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Abstract
An efficient method to capture an arbitrary number of fluid/solid or fluid/fluid interfaces in a level-set framework
is built, following the ideas introduced for contour capturing in image analysis. Using only three label maps and
two distance functions it is possible to get the distance between the closest cells and to apply the collision force
whatever the number of cells is. The method is applied to rigid solid bodies in order to compare to the results
available in the literature. In that case a global penalization model uses the label maps to follow the solid bodies
all together without a separate computation of each body velocity. Consequently, the method is very efficient when
dealing with a large number of cells. Numerical simulations are performed in two- and three-dimensions under
gravity force.
Keywords: level set method, multiple cells, fluid/structure interaction, collision model.

1 Introduction
Numerical simulations of fluid-structure interaction (FSI) have attracted an increasing interest and several methods
have been proposed during the last decades. A popular and wide spread method is the Arbitrary Lagrangian
Eulerian approach (ALE) introduced by Donea in 1982 (see [7]) and extensively studied by several teams [15, 13,
17, 27, 33]. The ALE strategy is an hybrid method that combines the Lagrangian and Eulerian descriptions using
a mobile non structured grid that follows the normal displacement of the fluid/structure interface. The fluid and
solid equations are solved individually and continuity conditions for the velocity and stress tensor are explicitly
discretized at the interface. The main weakness of the ALE method is its difficulty of implementation, especially
when dealing with large displacements in dimension three. In addition the added mass effect [3] has been a long
standing difficulty which has been worked around only recently [10, 8, 9, 11, 12]. Moreover, the computational grid
has to be remeshed when the elements get too distorted, which could be a very costly procedure in three-dimension.
Another method, introduced by Cottet and Maitre in [5, 6], is to use a purely Eulerian formulation for describing
the fluid/structure interaction. This approach was inspired by the immersed boundary method of Peskin [26] where
the forces at the interface were described in a Lagrangian manner. In the model [5], a level set method is used
to capture the interface. The level set method was developed in [24] to treat problems involving interfaces. It is
used in many domains because of its several advantages: its implementation is very easy, the topological changes
are directly handled and one single level set function can capture an arbitrary number of interfaces. This last
property is largely used as it can be a very efficient tool to capture several interfaces, for instance when merging
and splitting of interfaces are allowed. The present work aims at dealing with a dense suspension of cells immersed
in a fluid. In this kind of application, using one level set is not always sufficient as will be explained thereafter.
The other existing level set models for capturing a large number of cells are either computationally expensive or
cannot be used to handle collisions. Indeed, in [4] one level set function is required for each cell leading to a huge
computational cost although contacts are easily avoided. In [32], a formulation using log2 n level set functions to
represent n different regions is designed. This model substantially reduces the number of level set functions and can
handle very easily complex topologies. This approach is based on the four color theorem. However, it is not able
to reconstruct all distances between cells, as a consequence this model is not useful when one wants to deal with
several bodies immersed in a fluid. Indeed, when dealing with several cells, the investigation of fluid/structures
interaction raises the problem of collisions between the bodies. These collisions can be handled if the distance
between cells is known. As confirmed by theoretical works [16], the hydrodynamical forces between two bodies
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following a Navier-Stokes flow avoid them to enter in contact at finite time. Numerically, however, it is necessary
to have enough discretization points between two interfaces in order to resolve hydro dynamical forces. This lack of
discretization points could lead to numerical collision and coalescence of bodies. A first approach proposed in [18]
is to refine the mesh near the inter particle gap in order to resolve accurately these lubrication forces. However, this
strategy leads to a high computational cost as several refinements are necessary and the frequency of refinements is
not known a priori. Consequently, a collision model appears to be necessary to develop numerical simulations with
tractable cost at relatively low resolution. The hydrodynamical forces between two smooth bodies is a function of
the bodies size and shape, the distance between them, and the sign is associated to the relative velocity of the two
cells. Following this idea, B. Maury introduced a first order approximation of these lubrication forces (see [21]). In
[14] short range repulsive forces between particles are introduced and tend to avoid contacts. Another approach is
to impose a minimal distance between cells to forbid overlaps, this was achieved in [22] by using a minimization
procedure on a global functional of the cells position. In [23] a scheme for inelastic collisions is developed allowing
to impose a minimal distance between the cells. At last in [4] a repulsion force model is developed in the framework
of vortex methods to avoid contact.
In this work a new type of algorithm is designed to enable these contacts efficiently by adding a short range
repulsive force. This algorithm is derived from the multi geometric deformable model (MGDM) introduced by
J. Bogovic [2] for image segmentation. The proposed algorithm can handle multiple deforming bodies and avoid
collision using a short range repulsive force depending on the distance to the closest interface, following [4]. The
main advantages of this method is that it requires only five fields and one level set function to capture an arbitrary
number of cells and it can, at the same time, deal with collisions. This substantially reduces the computational
cost, as will be illustrated below. The level set function captures all interfaces and is transported with the fluid
velocity. Then a local fast marching algorithm is performed at each time step to find the the closest neighbours
and their associated distance functions. Let us point out that this sorting algorithm depends on the number of
cells. Indeed, if we denote by M the number of grid points and N the number of cells then the worst complexity of
this sorting algorithm is O(NM(log(NM))). In the case of spherical rigid structures it is possible to avoid it by
advecting the center of each sphere and so another faster approach is employed. This work combines the advantage
of the MGDM method which efficiently captures a large number of bodies and their relative neighbours and of the
collision model introduced in [4] using a level set decomposition.

This paper is organized as follows: In section 2 is presented the proposed model with a careful description of the
three label maps and the two distance functions. In section 3, the forces used to avoid collisions are described. In
sections 4 and 5 is shown how to apply the method to the case of rigid bodies immersed in an incompressible fluid.
In section 6 is proposed a bench of numerical simulations starting with a qualitative study of the grid convergence
on the sedimentation of 25 circular rigid disks in two dimensions. Then, other simulations on circular or spherical
rigid bodies are performed and compared to the results of the literature. Finally, some conclusions are derived.

2 The proposed model
In this section, we first recall some basic principles of the level set method. Then, we provide a description of the
method used to capture multiple interfaces. This method, inspired by the multi geometric deformable model of J.
Bogovic [2], is introduced in the context of several cells immersed in a fluid. The main idea is to partition the entire
fluid/structures domain into several objects making a decomposition of the domain. Then a local configuration of
these objects is obtained with the first and second neighbours and their associated distance functions.

2.1 Outline of the level set method
Pioneered by Osher and Sethian in [24], the level set method is very popular to treat problems involving interfaces.
It is widely used for numerical analysis of surfaces and shapes. The general idea of the level set method is to define
a scalar function that assumes a 0 value on the location of the interface to capture.
Let Ω be a bounded domain in Rd (d = 2 or d = 3) partitioned into two sub domains Ω1 and Ω2 and Γ be the
interface between Ω1 and Ω2. The aim is to follow the evolution of the interface Γ that is defined as the zero value
of a level set function φ. At each time t, the interface Γ is characterized by:

Γ(t) = {x ∈ Ω, φ(x, t) = 0}

The level set function has to be Lipschitz continuous in the whole domain Ω. It is for example defined as: φ(x) < 0 x ∈ Ω1
φ(x) = 0 x ∈ Γ
φ(x) > 0 x ∈ Ω2

2



The displacement of the interface is obtained by the evolution of the level set function φ. Let u be the velocity in
the domain Ω, the level set function is the solution of the scalar transport equation:

∂tφ+ u · ∇φ = 0. (1)

The velocity field u can depend on the space, the time, the geometric properties of the curve and/or the physics of
the problem. For example, if we consider a problem of fluid/structures interaction this velocity field is the velocity
of the fluid or of the structures. We usually define the level set function as a signed distance function that is regular
in each corresponding domain.

φ(x) =
{
−d(x,Γ) x ∈ Ω1

d(x,Γ) x ∈ Ω2
(2)

where
d(x,Γ) = min

y∈Γ
‖x− y‖.

Using an implicit function to capture the interface tells us directly to which region belongs a point x with the help
of a Heaviside function H and its corresponding Dirac function ζ applied to φ(x). In practice, a regularized version
of these functions Hε and ζε is used on the interface in order to reduce gride:

Hε(φ(x)) =


0 φ(x) ≤ −ε

1
2 (1 + φ(x)

ε +
sin(πφ(x)

ε )
π

) |φ(x)| ≤ ε
1 φ(x) ≥ ε

ζε(φ(x)) =


0 φ(x) ≤ −ε
1
2ε (1 + cos(πφ(x)

ε )) |φ(x)| ≤ ε
0 φ(x) ≥ ε

where ε represents half of the interface thickness. While an advantage of the level set method is to handle
automatically changes of topology, in our case this property is problematic as splitting or merging of interfaces
are directly taken into account by the level set function. Moreover geometrical characteristics of the curve such as
normal vectors n and curvature κ are obtained explicitly using the level set function:

n = ∇φ
|∇φ|

κ = ∇ · n.

2.2 Level set functions for multiple interfaces
Let us consider N cells Ωi, i ∈ {1, ..., N} inside the domain Ω such as none intersects with Ωi ∈ Ω pairewise disjoints
and let us denote Γi the frontier of the cell Ωi and ΩNf the fluid background sub domain with Nf = N + 1. A
big advantage of the level set method is that one level set function can capture an arbitrary number of interfaces
between the cells and the fluid. Let φ be the level set function which captures the union of the N cells Ωi,
i ∈ {1, ..., N} defined by:

φ(x) =
{
−d(x,∪Ni=1Γi) x ∈ ∪Ni=1Ωi
d(x,∪Ni=1Γi) elsewhere

Using one single level set function yields a very low computing time as it is independent on the number of cells.
However, it is not possible to specify a different velocity model and/or a force for each cell. If two cells are too close
the curvature and the normal are not well computed and a strong drawback is that we do not have any information
on the distance between cells. So this method can lead to collision and merging of cells. Another way to capture
multiple cells is to use one level set function for each cell. Then each cell interface Γi is captured by one level set
function φi. Thus it is possible to specify a different speed or force to a cell Ωi by using the level set function φi
and we get the distance between all the cells. Indeed, the distance between two cells Ωj and Ωi is given by the
level set functions φi and φj as follows:

∀x ∈ Ωi, φj = d(x,Γj) or ∀x ∈ Ωj , φi = d(x,Γi)

This multiple level set decomposition has been widely used in image segmentation and in fluid/structures interac-
tion. A big inconvenient is its computational cost when the number of cells increases.

2.3 Domain decomposition
Let Ω ⊂ Rd (d = 2 or 3) be a bounded domain which contains N cells immersed in an incompressible fluid, we
denote Ωi and Γi the interior and the boundary of the ith cell. We consider the fluid ΩNf as an object . Thus the
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fluid/structures domain Ω is partitioned into N + 1 objects as:
∀i 6= j,Ωi

⋂
Ωj = ∅

ΩNf = Ω\{
⋃N
i=1 Ωi}

ΓNf =
⋃N
i=1 Γi.

(3)

In order to locate the different objects in the domain we introduce a set of label maps and distance functions.

2.3.1 Label maps

At every point x of the fluid/structure domain Ω, we define the label functions L0, L1, L2 as:

∀x ∈ Ω, ∀i ∈ {1, ..., N + 1},


L0(x) = i if x ∈ Ωi
L1(x) = arg min

j 6=L0(x)
d(x,Γj)

L2(x) = arg min
j /∈{L0(x),L1(x)}

d(x,Γj).

The label map L0 provides a partition of the whole computational domain Ω into N + 1 different objects. The
label map L1 identifies the index of the first closest object at all points in Ω. The label map L2 identifies the index
of the second closest object at all points in Ω. As a consequence, the label map function L2 gives the index of the
first closest cell for any x in the whole computational domain. For example:

L0(x) = i if x ∈ Ωi
L1(x) = j if the first closest object to x is Ωj
L2(x) = k if the second closest object to x is Ωk.

Figure 1 shows an illustration of the three label maps in the case of three structures immersed in a fluid. Taking

L0 L1 L2

Figure 1: Illustration of the three label maps, the red color represents the object related to the fluid. For each
point of a cell the first closest object is the fluid (in red) and the second closest object is the closest cell.

advantage of this local configuration of the closest object, one can define two related distance functions.

2.3.2 Distance functions

We define two distance functions ϕ1 and ϕ2 as:

∀x ∈ Ω,
{
ϕ1(x) = d(x,ΓL1(x))
ϕ2(x) = d(x,ΓL2(x)).

The distance function ϕ1(x) is the distance from x to the first closest object’s boundary ΓL1(x) and ϕ2(x) is the
distance from x to the second closest object’s boundary ΓL2(x). As we consider the problem of cells immersed in a
fluid, the distance function ϕ2 gives the distance between two closest cells. Thus, avoiding contacts is equivalent
to require:

∀x ∈ Ω , ϕ2(x) > 0.

At any point of the domain Ω, the distance function ϕ1 captures the union of all cells interfaces and ϕ2 gives the
distance to the first closest cell. As a consequence, on each point of a cell, we have the distance to the closest one
allowing to define a collision model to the closest interface. For a configuration of three bodies the Figure 2 shows
an example of the two distance functions related to the label maps of the Figure 1.
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ϕ1 ϕ2

Figure 2: Illustration of the distance functions, the black contours represent the boundary of the three cells.

2.4 Evolution of the label maps and distance functions in the general case
The evolution is based on the transport of one level set function which captures the union of all interfaces and then
a local fast-marching method is performed enabling a re-initialization of the label and distance functions.
Let u be the velocity of the fluid, φ evolves with equation (1) starting from:

φ(x, 0) = φ0(x)

Given a time step δt, we set t = nδt and φn(.) ≈ φ(., t).
Denoting by Γti the position of the interface Γi at time t we get:

∪Ni=1Γti = {x ∈ Ω;φn(x) = 0}

By definition the first distance function ϕ1 is the absolute value of this level set function φ and the region where
the level set function is non negative corresponds to the fluid, which gives at every time the label function L0 in
the fluid region.

∀x ∈ Ω, ϕn1 (x) = |φn(x)|

∀x ∈ Ω, ∀i ∈ {1, ..., N}, Ln0 (x) =
{
i 6= Nf if φn(x) < 0
Nf if φn(x) ≥ 0

(4)

Taking advantage of these relations we can make the distance function ϕ1 and the label L0 evolve in time. Then a
fast marching method is performed to redistanciate and redefine ϕ1 and ϕ2 and at the same time redefine L1 and
L2.
The general algorithm performs the following steps:

1. Transport the level set function φ with the fluid velocity,

2. Define ϕ1 as the absolute value of φ,

3. Evolve the Label Function L0 by redefining its values near the interfaces,

4. Perform a multi label fast marching to redefine the label maps L1, L2 and the function ϕ2 and redistanciate
ϕ2 and ϕ1,

5. Redefine φ using the updated function ϕ1.

Redefinition of L0

In order to evolve the label function L0, we use the level set function φ. At each time step, we change the label
value L0, near the interface at the points where the condition (4) is not verified. Namely, if the level set function is
positive, we set L0 to the label of the fluid (L0 = Nf) and if the level set function is negative and the label function
L0 is still the label of the fluid, we assign to L0 the value of its neighbours which are different from Nf.Let dt
denotes the time step. The procedure can be summarized as:
if φn+1(x) ≥ 0 then
Ln+1

0 (x) = Nf
else
if (Ln+1

0 (x) = Nf) then
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Ln+1
0 (x) = Ln+1

0 (xneighbour 6∈ ΩNf
)

end if
end if

This simple strategy is allowed only if the distance between two cells is strictly greater than two spacial discretization
steps. It will have to be taken into account by our collision model.

Multiple label fast marching method

We present here the local fast marching algorithm that allows to evolve the functions ϕ1, ϕ2 and the label maps
L1 and L2. This local fast marching is an extension of the fast marching method [29] that was introduced in [31]
and [2]. We use this procedure in order to redistanciate the distance functions ϕ1 and ϕ2 and at the same time
redefine the label maps L1 and L2. To redistanciate the distance functions ϕ1 and ϕ2, we introduce a distance
function d. In order to do that, we solve the following eikonal equation in the entire computational domain Ω:

|∇d| = 1 (5)

using a 1st order numerical scheme [28] with an horizontal and a vertical space steps ∆x and ∆y in two-dimensions
we solve:

max(max(D−x dij , 0)2,min(D+
x dij , 0)2) + max(max(D−y d, 0)2,min(D+

y dij , 0)2) = 1 (6)

where D−x dij = dij−di−1,j

∆x , D+
x dij = di+1,j−di,j

∆x , D−y dij = dij−di,j−1
∆y , D+

y dij = di,j+1−di,j

∆y . At initialization, the
function d is equal to ϕ1 on the interfaces. All boundaries spread out from each object simultaneously and are
associated to the number of objects. Interfaces spread in two directions, inside and outside cells.
There are three sets of points: alive(A), narrow-band (NB) and far away (F). At each point x of the narrow-band is
associated an integer lab(x) which corresponds to the number of the interface that spreads and the distance value
d(x) (distance from the interface Γlab(x)). The algorithm performs the following steps.
Initialization phase:
• The points on the interfaces are tagged as A
• The closest points to the interfaces are tagged as NB and we set lab(x ∈ NB) = L0(xneighbours)
• All other points are tagged as F and at these points we set: L1(x) = L2(x) = −∞, d(x) = −∞

Iterative phase:
while (NB 6= ∅) do
Find xm such as d(xm) = min(x∈NB) d(x)
Delete xm from the NB
if it is the first time that xm has been visited then
ϕ1(xm) = d(xm)
L1(xm) = lab(xm)

else
ϕ2(xm) = d(xm)
L2(xm) = lab(xm)
xm is tagged as A

end if
if ((L1(xneighbours) = −∞ )or (L2(xneighbours) = −∞)) then
Compute d(xneighbours)
Add xneighbours in NB

end if
end while

All interfaces are propagated simultaneously. At initialization, the narrow-band contains the closest points to the
interfaces. The algorithm computes the new values only at the nodes belonging to the narrow-band and accepts
just one of them, the one corresponding to the minimum value. If the point xm has not been visited yet, this
minimum value corresponds to the distance ϕ1(xm) and the label associated is L1(xm). Thus, this point has to be
suppressed from the narrow-band.
The second boundary that reachs xm gives us ϕ2(xm) and L2(xm). When the two distance functions and the two
label maps are defined for a point x, this point is considered as alive and is definitely deleted from the narrow-band.
Consequently, the present algorithm stops propagation when the label function L2 (and so the distance function
ϕ2) is defined for all points.

Let us underline some differences between the classical fast marching method and our algorithm. In the case of
several level set functions, each interface is spread until all points are visited. So, if N level set functions capture
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N interfaces, N fast marching are performed. Let M be the number of grid points contained in the narrow band
of each cell, we assume that each narrow band contains the same number of grid points. For each fast marching,
adding a point in the binary heap has a complexity of the order O(log(M)) as well as the deleting procedure.
Thus, the N fast marching complexity is of order (NM)O(log(M)) whereas with the multiple label fast marching
method, we use only one heap sort that contains NM points inducing a complexity of (NM)O(log(NM)). Which
is worse than using N fast marchings but the proposed algorithm has the ability to stop propagation when the
label map L2 is defined, which alleviates the computational time. Finally, the cpu time difference is very small.

3 Collisions strategy
As discussed before, it is crucial to develop a collision model to avoid contacts between cells. In this section,
we present the collision model that consists in a short range repulsive force taking into account the interactions
between the closest cells. This short range repulsive force is inspired by the collision model introduced in [4].

3.1 Collision model using several level set functions
The collision model [4] was developed within a level set framework in the context of fluid/rigid bodies interaction.
The level set decomposition is used in such a way that each body interface is captured by one level set function.
Consider N bodies immersed in a fluid and denote Fj,i the force applied by the body Ωj on the body Ωi and φi
the level set function which captures the boundary Γi of the body Ωi. The distance of a point x of Ωi to the body
Ωj is given by φj(x) and the direction of the force Fj,i is obtained directly by ∇φj .
Moreover, to localize the interface Γi we use a cut off function regularized on a thickness ε on each part of the
interface:

∀x ∈ Ω, Fj,i(x) = k

ε
ζε(φi(x))∇φj(x)

φj(x) exp(−φj(x)
εb

)

Consequently, we obtain the following collision model:

∀x ∈ Ω, Fcol(x) =
N∑

i,j=1
i6=j

k

ε
ζε(φi(x))∇φj(x)

φj(x) exp(−φj(x)
εb

) (7)

where k is a repulsive constant proportional to the square of the relative velocities of the corresponding bodies just
before collision. The coefficient ε represents the half thickness of the interface on which we apply the repulsive
force and εb represents the rebound coefficient. In practice we set εb = ε. The interaction forces tend to zero out
of a cut-off radius reducing the number of interacting neighbours. This collision model accounts for all possible
interactions between the N bodies. Consequently for N bodies captured by N level set functions, N2 computations
of the repulsive forces are required, which represents a huge computational effort.

3.2 Present collision model using two distance functions
We present here the repulsive force used in this work to prevent contacts between cells. To reduce the high
computational cost of (7) we propose a reformulation that depends only on the two distance functions ϕ1 and ϕ2.
The following short range repulsive force accounts for the interaction between the closest cells at all points:

∀x ∈ Ω, F lab
col (x) = k

ε
ζε (ϕ1(x)) ∇ϕ2(x)

ϕ2(x) exp
(
−ϕ2(x)

εb

)
(8)

This force has its support on a subset Γε = {x ∈ Ω, ϕ1(x) ≤ ε}. As proved in proposition 1, if two cells are at a
distance greater than few ε, the force becomes small. In section 6, numerical tests provide evidence that, in that
case, this force does not change the dynamics of the bodies. As ϕ2 is the distance to the second closest object
at all points of the fluid/structures domain, if a cell is surrounded by other cells the interaction of the other cells
are taken into account on different part of its interface. For example, on Figure 1 the label L2 indicates that the
repulsive forces acting on the blue cell (top left) is on one part of the interface coming from the yellow cell (top
right) and on the other part coming from the green cell (bottom). The advantage of this formulation is that we
get rid of the sum in (7) leading to a considerable saving of the computational cost. In addition there is only one
repulsive force for an arbitrary number of objects.
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3.3 Comparison of the two collision models
In this subsection, we compare the two collision models introduced above in two-dimensions. We consider the
case of N circular rigid bodies having the same radius R. The following result gives an estimate of the difference
introduced by using the label force (8) instead of the collision model (7). As expected, the difference is smaller for
large bodies and/or small ε.

Proposition 1. Assuming that the N bodies are disks, such as:

∀x ∈ Ω, ϕ2(x) ≥ 2ε

then:
‖Fcol − F lab

col ‖L1 ≤ N(N − 2)
(

2πk
α

+O
( ε
R

))
exp

(
−α(R+ ε)

ε

)
where α =

√
13−3
2 ≈ 0.3.

Proof. Let Li(x) denote the ith closest object to x and φLi(x) the distance function associated to the object ΩLi(x),
it comes:

∀x ∈ Ω,∀i ∈ {1, ..., N}, φLi(x)(x) = d(x,ΓLi(x)).

Using the assumption on the distance between disks, since the support of the cut-off functions do not intersect, it
holds:

∀x ∈ Ω, ζε (ϕ1(x)) =
N∑
j=1

ζε(φj(x)),

Then, the model (7) can be written using these functions:

∀x ∈ Ω, Fcol(x) =
N∑
i=2

k

ε
ζε(ϕ1(x))

∇φLi(x)(x)
φLi(x)(x) exp

(
−
φLi(x)(x)

ε

)
.

As defined in subsection 2.3.2, we have ϕ2 = φL2 and using (8) leads to:

∀x ∈ Ω, Fcol(x)− F lab
col (x) =

N∑
i=3

k

ε
ζε(ϕ1(x))

∇φLi(x)(x)
φLi(x)(x) exp(−

φLi(x)(x)
ε

). (9)

Considering that ∀i ∈ {2, .., N}, φLi
are distance functions we get:

‖Fcol − F lab
col ‖L1 ≤ ‖k

ε
ζε(ϕ1)‖L1(Ω)‖

N∑
i=3

1
φLi

exp(−φLi

ε
)‖L∞(Ω).

Moreover by definition we have:

∀x ∈ Ω,∀i ∈ {4, .., N}, φLi(x)(x) ≥ φL3(x)(x).

leading to :
‖Fcol − F lab

col ‖L1 ≤ (N − 2)‖k
ε
ζε(ϕ1)‖L1(Ω)‖

1
φL3

exp(−φL3

ε
)‖L∞(Ω).

It is a classical result from level-set theory that 1
εζε(ϕ1(x)) is an approximation of the length of the zero level-set

of ϕ1. Namely, in the case of N disks, we can prove that

‖1
ε
ζε(ϕ1)‖L1(Ω) = N(2πR+O(ε)),

Therefore,
‖Fcol − F lab

col ‖L1(Ω) ≤ N(N − 2)(2πRk)‖ 1
φL3

exp(−φL3

ε
)‖L∞
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Figure 3: Configuration of three bodies. The circles represented are of radius R+ ε.

We are looking for a lower bound of φL3 depending on the radius R. To that aim, we consider the worst case
of three disks which are enlarged by ε and are in contact like shown in Figure 3. This configuration gives the
minimum distance required between two disks. Taking a point x on the boundary of one disk (without loss of
generality, Γ1) as shown in Figure 3, we compute the minimal distance of x to the second closest disk. Once again,
the worst case is obtained in the situation where x is as in Figure 3. Through a simple calculation, we obtain as
distance:

d =
√

13− 3
2 R

that is a lower bound for φL3 . As r → 1
r exp(− rε ) is decreasing, we obtained the announced estimation.

Let us point out to the reader that this difference tends to zero when R tends to ∞ or when ε tends to zero.
Consequently, we can adjust ε depending upon R such as this difference becomes negligible. Numerically, we
take an ε that depends on the discretization space step, thus the grid mesh size is selected in order to lower the
difference.
Moreover, the influence of the repulsive force imposed by the first closest cell at all points F lab

col , is the most
influential on the dynamics of the cells as it is the largest. Therefore, numerically it is better to compare the
relative difference:

‖Fcol − F lab
col ‖L1

‖F lab
col ‖L1

.

4 Application to rigid bodies
4.1 Flow configuration
We consider N cells evolving in an incompressible fluid denoted ΩNf

and the entire domain Ω is partitioned in the
same way than (3). In this case each cell Ωi, 1 ≤ i ≤ N represents a rigid body, ρf and µ denote the constant
density and the viscosity of the fluid, U and p denote the flow velocity and the pressure. The flow is governed by
the viscous incompressible Navier-Stokes equations:{

ρf (∂tU + (U · ∇)U)−∇ · (µ∇U) +∇p = 0 in ΩNf
× (0, T )

∇ · U = 0 in ΩNf
× (0, T )

with the condition at the interfaces of the solid bodies:

∀i ∈ {1, ..., N}, U = ui on Γi (10)

where ui is the rigid motion of the body Ωi. In order to get rid of the boundary conditions (10) on the solid
boundaries, we use a penalization method ([1, 25, 4]). This method consists in adding a penalization term in the
Navier-Stokes equations to impose the rigid motion inside the solid and to solve the boundary value problem inside
the whole domain Ω including the bodies. So, there is no need for an adapted mesh to the geometry of the bodies
and a Cartesian mesh on a box domain can be used. If we denote by χi the characteristic function of the body Ωi
and by λ the penalization parameter we obtain the following model:{

ρ(∂tU + (U · ∇)U)−∇ · (µ∇U) +∇p = ρg + λ(
∑N
i=1 χi(ui − U)) + Fcol + Fwall in ΩT = Ω× [0, T ]

∇ · U = 0 in ΩT
(11)

where g is the gravity force, Fcol is the collision force (8) and Fwall is a repulsive force carry on by the solid
boundaries of the domain Ω on the rigid bodies. The rigid velocity ui is obtained by averaging translation and
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angular velocities over the solid body Ωi ([25]):

ui = uti + uθi = 1
| Ωi |

∫
Ωi

ρχiudx+
(
J−1
i

∫
Ωi

ρχiu× (x− xgi )dx
)
× (x− xgi ) (12)

where Ji is the inertial matrix of the body Ωi and xgi its center . As the rigid bodies move with the fluid, the
displacement of χi is:

∀x ∈ Ω, ∀i ∈ {1, ..., N}, ∂tχi + U · ∇χi = 0. or ∂tχi + ui · ∇χi = 0.

Finally, denoting by ρi the density of the immersed bodies Ωi, we obtain the following density function:

ρ = ρf +
N∑
i=1

(ρf − ρi)χi.

Let us note that the coefficient λ >> 1 means that the regions occupied by the solid bodies are considered as
porous media with a very small permeability.

4.2 The penalization model using several level set functions
The characteristic function χi can also be deduced considering a level set function φi that captures the interface
Γi. This level set function evolves as:

∂tφi + ui · ∇φi = 0

and using the regularized Heaviside function χi can be smoothed as:

χεi = 1−Hε(φi).

So the model becomes:
ρ(∂tU + (U · ∇)U)−∇ · (µ∇U) +∇p = ρg + λ(

∑N
i=1 χ

ε
i (ui − U)) + Fcol + Fwall in ΩT

∇ · U = 0 in ΩT
∂tφi + ui · ∇φi = 0 in ΩT

(13)

where

∀x ∈ Ω, Fcol(x) =
N∑

i,j=1
i6=j

k

ε
ζε(φi(x))∇φj(x)

φj(x) exp(−φj(x)
ε1

).

This system is dependent on the number of structures causing a high computational cost if one wishes to simulate
a large number of bodies.

4.3 The proposed penalization model
Using our method, we can define the following penalized model

ρ(∂tU + (U · ∇)U)−∇ · (µ∇U) +∇p = ρg + λ(χLε
0
(uLε

0
− U)) + F lab

col + Fwall in ΩT
∇ · U = 0 in ΩT
∂tφ+ u · ∇φ = 0 in ΩT

(14)

where χLε
0
is the characteristic function of the region defined by the label map Lε0 which is an extension to the

distance ε of the label L0:

∀x ∈ Ω,∀i ∈ {1, ..., N}, Lε0(x) =
{
i if ds(x,Γi)) ≤ ε
Nf otherwise

(15)

where ds(x,Γ) is the signed distance function from x to Γ.
The label map Lε0 can also be defined using the label maps definition as:

∀x ∈ Ω, Lε0(x) =


L0(x) if (L0(x) 6= Nf )
L1(x) if ((L0(x) = Nf ) and (φ ≤ ε))
Nf otherwise

(16)
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We can define a characteristic functions of the solid bodies:

∀x ∈ Ω,∀y ∈ Ω, χLε
0(x)(y) = 1−H(φLε

0(x)(y))

In the case of the algorithm 5.1, the level set functions φi will be defined as:

∀x ∈ Ω,∀i ∈ {1, ..., N}, φi(x) =
{
φ(x) if ((L0(x) = i) or (L1(x) = i))
φ2(x) otherwise

(17)

And like for the penalization model (13) above, for each x ∈ Ω, y → uLε
0(x)(y) is the rigid velocity of the solid body

ΩLε
0(x) obtained by averaging the translation and angular velocities over the solid. Setting

∀x ∈ Ω, | ΩLε
0(x) |=

∫
ΩLε

0(x)

ρ(z)dz =
∫

Ω
ρ(z)χLε

0(x)(z)dz

we obtain the following formulation which is equivalent to (15). ∀x ∈ Ω, ∀y ∈ Ω,

uLε
0(x)(y) = 1

| ΩLε
0
|

∫
ΩLε

0(x)

ρx(z)χLε
0(x)(z)u(z)dz+

(
J−1
Lε

0(x)

∫
ΩLε

0(x)

ρx(z)χLε
0(x)(z)u(z)× (y − xgLε

0(y))dz
)
×(y−xgLε

0(y)).

where JLε
0(x) and xgLε

0(x) denote the inertial matrix and center of gravity of solid ΩLε
0(x). Denoting by ρLε

0(x) the
density of the body ΩLε

0(x) we obtain the following density function:

ρx = ρf (1− χLε
0(x)) + χLε

0(x)ρLε
0(x)

On the implementation side, all rigid velocities are computed incrementally, involving only one iteration on the
mesh grid. This penalisation model therefore becomes completely independent on the number of bodies. Thanks
to the label maps, we have suppressed the dependence on the number of bodies in the repulsive force and in the
penalization term. This is a very desirable model to simulate a large number of interacting cells. In the case of
circular rigid bodies, the level set equation is replaced in the previous model (14) by the transport of the gravity
center of the N bodies and a reconstruction of the associated level set function is performed:

∂tx
g
i = uti, 1 ≤ i ≤ N

5 Numerical implementation of the fluid/structure models
This part is devoted to the numerical implementation of the system (14) with a change on the transport of the
level set function.
The system is discretized by a finite difference method on a staggered grid where the pressure and the level set
function are located at the center of the mesh cells and the velocity at the center of the sides in two-dimensions
and of the faces in three-dimensions. Consequently the divergence free is computed at the pressure point, enforcing
the volume constraint very accurately. The Navier-Stokes equations are solved using an incremental projection
method of Chorin type. First, we compute an intermediate state u∗ from:

u∗ = un −∆t(un · ∇)un + ∆tµ
ρn

∆un + ∆tg − ∆t∇pn

ρn
. (18)

Then we solve the pressure from the equation:

∇ · (∇p
n+1

ρn
) = div(u∗)

∆t +∇ · (∇p
n

ρn
) (19)

so that the velocity:
u = u∗ − ∆t

ρ0
(∇pn+1 −∇pn) (20)

is divergence free. The pressure equation(19) can be solved directly by a conjugate gradient algorithm or approxi-
mated with a relaxation procedure as follows:

∆pn+1 = ρ0

∆tdiv(u∗) + ∆pn

11



setting 1/ρn = 1/ρ0 − (1/ρ0 − 1/ρn) in order to get a Poisson equation much faster to solve. In that case, the
step u satisfies Navier-Stokes equations with a modification of the pressure term (1/ρn − 1/ρ0)∇pn + 1/ρ0∇pn+1

instead of 1/ρn∇pn+1. It remains to choose ρ0 in order to have the best approximation. We have tested three
different values ρ0 = ρf , ρ0 = ρL0 and ρ0 = (ρL0 + ρf )/2. The Poisson solver is based on a classical 5 or 7 points
second order stencil according to the dimension, the viscous terms are discretized by a second order central scheme
and the convection term is discretized by a 5th order WENO scheme. To take into account the solid bodies we
use the method proposed in [30]. An implicit treatment of the penalization term is achieved in order to use larger
penalization coefficients λ and therefore the interface boundary condition is satisfied with better accuracy. This
algorithm appears to be optimal in the case of spherical rigid bodies but we first present it in the general case
before going to the spherical rigid bodies case.

5.1 Case of general rigid bodies
In the general case the algorithm performs the following steps:

1. Compute and add the repulsive force ucol = u+ ∆tF lab
col ,

2. Compute the translation velocity uL0
t of the body ΩL0 , utL0

=
∫

Ω ρ
nucol · χLn

0
dx∫

Ω ρ
nχLn

0
dx

,

3. Compute the rotational velocity wL0 of the body ΩL0

wL0 = J−1
L0

∫
Ω
ρnrn × ucol · χLn

0
dx× rn, where rn = (x− xgLn

0
)

4. Compute the rigid velocity uL0 of the body ΩL0 , uL0 = utL0
+ utL0

5. Correct the velocity using an implicit treatment of the penalization term

un+1 − ucol
∆t = 1

λ
χL0(uL0 − un+1),

6. Transport the solid bodies with the fluid velocity, φn+1 = φn −∆tun+1 · ∇φn,

7. Redefine the distance function ϕn+1
1 = |φn+1|,

Redefine Ln+1
0 using φn+1

Perform a multi label fast marching method using a 1st order numerical scheme [28].

5.2 Case of spherical rigid bodies
In the case of a rigid body captured by one level set function, it is more efficient to displace the body by transporting
the level set function with the rigid velocity of the corresponding body. Indeed, the rigid velocity is more regular
than the fluid velocity and thus the redistanciation procedure is not necessary.
In our model, the rigid velocities uL0 are described locally in a neighbourhood of the body ΩL0 . Consequently, it is
not possible to apply this procedure. An alternative algorithm in the case of spherical rigid bodies is to transport
the center of gravity xgL0

with the rigid motion uL0 and then to reconstruct the N level set functions. This algorithm
is faster than performing a multi label redistanciation.
Then, the steps 6 and 7 of the previous algorithm are modified as follows:

6. Transport the solid bodies using the centers: xn+1
g (i) = xng (i) + ∆tuit, φn+1

i (x) = φ0(xn+1
g (i))

7. Redefine the label maps and distance functions:

∀x ∈ Ω, ∀i ∈ {1, ..., N + 1},


Ln+1

0 (x) = i if φn+1
i ≤ 0

Ln+1
1 (x) = arg min

j 6=Ln+1
0 (x)

φn+1
j

Ln+1
2 (x) = arg min

j /∈{Ln+1
0 (x),Ln+1

1 (x)}
φn+1
j
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∀x ∈ Ω,


ϕn+1

1 (x) = d(x,ΓLn+1
1 (x))

ϕn+1
2 (x) = d(x,ΓLn+1

2 (x))

To find the best value for ρ0, we perform a numerical test with six rigid disks falling under gravity in two dimensions.
The Figure 4 shows that the results obtained with ρ0 = ρf gives the worst approximation whereas the two other
values are very close to the approximation of the exact solution computed with the conjugate gradient. In the
following we set ρ0 = (ρL0 + ρf )/2.

Figure 4: Flow field for six rigid disks falling under gravity (left) and a zoom of the location of the interface for
different values of ρ0 (right). The conjugate gradient method is in red, ρ0 = ρf in black, ρ0 = ρL0 in white and
ρ0 = (ρL0 + ρf )/2 in blue. The background color shows the level set amplitude.

5.3 Comparison of the two algorithms
In this case of circular rigid bodies, we compare the CPU time of both algorithms. In algorithm 5.1, the transport
of the solid bodies with the help of one level set function is achieved using a WENO5 scheme whereas in algorithm
5.2 it is performed by direct explicit transport of the center of the bodies. For a reasonable number of cells this
procedure is very fast. The redefinition of the label maps is performed either with a time consuming multi label
fast marching or using N signed distance functions that are updated directly thanks to the N gravity centers. In
consequence, the CPU time is much lower as can be seen in table 1 and is 10 times faster for a number of cells
N = 200. Of course, this is true only in the case of circular rigid disks and spheres.

Number of Algorithm 5.1 Algorithm 5.2
disks CPU time CPU time
2 1.3 0.2
5 1.3 0.23
25 1.3 0.4
50 1.7 0.6
100 4.3 0.9
200 23.6 2.4

Table 1: Computational time of both algorithms.

6 Numerical illustrations
In this section, we present the numerical results obtained with the proposed model and give some comparisons with
existing methods of the literature. In a first part, we present a qualitative grid convergence. Then we compare our
model (14) to the model (13). In a third part, we give a qualitative comparison of our model with those proposed
in [20]. Finally, some simulations of dense suspensions of circular rigid bodies in two and three dimensions are
presented.
For all of the simulations presented in this paper, the computational domain Ω is a square of size [0, 1]2 or a cube
of size [0, 1]3. In order to compare with the results in [4] and in [20] the dynamic viscosity µ is set to 0.01, the
density of the fluid is set to ρf = 1, and the density of the rigid bodies is the same for all the bodies ρs = 2.
Let k = (kx, ky, kz)t be the repulsive coefficient between bodies and kwall = (kwall

x , kwall
y , kwall

z )t be the repulsive
coefficient exerted by the walls, the value of the components depends on the amplitude of the force.
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6.1 Grid convergence
To study the grid convergence, we use four different grids (G1, G2, G3,G4) which contain respectively : (128 ×
128), (256 × 256), (512 × 512) and (1024 × 1024) cells on a uniform mesh. The coefficient ε is set to ∆xG1 where
∆xG1 denotes the mesh size corresponding to the coarsest grid (128 × 128). We take as test case the sedimentation
of 25 circular rigid bodies having the same radius R = 0.025 + ε. The gravity force g is set to −980 and the
repulsive coefficients on the cells and on the walls are:

kx = −g/10, ky = −g/10, kwall
x = −g/40, kwall

y = −g.

The repulsive forces are applied on a ring around the interface of thickness 1.5∆xG1 .
In Figure 5 the results obtained with the four different grids are presented, the white line corresponds to the
numerical size of the rigid particles (φ = ε). We can see that the dynamic of the rigid bodies and the interaction
between them is quite similar for the different resolutions. The collisions are avoided thanks to the repulsive force.
We observe the same phenomenon of kissing and tumbling of the bodies.
By t = 0.48, all simulations have reached static equilibrium which represents different local minimum of the
sedimentation of the 25 disks. We observe that the two fine simulations are very close to each other until time
t = 0.15 and keep a symmetrical distribution. At the end of the simulation, a packing of the bodies is formed at
the bottom of the computational domain and is composed of three layers. Each layer contains the same number of
structures for the four different grids: eleven bodies on the first one, ten bodies on the second one and four on the
last one. The distribution of the four bodies of the third layer is different for the various grids but is much closer
on the two finest simulations. Thus a qualitative grid convergence is achieved.

t = 0.0 t = 0.075 t = 0.105 t = 0.15 t = 0.48

t = 0.0 t = 0.075 t = 0.105 t = 0.15 t = 0.48

t = 0.0 t = 0.075 t = 0.105 t = 0.15 t = 0.48

t = 0.0 t = 0.075 t = 0.105 t = 0.15 t = 0.48

Figure 5: Study of the grid convergence with a test case of 25 rigid disks falling under gravity. From top to bottom,
grid 128 × 128, grid 256 × 256, grid 512 × 512 and grid 1024 × 1024. The background color shows the level set
amplitude.
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6.2 Comparison of the method with level set decomposition
We give here a comparison of our penalization model (14) and the penalization model that uses a level set decom-
position (13)

6.2.1 Computational time using the algorithm (5.2) for rigid disks

We first give a comparison of the computational time in the case of N rigid disks. The algorithm associated to
our model is given in section 5.2. Instead of transporting one level set function and performing the multi label
fast marching method, we transport the gravity centers of the N rigid structures and reconstruct their associated
level set functions. Then, the label and distance functions are reinitialized by using their definition. It is obvious
that this algorithm depends on the number of cells because of the N level set functions and their associated center
of gravity. However, this part of the algorithm is very fast. This algorithm will allow us to compare the saving
computational time which is induced by changing the existing collision model (7) and the penalization term. We
average the computational time on the ten first iterations.
The averaged CPU time of our algorithm (table 2) is compared to the method using N level set functions (table
1), according to the number of cells. As noticed before the collision model (7) computes N2 repulsive forces which
induced a high computational cost as shown in the second column of table 1 whereas in the present algorithm, the
CPU time of the collision model is constant as it does not depend on the number of cells. The CPU time of the
penalization model is larger in (13) because it depends on the number of cells. Indeed, N rigid velocities must be
computed to get the right velocity of each cell. In the present algorithm, we must add the label redefinition that
depends almost linearly on the number of cells and so is quite cheap. For a low number of cells the CPU time of
both methods is close but increasing this number from 2 to 400 cells induces a total CPU time 8000 larger for the
model (13) whereas with the present model the CPU time is only 25 times larger. So our method is around 340
times faster for 400 cells.

Number of Collision model (7) Penalization model (13) Total
disks CPU time CPU time CPU time
2 0.02 0.06 0.2
5 0.17 0.16 0.48
10 0.72 0.35 1.24
25 4.87 0.88 6
50 19.25 1.75 21.5
100 80.8 3.9 85.3
400 1583.4 19.75 1605.3

Table 2: Averaged CPU time using the N level set decomposition

Number of Collision model (8) Penalization model (14) Label redefinition Total
disks CPU time CPU time CPU time CPU time
2 0.015 0.05 0.008 0.2
5 0.015 0.06 0.014 0.23
10 0.015 0.09 0.02 0.25
25 0.016 0.18 0.08 0.4
50 0.016 0.3 0.16 0.6
100 0.016 0.56 0.23 0.9
400 0.016 2.52 2.06 4.7

Table 3: Averaged CPU time using the algorithm of section 5.2

6.2.2 Numerical comparison of the two collision models

To highlight the differences between the two collision models we first focus on a a test case with three circular rigid
bodies falling on each other. The simulations are performed on a grid of size (128× 128) corresponding to a space
step ∆x = 7.8125.10−2 in order to better see the difference between the two models. The bodies have the same
radius R = 0.1 and the thickness of the interface is ε = 2∆x. The repulsive coefficients are:

kx = −g/10, ky = −g/10, kwall
x = −g/40, kwall

y = −g.
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On Figure 6, black and white lines represents the interfaces of the three different objects. The black line stands for
the collision model (7) and the white line for the collision model (8) corresponding also to the colors that represent
the values of the level set function. We can see that the bodies have the same behaviour, as expected, because
on the one hand the radius is large and on the other hand the forces applied on the bodies are very similar. So
the difference is small. The Figure 7 shows the results obtained with 6 rigid bodies. Here we can see again that
the behaviour is very similar for a large radius. The last test concerns the same configuration with six smaller
disks with radius R = 0.03 leading to a higher difference in the dynamics even if the final state is the same. The
difference between the two models is stronger when the number of body is larger or when the force coefficients
are higher. The bottom plot in Figure 9 shows the vorticity inside the fluid domain, when the bodies reached the
bottom they move to the right and induce a strong positive vortex that has a strong influence on the dynamics
of the bodies in its turn. We observe that the vorticity increases when the bodies are close to each other as the
repulsive force is higher. At time t = 0.5 the vorticity vanishes because the six rigid bodies have reached the static
equilibrium.

(a) t = 0.0 (b) t = 0.08 (c) t = 0.1 (d) t = 0.12 (e) t = 0.15 (f) t = 0.23

Figure 6: Comparison of the two collision models for three disks of radius R = 0.1. The background colors show
the level set amplitude.

(a) t = 0.0 (b) t = 0.08 (c) t = 0.15 (d) t = 0.25 (e) t = 0.38 (f) t = 0.50

Figure 7: Comparison of the two collision models for six disks of radius R = 0.1.The background colors show the
level set amplitude.

(a) t = 0.0 (b) t = 0.08 (c) t = 0.15 (d) t = 0.25 (e) t = 0.38 (f) t = 0.5

Figure 8: Comparison of the two collision models for six disks of radius R = 0.03. The background colors show the
level set amplitude.
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(a) t = 0.0 (b) t = 0.04 (c) t = 0.08 (d) t = 0.1 (e) t = 0.15 (f) t = 0.5

Figure 9: Six disks falling under gravity, colors represents the values of the vorticity field.

6.3 Comparison with the model introduced in [20]
In this part, we compare qualitatively our model to an existing method proposed in [20]. In that model, the solid
bodies are taking into account by penalizing the strain tensor to enforce the rigid body motion (see [19]). A scheme
for inelastic collisions is implemented imposing a minimal distance between bodies and therefore avoiding contacts
(see [23] for more details). Moreover, the contacts with the four walls are also handled in the same way. The
test case is the sedimentation of 100 rigid particles of radius R = 0.01 subject to the gravity force g = −70. The
corresponding repulsive coefficient are:

kx = −g/7, ky = −g/7, kwall
x = −g/28, kwall

y = −g.

The Figure 10 shows the results obtained with the FreeFem code implemented by A.lefebvre (see [20]) on a mesh
with x elements. Using our model, the simulations are performed on a grid of size (512 × 512), the half interface
thickness ε is set to the mesh size ∆x and the results are shown in Figure 11. Despite a symmetrical configuration
the results in Figure 10 are unsymmetric from the beginning whereas our results stay symmetric until time t = 1.44.
However, we can see that the dynamics is globally the same and that the static equilibrium is reached at the same
time t = 4.8.

(a) t = 0 (b) t = 0.64 (c) t = 1.04

(d) t = 1.44 (e) t = 1.68 (f) t = 2.08

(g) t = 2.4 (h) t = 2.88 (i) t = 4.8

Figure 10: Simulation of 100 rigid particles submitted to gravity obtained with the FreeFem code [20]
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(a) t = 0 (b) t = 0.64 (c) t = 1.04

(d) t = 1.44 (e) t = 1.68 (f) t = 2.08

(g) t = 2.4 (h) t = 2.88 (i) t = 4.8

Figure 11: Simulation of 100 rigid particles submitted to gravity obtained with our model. The background colors
show the level set amplitude.

6.4 Dense suspensions of rigid bodies in 2D and 3D
In this part, we present some results of dense suspensions of rigid bodies subject to gravity which was performed
using our numerical model. The first simulations deal with the sedimentation of 400 rigid bodies of radius R = 0.01
in the two dimensional case. The simulations are performed on a grid of size (512 × 512) and the half thickness
of the interface is ε = 1.5∆x. The white line shows the real numerical size of the particles corresponding to the
isoline φ = ε. The coefficient of gravity g is set to -980. The repulsive coefficients are:

kx = −g/10, ky = −g/10, kwall
x = −g/40, kwall

y = −g.

The 400 bodies fall down symmetrically to reach a dense repartition at the bottom as can be seen in the Figure 12.

The second simulation addresses the 3D case. Figures 13 and 14 show the simulation of 200 rigid spheres of
radius R = 0.01 falling under gravity for two different grids of size 643 and 1283. The half thickness of the interface
is ε = 2∆x. The coefficient of gravity g is set to -980. The repulsive coefficients are:

kx = −g/10, ky = −g/10, kz = −g/10, kwall
x = −g/40, kwall

y = −g/40, kwall
z = −g.

At initial step, there are two slices of 100 bodies at a distance d = 0.1 (distance of two closest bodies’ centers).
Consequently, on the coarser mesh there is only one full mesh cell between the two numerical slices. Indeed, the
numerical radius is R + ε ≈ 0.041 and so the repulsive forces are active, whereas on the finer mesh there are on
average 6 mesh cells between the two numerical slices as R + ε ≈ 0.026. In that case the repulsive forces are
negligible. The interactions between bodies occur at once on the coarse mesh while they start after t = 1.5 on
the fine mesh. As a consequence, the equilibrium state is reached much faster on the fine grid, t = 2.4 instead of
t = 8.9 for the coarse resolution.
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(a) t = 0.0 (b) t = 0.75 (c) t = 1.5 (d) t = 2.25 (e) t = 3.0 (f) t = 6.9

Figure 12: Simulation of 400 rigid disks submitted to gravity (the white line corresponds to the level line φ = ε).
The background colors show the level set amplitude.

(a) t = 0.0 (b) t = 0.5 (c) t = 1.5 (d) t = 2.0 (e) t = 2.5 (f) t = 4.0 (g) t = 5.0 (h) t = 8.9

Figure 13: Simulation of 200 rigid spheres subject to gravity (grid resolution size 643). The background colors
show the level set amplitude.

(a) t = 0.0 (b) t = 0.5 (c) t = 0.8 (d) t = 1.2 (e) t = 1.5 (f) t = 1.8 (g) t = 2.0 (h) t = 2.4

Figure 14: Simulation of 200 rigid spheres subject to gravity (grid resolution size 1283). The background colors
show the level set amplitude.

6.5 Dynamics of rigid bodies of various radii
In this section is shown the dynamics of rigid bodies of various diameter. The simulations deal with the sedimen-
tation of 30 rigid bodies of radii R = 0.05 and R = 0.025 in two dimensions. The simulations are performed on a
grid of size (512 × 512) and the half thickness of the interface is ε = 1.5∆x. The coefficient of gravity g is set to
-980. The repulsive coefficients are:

kx = −g/10, ky = −g/10, kwall
x = −g/40, kwall

y = −g.

The results are represented in Figure 15, the colors represent the different values of the label map L0. As in section
2.3.1 the first body is dark blue and the fluid is red. It appears that the repulsive forces are well taken into account
even if the difference between the size of the bodies is important. Indeed, there is no merging of small and big
bodies although, due to the distance function ϕ2, the force of a big cell on a small one is effective on the whole
boundary ring of the small cell whereas the force of a small cell on a big one is effective only on a part of the
boundary ring.
In Figure 16 is plotted the vorticity field inside the fluid. At first the vorticity is created by the falling of the bodies
whereas, later, the vortices convect the bodies. In particular this can be seen at time t = 0.15 for the three small
cells (colors: light blue, orange and light green) at the top right of the figure. Indeed, the orange cell goes up from
time t = 0.1 to time t = 0.15 driven by the fluid flow structure in this part of the domain.
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(a) t = 0 (b) t = 0.1 (c) t = 0.15 (d) t = 0.2

(e) t = 0.25 (f) t = 0.3 (g) t = 0.4 (h) t = 0.6

Figure 15: Simulation of 30 rigid bodies of different radii (R = 0.05 or R = 0.025) falling under gravity. The colors
indicate the values of the label map L0 from dark blue for the first body to dark orange for the 30th body and red
for the fluid that is the 31th object.

(a) t = 0 (b) t = 0.1 (c) t = 0.15 (d) t = 0.2

(e) t = 0.25 (f) t = 0.3 (g) t = 0.4 (h) t = 0.6

Figure 16: Simulation of 30 rigid bodies of different radii (R = 0.05 or R = 0.025) falling under gravity. The colors
indicate the vorticity level from dark blue for −200 and dark red for 200.
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7 Conclusions
In this work, we introduced a new model to simulate efficiently a large number of interacting cells immersed in a
fluid. This model involved three label maps and two distance functions which allow to locate the bodies and their
closer neighbours in the domain. A collision model depending on the distance between the closest cells is proposed.
This model which is totally independent on the number of bodies, is compared both theoretically and numerically
to the model introduced in [4]. An application to rigid structures is presented with a penalisation model that only
depends on five advected field functions.
Numerical results are in good agreement with the results of the literature at least qualitatively. Compared to
a model which is totally dependent on the number of cells, our model substancially reduces the CPU time. A
numerical test on cells of various radii shows that the collision model is efficient even when the strength of the force
is very different.
In future work, this model will be applied to elastic bodies.
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