α 1 α 1 α 2 α 2 α k α k γ (3.1.17
P [σ]≡ := σ∈[σ]≡ F σ
span a Hopf subalgebra of FQSym indexed by the ≡-equivalence classes restricted to permutations. We shall show in this section that an analogous construction works to construct Hopf subalgebras of PM k . 

The monoid of words of columns. Let C *

k be the free monoid generated by the set C k of all n × 1-matrices with entries in A k , for all n 1. In other words, the elements of C * k are words whose letters are columns and its product • is the concatenation of such words. When all the letters of an element M ∈ C * k have, as columns, a same number of rows, M is a matrix and we shall denote it as such in the sequel.

The alphabet C k is naturally equipped with the total order where, for any c 1 , c 2 ∈ C k , c 1 c 2 if and only if the bottom to top reading of the column c 1 is lexicographically smaller than the bottom to top reading of c 2 . For instance, (3.2.5)

1 0 0 0 0 1 ,    0 0 1 0 1      0 0 1 1   , 1 0   0 1 1 0   , 2 1 0 1 2 0 .
Since C k is then totally ordered and C * k is a free monoid, one can consider the previous two congruences on C * k instead on A * . For instance, Figure 6 represents a ≡ S -equivalence class and a ≡ P -equivalence class of packed matrices.

The order relation

on C k is compatible with the shifted shuffle of packed matrices in the following sense. Let M 1 and M 2 be two nonempty packed matrices and M be a matrix appearing

in M 1 ¢ M 2 . Then, if c 1 (resp. c 2 ) is a column of M coming from M 1 (resp. M 2 ), we necessarily have c 1 c 2 and c 1 = c 2 .
The obvious analogous property holds for words of A * and the shifted shuffle of words. Besides, we say that ≡ is compatible with the restriction to alphabet intervals if for any interval

Properties of equivalence relations. An equivalence relation

≡ on C * k is a monoid congruence if for all u, v, u , v ∈ C * k , (3.2.6) u ≡ u and v ≡ v imply u • v ≡ u • v .    1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0       1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0       1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0       1 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 1 0       1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0       1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0    (a) A sylvester equivalence class.    1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0       1 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 1 0       1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0       1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0       1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0    (b) A plactic equivalence class.
I of C k and for all u, v ∈ C * k , (3.2.7) u ≡ v implies u |I ≡ v |I ,
where u |I denotes the word obtained by erasing in u the letters that are not in I.

Finally, we say that ≡ is compatible with the decompression process if for all u, v ∈ C * k such that u and v are matrices,

(3.2.8) u ≡ v if and only if cp(u) ≡ cp(v) and ev(u) = ev(v),
where ev(u) denotes the commutative image of u.

Construction of Hopf subalgebras.

Given an equivalence relation ≡ on the words of C * k and a ≡-equivalence class [M ] ≡ of packed matrices of C * k , we consider the elements (3.2.9)

P [M ]≡ := M ∈[M ]≡ F M of PM k .
One has for instance

(3.2.10) P     1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0     ≡ P = F   1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0   + F   1 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 1 0   + F   1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0   + F   1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0   + F   1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0   .
In particular, if ≡ is compatible with the decompression process, any ≡-equivalence class of a packed matrix only contains packed matrices. The family P [M ]≡ , where the [M ] ≡ are ≡-equivalence classes of packed matrices, forms then a basis of a vector subspace of PM k denoted by PM k ≡ .

Theorem 3.6. Let ≡ be an equivalence relation on the words of C * k such that ≡ (1) is a monoid congruence on C * k ;

(2) is compatible with the restriction to alphabet intervals;

(3) is compatible with the decompression process.

Then, PM k

≡ is a Hopf subalgebra of PM k .

Proof. Let us show that the product is well-defined on PM k ≡ . Let [M 1 ] ≡ and [M 2 ] ≡ be two ≡equivalence classes of k-packed matrices. We have (3.2.11)

P [M1]≡ • P [M2]≡ = M1∈[M1]≡ M2∈[M2]≡ M ∈M1¢M2 F M .
Let M be a k-packed matrix such that F M appears in (3.2.11) and M be a k-packed matrix such that M ≡ M . Then, there is a pair of k-packed

matrices (M 1 , M ) such that M 1 ∈ [M 1 ] ≡ , M 2 ∈ [M 2 ] ≡ , and M ∈ M 1 ¢ M 2 .
By definition of the shifted shuffle, this pair is unique. Let m 1 (resp. m 2 ) be the size of M 1 (resp. M 2 ). Let c 1 (resp. d 1 ) be the smallest (resp. greatest) column of M 1 • m 2 and c 2 (resp. d 2 ) be the smallest (resp. greatest) column of m 1 • M 2 . Then, since all columns of M 1 • m 2 are strictly smaller than the ones of

m 1 • M 2 , the intervals [c 1 , d 1 ] and [c 2 , d 2 ] are disjoint. By (2), M ≡ M implies M |[c1,d1] ≡ M |[c1,d1] and M |[c2,d2] ≡ M |[c2,d2] . Moreover, by (3) 
and by definition of •, we have (3.2.12)

M 1 = cp M |[c1,d1] ≡ cp M |[c1,d1] =: M 1 and (3.2.13) M 2 = cp M |[c2,d2] ≡ cp M |[c2,d2] =: M 2 .
Thus, we have M ∈ M 1 ¢ M 2 , showing that F M also appears in (3.2.11) and that the product is well-defined on PM k ≡ .

Let us now show that the coproduct is well-defined on PM k ≡ . Let [M ] ≡ be a ≡-equivalence class of k-packed matrices. We have

(3.2.14) ∆ P [M ]≡ = M ∈[M ]≡ M =L•R F cp(L) ⊗ F cp(R) .
Let M 1 and M 2 be two k-packed matrices such that F M1 ⊗ F M2 appears in (3.2.14) and M 1 and M 2 two k-packed matrices such that

M 1 ≡ M 1 and M 2 ≡ M 2 . Then, there is a k-packed matrix M ∈ [M ] ≡ such that M = L • R, cp(L) = M 1 , and cp(R) = M 2 . By (3), M 1 (resp. M 2 ) is a permutation of M 1 (resp. M 2 )
. Thus, there exist two elements L and R of C * k that are respectively permutations of L and R which satisfy cp(L ) = M 1 and cp(R ) = M 2 . Again by (3), we have L ≡ L and R ≡ R. Now, by (1),

(3.2.15) M = L • R ≡ L • R =: M .
Hence, M ≡ M and F M 1 ⊗ F M 2 also appears in (3.2.14).

We have shown that the product and the coproduct of PM k are still well-defined on PM k ≡ . Hence, PM k ≡ is a Hopf subalgebra of PM k .

We say that an equivalence relation ≡ on C * k is a good congruence if it satisfies (1), (2) and (3) of Theorem 3.6. Let ≡ be a good congruence. Note that since ≡ is compatible with the decompression process, any matrix contained in a ≡-equivalence class [M ] ≡ is obtained by switching columns of M . Then, any ≡-equivalence class [M ] ≡ of k-packed matrices only contains matrices whose size and number of nonzero entries are the same as in M . Hence, Theorem 3.6 also implies that the family (3.2.9) forms a basis of Hopf subalgebras of both PMN k and PML k . We respectively denote these by PMN k ≡ and PML k ≡ .

Computer experiments.

Let us recall here the definitions of some well-known good congruences.

The Baxter congruence (see [START_REF] Giraudo | Algebraic and combinatorial structures on pairs of twin binary trees[END_REF]), denoted by ≡ Bx , is the reflexive and transitive closure of the Baxter adjacency relation ←→ Bx defined for u, v ∈ A * and a, b, c, d ∈ A by

c u ad v b ←→ Bx c u da v b where a b < c d, (3.2.16a) b u da v c ←→ Bx b u ad v c where a < b c < d. (3.2.16b)
The Bell congruence (see [START_REF] Rey | Algebraic constructions on set partitions[END_REF]), denoted by ≡ Bl , is the reflexive and transitive closure of the Bell adjacency relation ←→ Bl defined for u ∈ A * and a, b, c ∈ A by (3.2.17 The total congruence equivalence relation, denoted by ≡ T , is the reflexive and transitive closure of the total adjacency relation ←→ T defined by u ≡ T v for any u, v ∈ A * such that ev(u) = ev(v). By Theorem 3.6, all these congruences lead to bigraded Hopf subalgebras of PM k . Table 2 shows first few dimensions of the Hopf subalgebras of PMN 1 and PML 1 obtained from these congruences, computed by computer exploration.

Alternating sign matrices

Recall that an alternating sign matrix [START_REF] Mills | Alternating sign matrices and descending plane partitions[END_REF], or an ASM for short, of size n is a square matrix of order n with entries in the alphabet {0, +, } such that every row and column starts and ends by + and in every row and column, the + and the alternate. For instance, 

M δ ij := 1 if δ ij ∈ {+, }, 0 otherwise. 
For instance, with the ASM δ defined above, we obtain (4.1.2)

M δ =    0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 1 0 0    .
It is immediate that M δ is a 1-packed matrix of the same size than δ. Besides, observe that since the + and the alternate in an ASM, by starting from a 1-packed matrix M , there is at most one ASM δ such that M δ = M .

Let ASM be the vector space spanned by the set of all ASMs. For any ASM δ, let us denote by F δ the element F M δ . Due to the above observation, the family F δ , where δ are ASMs, spans ASM. Moreover, since the map F δ → F M δ is an injective morphism from ASM to PM 1 , this family forms a basis.

The product and the coproduct of PM 1 induce the product and the coproduct of ASM. For example, we have (4.1.3)

F 0 + 0 + + 0 + 0 • F [ + ] = F   0 + 0 0 + + 0 0 + 0 0 0 0 0 +   + F   0 + 0 0 + 0 + 0 + 0 0 0 0 + 0   + F   0 0 + 0 + 0 + 0 0 + 0 0 + 0 0   + F   0 0 + 0 0 + + 0 0 + 0 + 0 0 0   , and (4.1.4) ∆F   0 + 0 0 0 0 0 + + + 0 0 + 0 0   = F ∅ ⊗ F   0 + 0 0 0 0 0 + + + 0 0 + 0 0   + F 0 + 0 + + 0 + 0 ⊗ F [ + ] + F   0 + 0 0 0 0 0 + + + 0 0 + 0 0   ⊗ F ∅ .
Theorem 4.1. The vector space ASM, endowed with the product and coproduct of PM 1 , forms a free, cofree, and self-dual bigraded Hopf algebra which admits a bidendriform bialgebra structure.

Proof. Let δ 1 and δ 2 be two ASMs of respective sizes n 1 and n 2 and let M ∈ M δ1 ¢ M δ2 . Let us denote by M 1 (resp. M 2 ) the matrix consisting in the first n 1 (resp. last n 2 ) rows of M . By construction, M 1 contains columns coming from δ 1 and some null columns. The relative order of columns of M δ1 is the same as in M 1 , i.e., the ith column of M δ1 is the ith nonzero column of M 1 . Hence, the rows of M 1 start and end with + and then + and alternate. Similarly, the same property is satisfied in M 2 . Furthermore, the nonzero column of M 1 are followed by null columns of M 2 and the nonzero column of M 2 are preceded by null columns of M 1 . Hence, the columns of M start and end with + and + and alternate. Thus M is an ASM so that ASM is stable for the product of PM 1 .

Let δ be an ASM and L • R be a column decomposition of M δ . By Lemma 1.1, a column decomposition never splits a matrix by separating two nonzero entries on a same row. Then, the nonzero rows of L and R start and end with + and + and alternate. Thus, cp(L) and cp(R) are ASMs and ASM is stable for the coproduct of PM 1 . This shows that ASM is a Hopf subalgebra of PM 1 and also that ASM inherits from the bidendriform bialgebra structure of PM 1 (see Theorem 2.9). Finally, since ASM admits a bidendriform bialgebra structure, by [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF], it is free, cofree, and self-dual.

From now, we shall see ASM as a simply graded Hopf algebra so that the degree of any F δ , where δ is an ASM, is the size of δ. The dimensions of ASM form Sequence A005130 of [Slo] Moreover, since the transpose of an ASM is also an ASM, by Proposition 2.5, the map φ : ASM → ASM linearly defined for any ASM δ by (4.1.9) φ (F δ ) := F δ T is an isomorphism.

4.2. Alternating sign matrices statistics. We recall here the definitions of some statistics on ASMs. Their description passes through six-vertex configurations and osculating paths, combinatorial objects in bijection with ASMs.

The statistics discussed in this article have been already exploited in the literature. For instance, in [START_REF] Elkies | Alternating-sign matrices and domino tilings[END_REF], the authors focused on these statistics to understand the relationship between domino tilings of Aztec diamonds and ASMs. 4.2.1. Six-vertex configurations. A six-vertex configuration (see for example [START_REF] Bressoud | Proofs and Confirmations, The Story of the Alternating Sign Matrix Conjecture[END_REF][START_REF] Baxter | Exactly Solved Models in Statistical Mechanics (Dover Books on Physics)[END_REF] for further information and references) of size n is a n × n square grid with oriented edges so that each vertex has two incoming and two outcoming edges. There are six possible configurations for each vertex. We consider here the six-vertex model with domain wall boundary conditions [START_REF] Korepin | Calculation of norms of Bethe wave functions[END_REF] i.e., all horizontal (resp. vertical) edges on the boundary of this model are oriented inwardly (resp. outwardly) (see Figure 8(c)).

The bijection [START_REF] Kuperberg | Another proof of the alternating-sign matrix conjecture[END_REF] between ASMs of size n and six-vertex configurations of the same size consists in replacing each vertex configuration by 0, +, or according to the rules described in entry of δ by the corresponding vertex configuration (see the last two configurations of Figure 7). Then, for each zero entry of δ, we look at the sum (resp. a) of the entries to the left (resp. above) of it and in the same row (resp. column). By the alternating property of the ASMs, and a belong to {0, 1}. Now, set in δ the configuration (resp.

) if = 1 (resp. = 0) together with the configuration (resp. ) if a = 1 (resp. a = 0). Figures 8(a) and 8(c) form an example.

Statistics on six-vertex configurations and ASMs.

Let us denote by ne(δ) (resp. sw(δ), se(δ), nw(δ), oi(δ), io(δ)) the number of vertices ne (resp. sw, se, nw, oi, io) in the six-vertex configuration in bijection with the ASM δ. Let Z := {se, nw, sw, ne} be the set of the statistics counting the four configurations of 0 and N := {io, oi} be the set of the statistics counting the two nonzero configurations. 4.2.3. Sets of osculating paths. These statistics share some symmetries that are naturally interpreted on sets of osculating paths (see [START_REF] Bousquet-Mélou | Sur les matrices à signes alternants[END_REF][START_REF] Behrend | Osculating paths and oscillating tableaux[END_REF]). Let Π be a n × n square of lattice points with rows (resp. columns) labelled from 1 to n from top to bottom (resp. from left to right). A lattice path on Π is a sequence (v 0 , v 1 , . . . , v r ) of vertices of Π such that v i -v i-1 ∈ {(1, 0), (0, -1)} for all i ∈ [r]. A set of osculating paths on Π is a set of lattice paths on Π in which different paths do not cross each other but can share some vertices.

We can associate a set of osculating paths with any six-vertex configuration according to the rules described in Figure 9. Domain boundary conditions ensure that each path starts at (i, 1) and ends at (1, j) for some i and j. Figures 8(c) and 8(d) form an example.      0 0 + 0 0 0 + 0 0 0 0 0 0 0 0 0 + 0 0 + 0 0 + 0 0 0 + 0 0 0 0 0 0 + 0 Figures 8(a) and 8(b) form an example. We associate with any ASM δ of size n the set of osculating paths described as follows. By regarding δ as a (n + 1) × (n + 1) square of lattice points, we draw on it the south and the east boundaries of the areas consisting in a same value greater than zero. This produces a set of n osculating paths. Figures 8(b) and 8(d) form an example. Since the steps of the paths in the first row (resp. column) are, by construction, always vertical (resp. horizontal), this set of osculating paths can be seen without loss of information on the n × n square of lattice points.

     (a) An ASM δ.     6 5 4 3 2 1 5 4 3 3 2 1 4 4 3 3 2 1 3 3 2 2 1 1 2 2 2 2 1 0 1 1 1 1 1 0     ( 
The different 2 × 2 submatrices configurations in a corner sum matrix of an ASM are exactly

2 + a 1 + a 1 + a a , a a a a , 1 + a a 1 + a a , 1 + a 1 + a a a , 1 + a a a a , 1 + a 1 + a 1 + a a . (4.2.2)
They obviously describe the correspondence given in Figure 9.

Proof. Let us prove the statement of nw statistic; the three other cases are analogous. Let δ 1 and δ 2 be two ASMs of respective sizes n 1 and n 2 . Lemma 4.5 implies

φ nw (F δ1 • F δ2 ) = q nw(δ1)+nw(δ2) [n 1 + n 2 ] q ! {k1,...,kn 2 }⊂{1,...,n1+n2} q (k1-1)+•••+(kn 2 -n2) = q nw(δ1)+nw(δ2) [n 1 + n 2 ] q ! n1+n2 n1,n2 q = φ nw (F δ1 ) • φ nw (F δ2 ).
By similar arguments, all previous results remain valid in the dual ASM of ASM. Hence, Proposition 4.7. The maps ψ s : ASM → K(q) and ψ t : ASM → K(q) linearly defined, for any s ∈ N, t ∈ Z, and any ASM δ of size n by

(4.3.10) ψ s (F δ ) := q s(δ) n! and ψ t (F δ ) := q t(δ)
[n] q ! are algebra morphisms.

Here is the product (4.1.3) in ASM , seen on six-vertex configurations, where the vertices represented by squares are of kind io while those represented by circles are of kind nw. Besides, the ideal I io contains the commutators. Indeed, let δ 1 and δ 2 be two ASMs. Since the products F δ1 • F δ2 and F δ2 • F δ1 have the same number of terms, Lemma 4.3 implies that F δ1 • F δ2 -F δ2 • F δ1 is in I io . Thus, ASM/ Iio is commutative as an algebra.

(4.3.11) F • • F = F • • • • + F • • • + F • • + F • . 4.
Note however that ASM/ Iio does not inherit the structure of a coalgebra of ASM because even if Proof. Let δ be an ASM of size n with a maximal number of io configurations (i.e., a maximal number of ). Then, it is easy to see that

(4.3.16) io(δ) = n 2 -1 i=0 i + n-1 2 i=1 i.
Indeed, the first and last row of an ASM can contain only one + and no . Let i 2 and let A i-1 be the matrix consisting in the first i -1 rows of A. The s in row i can only be in those columns for which the corresponding column sum of the submatrix A i-1 is 1. Since the row sums of A i-1 are 1 and the column sums of A i-1 are 0 or 1, exactly i -1 of the column sums of A i-1 are 1. We conclude that there are at most (i -1) s in row i. The same argument applies to the column sums taken from bottom to top. Hence, the rows i and n -i + 1 are at most (i -1) s. If n is odd, then the row (n + 1)/2 has only nonzero entries, alternating between + and , and the row (n + 1)/2 has n 2 s. Now, since for any 0 k io(δ), there exists an ASM δ such that io(δ ) = k, we obtain, by a simple computation, the statement of the proposition.

The dimensions of ASM/ Iio form Sequence A033638 of [Slo] and the first few terms are (4.3.17) 1, 1, 1, 2, 3, 5, 7, 10, 13, 17, 21.

A basic argument on generating series implies that these dimensions cannot be the ones of a free commutative algebra and hence, ASM/ Iio is not free as a commutative algebra.

Using the symmetry between the statistics io and oi provided by Proposition 4.2, we immediately have ∼ oi =∼ io and then, ASM/ Ioi = ASM/ Iio . Proof. The subspace I nw of ASM is a two-sided ideal of ASM. Indeed, let δ, δ 1 and δ 2 be three ASMs of respective sizes n, n 1 and n 2 such that δ 1 ∼ nw δ 2 . Lemma 4.5 implies that the number of nw configurations of an ASM δ such that F δ appears in F δ • F δ1 (resp. F δ • F δ2 ) depends only on the number of nw configurations in δ and δ 1 (resp. δ 2 ) and a subset of [n + n 1 ] (resp. [n + n 2 ]) of size n 1 (resp. n 2 ) corresponding to the positions in δ of the columns coming from δ 1 (resp. δ 2 ).

Since δ 1 ∼ nw δ 2 , the product F δ • (F δ1 -F δ2 ) is in I nw . Similarly (F δ1 -F δ2 ) • F δ also is in I nw . Hence, ASM/ Inw is an algebra.

The ideal I nw contains the commutators. Indeed, let δ 1 and δ 2 be two ASMs of respective sizes n 1 and n 2 . The symmetry of q-binomial coefficients implies that there are as many subsets S 1,2 of [n 1 + n 2 ] of size n 2 as subset S 2,1 of [n 1 + n 2 ] of size n 1 such that the sum of elements of S 1,2 is equal to the sum of elements of S 2,1 . Lemma 4.3 implies that F δ1 • F δ2 -F δ2 • F δ1 is in I nw . Thus, ASM/ Inw is commutative as an algebra.

Note however that ASM/ Inw does not inherit the structure of a coalgebra of ASM because even if Proof. Let us first show that there are at least n 2 + 1 ∼ nw -equivalence classes of ASMs of size n by considering a process that associates with a permutation matrix M 1 of size n a permutation matrix M 2 such that nw(M 2 ) = nw(M 1 ) + 1. If M 1 is not the permutation matrix I n of the identity, there is a greatest integer k 0 such that M 1 = I k M 1 and M 1 is not empty. Consider now the matrix M 2 := I k M 2 where M 2 is the matrix obtained by swapping the (i-1)st and the ith columns of M 1 so that i is the index of the column of M 1 containing its uppermost 1. Starting with the matrix M 1 of size n of the form 1 • • • 1, we can iteratively apply the previous process n 2 times. Since each iteration obviously increases by one the number of nw configurations, all the n 2 + 1 permutation matrices are in different ∼ nw -equivalence classes.

Let us then show that there are no more than n 2 + 1 ∼ nw -equivalence classes of ASMs of size n. Each entry of an ASM δ of size n gives rise to a configuration among the six possible. Then, (4.3.20) n 2 = nw(δ) + ne(δ) + sw(δ) + nw(δ) + io(δ) + oi(δ). A basic argument on generating series implies that these dimensions cannot be the ones of a free commutative algebra and hence, ASM/ Inw is not free as a commutative algebra.

Using the symmetry between the statistics nw and se provided by Proposition 4.2, we immediately have ∼ se =∼ nw and then, ASM/ Ise = ASM/ Inw . Moreover, by using the same arguments as before, ASM/ Isw and ASM/ Ine are the same commutative algebras.

  3. 1. Packed matrices 1.1. Definitions. Let k 1 be an integer. We denote by M k,n, the set of n × n matrices with exactly nonzero entries in the alphabet A k := {0, 1, . . . , k} and by N r (M ) (resp. N c (M )) the set of the indices of the zero rows (resp. columns) of M ∈ M k,n, . For example, consider the matrix (

  Number of 2-packed matrices.

Lemma 2. 1 .Figure 1 .

 11 Figure1. The condition for swapping the ith and (i + 1)st columns of a packed matrix according to the relation →. The darker regions contain any entries and the white ones, only zeros.

  By definition of the order M , M can be obtained from A B by swapping columns coming from A to obtain a matrix A satisfying A M A , by swapping columns coming from B to obtain a matrix B satisfying B M B , and then, by swapping columns coming from A and from B together. Thereby, M ∈ A ¢ B . Conversely assume that A M A , B M B , and M ∈ A ¢ B . Then, by definition of the shifted shuffle product and the over operator, A B M M . This implies A B M M . By very similar arguments, (2) is established. 2.1.2. Multiplicative bases. By mimicking definitions of the bases of symmetric functions, for any kpacked matrix M , the elementary elements E M and the homogeneous elements H M are respectively defined by (2.1.1)

  (3.1.2) π({1, 4, 5}) := {2, 5, 6}, π({2}) := {1}, and π({3, 6}) := {3, 4}

Figure 3 .

 3 Figure3. The condition for overlaying the ith and (i + 1)st rows of a (not necessarily square) packed matrix according to the relation . The darker regions contain any entries and the white ones, only zeros.

Figure 4 .

 4 Figure 4. The Hasse diagram of an interval for the order MQ on (not necessarily square) packed matrices.
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 2 Equivalence relations and Hopf subalgebras. Several Hopf algebras can be constructed as Hopf subalgebras of the Malvenuto-Reutenauer Hopf algebra FQSym [MR95, DHT02]. The main examples are the Hopf algebra PBT based on planar binary trees, first defined by Loday and Ronco [LR98] and reconstructed by Hivert, Novelli, and Thibon [HNT05], and FSym based on standard Young tableaux, first discovered by Poirier and Reutenauer [PR95] and reconstructed by Duchamp, Hivert, and Thibon [DHT02].

3.2. 1 .Figure 5 .

 15 Figure 5. The sylvester equivalence class of the permutation 15423. Edges represent sylvester adjacency relations.

Figure 6 .

 6 Figure 6. Two equivalence classes of packed matrices.

  ) ac u b ←→ Bl ca u b where a b < c and for all d ∈ u, d c. The hypoplactic congruence (see [KT97, KT99]), denoted by ≡ H , is the reflexive and transitive closure of the hypoplactic adjacency relation ←→ H defined for u ∈ A * and a, b, c ∈ A by ac u b ←→ H ca u b where a b < c, (3.2.18a) b u ca ←→ H b u ac where a < b c. (3.2.18b)

  an ASM of size 5.

4. 1 .

 1 Hopf algebra structure. Let δ be an ASM. We denote by M δ the matrix satisfying (4.1.1)

Figure 7 .Figure 7 .

 77 Figure 7. Correspondence between vertices of six-vertex configurations and entries of ASMs.

  b) The corner sum matrix in bijection with δ. (c) The six-vertex configuration in bijection with δ. (d) The set of osculating paths in bijection with δ.

Figure 8 .Figure 9 .

 89 Figure 8. Four objects in correspondence: ASMs, six-vertex configurations, corner sum matrices, and sets of osculating paths.

⊗

  F [ + ] + x ⊗ 1 is not in ASM ⊗ I io + I io ⊗ ASM. Hence, I io is not a coideal.Proposition 4.9. The dimension A io n of the nth graded component of ASM/ Iio is n 2 4 + 1.
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 4 The algebra ASM/ Inw . Let us now study the statistic nw ∈ Z.Proposition 4.10. The quotient ASM/ Inw is a commutative algebra.

⊗

  of I nw , the element(4.3.19) ∆(x) = 1 ⊗ x + F [ + ] ⊗ F 0 F [ + ] + x ⊗ 1 is not in ASM ⊗ I nw + I nw ⊗ ASM.Hence, I nw is not a coideal. Proposition 4.11. The dimension A nw n of the nth graded component of ASM/ Inw is n 2 + 1.

Table 1 .

 1 The number of k-packed matrices of size n (vertical values) with exactly nonzero entries (horizontal values).

	0 1 2 3 4	5	6	7	8	9
	0 1					
	1	2				
	2	8 32 16				
	3	48 720 2880 4992 4608 2304 512

Hopf algebra structure. In the

  

		sequel, all the algebraic structures have a field K of charac-
	teristic zero as ground field.	
	Let for any k 1	
	(1.3.1)	PM k :=
		n 0	0

and the first few dimensions of PML 1 and PML 2 are given

  

				3,		
	(1.3.10)		PM 1 → PM 2 → • • •	
	is an increasing infinite sequence of Hopf algebras for inclusion. The first few dimensions of PM 1
	and PM 2 are given by Table 1.			
	Let us now set				
	(1.3.11)	PMN k :=	Vect (P k,n,-)	and	PML k :=	Vect (P k,-, )
		n 0			0	
	the vector spaces of k-packed matrices respectively graded by the size and by the number of nonzero
	entries of matrices. By Theorem 1.3, and since each homogeneous component of these vector spaces
	is finite-dimensional (see Section 1.2), PMN k and PML k are Hopf algebras. Besides,
	(1.3.12)	PMN 1 → PMN 2 → • • •	and	PML 1 → PML 2 → • • •
	are increasing infinite sequences of Hopf algebras for inclusion. The first few dimensions of PMN 1
	and PMN 2 are given by (1.2.8) and (1.2.9),			

by (1.2.12) and (1.2.13). In the sequel, we shall denote by H k,n (t) (resp. H k, (t) the Hilbert series of PMN k (resp. PML k ).

  Dual Hopf algebra. Let us denote by PM k the bigraded dual vector space of PM k , by F M , where the M are k-packed matrices, the adjoint basis of the fundamental basis of PM k , and by -, -the associated duality bracket.Let M 1 and M 2 be two k-packed matrices of respective sizes n 1 and n 2 . By duality, the product in PM k satisfies

	(2.1.11)	0, 1, 6, 252, 40944, 24912120, 57316485000
	and	
	(2.1.12)	0, 2, 52, 15848, 39089872, 813573857696, 147659027604370240.
	The first few numbers of algebraic generators of PML 1 and PML 2 are respectively
	(2.1.13)	0, 1, 1, 7, 51, 497, 5865, 81305, 1293333
	and	
	(2.1.14)	0, 2, 4, 56, 816, 15904, 375360, 10407040, 331093248.
	2.2. Self-duality.
	2.2.1. (2.2.1)	

first few numbers of algebraic generators of PMN 1 and PMN 2 are respectively

  first few dimensions of totally primitive elements of PMN 1 and PMN 2 are respectively

	(2.3.18)	0, 1, 5, 240, 40404, 24827208, 57266105928
	and	
	(2.3.19)	0, 2, 48, 15640, 39023776, 813415850016, 147655768992433664.
	The first few dimensions of totally primitive elements of PML 1 and PML 2 are respectively
	(2.3.20)	0, 1, 0, 5, 36, 381, 4720, 67867, 1109434
	and	
	(2.3.21)	0, 2, 0, 40, 576, 12192, 302080, 8686976, 284015104.

  Hence, UBP is freely generated by the elements E M π (resp. H M π ) where the π are UBPs such that the M π are connected (resp. anti-connected) 1-packed matrices. The first few numbers of algebraic generators of UBP are

	and the first few dimensions of totally primitive elements are
	(3.1.9)	0, 1, 1, 7, 72, 962, 16135, 330624, 8117752, 235133003, 7929041828.
	(3.1.8)	0, 1, 2, 11, 98, 1202, 19052, 375692, 8981392, 255253291, 8488918198

Table 2 .

 2 First few dimensions of the Hopf subalgebras PMN 1 ≡ and PML 1 ≡ , where ≡ is successively the Baxter, Bell, sylvester, plactic, hypoplactic, and total congruence.

	Hopf algebra		First dimensions
	PMN 1	≡ Bx	1 1 7 265 38051
	PMN 1	≡ Bl	1 1 7 221 25789
	PMN 1	≡ S	1 1 7 221 24243
	PMN 1	≡ P	1 1 7 177 17339
	PMN 1	≡ H	1 1 7 177 13887
	PMN 1	≡ T	1 1 4 57 2306
	PML 1	≡ Bx	1 1 2 10 68	578 5782 65745
	PML 1	≡ Bl	1 1 2 9	53	390 3389 33881
	PML 1	≡ S	1 1 2 9	52	364 2918 26138
	PML 1	≡ P	1 1 2 8	41	266 1976 16569
	PML 1	≡ H	1 1 2 8	39	220 1396 9716
	PML 1	≡ T	1 1 1 3	11	43 191 939

  This gives another way to prove the freeness of ASM by using same arguments as those of Theorem 2.4. Hence, ASM is freely generated by the elements E δ (resp. H δ ) where the δ are ASMs such that the M δ are connected (resp. anti-connected) 1-packed matrices. The first few numbers of algebraic generators of ASM are

						and
	the first few terms are				
	(4.1.5)	1, 1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, 129534272700.
	By using same arguments as those used in Section 2.1, one can build multiplicative bases of ASM
	by setting, for any ASM δ,				
	(4.1.6)	E δ :=	F δ	and	H δ :=	F δ .
		M δ MM δ			M δ M M δ	
	(4.1.7)	0, 1, 1, 4, 29, 343, 6536, 202890, 10403135, 889855638, 127697994191
	and the first few dimensions of totally primitive elements are	
	(4.1.8)	0, 1, 0, 2, 20, 277, 5776, 188900, 9980698, 868571406, 125895356788.

  Iio . Let us first study the statistic io ∈ N. The subspace I io of ASM is a two-sided ideal of ASM. Indeed, let δ, δ 1 , and δ 2 be three ASMs such that δ 1 ∼ io δ 2 . Since the products F δ • F δi and F δi • F δ for i ∈ {1, 2} have the same number of terms, Lemma 4.3 implies that the products F δ • (F δ1 -F δ2 ) and (F δ1 -F δ2 ) • F δ are in I io . Hence, ASM/ Iio is an algebra.

	Proposition 4.8. The quotient ASM/ Iio is a commutative algebra.
	Proof.

3.2. Equivalence relations on ASMs and associated subspaces of ASM. Let S ⊆ Z ∪ N be a set of statistics and ∼ S be the equivalence relation on the set of ASMs defined, for any ASMs δ 1 and δ 2 of the same size, by (4.3.12) δ 1 ∼ S δ 2 if and only if s (δ 1 ) = s (δ 2 ) for all s ∈ S.

We denote by I S the associated vector space spanned by (4.3.13) {F δ1 -F δ2 , δ 1 ∼ S δ 2 } .

4.3.3. The algebra ASM/

  Inw form Sequence A152947 of[Slo] and the first few terms are

	By using the symmetries provided by Proposition 4.2, (4.3.20) becomes
	(4.3.21)	n 2 = 2 sw(δ) + 2 nw(δ) + 2 io(δ) + n
	and we deduce that nw(δ) n 2 -n 2	= n 2 .
	The dimensions of ASM/ (4.3.22)	1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56.

Symmetries between ASMs statistics.

Proposition 4.2. Let δ be an ASM of size n. Then, (4.2.3) se(δ) = nw(δ), ne(δ) = sw(δ), oi(δ) = io(δ) + n.

Proof. Consider the set of osculating paths P associated with δ and the correspondence between the vertices of six-vertex configurations and osculating paths (see Figure 9). The first identity of (4.2.3) is equivalent to say that there are in P as many horizontal steps as vertical steps. Since in P , any osculating path connects the ith vertex of the first column with the ith vertex of the first row of the grid, for any i ∈ [n], this property holds. Whence the first identity. Consider now the ASM δ where, for any i ∈ [n], the ith row of δ is the (n -i + 1)st row of δ. Then, in the six-vertex configuration in bijection with δ , all ne (resp. sw) configurations come from se (resp. nw) configurations of the six-vertex configuration in bijection with δ. Then, the second identity follows from the first one.

The last identity follows immediately from the fact that any row and column of δ starts and ends by +, and the + and the alternate. 4.3. Algebraic interpretation of some statistics. We provide algebraic interpretations of the statistics on ASMs recalled in the previous section by using the Hopf algebra ASM. To be more precise, we study the algebraic quotients of ASM by equivalence relations defined via ASMs statistics. 4.3.1. Maps from ASM to q-rational functions. Let us recall the following notations in the algebra K(q) of q-rational functions:

Lemma 4.3. Let δ, δ 1 , and δ 2 be three ASMs such that M δ ∈ M δ1 ¢ M δ2 . Then, for any s ∈ N,

Proof. The two statistics oi and io of N, respectively count the number of entries + and in ASMs. This result follows from the fact that the shifted shuffle of packed matrices does not add nor remove nonzero entries and the fact that any nonzero entry encoding a + (resp. ) in the operands M δ1 and M δ2 gives rise to a + (resp. ) in M δ .

Here is the product (4.1.3) in ASM, seen on six-vertex configurations, where boldfaced vertices are of kind io.

(4.3.5)

Proposition 4.4. The map φ s : ASM → K(q) linearly defined, for any s ∈ N and any ASM δ of size n by

is an algebra morphism.

Proof. This result follows immediately from Lemma 4.3 and the fact that the product of two matrices of sizes n 1 and n 2 in ASM over the fundamental basis contains n1+n2 n1 terms.

Lemma 4.5. Let δ, δ 1 , and δ 2 be three ASMs such that M δ ∈ M δ1 ¢ M δ2 . Let m be the size of δ 2 (resp. δ 1 ) and 

Proof. Let us prove the statement for the nw statistic. Let us denote by n 1 the size of δ 1 and by M 1 (resp. M 2 ) the first n 1 (resp. the last m) rows of δ.

Notice that the zero columns of M 2 have no nw configuration and that the nw configurations lying in the nonzero columns of M 1 (resp. M 2 ) are those of δ 1 (resp. δ 2 ). It remains to count, for all j ∈ [m], the number of nw configurations in the k j th column of M 1 . Observe that the sums of the entries above any zero of the k j th column are 0. Besides, there are exactly k j -j zeros in the k j th column such that the sums of the entries to their left are 1. These zeros are, by definition, nw configurations, whence (4.3.7). This is also valid for the statistic sw since the symmetry consisting in swapping the ith and (n -i + 1)st row of ASMs of size n exchanges the nw configurations into sw configurations. By Proposition 4.2, this also proves the statement of the se and ne statistics.

Here is the product (4.1.3) in ASM, seen on six-vertex configurations, where boldfaced vertices are of kind nw.

Proposition 4.6. The map φ s : ASM → K(q) linearly defined, for any s ∈ Z and any ASM δ of size n by (4.3.9) φ s (F δ ) := q s(δ)

[n] q ! is an algebra morphism.

Note that the map θ : ASM/ Inw → ASM/ Isw linearly defined for any ASM δ by (4.3.23) θ(π nw (F δ )) := π sw F← - δ , where π nw (resp. π sw ) is the canonical projection from ASM to ASM/ Inw (resp. ASM/ Isw ) and ←δ is the ASM where, for any i ∈ [n], the ith column of ←δ is the (n -i + 1)st column of δ, is an isomorphism between ASM/ Inw and ASM/ Isw . 4.3.5. The algebra ASM/ Iio,nw . Let us finally study the set of statistics {io, nw}.

Proposition 4.12. The quotient ASM/ Iio,nw is a commutative algebra.

Proof. This follows directly from Propositions 4.8 and 4.10.

Note however that ASM/ Iio,nw does not inherit the structure of a coalgebra of ASM because even if

By computer exploration, the first few dimensions of ASM/ Iio,nw are (4.3.26) 1, 1, 2, 5, 13, 31, 66, 127, 225, and seems to be Sequence A116701 of [Slo].

A basic argument on generating series implies that these dimensions cannot be the ones of a free commutative algebra and hence, ASM/ Iio,nw is not free as a commutative algebra. 4.3.6. Others quotients of ASM. Using the symmetries provided by Proposition 4.2, all the algebras ASM/ I S , where S contains two nonsymmetric statistics, are equal to ASM/ Iio,nw . Moreover, note that by using the same arguments as before, one can prove that for any S ∈ Z ∪ N, ASM/ I S is a commutative algebra isomorphic to ASM/ Iio , ASM/ Inw , or ASM/ Iio,nw .