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 [START_REF] Boardman | Homotopy Invariant Algebraic Structures on Topological Spaces[END_REF]and by May [May72] in the context of algebraic topology. Informally, an operad is a structure containing operators with n inputs and 1 output, for all positive integer n. Two operators x and y can be composed at the ith position by grafting the output of y on the ith input of x. The new operator thus obtained is denoted by x • i y. In an operad, one can also switch the inputs of an operator x by letting a permutation σ act to obtain a new operator denoted by x • σ. One of the main relishes of operads comes from the fact that they offer a general theory to study in an unifying way different types of algebras, such as associative algebras and Lie algebras.

In recent years, the importance of operads in combinatorics has increased and several new (nonsymmetric) operads were defined on combinatorial objects (see e.g., [Lod01,[START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF][START_REF] Livernet | A rigidity theorem for pre-Lie algebras[END_REF][START_REF] Chapoton | Operads and algebraic combinatorics of trees[END_REF]). The structure thereby added on combinatorial families enables us to see these in a new light and offers original ways to solve some combinatorial problems. For example, the dendriform operad [Lod01] is a nonsymmetric operad on binary trees that plays an interesting role in describing the Hopf algebra of Loday-Ronco of binary trees [START_REF] Loday | Hopf Algebra of the Planar Binary Trees[END_REF][START_REF] Hivert | The Algebra of Binary Search Trees[END_REF]. Besides, this nonsymmetric operad is a key ingredient for the enumeration of intervals of the Tamari lattice [START_REF] Chapoton | Sur le nombre d'intervalles dans les treillis de Tamari[END_REF][START_REF] Chapoton | Operads and algebraic combinatorics of trees[END_REF]. There is also a very rich link connecting combinatorial Hopf algebra theory and operad theory: various constructions produce combinatorial Hopf algebras from operads [START_REF] Van Der Laan | Operads. Hopf algebras and coloured Koszul duality[END_REF][START_REF] Chapoton | Relating two Hopf algebras built from an operad[END_REF][START_REF] Frabetti | Groups of tree-expanded series[END_REF][START_REF] Loday | Algebraic Operads[END_REF][START_REF] Méndez | An antipode formula for the natural Hopf algebra of a set operad[END_REF].

In this paper, we propose a new generic method to build combinatorial operads. The starting point is to pick a monoid M . We then consider the set of words whose letters are elements of M . The arity of such words are their length, the composition of two words is expressed from the product of M , and permutations act on words by permuting letters. In this way, we associate an operad denoted by TM with any monoid M . This construction is rich from a combinatorial point of view since it allows us, by considering suboperads and quotients of TM , to get new (symmetric or not) operads on various combinatorial objects. Our construction is related to two previous ones.

The first one is a construction of Méndez and Nava [START_REF] Méndez | Colored species, c-monoids, and plethysm I[END_REF] emerging from the context of the species theory [START_REF]Une théorie combinatoire des séries formelles[END_REF]. Roughly speaking, a species is a combinatorial construction U which takes an underlying set E as input and produces a set U [E] of objects by adding some structure on the elements of E (see [START_REF] Bergeron | Combinatorial Species and Tree-like Structures[END_REF]). This theory has many links with the theory of operads since an operad is a monoid with respect to the operation of substitution of species. In [START_REF] Méndez | Colored species, c-monoids, and plethysm I[END_REF], the authors defined the plethystic species, that are species taking as input sets where any element has a colour picked from a fixed monoid M . This monoid has to satisfy some precise conditions (as to be left cancellable and without proper divisor of the unity, and such that any element has finitely many factorizations). It appears that the elements of the so-called uniform plethystic species can be seen as words of colours and hence, as elements of TM . Moreover, the composition of this operad is the one of TM . The main difference between the construction of Méndez and Nava and ours lies in the fact that the construction T can be applied on any monoid.

The second one, introduced by Berger and Moerdijk [START_REF] Berger | Axiomatic homotopy theory for operads[END_REF], is a construction which allows to obtain, from a commutative bialgebra B, a cooperad T B. Our construction T and the construction T of these two authors are different but coincide in many cases. For instance, when (M, •) is a monoid such that for any x ∈ M , the set of pairs (y, z) ∈ M 2 satisfying y•z = x is finite, the operad TM is the dual of the cooperad T B where B is the dual bialgebra of K[M ] endowed with the diagonal coproduct (K is a field). On the other hand, there are operads that we can build by the construction T but not by the construction T , and conversely. For example, the operad TZ, where Z is the additive monoid of integers, cannot be obtained as the dual of a cooperad built by the construction T of Berger and Moerdijk. Furthermore, our construction is defined in the category of sets and computations are explicit. It is therefore possible given a monoid M , to make experiments on the operad TM , using if necessary a computer. In this paper, we study many applications of the construction T focusing on its combinatorial aspect. More precisely, we define, by starting from very simple monoids like the additive or multiplicative monoids of integers, or cyclic monoids, various nonsymmetric operads involving well-known combinatorial objects. This paper is organized as follows. In Section 1, we set some notations about syntax trees and rewriting systems on syntax trees. We then briefly recall the basics about operads. We also prove in this section two important lemmas used in the sequel of the paper: the first one deals with the form of elements of nonsymmetric operads generated by a set of generators and the second one is a tool to prove presentations by generators and relations of nonsymmetric operads using rewrite rules on syntax trees. Section 2 defines the construction T, associating an operad with a monoid and establishes its first properties. We show that this construction is a functor from the category of monoids to the category of operads which respects injections and surjections. Finally we apply this construction in Section 3 on various monoids and obtain several new (symmetric or not) operads. We construct in this way some operads on combinatorial objects which were not provided with such a structure: planar rooted trees with a fixed arity, Motzkin words, integer compositions, directed animals, and segmented integer compositions. We also obtain new operads on objects which are already provided with such a structure: endofunctions, parking functions, packed words, permutations, planar rooted trees, and Schröder trees. By using the construction T, we also give an alternative construction for the diassociative operad [Lod01] and for the triassociative operad [START_REF] Loday | Trialgebras and families of polytopes[END_REF].

This paper is an extended version of [START_REF] Giraudo | Constructing combinatorial operads from monoids[END_REF] and [START_REF] Giraudo | Construction d'opérades combinatoires à partir de monoïdes[END_REF]. It contains all proofs and new results like the presentations by generators and relations of the considered nonsymmetric operads.
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Syntax trees and operads

In this section, we set some notations about syntax trees and operads. All our operads are reduced, i.e., all of its elements have at least one input. In the same way, all our syntax trees are reduced, i.e., all of its internal nodes have at least one child. We also present in this section some notions about rewriting systems on syntax trees that we shall use to prove presentations of operads throughout the rest of the paper.

1.1. Rewriting systems on syntax trees. In the same way as the elements of free monoids can be seen as words and also are good objects to study monoids, the elements of free operads can be seen as syntax trees are useful objects to manipulate these algebraic structures.

1.1.1. Syntax trees. We use in the sequel the standard terminology (i.e., node, edge, root, subtree, parent, child, path, etc.) about trees (see for instance [START_REF] Aho | Foundations of Computer Science[END_REF]). In our graphical representations, internal nodes are represented by circles , leaves by squares , and edges by segments . Each tree is depicted so that its root is the uppermost node.

Let S be a nonempty set. A syntax tree on S, or simply a syntax tree if S is fixed, is a planar rooted tree such that internal nodes are labeled on S. We shall denote by T S n the set of syntax trees on S with n leaves and by T S the set n 1 T S n .

Let T be a syntax tree. We denote by n(T ) (resp. (T )) the number of internal nodes (resp. leaves) of T . The arity of an internal node is the number of its children. The depth-first traversal of T consists in visiting the root of T and then, recursively visiting by a depth-first traversal the subtrees of T , from left to right. The ith internal node (resp. ith leaf) of T is the ith internal node (resp. ith leaf) of T visited by a depth-first traversal. The depth of a node x of T is the length of the unique path connecting x with the root of T . Note that the depth of the root of T is 0. The weight w(T ) of T is the sum, for all internal nodes x of T , of the number of internal nodes of the rightmost subtree of x.

For example,

T := 1 1 2 1 2 2 2 2 1 (1.1.1)
is a syntax tree on the set {1, 2}. It has 9 internal nodes, 13 leaves, its weight is 5, and the sequence of the labels of its internal nodes visited by the depth-first traversal is 121221122.

1.1.2. Syntax tree patterns. Let T and α be two syntax trees. We say that T admits an occurrence of α at the root if one of the following two conditions is satisfied: (i) the tree α consists in exactly one leaf and no internal node; (ii) the roots of T and α have same arities and same labels, and, by denoting by (T 1 , . . . , T k ) and (α 1 , . . . , α k ) the sequence of the subtrees of T and α from left to right, T i admits an occurrence of α i at the root, for any i ∈

[k].
We say that T admits an occurrence of α if there is a node x of T such that the syntax tree rooted on x admits an occurrence of α at the root.

For example, set

T := 1 1 1 2 2 1 2 2 and α := 1 2 1 1 . (1.1.2)
Then T admits one occurrence of α.

1.1.3. Rewrite rules on syntax trees. Let S be a nonempty set and T be a subset of T S . A rewrite rule on T is a binary relation → on T such that

(1.1.3) α → β implies (α) = (β).
A syntax tree T 0 is rewritable into a syntax tree T 1 by → if:

(i) there are two syntax trees α and β such that α → β;

(ii) there is in T 0 an occurrence of α;

(iii) we obtain T 1 by replacing an occurrence of α in T 0 by β.

We denote this property by T 0 → T 1 and we call the pair (T 0 , T 1 ) a rewriting. Moreover, if there is a sequence S 1 , . . . , S k of syntax trees such that (1.1.4)

T 0 → S 1 → • • • → S k → T 1 ,
we say that T 0 is rewritable into T 1 by → and we denote this property by

T 0 * -→ T 1 .
If there is no infinite chain (1.1.5)

T 0 → T 1 → • • • ,
we say that → is terminating. In this case, a syntax tree T that cannot be rewritten is a normal form for →. When → is terminating and there are for all n 1 finitely many normal forms for → with n leaves, we denote by #( → n ) the number of normal forms for → with n leaves. In this case, the generating series of → is

(1.1.6) F → (t) := n 1 #( → n )t n .
In the sequel, we shall make use of regular specifications to describe normal forms of rewrite rules and obtain their generating series. Regular specifications are formal grammars explaining how to build combinatorial objects (see [START_REF] Flajolet | Analytic Combinatorics[END_REF] for an introduction on regular specifications).

To give an example, set S := {1, 2, 3} and consider the rewrite rule → on T S defined by

1 1 → 3 and 1 → 2 . (1.1.7)
Here is a sequence of rewritings:

1 1 1 2 1 3 → 1 3 2 1 3 → 2 3 2 1 3 → 2 3 2 2 3 .
(1.1.8) Since for any rewriting T 0 → T 1 , T 1 has less nodes labeled by 1 than T 0 , → is terminating. The normal forms of → are the syntax trees on S with no internal node labeled by 1 that has two children.

Operads.

Let us now set, in our context, some definitions and notations about operads. We shall use in the next sections the previous notions about syntax trees to handle elements of free nonsymmetric operads and establish presentations by generators and relations of nonsymmetric operads.

1.2.1. Nonsymmetric operads. A nonsymmetric operad, or a ns operad for short, is a collection (1.2.1)

P := n 1 P(n),
together with partial composition maps

(1.2.2)

• i : P(n) × P(m) → P(n + m -1), n, m 1, i ∈ [n],
and a distinguished element 1 ∈ P(1), the unit of P. The above data has to satisfy the following relations:

(

1.2.3) (x • i y) • i+j-1 z = x • i (y • j z), x ∈ P(n), y ∈ P(m), z ∈ P(k), i ∈ [n], j ∈ [m],
(1.2.4) (x

• i y) • j+m-1 z = (x • j z) • i y, x ∈ P(n), y ∈ P(m), z ∈ P(k), 1 i < j n, (1.2.5) 1 • 1 x = x = x • i 1, x ∈ P(n), i ∈ [n].
One Let us now fix some terminology about ns operads and recall basic definitions. The arity of an element x of P(n) is n and is denoted by |x|. If Q is a ns operad, a map φ : P → Q is a ns operad morphism if it maps elements of arity n of P to elements of arity n of Q and commutes with partial composition maps. The ns operad Q is a ns suboperad of P if Q ⊆ P, 1 ∈ Q, and Q is closed for the partial composition maps.

For any set G ⊆ P, the ns operad generated by G is the smallest ns suboperad of P which contains every element of G. When the ns operad generated by G is P itself and G is minimal with respect to inclusion among the subsets of P satisfying this property, G is a generating set of P and its elements are generators of P. We say that P is finitely generated if it admits a finite generating set.

The Hilbert series of a ns operad P containing, for all n 1, finitely many elements of arity n is the series (1.2.8)

F P (t) := n 1 #P(n) t n .
A combinatorial ns operad is a ns operad which admits an Hilbert series and such that its only element of arity 1 is its unit.

The composition map of P is the mapping (1.2.9) 

• : P(n) × P(m 1 ) × • • • × P(m n ) → P(m 1 + • • • + m n ),
ν j := ν j + σ i -1, for all j ∈ [m],
and

(1.2.16)

σ j := σ j if σ j < σ i , σ j + m -1 otherwise, for all j ∈ [n].
This ns operad is known as the associative noncommutative operad.

For 

(x • σ) • i (y • ν) = (x • σi y) • (σ • i ν) , x ∈ P(n), y ∈ P(m), σ ∈ As(n), ν ∈ As(m), i ∈ [n],
in such a way that • also is a symmetric group action. Note that any operad P is also (and thus can be seen as) a ns operad by forgetting its action of As.

If Q is an operad, a map φ : P → Q is an operad morphism if it is a ns operad morphism that commutes with •. The operad Q is a suboperad of P if Q is a ns suboperad of P and Q is closed for •.

For any set G ⊆ P, the operad generated by G is the smallest suboperad of P which contains every element of G. When the operad generated by G is P itself and G is minimal with respect to inclusion among the subsets of P satisfying this property, G is a generating set of P and its elements are generators of P. We say that P is finitely generated if it admits a finite generating set.

1.3. Presentation of nonsymmetric operads. We now focus on ns operads and present the tools we will need to establish presentations by generators and relations of ns operads. 1.3.1. Free ns operads. Let S := n 1 S(n) be a set. The free ns operad over S is the ns operad F(S) defined as follows. For any n 1, the set F(S)(n) is the set of syntax trees on S with n leaves and where internal nodes which have k children are labeled on S(k). The composition x • i y of two elements of F(S) consists in grafting the root of y on the ith leaf of x. The unit 1 of F(S) is the tree with no internal node and hence exactly one leaf. The degree d(x) of an element x of F(S) is its number n(x) of internal nodes and its arity |x| is its number (x) of leaves. If d(x) = 1, the label lbl(x) of x is the element of S which labels the only internal node of x.

Let S := S(1) S( 2 are two elements of F(S). The arity of x is 8 and its degree is 7. The arity of y is 4 and its degree is 3. Moreover, one has in F(S) the following composition

x • 2 y = a c b d a b c d a d . (1.3.2)
1.3.2. Evaluations. Let P, • P i , 1 P be a ns operad and X := n 1 X(n) be a set of elements of P, where X(n) ⊆ P(n) for all n 1. The evaluation ev is the mapping (1.3.3) ev : F(X) → P, recursively defined by ev(1) := 1 P , ev(x) := lbl(x) if d(x) = 1, and

(1.3.4) ev(x) := ev(y)

• P i ev(z) if d(x) 2, where y, z ∈ F(X) \ {1}, i ∈ [|y|], and x = y • i z.
In other words, we can see an element x of F(X) as a tree-like expression for an element ev(x) of P. Moreover, it is easy, by induction on the degree, to prove that ev is a well-defined surjective mapping and hence, is a ns operad morphism. 1.3.3. Ns operadic congruences. An ns operadic congruence over a ns operad P is an equivalence relation ≡ on its elements such that x ≡ x implies |x| = |x |, and for all x, x , y, y ∈ P and i ∈ [|x|],

(1.3.5)

x ≡ x and y ≡ y

implies x • i y ≡ x • i y .
Given a set S := n 1 S(n) and an operadic congruence ≡ over the free ns operad F(S), one can construct a ns quotient operad F(S)/ ≡ of F(S) defined as follows. We set

(1.3.6) F(S)/ ≡ (n) := {[x] ≡ : x ∈ F(S)(n)} , n 1,
where [x] ≡ is the ≡-equivalence class of x, and

(1.3.7) [x] ≡ • i [y] ≡ := [x • i y] ≡ ,
where x and y are any elements of F(S) such that x ∈ [x] ≡ and y ∈ [y] ≡ .

1.3.4. Presentation by generators and relations. In the sequel, we shall define ns operadic congruences ≡ over free ns operads F(S) through equivalence relations ↔ on the set F(S).

The congruence generated by ↔ is the most refined ns operadic congruence ≡ containing ↔.

Besides, we say that a relation → on F(S) is an orientation of ↔ if → is the finest relation such that its reflexive, symmetric, and transitive closure is ↔. The link between rewrite rules on syntax trees and ns operads relies on the fact that orientations can be regarded as rewrite rules.

A presentation of a ns operad P consists in a set S := n 1 S(n) and a ns operadic congruence ≡ over F(S) such that P = F(S)/ ≡ . When S(2) = ∅ and S(n) = ∅ for all n = 2, P is called binary. When ≡ can be generated as a ns operadic congruence by an equivalence relation ↔ on F(S) only involving elements of degree 2, P is called quadratic.

The following lemma presents a description of the elements of ns operads generated by a set of generators.

Lemma 1.1. Let P be a ns operad generated by a set G of generators. Then any element x of P different from the unit of P can be written as

(1.3.8) x = y • i g, where y ∈ P(n), n 1, g ∈ G, and i ∈ [n].
Proof. Since the map ev : F(G) → P is surjective, x admits a tree-like expression x ∈ F(G) satisfying ev(x ) = x. Since x is different from the unit of P, one has x = y • i g for two syntax trees y and g of F(G) such that g has exactly one internal node. Then, by setting y := ev(y ) and g := ev(g ), we have, since ev is a ns operad morphism, x = y • i g.

We shall use in the sequel Lemma 1.1 to study ns operads Q generated by a subset of elements of a bigger ns operad P. It allows us to describe Q arity by arity because any element of Q can be obtained by composing an element of a smaller arity with a generator.

The following lemma presents a tool for showing that a given combinatorial ns operad admits a specified presentation.

Lemma 1.2. Let P be a combinatorial ns operad generated by a set G of generators and ≡ be a ns operadic congruence over F(G) generated by an equivalence relation ↔ on F(G). If the following two conditions are satisfied together:

(i) for all x, x ∈ F(G), x ↔ x implies ev(x) = ev(x ); (ii) there exists an orientation → of ↔ such that → is terminating and has as many normal forms of arity n as elements of P of arity n;

then P admits the presentation P = F(G)/ ≡ .

Proof. The definition of the evaluation map ev and (i) imply that the map

(1.3.9) φ : F(G)/ ≡ → P defined for any x ∈ F(G) by φ ([x] ≡ ) := ev(x) is a surjective ns operad morphism.
Since → is an orientation of ↔, for any x ∈ F(G), there is at least one normal form for → in [x] ≡ and by (ii), for all n 1, we have

(1.3.10) #P(n) = #( → n ) #F(G)/ ≡ (n).
This, together with the fact that φ is surjective, implies that φ also is an isomorphism. Hence, P admits the claimed presentation.

A combinatorial functor from monoids to operads

We describe in this section the main ingredient of this paper, namely the construction T. This functorial construction associates an operad TM with any monoid M and an operad morphism Tθ : TM → TN with any monoid morphism θ : M → N .

The construction.

2.1.1. From monoids to operads. Let (M, •, 1) be a monoid. Let us denote by TM the collection (2.1.1)

TM := n 1 TM (n),
where for all n 1, (2.1.2)

TM (n) := {(x 1 , . . . , x n ) : x i ∈ M for all i ∈ [n]} .
We endow the set TM with maps

(2.1.3)

• i : TM (n) × TM (m) → TM (n + m -1), n, m 1, i ∈ [n],
defined as follows: for all x ∈ TM (n), y ∈ TM (m), and i ∈ [n],

(2.1.4)

x • i y := (x 1 , . . . , x i-1 , x i • y 1 , . . . , x i • y m , x i+1 , . . . , x n ).
Let us also set 1 := (1) as a distinguished element of TM (1). We endow finally each set TM (n) with a map

(2.1.5)

• : TM (n) × As(n) → TM (n), n 1, defined as follows: for all x ∈ TM (n) and σ ∈ As(n), (2.1.6) x • σ := (x σ1 , . . . , x σn ) .
The elements of TM are words over M regarded as an alphabet. The arity |x| of an element x of TM (n) is n. For the sake of readability, we shall denote in some cases an element (x 1 , . . . , x n ) of TM (n) by its word notation x 1 . . . x n .

Proposition 2.1. If M is a monoid, then TM is an operad.

Proof. This is a straightforward checking of the relations of operads: (1.2.3) comes from the fact that the product of M is associative, (1.2.4) comes from the fact that the elements of TM are words, (1.2.5) comes from the fact that M has a unit, and (1.2.20) comes from the fact that • acts by permuting the letters of the words.

2.1.2. From monoids morphisms to operads morphisms. Let M and N be two monoids and θ : M → N be a monoid morphism. Let us denote by Tθ the map (2.1.7)

Tθ : TM → TN,

defined for all (x 1 , . . . , x n ) ∈ TM (n) by (2.1.8) Tθ (x 1 , . . . , x n ) := (θ(x 1 ), . . . , θ(x n )) .
Proposition 2.2. If M and N are two monoids and θ : M → N is a monoid morphism, then the map Tθ : TM → TN is an operad morphism.

Proof. This is a straightforward checking: the fact that θ is a monoid morphism implies the statement of the proposition.

Main properties of the construction.

Functoriality of T.

Proposition 2.3. Let M and N be two monoids and θ : M → N be a monoid morphism. If θ is injective (resp. surjective), then Tθ is injective (resp. surjective).

Proof. This is a straightforward checking: the fact that Tθ acts letter by letter implies the statement of the proposition.

Theorem 2.4. The construction T is a functor from the category of monoids with monoid morphisms to the category of operads with operad morphisms. Moreover, T respects injections and surjections.

Proof. By Proposition 2.1, T constructs an operad from a monoid, and by Proposition 2.2, an operad morphism from a monoid morphism. Now, since T sends identity monoid morphisms to identity operad morphisms and T commutes with map composition, T is a functor. Finally, by Proposition 2.3, T also respects injections and surjections, whence the statement of the theorem.

2.2.2. Miscellaneous properties. Recall that a monoid (M, •) is right cancellable if for any x, y, z ∈ M , y • x = z • x implies y = z.
Proposition 2.5. Let M be a monoid. The operad TM is basic if and only if M is a right cancellable monoid.

Proof. Let us denote by • the product of M .

Assume first that M is a right cancellable monoid. Let y (1) , . . . , y (n) ∈ TM , x, x ∈ TM (n), and assume that (2.2.1)

γ y (1) ,...,y (n) (x) = γ y (1) ,...,y (n) (x ).
Then, for any i ∈ [n] and j ∈ y (i) ,

(2.2.2)

x i • y (i) j = x i • y (i)
j . Since M is right cancellable, x i = x i and then, x = x . This implies that γ y (1) ,...,y (n) is injective and that TM is basic.

Conversely, assume now that TM is basic. In particular, for any y ∈ TM (1), the map γ y is injective. Hence, for any x, x ∈ TM (1), the equality γ y (x) = γ y (x ) implies x = x . This is equivalent to say that x • y = x • y implies x = x . This amounts exactly to say that M is a right cancellable monoid. 

g i1 • • • • • g in = g j1 • • • • • g jm of R, the equalities (2.2.6) (a b) c = a (b c), (2.2.7) (a b) ↑ g = a ↑ g b ↑ g , (2.2.8) a ↑ gi 1 . . . ↑ gi n = a ↑ gj 1 . . . ↑ gj m .
Proof. Proving the statement of the theorem is equivalent to prove that the ns operad TM admits the presentation by generators and relations obtained by traducing (2.2.4), (2.2.5), (2.2.6), (2.2.7), and (2.2.8) in operadic terms. Thereby, this ns operad P is the quotient of the free operad generated by a binary generator and unary generators ↑ g , g ∈ G, submitted to the relations (2.2.9)

• 1 = • 2 , (2.2.10) ↑ g • 1 = • [↑ g , ↑ g ], g ∈ G,
(2.2.11)

↑ gi 1 • 1 • • • • 1 ↑ gi n =↑ gj 1 • 1 • • • • 1 ↑ gj m for all relations g i1 • • • • • g in = g j1 • • • • • g jm of R.
Let φ : P → TM be ns operad morphism defined by φ( ) := (1, 1) and φ(↑ g ) := (g) for any g ∈ G, where 1 denotes the unit of M . This morphism is well-defined since the elements (1, 1) and (g) of TM satisfy the above relations by replacing by (1, 1) and ↑ g by (g). Proposition 2.6 implies that φ is surjective since, as a ns operad, TM is generated by (1, 1) and (g), g ∈ G.

Now, since the equivalence classes of P are clearly in bijection with the elements of TM , this shows that φ is an isomorphism.

Constructing operads

Through this section, we consider examples of applications of the functor T. We shall mainly consider, given a monoid M , some suboperads of TM , symmetric or not, which have for all n 1 finitely many elements of arity n.

For the most part of the constructed operads P, we shall establish for all arities n 1, bijections φ : P(n) → C n between the elements of P of arity n and elements of size n of a set C := n 1 C n of combinatorial objects. These bijections, in addition to show that P are operads involving the objects of C, allow us to define composition operations on C by interpreting the partial composition maps of P on the elements of C.

Moreover, we shall also establish presentations by generators and relations of the constructed ns operads by using the tools provided by Section 1.

3.1. Operads from the additive monoid. We shall denote by N the additive monoid of integers, and for all 1, by N the quotient of N consisting in the set {0, 1, . . . , -1} with the addition modulo as the operation of N .

Note that since, by Theorem 2.4, T is a functor which respects surjective maps, TN is a quotient operad of TN. Besides, since the monoids N and N are right cancellable, by Proposition 2.5, the operads TN and TN are basic, and since any suboperad of a basic operad is basic, all operads constructed in this section are basic.

The ns operads constructed in this section fit into the diagram of ns operads represented by Figure 1. Table 1 summarizes some information about these ns operads. A packed word of size n is an endofunction x of size n such that for any letter x i 2 of x, there is in x a letter x j = x i -1.

TN TN

2 TN 3 End PF PW Per Schr FCat (1) FCat (2) FCat (3) SComp DA PRT Motz Comp FCat (0) Figure 1.
Note that neither the set of endofunctions nor the set of parking functions, packed words, and permutations are suboperads of TN. Indeed, one has the following counterexample:

(3.1.1) 12 • 2 12 = 134, and, even if 12 is a permutation, 134 is not an endofunction.

Therefore, let us call a word x a twisted endofunction (resp. parking function, packed word, permutation) if the word (x 1 + 1, x 2 + 1, . . . , x n + 1) is an endofunction (resp. parking function, packed word, permutation). For example, the word 2300 is a twisted endofunction since 3411 is an endofunction. Let us denote by End (resp. PF, PW, Per) the set of twisted endofunctions (resp. parking functions, packed words, permutations). Under this reformulation, one has the following result: Alph(x

• i y) = Alph(x) ∪ {x i + a : a ∈ Alph(y)},
where Alph(u) is the set {u j : j ∈ [|u|]}. This, in addition to the fact that any permutation of a twisted parking function (resp. packed word) is still a twisted parking functions (resp. packed word), shows that the partial composition maps of TN and the map • are still well-defined in PF (resp. PW).

For example, we have in End the following composition Note that End is not a finitely generated operad. Indeed, the twisted endofunctions x of size n satisfying x i := n -1 for all i ∈ [n] cannot be obtained by compositions involving elements of End of arity smaller than n. Similarly, PF is not a finitely generated operad since the twisted parking functions x of size n satisfying x i := 0 for all i ∈ [n -1] and x n := n -1 cannot be obtained by compositions involving elements of PF of arity smaller than n.

However, the operad PW is a finitely generated operad: Proposition 3.2. The operad PW is the suboperad of TN generated by the elements 00 and 01.

Proof. Let P be the suboperad of TN generated by the elements 00 and 01, and let us show that P = PW.

First, by Proposition 3.1, since 00 and 01 are twisted packed words, the elements of P also are twisted packed words. Now let x be a nondecreasing twisted packed word and let us show by induction on the size of x that x ∈ P. If |x| = 1, since x is a twisted packed word, one has x = 0 and since 0 is the unit of TN, x ∈ P. Otherwise, let y be the prefix of size n -1 of x. Since x is a nondecreasing word, there are two possibilities to express the last letter x n of x from the letter x n-1 . If x n = x n-1 , we have x = y • n-1 00, and if x n = x n-1 + 1, we have x = y • n-1 01. Hence, since by induction hypothesis P contains y, P also contains x. Finally, since any twisted packed word z can be obtained from a nondecreasing packed word x by permuting its letters, we have z = x • σ for a certain permutation σ of As(n), and hence, P = PW.

Let K be a field and let us from now consider that PW is an operad in the category of K-vector spaces, i.e., PW is the free K-vector space over the set of twisted packed words with partial composition maps and the map • extended by linearity. For more details on operads in the category of vector spaces, we redirect the reader to [START_REF] Loday | Algebraic Operads[END_REF].

Let I be the free K-vector space over the set of twisted packed words having multiple occurrences of a same letter.

Proposition 3.3. The vector space I is an operadic ideal of PW. Moreover, the operadic quotient PW/ I is the free vector space over the set of twisted permutations Per and, for all twisted permutations x and y, the partial composition map in Per is expressed as

(3.1.5) x • i y = x • i y if x i = |x|, 0 K otherwise,
where 0 K is the null vector of Per and the partial composition map • i in the right member of (3.1.5) is the partial composition map of PW.

Proof. Let x be a twisted packed word and y be a twisted packed word having multiple occurrences of a same letter. Since x and y have at least one occurrence of 0, any composition involving x and y also has multiple occurrences of a same letter. Moreover, for any permutation σ of As of size |y|, y • σ also has multiple occurrences of a same letter. Hence, I is an operadic ideal of PW and one can consider the operadic quotient PW/ I .

Since twisted packed words with no multiple occurrence of a same letter are twisted permutations, PW/ I can be identified with the K-vector space over the set of twisted permutations Per and (3.1.5) follows from the fact that the composition x • i y of two twisted permutations x and y is still a twisted permutation if and only if x i is the greatest letter of x. One has the following characterization of the elements of PRT:

Here are two examples of compositions in

Per (3.1.6) 20431 • 1 102 = 0 K , ( 3 
Proposition 3.4. The elements of PRT are exactly the words x on the alphabet N satisfying x 1 = 0 and 1

x i+1 x i + 1 for all i ∈ [|x| -1].
Proof. Let us first show by induction on the length of the words that any word x of PRT satisfies the statement. This is true when |x| = 1. When |x| 2, by Lemma 1.1, there is an element y of PRT of length n := |x| -1 and an integer i ∈ [n] such that x = y • i 01. We have (3.1.8) x = (y 1 , . . . , y i-1 , y i , y i + 1, y i+1 , . . . , y n ).

Since x i+1 = x i + 1 and since, by induction hypothesis, y satisfies the statement, x also satisfies it.

Let us now show by induction on the length of the words that PRT contains any word x satisfying the statement. This is true when |x| = 1. When n := |x| 2, since x 1 = 0 and x 2 = 1, x has a factor x i x i+1 where i is the greatest integer such that x i+1 = x i + 1. Now, by setting (3.1.9) y := (x 1 , . . . , x i , x i+2 , . . . , x n ),

we have x = y • i 01, and, since i is maximal, if i + 2 n we have x i+2 x i+1 . This implies that y satisfies the statement. By induction hypothesis, PRT contains y and, since x = y • i 01, PRT also contains x.

Recall that there are

1 n 2n-2
n-1 planar rooted trees with n nodes. There is a bijection φ PRT between the words of PRT of arity n and planar rooted trees with n nodes.

To compute φ PRT (x) where x is an element of PRT, iteratively insert the letters of x from left to right according to the following procedure. If |x| = 1, then x = 0 and φ PRT (0) is the only planar rooted tree with one node. Otherwise, the insertion of a letter a 1 into a planar rooted tree T consists in grafting in T a new node as the rightmost child of the last node of depth a -1 for the depth-first traversal of T .

The inverse bijection is computed as follows. Given a planar rooted tree T of size n, one computes an element of PRT of arity n by labelling each node of T by its depth and then, by reading its labels following a depth-first traversal of T .

Since the elements of PRT satisfy Proposition 3.4, φ PRT is well-defined. Hence, we can regard the elements of arity n of PRT as planar rooted trees with n nodes. Figure 2 shows an example of this bijection. The bijection φ PRT between elements of PRT and planar rooted trees offers an alternative way to compute the composition of elements of PRT: Proposition 3.5. Let S and T be two planar rooted trees and s be the ith node for the depthfirst traversal of S. The composition S • i T in PRT amounts to replace s by the root of T and graft the children of s as rightmost sons of the root of T .

Proof. Let x ∈ PRT(n) and y ∈ PRT(m) such that S := φ PRT (x) and T := φ PRT (y). Let U := φ PRT (x • i y). By definition of φ PRT and the partial composition maps of PRT, U is obtained by inserting the prefix of length i -1 of x, then the letters of y incremented by x i , and finally, the suffix of length n -i of x. Since by Proposition 3.4, y starts by 0, the nodes created by inserting the letters of y incremented by x i are descendants of the node created by inserting x i = y 1 . Moreover, the nodes corresponding to the letters of the suffix of length n -i of x have same parents as they have in T . This implies the statement. Figure 3 shows an example of composition in PRT. Proposition 3.6. The ns operad PRT is isomorphic to the free ns operad generated by one element of arity 2.

Proof. By the characterization of its elements given by Proposition 3.4 and the bijection φ PRT , there are as many elements in PRT of arity n than elements of arity n of the free ns operad generated by one element of arity 2. These two ns operads are hence isomorphic.

Proposition 3.6 also says that PRT is isomorphic to the magmatic operad and hence, that PRT is a realization of the magmatic operad. This result is already known since in [START_REF] Méndez | Möbius Species[END_REF], Méndez and Yang point out that the species of parenthesizations (binary trees) and the species of planar rooted trees are isomorphic. This isomorphism implies that these species are also isomorphic as ns operads. Moreover, PRT can be seen as a planar version of the non-associative permutative operad NAP [START_REF] Méndez | Möbius Species[END_REF] (see also [START_REF] Livernet | A rigidity theorem for pre-Lie algebras[END_REF]) seen as a ns operad, which is an operad involving labeled non-planar rooted trees.

A ns operad on leafy trees with a fixed arity.

Let k 0 be an integer and FCat (k) be the ns suboperad of TN generated by 00, 01, . . . , 0k. The following tables, respectively, show the first elements of FCat (1) and FCat (2) .

Arity Elements of FCat It is immediate from the definition of FCat (k) that for any k 0, FCat (k) is a ns suboperad of FCat (k+1) . Hence, the ns operads FCat (k) form an increasing sequence (for inclusion) of ns operads. Note that FCat (0) is isomorphic to the associative commutative operad Com. Note also that since FCat (1) is generated by 00 and 01 and since PRT is generated by 01, PRT is a ns suboperad of FCat (1) . Moreover, FCat (0) is a quotient of PRT by the ns operadic congruence ≡ defined for all x, y ∈ PRT(n) by x ≡ y.

One has the following characterization of the elements of FCat (k) : Proposition 3.7. The elements of FCat (k) are exactly the words x on the alphabet N satisfying x 1 = 0 and 0

x i+1 x i + k for all i ∈ [|x| -1].
Proof. Let us first show by induction on the length of the words that any word x of FCat (k) satisfies the statement. This is true when |x| = 1. When |x| 2, by Lemma 1.1, there is an element y of FCat (k) of length n := |x| -1, an integer i ∈ [n], and 0 h k such that x = y • i 0h. We have (3.1.10)

x = (y 1 , . . . , y i-1 , y i , y i + h, y i+1 , . . . , y n ).

Since x i+1 = x i + h and 0 h k, and since, by induction hypothesis, y satisfies the statement, x also satisfies it.

Let us now show by induction on the length of the words that FCat (k) contains any word x satisfying the statement. This is true when |x| = 1. When n := |x| 2, since x 1 = 0 and 0

x 2 k, x has a factor x i x i+1 where i is the greatest integer such that x i x i+1 . Now, by setting h := x i+1 -x i and (3.1.11) y := (x 1 , . . . , x i , x i+2 , . . . , x n ),

we have x = y • i 0h. Since i is maximal, if i + 2 n we have x i+2 < x i+1 . This implies that y satisfies the statement. By induction hypothesis, FCat (k) contains y and, since x = y • i 0h, FCat (k) also contains x.

A k-leafy tree is a planar rooted tree such that each internal node has exactly k + 1 children. The size |T | of a k-leafy tree T is the number of its internal nodes. It is well-known that there are 1 kn+1 kn+n n k-leafy trees of size n. We say that an internal node x is smaller than an internal node y of T if, in the depth-first traversal of T , x appears before y. We also say that a k-leafy tree T is well-labeled if its root is labeled by 0, and, for each internal node x of T labeled by a, the children of x are labeled, from left to right, by a + k, . . . , a + 1, a. There is a unique way to label a k-leafy tree so that it is well-labeled. There is a bijection φ FCat (k) between the words of FCat (k) of arity n and well-labeled k-leafy trees of size n.

To compute φ FCat (k) (x) where x is an element of FCat (k) , iteratively insert the letters of x from left to right according to the following procedure. If |x| = 1, then x = 0 and φ FCat (k) (x) is the only well-labeled k-leafy tree of size 1. Otherwise, the insertion of a letter a 0 into a well-labeled k-leafy tree T consists in replacing a leaf of T by the k-leafy tree S of size 1 labeled by a so that S is the child of the greatest internal node such that the obtained k-tree is still well-labeled.

The inverse bijection is computed as follows. Given a well-labeled k-leafy tree T , one computes an element of FCat (k) of arity n by reading its labels following a depth-first traversal of T .

Since the elements of FCat (k) satisfy Proposition 3.7, φ FCat (k) is well-defined. Hence, we can regard the elements of arity n of FCat (k) as k-leafy trees of size n. Figure 4 shows an example of this bijection. The bijection φ FCat (k) between elements of FCat (k) and k-leafy trees offers an alternative way to compute the composition of elements of FCat (k) : Proposition 3.8. Let S and T be two k-leafy trees and s be the ith internal node for the depth-first traversal of S. The composition S • i T in FCat (k) amounts to replace s by the root of T and graft the children of s from right to left on the rightmost leaves of T .

024021121 φ FCat (2) ----→
Proof. Let x ∈ FCat (k) (n) and y ∈ FCat (k) (m) such that S := φ FCat (k) (x) and T := φ FCat (k) (y). Let U := φ FCat (k) (x• i y)
. By definition of φ FCat (k) and the partial composition maps of FCat (k) , U is obtained by inserting the prefix of length i -1 of x, then the letters of y incremented by x i , and finally, the suffix of length n -i of x. Since by Proposition 3.7, y starts by 0, the internal nodes created by inserting the letters of y incremented by x i are descendants of the internal node created by inserting x i = y 1 . Since the last n -i letters of x • i y are the same as the last n -i letters of x, by definition of φ FCat (k) , the children of the ith internal node of S are grafted in U from right to left on the rightmost leaves of T . This implies the statement. Figure 5 shows an example of composition in FCat (2) .

The next Theorem elucidates the structure of FCat (k) :

Theorem 3.9. The ns operad FCat (k) admits the presentation (3.1.12)

FCat (k) = F ({a 0 , . . . , a k }) / ≡ ,
where the a i are of arity 2 and ≡ is the ns operadic congruence generated by

(3.1.13) a i+j • 1 a i ↔ a i • 2 a j , i, j 0, i + j k.
Proof. First, note that by replacing a i by 0i ∈ FCat (k) (2), we have ev(x) = ev(y) for the relation x ↔ y of the statement of the Theorem. Indeed, this equivalence class is the one of the element (0, i, i + j) of FCat (k) .

Consider now the orientation of ↔ into the rewrite rule → defined by

a i a i+j → a i a j . (3.1.14)
This rewrite rule is terminating. Indeed, it is plain that for any rewriting T 0 → T 1 , we have w(T 0 ) < w(T 1 ).

Moreover, the normal forms of → are all elements of F ({a 0 , . . . , a k }) such that for each node x labeled by a i which has a left child y labeled by a j , one has i < j. This set S of syntax trees admits the following regular specification (3.1.15) S = +

0 i k S i ,
where S i is the set of such syntax trees with roots labeled by a i . These sets satisfy the following regular specification

S i = ai S + i+1 j k ai Sj S . (3.1.16)
Hence, the generating series F (t) of S and F i (t) of S i satisfy (3.1.17)

F (t) = t + 0 i k F i (t),

and

(3.1.18)

F i (t) = tF (t) + F (t) i+1 j k F j (t).
By basic manipulations involving binomial coefficients, we obtain

(3.1.19) F i (t) = tF (t) 0 j k-i k -i j F (t) j ,
and then, (3.1.20)

F (t) = t 0 j k+1 k + 1 j F (t) j .
The functional equation (3.1.20) is an alternative functional equation for the generating series of k-leafy trees. By Proposition 3.7, F (t) also is the Hilbert series of FCat (k) .

Hence, by Lemma 1.2, FCat (k) admits the claimed presentation. Since FCat (1) is generated by 00 and 01, FCat (1) is a ns suboperad of Schr. Moreover, since PW is, by Proposition 3.2, generated as an operad by 00 and 01, Schr is a ns suboperad of PW.

One has the following characterization of the elements of Schr: Proposition 3.10. The elements of Schr are exactly the words x on the alphabet N having at least one occurrence of 0 and, for all letter b 1 of x, there exists a letter a := b -1 such that x has a factor aub or bua where u is a word consisting in letters c satisfying c b.

Proof. Let us first show by induction on the length of the words that any word x of Schr satisfies the statement. This is true when |x| = 1. When |x| 2, by Lemma 1.1, there is a element y of Schr of length n := |x| -1, an integer i ∈ [n], and g ∈ {00, 01, 10} such that x = y • i g. Then, (3.1.21)

x = (y 1 , . . . , y i-1 , y i + g 1 , y i + g 2 , y i+1 , . . . , y n-1 ).

Since by induction hypothesis y satisfies the statement and x i = y i or x i+1 = y i , x also satisfies the statement.

Let us now show by induction on the length of the words that Schr contains any word x satisfying the statement. This is true when |x| = 1. When n := |x| 2, let us observe that if x only consists in letters 0, Schr contains x because x can be obtained by composing the generator 00 with itself. Hence, let us assume that x contains at least one letter different from 0. Set b as the greatest letter of x and a := b -1. Since b is the greatest letter of x, there is a factor x i x i+1 of x such that x i x i+1 ∈ {bb, ba, ab}. Set (3.1.22)

y := (x 1 , . . . , x i-1 , min{x i , x i+1 }, x i+2 , . . . , x n ),
and g as the generator 00 if x i = x i+1 , as 01 if x i = x i+1 -1, or as 10 when x i = x i+1 + 1. Then, we have x = y • i g, and, since y is obtained from x by removing one of its greatest letter, y satisfies the statement. By induction hypothesis, Schr contains y, and since x = y • i g, Schr also contains x.

A Schröder tree is a planar rooted tree such that no node has exactly one child. The size |T | of a Schröder tree T is its number of leaves. There is a bijection φ Schr between the words of Schr of arity n and Schröder trees of size n.

To compute φ Schr (x) where x is an element of Schr, factorize x as x = x (1) a . . . ax ( ) where a is the smallest letter occurring in x and the x (i) are factors of x without a. Then, set

(3.1.23) φ Schr (x) := if x = , φ Schr x (1) , . . . , φ Schr x ( ) otherwise,
where denotes the empty word and (T 1 , . . . , T ) is the Schröder tree consisting in a root that has T 1 , . . . , T as subtrees from left to right.

The inverse bijection is computed as follows. Given a Schröder tree T , one computes an element of Schr by considering each internal node s and two adjacent consecutive edges of s and by assigning to these the depth of s. The element of Schr is obtained by reading the labels from left to right.

Since the elements of Schr satisfy Proposition 3.10, φ Schr is well-defined. Figure 6 shows an example of this bijection. Theorem 3.11. The ns operad Schr admits the presentation

(3.1.24) Schr = F ({ , , }) / ≡ ,
where , , and are of arity 2, and ≡ is the ns operadic congruence generated by

(3.1.25) • 1 ↔ • 2 , (3.1.26) • 1 ↔ • 2 , (3.1.27) • 1 ↔ • 2 , (3.1.28) • 1 ↔ • 2 , (3.1.29) • 1 ↔ • 2 , (3.1.30) • 1 ↔ • 2 , (3.1.31) • 1 ↔ • 2 .
Proof. First, note that by replacing by 00 ∈ Schr(2), by 01 ∈ Schr(2), and by 10 ∈ Schr(2), we have ev(x) = ev(y) for the seven relations x ↔ y of the statement of the Theorem. Indeed, then seven equivalence classes are, respectively, the ones of the elements 000, 101, 010, 001, 100, 011, and 110 of Schr.

Consider now the orientation of ↔ into the rewrite rule → defined by

→ , (3.1.32) → , (3.1.33) → , (3.1.34) → , (3.1.35) → , (3.1.36) → , (3.1.37) → . (3.1.38)
This rewrite rule is terminating. Indeed, let T be an element of F ({ , , }). By associating with T the pair (k T , w(T )) where k T is the number of nodes labeled by in T , it is plain that for any rewriting T 0 → T 1 , one has k T0 < k T1 or k T0 = k T1 and w(T 0 ) < w(T 1 ). Moreover, the normal forms of → are all elements of F ({ , , }) such that nodes labeled by or have no left child and nodes labeled by have no right child labeled by . This set S of syntax trees admits the following regular specification

S = + S + S + S + S S + S S . (3.1.39)
Hence, the generating series F (t) of S satisfies (3.1.40)

F (t) = t + 3tF (t) + 2tF (t) 2 ,
that is the generating series of Schröder trees. By Proposition 3.10, F (t) also is the Hilbert series of Schr.

Hence, by Lemma 1.2, Schr admits the claimed presentation.

A ns operad on Motzkin words.

Let Motz be the ns suboperad of TN generated by 00 and 010. The following table shows the first elements of Motz.

Arity Elements of Motz 1 0 2 00 3 000, 010 4 0000, 0010, 0100, 0110 5 00000, 00010, 00100, 00110, 01000, 01010, 01100, 01110, 01210 6 000000, 000010, 000100, 000110, 001000, 001010, 001100, 001110, 001210, 010000, 010010, 010100, 010110, 011000, 011010, 011100, 011110, 011210, 012100, 012110, 012210

Since 00 and 01 generate FCat (1) and since 010 = 00 • 1 01, Motz is a ns suboperad of FCat (1) . Moreover, since FCat (0) is generated by 00, FCat (0) is a ns suboperad of Motz.

One has the following characterization of the elements of Motz: Proposition 3.12. The elements of Motz are exactly the words x on the alphabet N beginning and start by 0 and such that |x i -

x i+1 | 1 for all i ∈ [|x| -1].
Proof. Let us first show by induction on the length of the words that any word x of Motz satisfies the statement. This is true when |x| = 1. When |x| 2, by Lemma 1.1, there is an element y of Motz of length n < |x|, an integer i ∈ [n], and g ∈ {00, 010} such that x = y • i g. If g = 00, then one has (3.1.41)

x = (y 1 , . . . , y i-1 , y i , y i , y i+1 , . . . , y n ).

Otherwise, we have g = 010 and

(3.1.42) x = (y 1 , . . . , y i-1 , y i , y i + 1, y i , y i+1 , . . . , y n ).

Since by induction hypothesis y satisfies the statement, it is immediate that in both cases, x also satisfies the statement.

Let us now show by induction on the length of the words that Motz contains any word x satisfying the statement. This is true when |x| = 1. When n := |x| 2, one has two cases to consider. If x contains a factor x i x i+1 such that x i = x i+1 , by setting

(3.1.43) y := (x 1 , . . . , x i , x i+2 , . . . , x n ),
we have x = y • i 00. Otherwise, let b be the greatest letter of x. Since x satisfies the statement, there is in x a factor x i x i+1 x i+2 where x i+1 = b and

x i = x i+2 = b -1. By setting (3.1.44) y := (x 1 , . . . , x i , x i+3 , . . . , x n ),
we have x = y • i 010. Now, for both cases, since by induction hypothesis, Motz contains y, Motz also contains x.

A Motzkin word is a word u on the alphabet {-1, 0, 1} such that the sum of all letters of u is 0 and, for any prefix u of u, the sum of all letters of u is a nonnegative integer. The size |u| of a Motzkin word u is its length plus one. In the sequel, we shall denote by 1 the letter -1. We can represent a Motzkin word u graphically by a Motzkin path that is the path in N 2 connecting the points (0, 0) and (n, 0) obtained by drawing a step (1, -1) (resp. (1, 0), (1, 1)) for each letter 1 (resp. 0, 1) of u. There is a bijection φ Motz between the words of Motz of arity n and Motzkin words of size n.

To compute φ Motz (x) where x is an element of Motz(n), build the word u of length n -1 satisfying

u i := x i+1 -x i for all i ∈ [n -1].
The inverse bijection is computed as follows. The element of Motz in bijection with a Motzkin word u is the word x such that x i is the sum of the letters of the prefix u 1 . . . u i-1 of u, for all i ∈ [n].

Since the elements of Motz satisfy Proposition 3.12, φ Motz is well-defined. Figure 7 shows an example of this bijection. Proof. Let y be the element of Motz in bijection by φ Motz with v. The statement is a direct consequence of the fact that, by Proposition 3.12, y starts and ends by 0. 

Motz = F ({ , }) / ≡ ,
where is of arity 2, of arity 3, and ≡ is the ns operadic congruence generated by

(3.1.46) • 1 ↔ • 2 , (3.1.47) • 1 ↔ • 2 , (3.1.48) • 1 ↔ • 3 , (3.1.49) • 1 ↔ • 3 .
Proof. First, note that by replacing by 00 ∈ Motz(2) and by 010 ∈ Motz(3), we have ev(x) = ev(y) for the four relations x ↔ y of the statement of the Theorem. Indeed, the four equivalence classes are, respectively, the ones of the elements 000, 0010, 0100, and 01010 of Motz. 

F (t) = t + tF (t) + tF (t) 2 ,
that is the generating series of Motzkin words. By Proposition 3.12, F (t) also is the Hilbert series of Motz.

Hence, by Lemma 1.2, Motz admits the claimed presentation.

3.1.6. A ns operad on integer compositions. Let Comp be the ns suboperad of TN 2 generated by 00 and 01. The following table shows the first elements of Comp. 

• 1 ↔ • 2 , (3.1.59) • 1 ↔ • 2 , (3.1.60) • 1 ↔ • 2 , (3.1.61) • 1 ↔ • 2 .
Proof. First, note that by replacing by 00 ∈ Comp(2) and by 01 ∈ Comp(2), we have ev(x) = ev(y) for the four relations x ↔ y of the statement of the Theorem. Indeed, the four equivalence classes are, respectively, the ones of the elements 000, 001, 011, and 100 of Comp. This rewrite rule is terminating. Indeed, it is plain that for any rewriting T 0 → T 1 , we have w(T 0 ) < w(T 1 ).

Moreover, the normal forms of → are all syntax trees of F , which have no internal node with an internal node as leftmost child. Hence, the generating series F (t) of the normal forms of → is (3.1.66)

F (t) = n 1 2 n-1 t n .
By Proposition 3.15, F (t) also is the Hilbert series of Comp.

Hence, by Lemma 1.2, Comp admits the claimed presentation. Let us now show that φ DA is a bijection between the elements of arity n of DA and prefixes of Motzkin words of length n -1.

The injectivity of φ DA is a direct consequence of the fact that, given a element x of DA and a letter a ∈ { 1, 0, 1}, there is at most one letter b ∈ { 1, 0, 1} such that φ DA (xb) = φ DA (x)a.

Let us finally show that φ DA is a surjection. We proceed by induction on the length of the words to construct for any prefix of a Motzkin word u an element x of DA such that φ DA (x) = u. When u is the empty word, x := 0 is an element of DA(1) and since φ DA (x) is the empty word, the property is satisfied. When n := |u| 1, one has two cases to consider depending on the last letter u n of u.

Case 1'. If u n ∈ {0, 1}, by induction hypothesis, there is an element y of DA(n) such that φ DA (y) = u 1 . . . u n-1 . Hence, by setting x := y • n 0u n , its follows, by definition of φ DA , that x is a preimage of u for φ DA .

Case 2'. Otherwise, we have u n = 1 and there is at least one occurrence of a 1 in u. Hence, let i ∈ [n -1] be the greatest integer such that u i = 1. We now have two sub-cases depending on the value of u i+1 . Case 2'.1. If u i+1 = 0, the word (3.1.70)

u := u 1 . . . u i u i+2 . . . u n
is still a prefix of a Motzkin word. Then, by induction hypothesis, there is an element y of DA(n) such that φ DA (y) = u . Hence, by setting x := y • i 00, its follows, by definition of φ DA , that x is a preimage of u for φ DA .

Case 2'.2. Otherwise, we have u i+1 = 1. Then, the word

(3.1.71) u := u 1 . . . u i-1 0u i+2 . . . u n
is still a prefix of a Motzkin word. Then, by induction hypothesis, there is an element y of DA(n) such that φ DA (y) = u . Hence by setting x := y • i 01, its follows, by definition of φ DA , that x is a preimage of u for φ DA .

We then have proved that φ DA is well-defined, injective, and surjective. Hence, it is a bijection between elements of arity n of DA and prefixes of Motzkin words of length n -1.

Here are two examples of images by φ DA of elements of DA. Recall that a directed animal is a subset A of N 2 such that (0, 0) ∈ A and (i, j) ∈ A with i 1 or j 1 implies (i-1, j) ∈ A or (i, j -1) ∈ A. The size of a directed animal A is its cardinality. Figure 11 shows a directed animal. According to [START_REF] Gouyou-Beauchamps | Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem[END_REF], there is a bijection α between the set of prefixes of Motzkin words of length n -1 and the set of directed animals of size n. Hence, by Proposition 3.18, the map α • φ DA is a bijection between the elements of DA of arity n and directed animals of size n and moreover, DA can be seen as a ns operad on directed animals. exhaustive inspection can show, there is no quadratic ns operad generated by two generators of arity 2 which has the same dimensions as DA. Since FCat (2) is the ns suboperad of TN generated by 00, 01, and 02, and since TN 3 is a quotient of TN, SComp is a quotient of FCat (2) . Moreover, since DA is generated by 00 and 01, DA is a ns suboperad of SComp.

3

One has the following characterization of the elements of SComp: Proposition 3.20. The elements of SComp are exactly the words on the alphabet {0, 1, 2} beginning by 0.

Proof. It is immediate, from the definition of SComp and Lemma 1.1, that any element of this ns operad starts by 0 since its generators 00, 01, and 02 all start by 0.

Let us now show by induction on the length of the words that SComp contains any word x satisfying the statement. This is true when |x| = 1. When n := |x| 2, let us observe that if x only consists in letters 0, SComp contains x because x can be obtained by composing the generator 00 with itself. Otherwise, x has at least one occurrence of a 1 or a 2. Since its first letter is 0, there is in x a factor x i x i+1 =: g such that g ∈ {01, 02}. By setting (3.1.85) y := (x 1 , . . . , x i , x i+2 , . . . , x n ),

we have x = y • i g. Since y satisfies the statement, by induction hypothesis SComp contains y. Hence, SComp also contains x.

A segmented integer composition is a sequence (S 1 , . . . , S ) of integers compositions. The size |S| of a segmented integer composition is the sum of the sizes of the integer compositions which constitute S. It is well-known that there are 3 n-1 segmented integer compositions of size n. We shall represent a segmented integer composition S by a ribbon diagram, that is the diagram consisting in the sequence of the ribbon diagrams of the integer compositions that constitute S. There is a bijection between the words of SComp of arity n and ribbon diagrams of segmented compositions of size n.

To compute φ SComp (x) where x is an element of SComp, factorize x as x = 0x (1) . . . 0x ( ) such that for any i ∈ [ ], the factor x (i) has no occurrence of 0, and compute the sequence φ Comp 0x (1) , . . . , φ Comp 0x ( ) , where for any i ∈ [ ], x(i) is the word obtained from x (i) by decreasing all letters.

The inverse bijection is computed as follows. Given a ribbon diagram S := (S 1 , . . . , S ) of a segmented integer composition of size n, one computes an element of SComp of arity n by computing the sequence u (1) , . . . , u ( ) where for any i ∈ [| |], u (i) is the word of Comp obtained by applying the inverse bijection of φ Comp on u (i) , then by incrementing in each u (i) all letters, excepted the first one, and finally by concatenating each words of the sequence.

Since the elements of SComp satisfy Proposition 3.20, φ SComp is well-defined. Figure 12 shows an example of this bijection. This rewrite rule is terminating. Indeed, it is plain that for any rewriting T 0 → T 1 , we have w(T 0 ) < w(T 1 ).

Moreover, the normal forms of → are all syntax trees of F , , such that each internal node has no internal node as left son. Hence, the generating series F (t) of the normal forms of → is (3.1.105)

F (t) = n 1 3 n-1 t n .
By Proposition 3.20, F (t) also is the Hilbert series of SComp.

Hence, by Lemma 1.2, SComp admits the claimed presentation.

3.2. Operads from the multiplicative monoid. We shall denote by M the multiplicative monoid of integers.

Note that the ns suboperad of TM generated by 00 and the ns suboperad of TM generated by 11 are both isomorphic to the associative commutative operad Com.

The operads constructed in this section fit into the diagram of ns operads represented by Figure 13. Table 2 summarizes some information about these ns operads. Proof. Let us first show by induction on the length of the words that any word x of Di satisfies the statement. This is true when |x| = 1 since 1 is the unit of M. When |x| 2, by Lemma 1.1, there is an element y of Di of length n := |x| -1, an integer i ∈ [n], and g ∈ {01, 10} such that x = y • i g. In all cases, x is obtained from y by inserting a 0 at an appropriate position. Since, by induction hypothesis, y satisfies the statement, x also satisfies the statement.

Let us now show by induction on the length of the words that Di contains any word x satisfying the statement. This is true when |x| = 1. When n := |x| 2, there is in x a factor x i x i+1 =: g such that g ∈ {01, 10}. Assume without lost of generality that g = 01. Then, by setting (3.2.1) y := (x 1 , . . . , x i-1 , x i+1 , . . . , x n ),

we have x = y • i g. Since y satisfies the statement, by induction hypothesis Di contains y. Hence, Di also contains x.

Recall that the diassociative operad [Lod01] Dias is the ns operad admitting the presentation (3.2.2)

Dias := F ({ , }) / ≡ ,
where and are of arity 2, and ≡ is the ns operadic congruence generated by sequences, together with presentations by generators and relations in this symmetric context, would be worthwhile.

Furthermore, we have considered T only in the category of sets, i.e., it takes a monoid as input and constructs a set-operad as output. We can obviously extend the definition of T over the category of vector spaces. In that event, T would be a functor from the category of unital associative algebras to the category of operads in the category of vector spaces. It is thus natural to ask what operads T produces in this category.

Another line of research is the following. It is well-known that the Koszul dual (see [START_REF] Ginzburg | Koszul duality for operads[END_REF] for Koszul duality of operads) of the operads Dias and Trias are respectively the dendriform Dendr [Lod01] and the tridendriform TDendr [LR04] operads. The tridendriform operad is a generalization of the dendriform operad and further generalizations were proposed, like the operads Quad [START_REF] Aguiar | Quadri-algebras[END_REF] and Ennea [START_REF] Leroux | Ennea-algebras[END_REF]. Since the operads Di and Tr, obtained from the T construction, are respectively isomorphic to the operads Dias and Trias, we can ask if there are generalizations of Di and Tr so that their Koszul duals provide generalizations of the operads Dendr and TDendr.

  ) S(3), where S(1) := {a}, S(2) := {b, c}, and S(3) := {d}. Then,

Proposition 3. 1 .

 1 The sets End, PF, and PW form suboperads of TN. Proof. First, by definition of the partial composition map of TN, the set of twisted endofunctions forms a suboperad of TN. Let x and y be two twisted parking functions (resp. packed words) and i ∈ [|x|]. Since x and y have by definition at least one occurrence of 0, we have in TN, (3.1.2)

Figure 2 .

 2 Figure 2. Interpretation of an element of the ns operad PRT in terms of planar rooted trees via the bijection φ PRT . The nodes of the planar rooted tree in the middle are labeled by their depth.

Figure 3 .

 3 Figure 3. Interpretation of the partial composition map of the ns operad PRT in terms of planar rooted trees.

←→Figure 4 .

 4 Figure 4. Interpretation of an element of the ns operad FCat (2) in terms of 2-leafy trees via the bijection φ FCat (2) . The 2-leafy tree in the middle is welllabeled.

Figure 5 .

 5 Figure 5. Interpretation of the partial composition map of the ns operad FCat (2) in terms of 2-leafy trees.

←→Figure 6 .

 6 Figure 6. Interpretation of an element of the ns operad Schr in terms of Schröder trees via the bijection φ Schr .

Figure 7 .

 7 Figure 7. Interpretation of an element of the ns operad Motz in terms of Motzkin words and Motzkin paths via the bijection φ Motz .

Figure 8 4 =Figure 8 .

 848 Figure 8 shows an example of composition in Motz.

  Consider now the orientation of ↔ into the rewrite rule → defined by→, is terminating. Indeed, it is plain that for any rewriting T 0 → T 1 , we have w(T 0 ) < w(T 1 ).Moreover, the normal forms of → are all syntax trees of F ({ , }) which have no internal node with an internal node as leftmost child. This set S of trees admits the following regular specification S = + S + S S . (3.1.54) Hence, the generating series F (t) of S satisfies (3.1.55)

←→Figure 9 .

 9 Figure 9. Interpretation of an element of the ns operad Comp in terms of integer compositions via the bijection φ Comp . Boxes of the ribbon diagram in the middle are labeled.

Figure 10

 10 Figure10shows two examples of compositions in Comp.

Figure 10 .

 10 Figure 10. Interpretation of the partial composition map of the ns operad Comp in terms of ribbon diagrams.

  Consider now the orientation of ↔ into the rewrite rule → defined by → ,

Figure 11 .

 11 Figure 11. A directed animal of size 21. The point (0, 0) is the lowest and leftmost point.

Figure 13 .

 13 Figure 13. The diagram of ns suboperads and quotients of TM. Arrows (resp. ) are injective (resp. surjective) ns operad morphisms.

  One has the following characterization of the elements of Di: Proposition 3.22. The elements of Di are exactly the words on the alphabet {0, 1} containing exactly one 1.

  of the simplest ns operads is the associative commutative operad Com.

		It is defined for
	all n 1 by	
	(1.2.6)	Com(n) := {α n } ,
	and the partial composition maps are defined by
	(1.2.7)	α n • i α m := α n+m-1 ,
	for all n, m 1 and i ∈ [n].	

  Symmetric operads. Let S n be the group of permutations of[n]. Any permutation σ is denoted as a word σ 1 . . . σ n in such a way that the ith letter σ i is the image of i.

	defined using partial composition maps • i by
	(1.2.10)	x • [y 1 , . . . , y n ] := (. . . ((x • n y n ) • n-1 y n-1 ) . . . ) • 1 y 1 .
	The ns operad P is basic if for all y 1 , . . . , y n ∈ P, the maps
	(1.2.11)	γ y1,...,yn : P(n) → P(|y 1 | + • • • + |y n |),
	defined by	
	(1.2.12)	γ y1,...,yn (x) := x • [y 1 , . . . , y n ]
	are injective.	
	1.2.2. For instance,
	the word 312 represents the bijection 1 → 3, 2 → 1, 3 → 2.
	To define what is an operad, we need the following definition. Let As be the ns operad
	satisfying for all n 1,
	(1.2.13)	As(n) := S n ,
	and, for all σ ∈ As(n), ν ∈ As(m), and i ∈ [n],
	(1.2.14)	σ • i ν := σ 1 . . . σ i-1 ν 1 . . . ν m σ i+1 . . . σ n ,
	where	
	(1.2.15)	

  Any element x := (x 1 , . . . , x n ) of TM can be generated by the elements of (2.2.3) in the following way. First, generate the element y := (1, . . . , 1) of arity n by composing (1, 1) with itself n -1 times. Next, change each letter y i of y by composing y with a sequence of generators of G to reach x i . This is possible since M is generated by G.

	Theorem 2.7. Let (M, •) be a monoid generated by a set G := {g 1 , g 2 , . . . } of generators
	satisfying a set R of nontrivial relations. Then, any algebra S over the ns operad TM is a set
	equipped with maps	
	(2.2.4)	: S × S → S
	and	
	(2.2.5)	↑
	Proposition 2.6. Let M be a monoid generated by a set G. The ns operad TM is generated
	by the set	
	(2.2.3)	

{(g) : g ∈ G} ∪ {(1, 1)}, where (1, 1) ∈ TM (2) and 1 is the unit of M . Proof. g : S → S, g ∈ G satisfying for all a, b, c ∈ S, g ∈ G, and all relations

Table 1 .

 1 The diagram of ns suboperads and quotients of TN. Arrows (resp. ) are injective (resp. surjective) ns operad morphisms. Ground monoids, generators, first dimensions, and combinatorial objects involved in the ns suboperads and quotients of TN.

	Monoid Ns operad	Generators	First dimensions	Combinatorial objects
		End	-	1, 4, 27, 256, 3125	Endofunctions
		PF	-	1, 3, 16, 125, 1296	Parking functions
		PW	-	1, 3, 13, 75, 541	Packed words
		Per	-	1, 2, 6, 24, 120	Permutations
	N	PRT	01	1, 1, 2, 5, 14, 42	Planar rooted trees
		FCat (k)	00, 01, . . . , 0k Fuß-Catalan numbers	k-leafy trees
		Schr	00, 01, 10	1, 3, 11, 45, 197	Schröder trees
		Motz	00, 010	1, 1, 2, 4, 9, 21, 51	Motzkin words
	N 2	Comp	00, 01	1, 2, 4, 8, 16, 32	Int. compo.
		DA	00, 01	1, 2, 5, 13, 35, 96	Directed animals
	N 3	SComp	00, 01, 02	1, 3, 27, 81, 243	Seg. int. compo.

3.1.1. Operads on endofunctions, parking functions, packed words, and permutations. Recall that an endofunction of size n is a word x of length n on the alphabet {1, . . . , n}. A parking function of size n is an endofunction x of size n such that the nondecreasing rearrangement y of x satisfies y i i for all i ∈ [n].

  3.1.4.A ns operad on Schröder trees. Let Schr be the ns suboperad of TN generated by 00, 01, and 10. The following table shows the first elements of Schr.

	Arity Elements of Schr
	1	0
	2	00, 01, 10
	3	000, 001, 010, 011, 012, 021, 100, 101, 110, 120, 210
	4	0000, 0001, 0010, 0011, 0012, 0021, 0100, 0101, 0110, 0111, 0112, 0120,
		0121, 0122, 0123, 0132, 0210, 0211, 0212, 0221, 0231, 0321, 1000, 1001,
		1010, 1011, 1012, 1021, 1100, 1101, 1110, 1120, 1200, 1201, 1210, 1220,
		1230, 1320, 2100, 2101, 2110, 2120, 2210, 2310, 3210

  3.1.7. A ns operad on directed animals. Let DA be the ns suboperad of TN 3 generated by 00 and 01. We shall here denote by 1 the representative of the equivalence class of 2 in N 3 . The following table shows the first elements of DA.Since FCat(1) is the ns suboperad of TN generated by 00 and 01, and since TN 3 is a quotient of TN, DA is a quotient of FCat(1) . Moreover, DA is a quotient of FCat (0) by the ns operadic congruence ≡ defined for all x, y ∈ DA by x ≡ y. * x 2 , x 2 * x 3 , . . . , x n-1 * x n ), where x i * x i+1 := x i+1 -x i mod 3. Then, φ DA is a bijection between the elements of arity n of DA and prefixes of Motzkin words of length n -1.Proof. Let us first show by induction on the length of the words that for any x ∈ DA, φ DA (x) is a prefix of a Motzkin word of length |x| -1. This is true when |x| = 1. When |x| 2, by Lemma 1.1, there is an element y of DA of length n := |x|-1, an integer i ∈ [n], and g ∈ {00, 01} such that x = y • i g. We now have two cases depending on g.

	Proposition 3.18. Let φ DA : DA(n) → 1, 0, 1	n-1 the mapping defined for any element x of
	arity n of DA by	
	(3.1.67) φ DA (x) := (x 1 Case 1. If g = 00, then
	(3.1.68)	x = (y
	Arity Elements of DA	
	1	0	
	2	00, 01	
	3	000, 001, 010, 011, 01	1
	4	0000, 0001, 0010, 0011, 001 1, 0100, 0101, 0110, 0111, 011 1, 01 10, 01 11,
		01 11	
	5	00000, 00001, 00010, 00011, 0001 1, 00100, 00101, 00110, 00111, 0011 1,
		001 10, 001 11, 001 11 , 01000, 01001, 01010, 01011, 0101 1, 01100, 01101,
		01110, 01111, 0111 1, 011 10, 011 11, 011 11 , 01 100, 01 101, 01 10 1, 01 110,
		01 111, 01 11 1, 01 11 0, 01 11 1, 01 111

1 , . . . , y i , y i , y i+1 , . . . , y n ).

By induction hypothesis, φ DA (y) is a prefix a Motzkin word of length n -1. Since x is obtained from y by duplicating its ith letter, φ DA (x) is obtained from φ DA (y) by inserting a 0 at an appropriate place. Hence, φ DA (x) is a prefix of a Motzkin word of length n.

Case 2. Otherwise, we have g = 01 and then, (3.1.69)

x = (y 1 , . . . , y i , y i + 1, y i+1 , . . . , y n ),

where + denotes the addition in N 3 . We have now two sub-cases whether y i is the last letter of y. Case 2.1. If it is the case, then x i+1 = y i + 1 is the last letter of x and φ DA (x) is obtained from φ DA (y) by concatenating a 1 on the right. Hence, since by induction hypothesis, φ DA (y) is a prefix of a Motzkin word of length n -1, φ DA (x) is a prefix of a Motzkin word of length n.

Case 2.2. Otherwise, we have i < n. We observe that φ DA (x) is obtained from φ DA (y) by replacing a letter 0 (resp. 1, 1) by a factor 1 1 (resp. 10, 11) at an appropriate place. Hence, since by induction hypothesis, φ DA (y) is a prefix of a Motzkin word of length n -1, φ DA (x) is a prefix of a Motzkin word of length n.

  .1.8. A ns operad on segmented integer compositions. Let SComp be the ns suboperad of TN 3 generated by 00, 01, and 02. The following table shows the first elements of SComp.

	Arity Elements of SComp
	1	0
	2	00, 01, 02
	3	000, 001, 002, 010, 011, 012, 020, 021, 022
	4	0000, 0001, 0002, 0010, 0011, 0012, 0020, 0021, 0022, 0100, 0101, 0102,
		0110, 0111, 0112, 0120, 0121, 0122, 0200, 0201, 0202, 0210, 0211, 0212,
		0220, 0221, 0222

Table 2 .

 2 Ground monoids, generators, first dimensions, and combinatorial objects involved in the ns suboperads and quotients of TM.3.2.1. The diassociative operad.Let Di be the ns suboperad of TM generated by 01 and 10. The following table shows the first elements of Di.

	Arity Elements of Di
	1	1
	2	01, 10
	3	001, 010, 100
	4	0001, 0010, 0100, 1000
	5	00001, 00010, 00100, 01000, 10000
	6	000001, 000010, 000100, 001000, 010000, 100000

Note that Com is a quotient of Di by the ns operadic congruence ≡ defined for all x, y ∈ Di(n) by x ≡ y.

Since FCat (1) is the ns suboperad of TN generated by 00 and 01, and since TN 2 is a quotient of TN, Comp is a quotient of FCat (1) . Moreover, FCat (0) is a quotient of Comp by the ns operadic congruence ≡ defined for all x, y ∈ Comp by x ≡ y.

One has the following characterization of the elements of Comp: Proposition 3.15. The elements of Comp are exactly the words on the alphabet {0, 1} beginning by 0.

Proof. It is immediate, from the definition of Comp and Lemma 1.1, that any element of this ns operad starts by 0 since its generators 00 and 01 all start by 0.

Let us now show by induction on the length of the words that Comp contains any word x satisfying the statement. This is true when |x| = 1. When n := |x| 2, let us observe that if x only consists in letters 0, Comp contains x because x can be obtained by composing the generator 00 with itself. Otherwise, x has at least one occurrence of 1. Since its first letter is 0, there is in x a factor x i x i+1 = 01. By setting (3.1.56) y := (x 1 , . . . , x i , x i+2 , . . . , x n ),

we have x = y • i 01. Since y satisfies the statement, by induction hypothesis Comp contains y. Hence, Comp also contains x.

An integer composition is a sequence u 1 . . . u k of positive integers. The size |u| of an integer composition u is the sum of its letters. It is well-known that there are 2 n-1 integer compositions of size n. We shall represent an integer composition u := u 1 . . . u k by a ribbon diagram, that is the diagram in which each letter u i of u is encoded by a column consisting in u i boxes, and the column encoding the letter u i+1 is attached on the right edge of the bottommost box of the column encoding u i , for any i ∈ 

where and are of arity 2, and ≡ is the ns operadic congruence generated by

Proof. First, note that by replacing by 00 ∈ DA(2) and by 01 ∈ DA(2), we have ev(x) = ev(y) for the four relations x ↔ y of the statement of the Theorem. Indeed, the four equivalence classes are, respectively, the ones of the elements 000, 001, 011, and 01 10 of DA.

Consider now the orientation of ↔ into the rewrite rule → defined by

This rewrite rule is terminating. Indeed, let T be a syntax tree of F ({ , }). By associating the pair (-k T , w(T )) with T , where k T is the sum, for all internal nodes x of T labeled by , of the number of internal nodes constituting the right subtree of x, it is plain that for any rewriting T 0 → T 1 , we have k T0 < k T1 , or k T0 = k T1 and w(T 0 ) < w(T 1 ). Moreover, the normal forms of → are all syntax trees of F ({ , }) such that no internal node labeled by has a left child labeled by , no internal node labeled by has a child labeled by , and no internal node labeled by has a right child labeled by which has a right child labeled by . This set S of syntax trees admits the following regular specification

where T is the set of syntax trees admitting the following regular specification

Hence, the generating series F (t) of S satisfies (3.1.84)

which is the generating function of directed animals. By Proposition 3.18, F (t) also is the Hilbert series of DA.

Hence, by Lemma 1.2, DA admits the claimed presentation.

Since the nontrivial relation (3.1.77) has degree 3, the presentation of DA exhibited by Theorem 3.19 is not quadratic. Moreover, DA is not a quadratic ns operad since, as an 

Proof. First, note that by replacing by 00 ∈ SComp(2), by 01 ∈ SComp(2), and by 02 ∈ SComp(2), we have ev(x) = ev(y) for the nine relations x ↔ y of the statement of the Theorem. Indeed, the nine equivalence classes are, respectively, the ones of the elements 000, 001, 011, 010, 021, 020, 002, 012, and 022.

Consider now the orientation of ↔ into the rewrite rule → defined by (3.2.3)

Proposition Since Di is generated by 01 and 10, Di is a ns suboperad of Tr.

One has the following characterization of the elements of Tr:

Proposition 3.24. The elements of Tr are exactly the words on the alphabet {0, 1} containing at least one 1.

Proof. Let us first show by induction on the length of the words that any word x of Tr satisfies the statement. This is true when |x| = 1 since 1 is the unit of M. When |x| 2, by Lemma 1.1, there is an element y of Tr of length n := |x| -1, an integer i ∈ [n], and g ∈ {01, 10, 11} such that x = y • i g. By induction hypothesis, y contains at least one 1. Since all generators of Tr contain at least one 1, x also contains at least one 1.

Let us now show by induction on the length of the words that Tr contains any word x satisfying the statement. This is true when |x| = 1. When n := |x| 2, there is in x a factor x i x i+1 =: g such that g ∈ {01, 10, 11}. Recall that the triassociative operad [START_REF] Loday | Trialgebras and families of polytopes[END_REF] Trias is the ns operad admitting the presentation (3.2.10)

where , ⊥, and are of arity 2, and ≡ is the ns operadic congruence generated by (3.2.11) 

which also is the Hilbert series of Trias. Then, there is no nontrivial relation of degree greater than two involving generators of Tr.

Proposition 3.25 also shows that Tr is a realization of the triassociative operad.

Concluding remarks

We have presented the functorial construction T producing an operad given a monoid. As we have seen, this construction is very rich from a combinatorial point of view since most of the obtained operads coming from usual monoids involve a wide range of combinatorial objects. There are various way to continue this work. Let us address here the main directions.

In the first place, it appears that we have somewhat neglected the fact that T is a functor to operads and not only to ns ones. Indeed, except for the operads End, PF, PW, and Per, we only have regarded the obtained operads as ns ones. Computer experiments let us think that the dimensions of the operads PRT, FCat (2) , Motz, DA and SComp seen as symmetric ones are, respectively, Sequences A052882, A050351, A032181, A101052, and A001047 of [Slo]. Bijections between elements of these operads and combinatorial objects enumerated by these