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Abstract

An efficient method to capture an arbitrary number of fluid/structure interfaces in a level-set framework is
built, following ideas introduced for contour capturing in image analysis. Using only three label maps and
two distance functions we succeed in locating and evolving the bodies independently in the whole domain and
get the distance between the closest bodies in order to apply a collision force whatever the number of cells
is. The method is applied to rigid solid bodies in order to compare to the results available in the literature.
In that case, a global penalization model uses the label maps to follow the solid bodies all together without
a separate computation of each body velocity. Numerical simulations are performed in two- and three-
dimensions. An application to immersed vesicles is also proposed and shows the capability and efficiency
of the method to handle numerical contacts between elastic bodies at low resolution. Two-dimensional
simulations of vesicles under various flow conditions are presented.

Keywords: fluid/structure interaction, level set method, multiple bodies, collision model.

1. Introduction

Numerical simulations of fluid/structure and structure/structure interaction (FSI) have attracted an
increasing interest and several methods have been proposed during the last decades.10

A popular and wide spread method is the Arbitrary Lagrangian Eulerian approach (ALE) introduced
by Donea in 1982 (see [1]) and extensively studied by several teams [2, 3, 4, 5, 6]. The ALE strategy is
an hybrid method that combines the Lagrangian and Eulerian descriptions using a mobile non structured
grid that follows the normal displacement of the fluid/structure interface. The fluid and solid equations are
solved individually and continuity conditions for the velocity and stress tensor are explicitly discretized at15

the interface. The main weakness of the ALE method is its difficulty of implementation, especially when
dealing with large displacements in dimension three. In addition the added mass effect [7] has been a long
standing difficulty which has been worked around only recently [8, 9, 10, 11, 12]. Moreover, the computa-
tional grid has to be remeshed when the elements get too distorted, which could be a very costly procedure
in dimension three.20

Another method, introduced by Cottet and Maitre in [13, 14], consists in using a purely Eulerian formula-
tion for describing the fluid/structure interaction. This approach was inspired by the immersed boundary
method of Peskin [15] where the forces at the interface were described in a Lagrangian manner. In the model
[13], a level set method is used to capture the interface. The level set method was developed in [16] to treat
problems involving interfaces. It is used in many domains because of its numerous advantages: its ease of25

implementation, topological changes are directly handled and one single level set function can capture an
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arbitrary number of interfaces. This last property is largely used as it can be a very efficient tool to capture
several interfaces, for instance when merging and splitting of interfaces are allowed. The present work aims
at dealing with a dense suspension of biological cells immersed in a fluid. In this kind of application, using
one level set is not always sufficient as will be explained thereafter. The other existing level set models30

for capturing a large number of objects are either computationally expensive or cannot be used to handle
collisions. Indeed, in [17] one level set function is required for each body, leading to a huge computational
cost although contacts are easily avoided. In [18], a formulation using log2N level set functions to represent
N different regions is designed. This model, based on the four color theorem, substantially reduces the
number of level set functions and can handle very easily complex topologies. However, reconstruction of all35

distance between bodies can not be achieved, as a consequence this model is not able to deal with several
pairwise interacting bodies immersed in a fluid.
Indeed, in that case, the investigation of fluid/structures interaction raises the problem of collisions be-
tween the bodies. These collisions can be handled if the distance between bodies can be computed from
the localisation procedure. As confirmed by theoretical works [19], the hydrodynamical forces between two40

smooth bodies evolving in a Navier-Stokes flow do prevent contact in finite time. However, during numer-
ical calculations, the flow between too close particles is not accurately resolved which leads to contacts or
inter-penetration of particles. The numerical handling of these contacts and overlaps hence is crucial for the
simulation of particles suspensions.
A natural approach proposed in [20] is to refine the mesh in the inter particle gap in order to resolve accu-45

rately the flow fields. However, this strategy is highly expensive as several refinements are necessary and in
the case of multiple particles the cost of the simulation is highly increased.
Other techniques consists in overcoming this low resolution problem near contact by taking into account
lubrication forces, when the gap between the bodies is very small [21, 22]. Due to the singular behavior of
the forces, and the time discretization errors, this approach appears to be insufficient and might still lead50

to contacts and overlaps at low spatial resolution.
Other numerical strategies, less respectful of the underlying physics, consist in imposing a constraint on the
particle motion by means of artificial short range repulsive forces [23, 17] or by directly enforce a minimal
distance between the particles [21]. By contrast to the refinement strategy, these collision methods allow,
in addition of handling overlaps and contacts between particles, to use a coarser discretization, reducing55

substantially the computational cost compared to the method proposed in [20].

In our work we consider such an algorithm, with short range repulsive forces, built on the multi geometric
deformable model (MGDM) of interface capturing introduced by J. Bogovic [24] for image segmentation. The
proposed algorithm can handle multiple deforming bodies and avoid collision using a short range repulsive60

force depending on the distance to the closest interface, following [17]. The main advantage of this method
is that it requires, whatever the number of interacting objects, only five fields to

(1) locate and evolve each structure in the domain,

(2) specify a speed or a force independently for each structure,

(3) handle numerical contacts between the structures.65

This substantially reduces the computational cost, as will be illustrated below.
More precisely, the level set defined in a neighborhood of the interfaces is transported with the fluid velocity.
A multi-label fast marching method is then performed in a narrow-band around the interfaces allowing to
update the label and distance functions. This combines the advantage of the MGDM method which effi-
ciently captures a large number of bodies and their relative neighbours and of the collision model introduced70

in [17] using a level set decomposition.
In order to validate the ability of this method to avoid numerical contacts and its efficiency to deal with a
large number of structures, two applications are explored: rigid bodies and vesicles suspensions.

This paper is organized as follows: Section 2 presents the proposed model with a careful description of the75

three label maps and the two distance functions. In section 3, the repulsive forces used to avoid collisions
are described. Sections 4 and 5 shows how to apply the method to the case of rigid bodies immersed in
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an incompressible fluid. In section 6 is proposed a benchmark of numerical simulations starting with a
qualitative study of the grid convergence on the sedimentation of rigid disks in two dimensions. Then,
other simulations in two- and three-dimensions are performed and compared to the results of the literature.80

Section 7 is dedicated to the numerical simulations of immersed vesicles. Two-dimensional numerical results
of vesicles under different flow conditions are presented. Finally, some conclusions are derived.

2. Domain labeling

In this section, we first recall some basic principles of the level set method. Then, we provide a description
of the method used to capture multiple interfaces. This method, inspired by the multi geometric deformable85

model of J. Bogovic [24], is introduced in the context of several bodies immersed in a fluid. The main idea is
to partition the entire fluid/structures domain into several objects. In order to locate the different objects in
the domain we introduce a set of label maps and distance functions. Let Ω ⊂ Rd (d = 2 or 3) be a bounded
domain which contains N bodies immersed in an incompressible fluid, we denote Ωi and Γi the interior and
the boundary of the ith body. By the term body we refer in this article to a simply connected domain of the90

ambiant space. We consider the fluid ΩNf
as an object. Thus the fluid/structures domain Ω is partitioned

into N + 1 objects as: 
∀i 6= j,Ωi

⋂
Ωj = ∅

ΩNf
= Ω\{

⋃N
i=1 Ωi}

ΓNf
=

⋃N
i=1 Γi.

(1)

2.1. Outline of the level set method

Pioneered by Osher and Sethian in [16], the level set method is very popular to address problems involving
interfaces. It is widely used for numerical analysis of surfaces and shapes and in the context of fluid/structure95

interaction. The general idea of the level set method is to define a scalar function in the all computational
domain that vanishes on the location of the interface to capture.
Let Ω be a bounded domain in Rd (d = 2 or d = 3) partitioned into two sub domains Ω1 and Ω2 and Γ be
the interface between Ω1 and Ω2. The aim is to follow the evolution of the interface Γ that is defined as the
zero level set of a smooth function φ, with a gradient modulus bounded away from zero in a neighborhood
of this level set. At each time t, the interface Γ is characterized by:

Γ(t) = {x ∈ Ω, φ(x, t) = 0}

It is for example defined as:  φ(x) < 0 x ∈ Ω1

φ(x) = 0 x ∈ Γ
φ(x) > 0 x ∈ Ω2

Geometrical characteristics of the curve such as normal vectors n and curvature κ are obtained explicitly
using the level set function:

n =
∇φ
|∇φ|

κ = ∇ · n.

The displacement of the interface is obtained by the evolution of the level set function φ. Let u be the
velocity in the domain Ω, the level set function is the solution of the scalar transport equation:

∂tφ+ u · ∇φ = 0. (2)

The velocity field u may depend on the space, the time, the geometric properties of the curve and/or the100

physics of the problem. For instance, if we consider a problem of fluid/structures interaction this velocity
field is the velocity of the fluid or of the structures (assuming continuity of velocity at interfaces). To avoid
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situation where gradient modulus could become close to zero, we usually define the level set function as a
signed distance function that is regular in each corresponding domain:

φ(x) =

{
−d(x,Γ) x ∈ Ω1

d(x,Γ) x ∈ Ω2

(3)

where
d(x,Γ) = min

y∈Γ
‖x− y‖.

We then perform redistancing during the algorithm moving the interfaces.105

Using an implicit function to capture the interface tells us directly to which region belongs a point x
with the help of a Heaviside function H and its corresponding Dirac function ζ applied to φ(x). In practice,
a regularized version of these functions Hε and ζε is used on the interface in order to reduce grid effects:

Hε(φ(x)) =


0 φ(x) ≤ −ε

1
2 (1 + φ(x)

ε +
sin(πφ(x)

ε )

π
) |φ(x)| ≤ ε

1 φ(x) ≥ ε

and ζε(φ(x)) = H ′ε(φ(x)), where ε represents half of the interface thickness. Note that a classically men-
tioned advantage of the level set method is to handle automatically changes of topology. This property is
problematic in the case of a collections of objects which are not supposed to merge (such as red blood cells),
as splitting or merging of interfaces are directly taken into account by the level set function. Our algorithm
will be built to prevent this unwanted merging.110

2.2. Level set functions for multiple interfaces

Let us consider N pairwise disjoints bodies Ωi, i ∈ {1, ..., N} with Ωi ⊂ Ω, and let us denote Γi the
frontier of the cell Ωi and ΩNf

the fluid background subdomain with Nf = N + 1. A major advantage of
the level set method is that one level set function can capture an arbitrary number of interfaces between
the bodies and the fluid. Let φ be the level set function which captures the union of the N bodies Ωi,
i ∈ {1, ..., N}, defined by:

φ(x) =

{
−d(x,∪Ni=1Γi) x ∈ ∪Ni=1Ωi

d(x,∪Ni=1Γi) elsewhere

Using one single level set function is very time efficient for computations, since it is independent on the
number of cells. However, it is not possible to specify a different velocity model and/or a force for each cell.
If two bodies are too close the curvature and the normal are not well computed and a strong drawback is
that we do not have any information on the distance between bodies. So this method can lead to collision
and merging of bodies. Another way to capture multiple bodies is to use one level set function for each cell.
Then each cell interface Γi is captured by one level set function φi. Thus, it is possible to specify a different
speed or force to a body Ωi by using the level set function φi and we get the distance between all the bodies.
Indeed, the distance between two bodies Ωj and Ωi is given by the level set functions φi and φj as follows:

∀x ∈ Ωi, φj = d(x,Γj) or ∀x ∈ Ωj , φi = d(x,Γi)

This multiple level set decomposition has been widely used in image segmentation and in fluid/structures
interaction. A major disadvantage is its computational cost when the number of bodies increases.

2.3. Label maps

At every point x of the fluid/structures domain Ω, we define the label functions L0, L1, L2 as:115

4



∀x ∈ Ω, ∀i ∈ {1, ..., N + 1},


L0(x) = i if x ∈ Ωi

L1(x) = arg min
j 6=L0(x)

d(x,Γj)

L2(x) = arg min
j /∈{L0(x),L1(x)}

d(x,Γj).

The label map L0 provides a partition labelling of the whole computational domain Ω into N + 1 different
objects. The label map L1 identifies the index in this labelling of the first closest object at all points in Ω.
The label map L2 identifies the index of the second closest object at all points in Ω.

L0(x) = i if x ∈ Ωi

L1(x) = j if the first closest object to x is Ωj

L2(x) = k if the second closest object to x is Ωk.

In particular, for each point of a solid the label map L1 corresponds to the index of the fluid. The label
map function L2 gives the index of the first closest body for any x in the structure domain, and the second
closest body for x in the fluid domain.

∀x ∈ Ωi,


L0(x) = i

L1(x) = Nf

L2(x) = k where Ωk is the first closest structure to x.

In cases where two structures are at equal distance to a point, the label is one of these structures. We will
see thereafter that this is not a problem in our algorithm, since repulsion forces acting on two equally distant
objects will move them so that is equality case does not hold anymore after one time step. Figure 1 shows120

an illustration of the three label maps in the case of five structures immersed in a fluid.

Figure 1: Illustration of the three label maps for a configuration of five bodies, from left to right: L0, L1 and L2. Each object
has a specific color and the red one corresponds to the fluid. The white contour represents the boundary of the bodies.

Taking advantage of this local configuration of the closest object, one can define two related distance
functions.

2.4. Distance functions

The distance functions associated to the first and second closest object are given by:125

∀x ∈ Ω,

{
ϕ1(x) = d(x,ΓL1(x))

ϕ2(x) = d(x,ΓL2(x)).
(4)

The distance function ϕ1(x) is the distance from x to the first closest object’s boundary ΓL1(x) and
ϕ2(x) is the distance from x to the second closest object’s boundary ΓL2(x). At any point of the domain Ω,
ϕ1 captures the union of all bodies interfaces and ϕ2 provides the distance to the first closest body. As a
consequence, on each point of a structure, we have the distance to the next closest one allowing to define a
collision model to the closest interface, since avoiding contacts is equivalent to require:130

∀x ∈ Ω , ϕ2(x) > 0.

Figure 2 shows an illustration of the two distance functions related to the label maps of the Figure 1.
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Figure 2: Illustration of the two distance functions for a configuration of five structures, from left to right: ϕ1 and ϕ2. The
white contour represents the boundary of the circular bodies.

3. Collisions strategy

As discussed before, it is crucial to develop a collision model to avoid contacts between bodies. In this
section, we present the proposed collision model that consists in a short range repulsive force taking into135

account the interactions between the closest bodies. This short range repulsive force is inspired by the
collision model introduced in [17].

3.1. Collision model using several level set functions

The collision model [17] was developed within a level set framework in the context of fluid/rigid bodies
interaction. The level set decomposition is used in such a way that each body interface is captured by one140

level set function. We consider N bodies immersed in a fluid and we denote by Fj,i the force applied by
the body Ωj on the body Ωi and φi the level set function which captures the boundary Γi of the body Ωi.
The distance of a point x of Ωi to the body Ωj is provided by φj(x) and the direction of the force Fj,i is
obtained directly by ∇φj .
Moreover, to locate the interface Γi we use a cut off function regularized on a thickness ε on each part of145

the interface. The short range repulsive force is formulated as:

∀x ∈ Ω, Fj,i(x) =
k

ε
ρ(x)ζ

(
φi(x)

ε

)
∇φj(x)

φj(x)
exp

(
−φj(x)

εb

)
(5)

Consequently, we obtain the following collision model:

∀x ∈ Ω, Fglobal(x) =

N∑
i,j=1
i6=j

ρ(x)
k

ε
ζ(
φi(x)

ε
)
∇φj(x)

φj(x)
exp

(
−φj(x)

εb

)
(6)

where k is a repulsive constant proportional to the square of the relative velocities of the corresponding
bodies just before collision and ρ denotes the density. The coefficient ε represents the half thickness of
the interface on which the repulsive forces are applied and εb corresponds to the rebound coefficient. In150

[17], this value is fixed to ε. The interaction forces decrease exponentially fast for far away structures,
reducing the number of influent interacting neighbours. Nethertheless, this collision model accounts for all
possible interactions between the N bodies. Consequently for N bodies captured by N level set functions,
N2 computations of the repulsive forces are required, which represents a huge computational effort for large
N .155

3.2. The proposed collision model using two distance functions

To reduce the high computational cost of (6), we adapt Fglobal so that it depends only on the two distance
functions ϕ1 and ϕ2. We set:

∀x ∈ Ω, Flabel(x) =
k

ε
ρ(x)ζ

(
ϕ1(x)

ε

)
∇ϕ2(x)

ϕ2(x)
exp

(
−ϕ2(x)

εb

)
(7)
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The term ζ
(
ϕ1(x)
ε

)
provides the location of the union of all interfaces. Thus, this force has its support

on a subset Γε = {x ∈ Ω, ϕ1(x) ≤ ε}. In numerical computations, the intensity of the force is controlled160

by the repulsive parameter k = K(L0, L2), this parameter is proportional to the relative velocities between
closest bodies just before collision. This coefficient is computed as:

K(L0, L2) = max(Kmin, | (UL2
− UL0

) · ∇ϕ2 |, ((UL2
− UL0

) · ∇ϕ2)2) (8)

where UL0
denotes the velocity of the body on which forces are applied, whereas UL2

is the velocity of the
first closest body. The term Kmin corresponds to the minimal intensity of the force which is used when
some particles are almost at rest and hence, relative velocities are negligible.165

This collision model takes into account the interaction between the closest bodies at all points. Indeed,
as ϕ2 is the distance to the second closest object at all points of the fluid/structures domain, if a body is
surrounded by other bodies the interaction of the other structures are taken into account on different part
of its interface.170

For instance, in Figure 1, the repulsive force applied to the blue surrounded body comes from the four
surrounding bodies as the label map L2 has partitioned it into four parts. On the yellow part, the force
applied is the one exerted by the yellow body and so forth. On the four surrounding bodies, only the forces
exerted by the blue body is applied.
The advantage of this formulation is that we get rid of the sum in (6) leading to a considerable saving of175

computational cost. In this section, we consider the case ρ = 1 to compare the two collision forces.

3.3. Comparison of the two collision models

In this subsection, we compare the two collision models introduced above in two-dimensions and for
ρ = 1. We consider the case of N circular rigid bodies having the same radius R and we set ρ = 1 to
compare the two forces. The following result provides an estimate of the difference introduced by using180

the label force (7) instead of the collision model (6). As expected, the difference is smaller for large bodies
and/or small ε.

Proposition 1. Assuming that the N bodies are disks, such as:

∀x ∈ Ω, ϕ2(x) ≥ ε

then:

‖Fglobal − Flabel‖L1 ≤ N
(

2πk

α
+O

( ε
R

))
exp

(
−αR

ε

)
where α =

√
13−3
2 ≈ 0.3.

Proof. Let Li(x) denote the ith closest object to x and φLi(x) the distance function associated to the object
ΩLi(x), it comes:

∀x ∈ Ω,∀i ∈ {1, ..., N}, φLi(x)(x) = d(x,ΓLi(x)).

Using the assumption on the distance between disks, since the supports of the cut-off functions do not
intersect, it holds:

∀x ∈ Ω, ζε (ϕ1(x)) =

N∑
j=1

ζε(φj(x)),

Then, the model (6) can be written using these functions:

∀x ∈ Ω, Fglobal(x) =

N∑
i=2

k

ε
ζε(ϕ1(x))

∇φLi(x)(x)

φLi(x)(x)
exp

(
−
φLi(x)(x)

ε

)
.
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As defined in subsection 2.4, we have ϕ2 = φL2 and using (7) leads to:

∀x ∈ Ω, Fglobal(x)− Flabel(x) =

N∑
i=3

k

ε
ζε(ϕ1(x))

∇φLi(x)(x)

φLi(x)(x)
exp(−

φLi(x)(x)

ε
). (9)

Note that these short-range repulsive forces tends to zero out of a cut-off radius, thus only the interactions185

with the Nn = O(1) closest bodies of a given body will be numerically significant. However if we consider
all interactions we get:

∀x ∈ Ω, Fglobal(x)− Flabel(x) '
N∑
i=3

k

ε
ζε(ϕ1(x))

∇φLi(x)(x)

φLi(x)(x)
exp(−

φLi(x)(x)

ε
). (10)

Considering that ∀i ∈ {2, .., Nn}, φLi are distance functions we get:

‖Fglobal − Flabel‖L1 ≤ ‖k
ε
ζε(ϕ1)‖L1(Ω)‖

Nn∑
i=3

1

φLi

exp(−φLi

ε
)‖L∞(Ω).

Moreover by definition we have:

∀x ∈ Ω,∀i ∈ {4, .., N}, φLi(x)(x) ≥ φL3(x)(x).

leading to :

‖Fglobal − Flabel‖L1 ≤ (N − 2)‖k
ε
ζε(ϕ1)‖L1(Ω)‖

1

φL3

exp(−φL3

ε
)‖L∞(Ω).

It is a classical result from level-set theory that 1
εζε(ϕ1(x)) is an approximation of the length of the zero

level-set of ϕ1. Namely, in the case of N disks, we can prove that

‖1

ε
ζε(ϕ1)‖L1(Ω) = N(2πR+O(ε)),

Moreover, therefore,

‖Fglobal − Flabel‖L1(Ω) ≤ N(2πRk +O(ε))‖ 1

φL3

exp(−φL3

ε
)‖L∞ (11)

Figure 3: Configuration of three bodies. The circles represented are of radius R+ ε.

We are looking for a lower bound of φL3
depending on the radius R. To that aim, we consider the worst

case of three disks which are enlarged by ε and are in contact like shown in Figure 3. This configuration
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gives the minimum distance required between two disks. Taking a point x on the boundary of one disk
(without loss of generality, Γ1) as shown in Figure 3, we compute the minimal distance of x to the second
closest disk. Once again, the worst case is obtained in the situation where x is as in Figure 3. Through a
simple calculation, we obtain as distance:

d =

√
13− 3

2
R

that is a lower bound for φL3
. As r → 1

r exp(− rε ) is decreasing, we obtained the announced estimation.

190

Remark 1. 1. Let us point out to the reader that this difference tends to zero when R tends to ∞ or
when ε tends to zero. Consequently, we can adjust ε depending upon R such as this difference becomes
negligible. Numerically, the coefficient ε depends on the spatial discretization step and is taken equal

or larger than
R

10
. Moreover, the influence of the repulsive force imposed by the first closest cell at all

points Flabel, is the most influential on the dynamics of the cells as it is the largest.195

2. Moreover, as previously stated, due to the exponential decay the repulsion forces magnitudes, only
the closest bodies will have significant contribution to the global repulsion at some point of a given
body. Therefore conceptually the leading coefficient N in (11) could be replaced by Nn, where Nn is
the maximal number of bodies that could be in contact with a given body. This is dependent of the
dimension and could depend also on the body if those have different sizes.200

For a more in-depth study of the collision model proposed, we refer to Meriem Jedouaa PhD Thesis ([25],
in English) where the full fluid-structure models are compared in the case of Stokes flows.

4. Evolution of the label maps and distance functions in the general case

This section is devoted to the evolution of the three label maps and the two associated distance func-
tions. We present the evolution algorithm in two-dimensions, the extension to the 3D case is straightforward.205

The evolution is based on the transport of one level set function that captures the union of all interfaces,
then a multi label fast marching method is performed enabling a re-initialization of the label maps and
distance functions. As the proposed collision model is a short-range repulsive force, we only evolve L1 and
ϕ1 in a thin band close to the interfaces, we denote by dL1

the size of this narrow-band from each side of the210

interface. The computation of L2 and ϕ2 is activated only if these thin bands meet (just before collision)
and is achieved in a thin band of size dL2 . The final step consists in updating the level set function φ as a
signed distance function using the new updated distance function ϕ1 close to the interfaces.

This procedure is summarized as:215

1. Transport a level set function φ which captures the union of all interfaces with the fluid velocity U,

2. Evolve the label maps L0, by redefining its values near the interfaces,

3. Perform a multi label fast marching to update L1, ϕ1 in a thin band around the interfaces,

4. If bodies are nearby, perform a multi label fast marching to update L2, ϕ2.

4.1. Global level set field φ220

We define the level set function φ which captures the union of all interfaces as:

φ(x) =


−C x ∈ ∪Ni=1Ωi, d(x,∪Ni=1Γi) > dL1

−d(x,∪Ni=1Γi) x ∈ ∪Ni=1Ωi, d(x,∪Ni=1Γi) ≤ dL1

d(x,∪Ni=1Γi) x /∈ ∪Ni=1Ωi, d(x,∪Ni=1Γi) ≤ dL1

C x /∈ ∪Ni=1Ωi, d(x,∪Ni=1Γi) > dL1

(12)

9



where C >> 1. This level set field is a signed distance function close to the interfaces, it is negative inside
each structure and positive outside. Denoting by U the fluid velocity in the entire computational domain
Ω, the level set function is solution of the following scalar transport equation:{

∂tφ+ U · ∇φ = 0
φ(x, 0) = φ0(x)

(13)

in a neighboorhood of the interfaces.225

4.2. Redefinition of the label L0

The evolution of the label map L0 depends on the sign of the level set function. By definition the region
where the level set function is non negative corresponds to the fluid:

∀x ∈ Ω, ∀i ∈ {1, ..., N}, Ln0 (x) =

{
i 6= Nf if φn(x) < 0

Nf if φn(x) ≥ 0
(14)

At each time step, we change the label value L0, near the interface at the points where the condition (14)
is not verified. Namely, if the level set function is non negative, we set the new value of L0 to the label of
the fluid (L0 = Nf) and if the level set function is negative and the label function L0 was the label of the
fluid, we assign the new value of L0 to the value of the neighbour of x whose label is different from Nf. We
consider here that the level set function is transported with an explicit scheme under a CFL condition. For
all point x = (i, j) we denote by Neighbours(x) the set which contains the four closest points to x:

Neighbours(x) = {(i+ 1, j), (i− 1, j), (i, j), (i, j − 1), (i, j + 1)}.

The whole process is sketched as:
230

Algorithm 1 Redefinition of L0

for (x ∈ Ω) do
if φn+1(x) ≥ 0 then

Ln+1
0 (x) = Nf

else
if (Ln0 (x) = Nf) then

for (y ∈ Neighbours(x)) do
if (Ln0 (y) 6= Nf) then

Ln+1
0 (x) = Ln0 (y)

end if
end for

end if
end if

end for

This simple strategy is allowed only if the distance between two bodies is strictly greater than two spatial
discretization steps. It will have to be taken into account by our collision model.

4.3. Multiple label fast marching method

We describe here the local fast marching algorithm that allows to update ϕ1, ϕ2 and the label maps L1

and L2 in a vicinity of the interfaces. This local fast marching is an extension of the fast marching method
[26] that was introduced in [27] and [24]. To this end, we solve two eikonal equations of the form:

∀x ∈ Ω, |∇d(x)| = 1

This equation is solved using a first order numerical scheme [28] and has to be supplemented by a boundary
condition which depends on ϕ1 or ϕ2.235
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4.3.1. Computation of L1 and ϕ1

The first step of the proposed procedure is the computation of the distance function ϕ1 and the values
L1 by solving the following equation: ∀x ∈ Ω, |∇ϕ1(x)| = 1

∀x ∈ Γ, ϕ1(x) =
ϕ1(x)

| ∇φ(x) |

This process is executed in a narrow-band of size dL1
.

At initialization, we set ϕ1(x) to
ϕ1(x)

| ∇φ(x) |
close to the interfaces, this allows to propagate all the interfaces

simultaneously.
There are three sets of points: alive(A), narrow-band (NB) and far away (F). At initialisation, the Alive240

set contains all the points of the N interfaces. The Narrow-Band set consists of the closest points to the
interfaces. All others points are considered as far away and have to be computed and added to the narrow
band.
Moreover, each contour is associated to the number of objects. To this end, we introduce a function lab
which corresponds to the number of the interface that spreads.245

During the propagation of the interfaces, the point xm for which ϕ1(xm) is the lowest value of ϕ1 in the
narrow-band, is definitely deleted from the narrow-band and this point is considered as alive. This minimum
value corresponds to the distance ϕ1(xm) and we assign the label lab(xm) to L1(xm). Then, the values of
ϕ1 at the neighbors of the point xm are computed using the alive points which have the same label value,250

and these points are added to the Narrow-Band. The algorithm stops when the distance ϕ1 has reached the
narrow-band value dL1

. The steps performed during the initialization phase are provided by the algorithm2.

Algorithm 2 Initialization phase

for (x ∈ Ω) do
for (y ∈ Neighbours(x)) do

if (L0(x) 6= L0(y)) then points at the interfaces
if (alive(y) = false) then
• Add y to the Narrow-Band

• d(y) =
ϕ1(y)

| ∇φ(y)) |
• lab(y) = L0(x)
• alive(y) = true The values L1(y) = lab(y) and ϕ1(y) are fixed.

end if
else
• lab(x) = −1
• ϕ1(x) = −1
• alive(x) = false

end if
end for

end for
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Algorithm 3 Iterative phase: computation of ϕ1 and L1

dist=0
while ((NB 6= ∅) and (dist ≤ NBL1

)) do
Find xm such as d(xm) = min(x∈NB) d(x)
dist = max(dist, d(xm))
Delete xm from the NB
if (L1(xm) = lab(xm)) then

alive(xm)=true
end if
if (alive(xm)=false) then

ϕ1(xm) = d(xm)
L1(xm) = lab(xm)
alive(xm)=true
for (y ∈ Neighbours(xm)) do

ajout=true
if (L0(y) = lab(xm)) then

ajout=false
end if
if (L1(y) = lab(xm)) then

ajout=false
end if
if (ajout=true) then

Compute d(y) using Neighbors(y) such as L1(Neighbors(y))=lab(xm)
Add y in NB

end if
end for

end if
end while

4.3.2. Computation of the label map L2 and ϕ2

As the procedure to update L1 and ϕ1 is only performed in a narrow-band of size dL1
, the computation

of L2 and ϕ2 will be activated between two particles only if two or more particles are at a distance less or255

equal to 2dL1 .

If that is the case, we solve the following equation:{
∀x ∈ Ω, |∇d(x)| = 1

∀x ∈ ΓL1 , d(x) = ϕ2(x)
(15)

in a narrow-band of size dL2
. ΓL1

corresponds to the intersection of the closest objects in the fluid
domain, each point x ∈ ΓL1

is defined by:

∀y ∈ Neighbours(x), L1(y) 6= L1(x), L0(x) = L0(y)

Only the points close to the interface ΓL1 are visited as the algorithm stops propagation when the
distance function ϕ2 reachs the distance value dL2

.260

Figure 4 provides an illustration of the results obtained for the label map L1 and L2 for a configuration of
20 rectangular particles and dL1

= 10h and dL2
= 5h. We observe that the computation of L2 is achieved

only for the closest structures allowing to reduce the CPU time. Moreover, the short-range repulsive force
is not exerted on some particles as the distance is greater than 20h thus if ε = h the exponential term of
the force is lower than 10−9.265
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Figure 4: Illustration of the multi label fast marching algorithm for 20 objects. The black color corresponds to the undefined
values of L1 and L2. The white contours corresponds to the zero value of the level set function φ

4.3.3. Computational Complexity

We provide here the computational complexity of the multi-label fast marching (MLFMM) algorithm
presented above. To this end, we add particles in the computational domain Ω next to each other so that the
particles are close enough leading to the computation of L2 as soon as there are two bodies in the domain.
The CPU time is represented in Figure5 for different number of particles close to each other for dL1

= 10h270

and dL2 = 5h where h denotes the spatial discretization step.

Figure 5: CPU time of the proposed multi label fast marching algorithm.

5. Application to rigid bodies

In this section, we propose an application of the model to rigid bodies immersed in an incompressible
fluid.
First, we describe the model adopted for the numerical simulations as well as its numerical resolution. This275

model will be compared numerically to a penalization model formulated in the context of a level set decom-
position. The second part will be dedicated to numerical illustrations.
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5.1. Volume penalization models

We consider N bodies evolving in an incompressible fluid denoted ΩNf
and the entire domain Ω is280

partitioned in the same way as (1). In this case each body Ωi, 1 ≤ i ≤ N represents a rigid body. A volume
penalization method is adopted to take into account the immersed rigid bodies.

5.1.1. Flow configuration

We denote by ρf and µ the constant density and the viscosity of the fluid and by U and p the flow
velocity and the pressure. The flow is governed by the viscous incompressible Navier-Stokes equations:{

ρf (∂tU + (U · ∇)U)−∇ · (µ∇U) +∇p = 0 in ΩNf
× (0, T )

∇ · U = 0 in ΩNf
× (0, T )

with the condition at the interfaces of the solid bodies:

∀i ∈ {1, ..., N}, U = ui on Γi (16)

where ui is the rigid motion of the body Ωi. In order to get rid of the boundary conditions (16) on the285

solid boundaries, we use a penalization method ([29, 30, 17]). This method consists in adding a penalization
term in the Navier-Stokes equations to impose the rigid motion inside the solid and to solve the boundary
value problem inside the whole domain Ω including the bodies. So, there is no need for an adapted mesh
to the geometry of the bodies and a Cartesian mesh on a box domain can be used. If we denote by χi the
characteristic function of the body Ωi and by λ the penalization parameter we obtain the following model:290 

ρ(∂tU + (U · ∇)U)−∇ · (µ∇U) +∇p
= ρg + λ(

∑N
i=1 χi(ui − U)) + Fglobal + Fwall in ΩT = Ω× (0, T )

∇ · U = 0 in ΩT

(17)

complemented with homogeneous Dirichlet boundary and initial conditions, where g is the gravity force,
Fglobal is the collision force (7) and Fwall is a repulsive force carry on by the solid boundaries of the domain
Ω on the rigid bodies. The rigid velocity ui is obtained by averaging translation and angular velocities over
the solid body Ωi ([30]):

ui = uti + uθi =
1

| Ωi |

∫
Ωi

ρχiudx+

(
J−1
i

∫
Ωi

ρχiu× (z − xgi )dz
)
× (x− xgi ) (18)

where Ji is the inertial matrix of the body Ωi and xgi its center . As the rigid bodies move with the fluid,295

the displacement of χi is:

∀x ∈ Ω, ∀i ∈ {1, ..., N}, ∂tχi + U · ∇χi = 0. or ∂tχi + ui · ∇χi = 0.

Finally, denoting by ρi the density of the immersed bodies Ωi, we obtain the following density function:

ρ = ρf +

N∑
i=1

(ρf − ρi)χi.

Let us note that the coefficient λ >> 1 means that the regions occupied by the solid bodies are considered
as porous media with a very small permeability. Numerically, the penalisation parameter λ is fixed to 1010.

5.1.2. The penalization model using several level set functions300

The characteristic function χi can also be deduced considering a level set function φi that captures the
interface Γi. This level set function evolves as:

∂tφi + ui · ∇φi = 0
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and using the regularized Heaviside function χi can be smoothed as:

χεi = 1−Hε(φi).

So the model becomes:
ρ(∂tU + (U · ∇)U)−∇ · (µ∇U) +∇p

= ρg + λ(
∑N
i=1 χ

ε
i (ui − U)) + Fglobal + Fwall in ΩT

∇ · U = 0 in ΩT

∂tφi + ui · ∇φi = 0 in ΩT

(19)

This system is dependent on the number of structures causing a high computational cost if one wishes
to simulate a large number of bodies.

5.1.3. The proposed penalization model

In order to alleviate the high computational cost due to a large number of particles N we take advantage305

of the label maps and distance functions to reformulate the penalization model.

To this end, we define a label map L0,1 which allows to partition the computational domain into N
subdomains, each subdomain is associated to the first closest structure, this function is defined as:

∀x ∈ Ω, L0,1(x) =

{
L0(x) if (L0(x) 6= Nf )

L1(x) otherwise
(20)

The regularized characteristic functions of the solid bodies are then expressed as:

∀x ∈ Ω,∀y ∈ Ω, χL0,1(x)(y) = 1−H(
φL0,1(x)(y)

ε
)

Denoting by ρL0,1(x) the density of the body ΩL0,1(x) we obtain the following density function:

ρx(y) = ρf (1− χL0,1(x)(y)) + χL0,1(x)(y)ρL0,1(x)(y)

To compute the penalization term, the values of the rigid velocities are only required inside the particles310

and in a vicinity of the particle at a distance ε. Taking this in consideration and the advantage of the
formulation above, we define a global rigid velocity which includes the N rigid velocities Ui, i ∈ {1, ..., N}.
More precisely, for each x ∈ Ω, y → UL0,1(x)(y) is the rigid velocity of the solid body ΩL0,1(x) obtained by
averaging the translation and angular velocities over the solid.

315

Setting:

∀x ∈ Ω, | ΩL0,1(x) |=
∫

ΩL0,1(x)

ρ(z)dz =

∫
Ω

ρ(z)χLε
0(x)(z)dz (21)

we obtain the following formulation .
∀x ∈ Ω, ∀y ∈ Ω,

UL0,1(x)(y) =
1

| ΩL0,1 |

∫
Ω

ρL0,1(x)(z)χL0,1(x)(z)U(z)dz

+

(
J−1
L0,1(x)

∫
Ω

ρL0,1(x)(z)χL0,1(x)(z)U(z)× (z − xgL0,1(z))dz

)
× (y − xgL0,1(y)).

(22)

where JL0,1(x) and xgL0,1(x) are the inertial matrix and center of gravity of solid ΩL0,1(x).

In a neighboorhood of a particle Ωi that is when L0,1 = i, the defined global velocity corresponds exactly
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to the rigid velocity Ui.
320

Finally, the proposed penalized model is provided by:
ρ(∂tU + (U · ∇)U)− µ∆U +∇P

= ρg + λ(χL0,1
(UL0,1

− U)) + Flabel + Fwall in ΩT

∇ · U = 0 in ΩT

∂tφ+ U · ∇φ = 0 in ΩT

(23)

This model has to be completed with the initial and boundary conditions on the velocities and pressure.
On the implementation side, all rigid velocities are computed incrementally, involving only one iteration on
the mesh grid. Thanks to the label maps, we have suppressed the dependence on the number of bodies in
the repulsive force and in the penalization term. The only dependence on the number of bodies comes from
the storage of the N level set functions. Therefore, this is a very desirable model to simulate a large number
of interacting bodies. In the case of circular rigid bodies, the level set equation is replaced in the previous
model (23) by the transport of the gravity center of the N bodies and a reconstruction of the associated
level set function is performed:

∂tx
g
i = uti, 1 ≤ i ≤ N

5.2. Discretization and Numerical implementation

This part elucidates the numerical resolution of the system (23), two algorithms are considered for the
evolution of the rigid bodies and we provide a comparison of these two algorithms in terms of computational
complexity.325

5.2.1. Resolution of a multi-fluid problem in the fluid/structures domain

The Navier-Stokes equations are solved using an incremental projection method of Chorin type. Given
a time step ∆t, we set tn = n∆t and Un ≈ U(., tn). First, we compute an intermediate State U∗ from:

U∗ = Un −∆t(Un · ∇)Un +
∆tµ

ρn
∆Un + ∆tg − ∆t∇pn

ρn
. (24)

Then we solve the pressure from the equation:

∇ · (∇p
n+1

ρn
) =

div(U∗)

∆t
+∇ · (∇p

n

ρn
) (25)

so that the velocity:330

U = U∗ − ∆t

ρ0
(∇pn+1 −∇pn) (26)

is divergence free. The pressure equation (25) can be solved directly by a conjugate gradient algorithm or
approximated with a relaxation procedure as follows:

∆pn+1 =
ρ0

∆t
div(U∗) + ∆pn

setting 1/ρn = 1/ρ0 − (1/ρ0 − 1/ρn) in order to get a Poisson equation much faster to solve. In that case,
the step u satisfies Navier-Stokes equations with a modification of the pressure term (1/ρn − 1/ρ0)∇pn +
1/ρ0∇pn+1 instead of 1/ρn∇pn+1. It remains to choose ρ0 in order to have the best approximation. We
have tested three different values ρ0 = ρf , ρ0 = ρL0,1 and ρ0 = (ρL0,1 + ρf )/2. The Poisson solver is based
on a classical 5 or 7 points second order stencil according to the dimension, the viscous terms are discretized335

by a second order central scheme and the convection term is discretized by a 5th order WENO scheme.
To find the best value for ρ0, we perform a numerical test with six rigid disks falling under gravity in two
dimensions. The Figure 6 shows that the results obtained with ρ0 = ρf gives the worst approximation
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Figure 6: Flow field for six rigid disks falling under gravity (left) and a zoom of the location of the interface for different values
of ρ0 (right). The conjugate gradient method is in red, ρ0 = ρf in black, ρ0 = ρL0,1 in white and ρ0 = (ρL0,1 + ρf )/2 in blue.
The background color shows the level set amplitude.

whereas the two other values are very close to the approximation of the exact solution computed with the
conjugate gradient. In the following we set ρ0 = (ρL0,1 + ρf )/2.340

Concerning the penalization term an implicit treatment is adopted in order to use larger penalization
coefficient λ and therefore the interface boundary condition is satisfied with better accuracy.

Penalization algorithm 1

In the general case the algorithm performs the following steps:345

1. Compute and add the repulsive force Ucol = U + ∆tFlabel,

2. Compute the translation velocity U tL0,1
of the body ΩL0,1

, U tL0,1
=

∫
Ω
ρnUcol · χLn

0,1
dx∫

Ω
ρnχLn

0,1
dx

,

3. Compute the angular velocity WL0,1 of the body ΩL0,1

WL0,1 = J−1
L0,1

∫
Ω

ρnrn × Ucol · χLn
0,1
dx× rn, where rn = (x− xgLn

0,1
)

4. Compute the rigid velocity UL0,1 of the body ΩL0,1 , UL0,1 = U tL0,1
+W t

L0,1

5. Correct the velocity using an implicit treatment of the penalization term

Un+1 − Ucol
∆t

=
1

λ
χL0,1(UL0,1 − Un+1),

6. Transport the solid bodies with the fluid velocity or the rigid velocity φn+1 = φn −∆tUn+1 · ∇φn,350

7. Redefine the distance function ϕn+1
1 = |φn+1|,

Redefine Ln+1
0 ,Ln+1

1 using φn+1

Perform the multi label fast marching method described in Chapter 3

8. Redefine the gravity centers as:

xg(L0,1) =

∫
ΩL0,1

ρX∫
ΩL0,1

ρ
(27)

The implicit treatment of the penalization term allows to use a large penalization coefficient λ. Moreover
with this algorithm, the incompressibility constraint is imposed before the rigidity constraint. The two
constraints are better imposed as:

D(U) = 0⇒ divU = 0
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Penalization algorithm 2355

The second algorithm consists in reconstructing the N level set functions using the fact that objects
are rigid. The center of gravity is moved according to the velocity field, and the distance function the
corresponding solid is recovered by a rigid motion of the initial one. Then, the steps 6 and 7 of the previous
algorithm are modified as follows:

6. Transport the solid bodies by a rigid motion from the initial condition.360

7. Redefine the label maps and distance functions:

∀x ∈ Ω, ∀i ∈ {1, ..., N + 1},


Ln+1

0 (x) = i if φn+1
i ≤ 0

Ln+1
1 (x) = arg min

j 6=Ln+1
0 (x)

φn+1
j

Ln+1
2 (x) = arg min

j /∈{Ln+1
0 (x),Ln+1

1 (x)}
φn+1
j

∀x ∈ Ω,


ϕn+1

1 (x) = d(x,ΓLn+1
1 (x))

ϕn+1
2 (x) = d(x,ΓLn+1

2 (x))

Comparison of the two algorithms of evolutions

To compare the CPU time of both algorithms, we fill the computational domain with particles next to365

each other so that the computation of L2 is active as soon as there are two particles in the domain. We fix
the narrow-band sizes SL1 to 10h and SL2 to 5h. where h is the space discretization step.
Table 1 shows the CPU time of both algorithms, we can see that the CPU time of algorithm 2 is faster.
However, the difference is small and the Algorithm 2 is provided in the case of circular rigid disks so that
no interpolations of the initial level set functions are required. For general shape of bodies, interpolations370

of the N initial level set functions have to be achieved leading to an increase of the CPU time. It is hence
most efficient to use the algorithm 1 for general shape of bodies.

Number of Algorithm 1 Algorithm 2
disks CPU time CPU time
10 0.1 0.05
50 0.5 0.6
100 1.0 0.7
200 2.1 1.4
400 4.0 2.8

Table 1: Computational time of both algorithms.

6. Numerical illustrations

In this section, we present the numerical results obtained with the proposed model and give some
comparisons with existing methods of the literature. In a first part, we investigate the space convergence of375

the method. Then we compare our model (23) to the model (19). In a third part, we provide a qualitative
comparison of our model with those proposed in [31]. Finally, some simulations of dense suspensions of rigid
bodies in two and three dimensions are presented.
For all of the simulations presented in this paper, the dynamic viscosity µ is set to 0.01, the density of the
fluid is set to ρf = 1, and the density of the rigid bodies is the same for all the bodies.380

Let k = (kx, ky, kz)
t be the repulsive coefficient between bodies and kwall = (kwall

x , kwall
y , kwall

z )t be the
repulsive coefficient exerted by the walls, the value of the components depends on the amplitude of the
force.
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6.1. Grid sensitivity

A grid convergence is carried out in dimension two and three.
In dimension two, the grid convergence is performed on four grid levels (G1, G2, G3, G4): (128 × 128), (256
× 256), (512 × 512) and (1024 × 1024) cells on a uniform mesh. The regularization parameter ε is fixed to
∆xG1 where ∆xG1 denotes the mesh size corresponding to the coarsest grid (128 × 128).
We take as test case the sedimentation of 25 circular rigid bodies having the same radius R = 0.025 + ε.
The gravity force g is set to −980 and the repulsive coefficients on the bodies and on the walls are:

kx = −g/10, ky = −g/10, kwall
x = −g/40, kwall

y = −g.

The repulsive forces are applied on a ring around the interface of thickness 1.5∆xG1 .385

In Figure 7 the results obtained with the four different grids are presented, the white line corresponds to
the numerical size of the rigid particles (φ = ε). We can see that the dynamic of the rigid bodies and the
interaction between them is quite similar for the different resolutions. The collisions are avoided thanks to
the repulsive force. We observe the same phenomenon of kissing and tumbling of the bodies.
By t = 0.48, all simulations have reached static equilibrium which represents different local minimum of the390

sedimentation of the 25 disks. We observe that the two fine simulations are very close to each other until
time t = 0.15 and keep a symmetrical distribution. At the end of the simulation, a packing of the bodies
is formed at the bottom of the computational domain and is composed of three layers. Each layer contains
the same number of structures for the four different grids: eleven bodies on the first one, ten bodies on the
second one and four on the last one. The distribution of the four bodies of the third layer is different for395

the various grids but is much closer on the two finest simulations. For the three dimensional case, we study
the grid sensitivity using three different grids which contain respectively : (643), (1283) and (2563) bodies
on a uniform mesh. In the three dimensional case,

Figures 8 , 9 and 10 show the simulation of 200 rigid spheres of radius R = 0.01 falling under gravity.
The half thickness of the interface is ε = 2∆x. The coefficient of gravity g is set to -980. The repulsive400

coefficients are: kx = −g/10, ky = −g/10, kz = −g/10, kwall
x = −g/40, kwall

y = −g/40, kwall
z = −g. The

results obtained with the finest grids are almost similar, the particles fall down symmetrically no interaction
occurs between the particles before hitting the bottom wall. On the contrary, with the coarser grid, the
particles interacts and falls unsymmetrically, this is due to the fact that the short range repulsive forces are
active from the beginning as there are less discretization points in the interstitial gaps between the particles.405

Thus a 3D qualitative grid convergence is achieved for a large number of particles.
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t = 0.0 t = 0.0 t = 0.0 t = 0.0

t = 0.075 t = 0.075 t = 0.075 t = 0.075

t = 0.105 t = 0.105 t = 0.105 t = 0.105

t = 0.15 t = 0.15 t = 0.15 t = 0.15

t = 0.48 t = 0.48 t = 0.48 t = 0.48

Figure 7: Study of the grid convergence with a test case of 25 rigid disks falling under gravity. From left to right, grid 128×128,
grid 256× 256, grid 512× 512 and grid 1024× 1024. The background color shows the level set amplitude.

20



(a) t = 0.0 (b) t = 1.0 (c) t = 1.5 (d) t = 2.0

(e) t = 2.5 (f) t = 4.0 (g) t = 9.4 (h) t = 14.7

Figure 8: Simulation of 200 rigid spheres subject to gravity (grid resolution size 643). The colors indicate the values of the
label map L0 from dark blue for the first body to dark orange for the 200th body and red for the fluid that is the 201th object.
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(a) t = 0.0 (b) t = 1.0 (c) t = 1.5 (d) t = 2.0

(e) t = 2.5 (f) t = 4.0 (g) t = 9.4 (h) t = 14.7

Figure 9: Simulation of 200 rigid spheres subject to gravity (grid resolution size 1283). The colors indicate the values of the
label map L0 from dark blue for the first body to dark orange for the 200th body and red for the fluid that is the 201th object.
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(a) t = 0.0 (b) t = 1.0 (c) t = 1.5 (d) t = 2.0

(e) t = 2.5 (f) t = 4.0 (g) t = 9.4 (h) t = 14.7

Figure 10: Simulation of 200 rigid spheres subject to gravity (grid resolution size 2563). The colors indicate the values of the
label map L0 from dark blue for the first body to dark orange for the 200th body and red for the fluid that is the 201th object.

6.2. Comparison of the method with level set decomposition

We give here a comparison of our penalization model (23) and the penalization model that uses a level
set decomposition (19)

6.2.1. Numerical efficiency410

We investigate here the numerical efficiency of the two proposed algorithms (5.1) and (5.2) in the case
of N rigid disks. The computational time is compared to the N level set method.

The algorithm associated to our model is given in section 5.2. Instead of transporting one level set
function and performing the multi label fast marching method, we transport the gravity centers of the N
rigid structures and reconstruct their associated level set functions. Then, the label and distance functions415

are reinitialized by using their definition. It is obvious that this algorithm depends on the number of bodies
because of the N level set functions and their associated center of gravity. However, this part of the algorithm
is very fast. This algorithm will allow us to compare the saving computational time which is induced by
changing the existing collision model (6) and the penalization term. We average the computational time on
the ten first iterations.420

The averaged CPU time of our algorithm (table 2) is compared to the method using N level set functions
(table 1), according to the number of bodies. As noticed before the collision model (6) computes N2 repulsive
forces which induced a high computational cost as shown in the second column of table 1 whereas in the
present algorithm, the CPU time of the collision model is constant as it does not depend on the number
of bodies. The CPU time of the penalization model is larger in (19) because it depends on the number of425

bodies. Indeed, N rigid velocities must be computed to get the right velocity of each body. In the present
algorithm, we must add the label redefinition that depends almost linearly on the number of bodies and so is
quite cheap. For a low number of bodies the CPU time of both methods is close but increasing this number
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from 2 to 400 bodies induces a total CPU time 8000 larger for the model (19) whereas with the present
model the CPU time is only 25 times larger. So our method is around 340 times faster for 400 bodies.430

Number of Collision model (6) Penalization model (19) Total
disks CPU time CPU time CPU time

2 0.02 0.06 0.2
5 0.17 0.16 0.48
10 0.72 0.35 1.24
25 4.87 0.88 6
50 19.25 1.75 21.5
100 80.8 3.9 85.3
400 1583.4 19.75 1605.3

Table 2: Averaged CPU time using the N level set decomposition

Number of Model (7) Model (23) Label redefinition Total
disks CPU time CPU time CPU time CPU time

2 0.015 0.05 0.008 0.2
5 0.015 0.06 0.014 0.23
10 0.015 0.09 0.02 0.25
25 0.016 0.18 0.08 0.4
50 0.016 0.3 0.16 0.6
100 0.016 0.56 0.23 0.9
400 0.016 2.52 2.06 4.7

Table 3: Averaged CPU time using the algorithm of section 5.2.1

6.2.2. Numerical comparison of the two collision models

To highlight the differences between the two collision models we first focus on a a test case with three
circular rigid bodies falling on each other. The simulations are performed on a grid of size (128 × 128)
corresponding to a spatial discretization step ∆x = 7.8125.10−2 in order to better see the difference between
the two models. The bodies have the same radius R = 0.1 and the thickness of the interface is ε = 2∆x.
The repulsive coefficients are:

kx = −g/10, ky = −g/10, kwall
x = −g/40, kwall

y = −g.

in Figure 11, black and white lines represents the interfaces of the three different objects. The black line
stands for the collision model (6) and the white line for the collision model (7) corresponding also to the
colors that represent the values of the level set function. We can see that the bodies have the same behaviour,
as expected, because on the one hand the radius is large and on the other hand the forces applied on the435

bodies are very similar. So the difference is small. The Figure 12 shows the results obtained with 6 rigid
bodies. Here we can see again that the behaviour is very similar for a large radius. The last test concerns
the same configuration with six smaller disks with radius R = 0.03 leading to a higher difference in the
dynamics even if the final State is the same. The difference between the two models is stronger when the
number of body is larger or when the force coefficients are higher. The bottom plot in Figure 14 shows the440

vorticity inside the fluid domain, when the bodies reached the bottom they move to the right and induce
a strong positive vortex that has a strong influence on the dynamics of the bodies in its turn. We observe
that the vorticity increases when the bodies are close to each other as the repulsive force is higher. At time
t = 0.5 the vorticity vanishes because the six rigid bodies have reached the static equilibrium.
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(a) t = 0.0 (b) t = 0.08 (c) t = 0.1

(d) t = 0.12 (e) t = 0.15 (f) t = 0.23

Figure 11: Comparison of the two collision models for three disks of radius R = 0.1. The background colors show the level set
amplitude.

(a) t = 0.0 (b) t = 0.08 (c) t = 0.15

(d) t = 0.25 (e) t = 0.38 (f) t = 0.50

Figure 12: Comparison of the two collision models for six disks of radius R = 0.1.The background colors show the level set
amplitude.
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(a) t = 0.0 (b) t = 0.08 (c) t = 0.15

(d) t = 0.25 (e) t = 0.38 (f) t = 0.5

Figure 13: Comparison of the two collision models for six disks of radius R = 0.03. The background colors show the level set
amplitude.

(a) t = 0.0 (b) t = 0.04 (c) t = 0.08

(d) t = 0.1 (e) t = 0.15 (f) t = 0.5

Figure 14: Six disks falling under gravity, colors represents the values of the vorticity field.

6.3. Comparison with the model introduced in [31]445

In this part, we compare qualitatively our model to an existing method proposed in [31]. In that model,
the solid bodies are taking into account by penalizing the strain tensor to enforce the rigid body motion
(see [32]). A scheme for inelastic collisions is implemented imposing a minimal distance between bodies and
therefore avoiding contacts (see [33] for more details). Moreover, the contacts with the four walls are also
handled in the same way. The test case is the sedimentation of 100 rigid particles of radius R = 0.01 subject
to the gravity force g = −70. The corresponding repulsive coefficient are:

kx = −g/7, ky = −g/7, kwall
x = −g/28, kwall

y = −g.
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The Figure 15 shows the results obtained with the FreeFem code implemented by A. Lefebvre (see [31]) on a
mesh with x elements. Using our model, the simulations are performed on a grid of size (512×512), the half
interface thickness ε is set to the mesh size ∆x and the results are shown in Figure 16. The computation
on the FreeFEM++ code was performed on a non-symmetrical mesh so that the results in Figure 15 are
unsymmetric from the beginning whereas our results, performed on a cartseian grid stay symmetric until450

time t = 1.44. However, we can see that the dynamics is globally the same and that the static equilibrium
is reached at the same time t = 4.8.

(a) t = 0 (b) t = 0.64 (c) t = 1.04

(d) t = 1.44 (e) t = 1.68 (f) t = 2.08

(g) t = 2.4 (h) t = 2.88 (i) t = 4.8

Figure 15: Simulation of 100 rigid particles submitted to gravity obtained with the FreeFem code [31]
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(a) t = 0 (b) t = 0.64 (c) t = 1.04

(d) t = 1.44 (e) t = 1.68 (f) t = 2.08

(g) t = 2.4 (h) t = 2.88 (i) t = 4.8

Figure 16: Simulation of 100 rigid particles submitted to gravity obtained with our model. The background colors show the
level set amplitude.

7. Comparison of the repulsive force with or without constant intensity

In this section is shown the dynamic of rigid bodies of various size, the numerical contacts are either
handled by using the short-range repulsive force with a constant intensity or according to the relative ve-455

locity between closest bodies.

The simulations deal with the sedimentation of 30 rigid bodies for the case of disks the radii are R = 0.05
and R = 0.025 and we also considered rigid squares each side is equal to

√
πR.

The simulations are performed on a grid of size (512×512) and the half thickness of the interface is ε = 1.5∆x.460

The coefficient of gravity g is set to −980. The repulsive coefficients are fixed to 100 in the constant intensity
force case.

Figures 18 and 17 show the sedimentation of 30 rigid squares of different sizes. In the presence of
rigid particles, the hydrodynamical instabilities are more prominent, as initially the particles are closed, the465

symmetry loss is almost immediate. Once this flow symmetry lost, we can not observe the same dynamics
for these two simulations, as due to instabilities the flow exhibits a very complex behavior, and it seems
obvious that the trajectories of rigid bodies can not be the same for the two simulations. This is even more
visible in Figures 20,19 where the vorticity field is represented at different time. At first the vorticity is
created by the falling of the bodies whereas, later, the vortices convect the bodies, the bodies are then driven470

by the fluid flow.
Nevertheless, we point out that globally the behavior of the rigid bodies is similar: we observe that until

t = 0.17 for both collision model the obtained results are similar, the particles are carried by the fluid flow
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and turns in the domain convected by the created vortices. At t = 0.25 the minimal distance between the
rigid bodies is smaller for the simulation represented in Figure 17 than the particles in Figure 18, there are475

more interactions between the particles. At t = 3.18, the steady state has been reached for both simulations,
the configuration of bodies are different. With the collision model depending on the relative velocities, the
particles have fulfilled the bottom of the computational domain whereas with the constant model we observe
three layers of particles not completely filled.

480

The same simulation for rigid disks having the same area has been carried out. The results are presented
in Figure 21. We only colored six particles to better track their motions, we can see that at time t = 0.03
the models provide exactly the same results, then at time t = 0.08, we observe a slight delay between the
two simulations for the orange and light blue particles. This slight delay is sufficient to change all the
particles trajectories. However, a collective motion of the big green particle and the smaller red disks is485

observed for both simulations. Moreover, globally the motion of the bodies is similar with the two models,
the bodies are carried by the fluid, we observe the same process of kissing, tumbling of particles. At the
end of simulations, the final configuration is different, here again with the model depending on the relative
velocities, the particles have completely fulfilled the domain. The model using the relative velocities allow
the particle to be closed, meaning that the repulsive constant coefficient may not be well calibrated.490

8. Dense suspensions of rigid bodies in 2D and 3D

In this part, we present some results of dense suspensions of rigid bodies evolving in a fluid which was
performed using our numerical model. The first simulations deal with the sedimentation of 400 rigid bodies
of radius R = 0.01 in the two dimensional case. The simulations are performed on a grid of size (512× 512)495

and the half thickness of the interface is ε = 1.5∆x. The white line shows the real numerical size of the
particles corresponding to the isoline φ = ε. The coefficient of gravity g is set to −980, the associated
repulsive coefficients are −g/10. The 400 bodies fall down symmetrically to reach a dense repartition at the
bottom as can be seen in Figure 22.
The second simulation addresses the 3D case. Figure 23 show the simulation of 500 rigid spheres of radius500

R = 0.01 falling under gravity using a grid of size 1283. The half thickness of the interface is ε = ∆x. The
coefficient of gravity g is set to -980. At initial step, there are five slices of 100 bodies at a distance d = 0.1
(distance of two closest bodies’ centers). In that case the repulsive forces are negligible. The interactions
between bodies occur at once after t = 1.5 on the fine mesh. As a consequence, the equilibrium state is
reached fastly around t = 2.5 instead of t = 9.4.505

The last simulation deals with the dynamics of 90 rigid disks suspended in a shear flow. The intensity of
the short-range repulsive force is proportional to the relative velocities between the closest bodies. The
computational domain Ω is a rectangular domain of size [0, 2] × [0, 1], the grid resolution is (512 × 256),
the regularization parameter ε = 1.5∆x ' 5.9.10−3. Figure shows the obtained results at different time,
the disk are colored according to the values of the label map L0 and the background color corresponds the510

magnitude of the velocity. Until time t = 0.25, the rigid bodies moves horizontally through the canal. Then,
we observe a convective motion, the solids are carried by the fluid and rotates in the domain. Thanks to the
collision model, the numerical contacts between particles are avoided. This test case confirms the ability of
the proposed collision model to handle collisions only by using the relative velocities of the closest cells.

9. Application to vesicle simulation515

The purpose of this section is to validate the proposed model which includes a short-range repulsive force
in the case of deformable bodies. An application to immersed vesicles suspensions is proposed. We first
describe the Eulerian fluid/elastic membrane coupling model. Then, we present the numerical procedure
used for the simulations. Finally, a validation of the model in the case of multiple vesicles under various
flow are presented.520

29



(a) t = 0 (b) t = 0.09 (c) t = 0.11

(d) t = 0.17 (e) t = 0.23 (f) t = 0.25

(g) t = 0.35 (h) t = 0.5 (i) t = 3.18

Figure 17: Simulation of 30 square rigid bodies of different size falling under gravity. The intensity of the force depends on the
relative velocities of the closest particles.
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(a) t = 0 (b) t = 0.09 (c) t = 0.11

(d) t = 0.17 (e) t = 0.23 (f) t = 0.25

(g) t = 0.35 (h) t = 0.5 (i) t = 3.18

Figure 18: Simulation of 30 square rigid bodies of different size falling under gravity. The intensity of the force is constant
k = 100.
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(a) t = 0.09 (b) t = 0.15 (c) t = 0.20

(d) t = 0.25 (e) t = 0.35 (f) t = 3.18

Figure 19: Simulation of 30 square rigid bodies of different size falling under gravity. The intensity of the force depends on the
relative velocities of the closest particles. The background colors represents the vorticity field intensity.

(a) t = 0.09 (b) t = 0.15 (c) t = 0.20

(d) t = 0.25 (e) t = 0.35 (f) t = 3.18

Figure 20: Simulation of 30 square rigid bodies of different size falling under gravity. The intensity of the force is constant.
The background colors represents the vorticity field intensity.
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(a) t = 0.03

(b) t = 0.03 (c) t = 0.08 (d) t = 0.16 (e) t = 0.3 (f) t = 0.6

(g) t = 0.03 (h) t = 0.08 (i) t = 0.16 (j) t = 0.3 (k) t = 0.6

Figure 21: Simulations of 30 rigid bodies of different radii (R = 0.05 or R = 0.025) falling under gravity. The top simulation
has been achieved using a constant intensity of the force whereas for the bottom one it depends on relative velocities.
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(a) t = 0.0 (b) t = 0.75 (c) t = 1.5

(d) t = 2.25 (e) t = 3.0 (f) t = 6.9

Figure 22: Simulation of 400 rigid disks submitted to gravity (the white line corresponds to the level line φ = ε). The
background colors show the level set amplitude.
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(a) t = 0.0 (b) t = 0.5 (c) t = 1.0 (d) t = 1.5

(e) t = 1.8 (f) t = 2.0 (g) t = 2.5 (h) t = 3.0

Figure 23: Simulation of 500 rigid spheres subject to gravity (grid resolution size 1283). The colors indicate the values of the
label map L0 from dark blue for the first body to dark orange for the 500th body and red for the fluid that is the 501th object.

(a) t = 0.0 (b) t = 0.5 (c) t = 1.0

(d) t = 1.5 (e) t = 2.5 (f) t = 3.0

Figure 24: Rigid spheres suspended in a shear flow. The rigid disks are colored with the values of the label map L0 and the
background colors indicates the magnitude of the velocity.
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9.1. Eulerian fluid/elastic membranes coupling model

We present here the Eulerian fluid/elastic membrane coupling model introduced in [13] in the case of
multiple vesicles and using the label maps and distance functions.

9.1.1. Computation of the elastic and bending forces

In the context of multiple vesicles, the use of one level set function to capture the union of all interfaces525

requires to maintain a sufficiently large minimal distance between the vesicles in order to compute correctly
the high order derivatives of the level set function which appear in the elastic and bending forces.

To reduce the number of grid points required in the narrow-gap between two interfaces, we use the
distance function ϕ2 to compute the forces of each vesicle Γεi in the regions where the level set function
φ is not defined as the signed distance function to Γi. By doing this, the stencil required to compute a530

geometrical property at a point x belonging to Γεi is prolongated to the regions where L2 = i.
Numerically, we introduce a function which indicate the points where this procedure has to be applied. This
procedure is used in order to compute the curvature and other derivatives of order higher than two of the
level set function φ.

9.1.2. Collision model535

The short-range repulsive force is used here, to avoid numerical contacts between vesicles. Moreover,
to compute accurately the curvature and elastic forces on the membranes, a minimal distance has to be
maintained between the membranes which corresponds to the interfaces Γεi of thickness ε. We hence fix
the activation distance of the repulsive force εb to 2ε. The intensity of the short-range repulsive force is
computed according to the relative velocities between closest vesicles just before collision. Each vesicle540

velocity is computed by averaging the fluid velocity on each membrane Γεi , so that setting:

∀x ∈ Ω, | ΓL0,1(x) |=
∫

ΓL0,1(x)

dz =

∫
Ω

1

ε
ζε(φL0,1(x)(z))dz (28)

we obtain the following average velocity over the membrane boundary:
∀x ∈ Ω,

Ua(L0,1(x)) =
1

| ΓL0,1
|

∫
ΓL0,1(x)

U(z)dz =

∫
Ω

1

ε
ζε(φL0,1(x)(z))U(z)dz (29)

then, at all points x ∈ Γεi , i = (1, .., N) where the label map L2(x) is defined, the intensity of the force is
computed as:545

KL2(x),L0,1(x) =| (Ua(L2(x))− Ua(L0,1(x))) · ∇ϕ2(x) |
where Ua(L2(x)) denotes the averaged velocity associated to the vesicle ΩL2(x), this term provides the
averaged velocity of the second closest vesicle to x. Then, at each point x where ΩL0,1(x) and ΩL2(x) are at
a distance εb this value is fixed. Finally, the short range repulsive force is computed as:

∀x ∈ Ω, Flabel(x) =
| (Ua(L2(x))− Ua(L0,1(x))) · ∇ϕ2(x) |

ε
ρ(x)ζε (ϕ1(x))

∇ϕ2(x)

ϕ2(x)
exp

(
−ϕ2(x)

εb

)
(30)

9.1.3. Complete model

The fluid-structure interaction system hence reduces to the incompressible Navier-Stokes equations with550

source terms (elastic, curvature forces) combined with a scalar transport equation of the level set function
φ and the stretching e.

Find (U,P, φ) solution of :
ρ(φ)(∂tU + (U · ∇)U)− div(µ(φ)D(U)) +∇P = Fe + Fc + Flabel in ΩT = Ω× (0, T )

div u = 0 in ΩT = Ω× (0, T )

∂tφ+ U · ∇φ = 0 in ΩT = Ω× (0, T )

∂te+ U · ∇e = −e(n(φ)⊗ n(φ)) : D(U) in ΩT

(31)
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Denoting by ρL0,1(x) the density of the vesicle ΩL0,1(x) we obtain the following density function:

ρx = ρf (1− χL0,1(x)) + χL0,1(x)ρL0,1(x), µx = ρf (1− χL0,1(x)) + χL0,1(x)µL0,1(x)

This model involved several parameters, in order to achieve numerical simulations, it is most convenient
to introduce dimensionless parameters. For this purpose, we introduce reference values. Let Lr, Ur, ρr
and µr denote the characteristic lenght, velocity, density and viscosity scales. Considering the following
characteristic quantities : 

x = Lrx
′, y = Lry

′, z = Lrz
′

U = UrU
′, P = ρr

Ur
Lr
P ′, t =

Lr
Ur
t′

µ = µrµ
′, ρ = ρrρ

′, ε = Lrε
′

φ = Lrφ
′, ϕ1 = Lrϕ

′
1, ϕ2 = Lrϕ

′
2

Differentiating (and dropping ’), we obtain the following dimensionless system:
ρ(φ)(∂tU + (U · ∇)U)− 1

Re
div(ν(φ)D(U)) +∇P =

1

We
F̄e(φ) +

1

Wc
F̄c(φ) + Flabel in ΩT

divU = 0 in ΩT

∂tφ+ U · ∇φ = 0 in ΩT

∂te+ U · ∇e = −e(n(φ)⊗ n(φ)) : D(U) in ΩT

(32)

where the physical parameters are given by: Re =
LrUrρr
µr

,We =
µrUr
λ

, Wc =
µrUrL

2
r

α
555

9.2. Numerical procedure
The system is discretized by a finite difference method on a staggered grid (MAC type) with a finer

resolution for the level set function. The fluid velocity and pressure are discretized on the coarse grid while
all the other functions (label maps, distance functions and level set functions) are located on the finer grid.
To compute the fluid velocity a Projection method is used, the diffusion term are treated implicitly and an560

explicit scheme is used for the forces and the convective term.

9.2.1. Stability conditions

The advection equation of the level set function is treated explicitly and to ensure the stability of the
scheme, we impose the stability condition CFL:

∆t ≤ ∆x

|U |∞
The explicit treatment of the fluid/elastic coupling induces stability conditions. The Brackbill condition

provided in [34] gives a stability condition in the case of perfect fluids separated by an interface with surface
tension, expressed as:565

∆t ≤
√
We

2π
(∆x)

3
2 (33)

where We decreases while the surface tension coefficient increases. This condition is valid for high Reynolds
number, where viscosity of the fluid could be neglected. In the case of small We, which is the case of red
blood cells, the time step has to be chosen very small. In the case of small Reynolds number, [35] exhibited
the stability condition:

∆t ≤
√
We

Re
∆x (34)

An unifying condition has been proposed by [36, 37] where the stability of schemes for immersed elastic570

membranes have been studied.

For the curvature force, no condition exists, one can however take into account the typical velocity
induced by the bending force and build a maximal time-step on the above conditions.
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9.2.2. Algorithm575

The level set function φ and the distance functions are updated at each time step using the multi-label
fast marching on the finer grid. The narrow-band size set for the simulations are: dL1

= 10h where h
corresponds to the discretization space step associated to the coarser grid (the fluid grid) and we fix a high
narrow-band size for the computation of ϕ2 and L2 we set dL2 = 10h this allows to compute correctly the
bending and elastic forces when the vesicles get closer by means of the reconstituted level set functions. At580

each time step, the algorithm performed the following steps:

1. Computation of the fluid velocity Un+1 using an implicit scheme and a projection method of Chorin
type according to the forces Fne , F

n
c , F

n
label

2. Interpolation of the fluid velocity Un+1 on the finer grid providing Un+1
g

3. Advection of the level set function φn with the interpolated fluid velocity in a vicinity of the vesicles:

φn+1 = φn −∆tUn+1
g · ∇φn,

4. Transport of the stretching e with the interpolated fluid velocity:

en+1 = en −∆tUn+1
g · ∇en − en(n(φn)⊗ n(φn)) : D(Un+1

g ),

5. Update of the distance function ϕn+1
1 = |φn+1|,585

Update Ln+1
0 ,Ln+1

1 using φn+1

Perform the multi label fast marching method described in Chapter 3
6. Update the level set function as a signed distance function in thin narrow-bands around the vesicles
7. Update the N reconstituted level set functions

9.3. Numerical illustrations590

This section is dedicated to the numerical results obtained with the proposed model. We first provide a
grid convergence of the algorithm then numerical simulations of multiple vesicles in several type of external
hydrodynamical flow are presented.

9.3.1. Grid sensitivity

A grid convergence is carried out in the case of two vesicles evolving in a Poiseuille type flow. The595

computational domain is a rectangle of size [0, 2]× [0, 1].
To study the grid convergence the simulations are performed on three grid levels (G1, G2,G3) which contain
respectively : (256 × 128), (512 × 256), (1025 × 512) cells on a uniform mesh. The regularization parameter
ε is fixed to ∆xG1 where ∆xG1 denotes the mesh size corresponding to the coarsest grid ∆xG1 ' 0.0078.
The three grids used to discretize the level set functions, label maps, distance functions and the stretching600

are twice finer than the three coarsest grid.
The velocity profile of the Poiseuille viscous fluid flow is parabolic and at initialization the shape of

vesicles are Cassini Oval defined using the implicit function:

((x− a)2 + y2)((x+ a)2 + y2) = b4

For both vesicles we set the parameters a = 0.18 and b = 0.1747, the associated reduced area is around 0.8.
Using a fast marching procedure we initialize φ to a signed distance function to the interfaces defined as the
minimum of the two implicit functions. The physical parameters fixed in this study are:

Re = 1.10−1,We = 0.05,Wc = 200

At initialization, the vesicles are located at the entrance section of the domain. As illustrated in Figure
26, their shape progressively change during their motion in the canal. Figure 25 shows the results obtained
with the three resolutions at different times. We can see that the deformation of the vesicles are similar for
the three resolutions, we note however that at time t = 0.5 the deformation of the two finer grids are closer605

than the one obtained with the coarsest grid. At the end of the simulations, the shape of the right vesicle
corresponds to the equilibrium shape of a vesicle having a reduced area around 0.8 whereas the second
vesicle adopts a parachute shape. In light of these results, the grid convergence is achieved for the coarsest
grid.

610
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CHAPTER 1. NUMERICAL SIMULATION OF THE DYNAMICS OF A
SUSPENSION OF VESICLES

(a) t = 0.0 (b) t = 0.14 (c) t = 0.18

(d) t = 0.2 (e) t = 0.24 (f) t = 0.28

(g) t = 0.32 (h) t = 0.33 (i) t = 0.42

Figure 1.10: Simulation of 105 vesicles in a Poiseuille flow. The colors indicate the values of the
label map L0 from dark blue for the first body to dark orange for the 105th body and red for the
fluid that is the 106th object.

(a) t = 0.0 (b) t = 0.5 (c) t = 1. (d) t = 1.25 (e) t = 1.5 (f) t = 2.0

cvg/cv2560.png

(g) t = 0.0 (h) t = 0.0 (i) t = 0.0 (j) t = 0.0 (k) t = 0.0 (l) t = 0.0

Figure 1.11: Simulation of 105 vesicles in a Poiseuille flow. The colors indicate the values of the
label map L0 from dark blue for the first body to dark orange for the 105th body and red for the
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Figure 25: Simulation of two vesicles in a Poiseuille flow performed on three grid levels. From top to bottom, the associated
discretization space steps are :h = 7.81× 10−3, h ' 3.90× 10−3, and h ' 1.95× 10−3.

(a) t = 0.0 (b) t = 0.5 (c) t = 1.

(d) t = 1.25 (e) t = 1.5 (f) t = 2.0

Figure 26: Deformation of two vesicles in a Poiseuille flow performed on the grid G512 of size (1024× 512).
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9.3.2. Vesicles passing through a bifurcation

We consider here the case of vesicles passing through a bifurcation, the velocity has a parabolic profile at
the entrance and outlet sections.The computational domain Ω = [0, 2]× [0, 1]. In the case of a bifurcation,
the proposed collision model failed at avoiding numerical contacts between vesicles and the wall. Instead, the
intensity of the force is fixed, numerically we found that a coefficient k = 10 is sufficient to avoid contacts.
We set the following parameters:

Re = 0.01,We = 0.005,Wc = 30

The simulation represented in Figure 27 is performed on a grid of size (1024 × 512). The initial shape
of the vesicle is an ellipse of size a = 0.1 and b = 0.4, the height of the bifurcation is around four times
smaller than the vesicle height (b = 0.8). We can see that the vesicle progressively deforms while passing
through the bifurcation. During the deformation, the vesicle adopts different shape in order to pass through615

the channel. Finally, at the end of the simulation the vesicle has a parachute shape which is a typical shape
of vesicle deformed in a Poiseuille type flow.

(a) t = 0.0 (b) t = 0.12 (c) t = 0.18

(d) t = 0.25 (e) t = 0.28 (f) t = 0.41

Figure 27: Simulation of a vesicle passing through a bifurcation. The background color corresponds to the magnitude of the
velocity. The white contour represents the isoline φ = ε.

9.3.3. Multiple vesicles in a Poiseuille flow

Finally, to present the capability of the method to deal with a large number of vesicles, we present a test620

case of 105 vesicles evolving in a Poiseuille flow. The computational domain Ω = [0, 4]× [0, 2], as the size of
the vesicles is small, the simulations are performed using a fine resolution, the grid contains (2048 × 1024)
cells on an uniform mesh grid. As the level set grid is twice finer, the induced computational time of this
simulation is very high, around 50 seconds per iteration. The obtained results are represented in Figure
28, colors indicate the value of the label map L0,the white lines correspond to the isolines φ = 0 . At625

initialization, the region occupied by the vesicles represents around one-half of the computational domain,
the configuration of the vesicle is seven layers of 15 vesicles. Each vesicle interface corresponds to a Cassini
Oval with the parameters a = 0.076 and b = 0.08. We observe that depending on the layer, the vesicles
adopt different shapes, these shapes are on one hand due to the pressure driven Poiseuille flow, to the elastic
and bending forces and the interactions between the vesicles. At t = 0.14, we can see that the bottom blue630

left vesicle and the top red left vesicle advanced slowly than the other vesicles and hence interacts with their
neighbors, the symmetry is lost and while the cells advances in the canal various shapes can be observed.
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(a) t = 0.0 (b) t = 0.08 (c) t = 0.14

(d) t = 0.18 (e) t = 0.24 (f) t = 0.28

(g) t = 0.32 (h) t = 0.33 (i) t = 0.42

Figure 28: Simulation of 105 vesicles in a Poiseuille flow. The colors indicate the values of the label map L0 from dark blue
for the first body to dark orange for the 105th body and red for the fluid that is the 106th object.

10. Conclusions

In this paper, we introduced a new model to simulate efficiently a large number of interacting bodies
immersed in a fluid. This model involved three label maps and two distance functions which allow to635

locate the bodies and their closer neighbours in the domain. A collision model depending on the distance
between the closest bodies is proposed. This model which is totally independent on the number of bodies,
is compared both theoretically and numerically to the model introduced in [17]. We present an application
to rigid structures with a penalisation model that only depends on five advected field functions.
Numerical results are in good agreement with the results of the literature at least qualitatively. Compared640

to a model which is totally dependent on the number of bodies, our model substancially reduces the CPU
time. A numerical test on bodies of various radii shows that the collision model is efficient even when the
strength of the force is very different.
An application of the method to immersed deformable vesicles have been proposed. Using the level set
function φ, the stretching e and the label maps one elastic and bending forces are computed to impose645

the inextensibility of the whole set of vesicles membranes as well as their resistance to bending. To handle
numerical contacts, the relative velocities are computed by using the averaged fluid velocity on each vesicle
membrane. A convergence study in the case of two vesicles evolving in a Poiseuille is presented. The dynamic
behavior of vesicles under different boundary conditions have been presented and confirms the capability of
the proposed method to deal with numerical contacts between vesicles at low resolution.650
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[26] J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proceedings of the National Academy

of Sciences 93 (4) (1996) 1591–1595.705

[27] E. Sifakis, G. Tziritas, Moving object localisation using a multi-label fast marching algorithm, Signal Processing: Image
Communication 16 (10) (2001) 963–976.

[28] E. Rouy, A. Tourin, A viscosity solutions approach to shape-from-shading, SIAM Journal on Numerical Analysis 29 (3)
(1992) 867–884.

[29] P. Angot, C.-H. Bruneau, P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows,710

Numerische Mathematik 81 (4) (1999) 497–520.

42



[30] N. Patankar, A formulation for fast computations of rigid particulate flows, Center for Turbulence Research Annual
Research Briefs 2001 (2001) 185–196.

[31] A. Lefebvre, Fluid-particle simulations with freefem++, in: ESAIM: Proceedings, Vol. 18, EDP Sciences, 2007, pp. 120–
132.715

[32] J. Janela, A. Lefebvre, B. Maury, A penalty method for the simulation of fluid-rigid body interaction, in: ESAIM:
Proceedings, Vol. 14, EDP Sciences, 2005, pp. 115–123.

[33] B. Maury, A time-stepping scheme for inelastic collisions, Numerische Mathematik 102 (4) (2006) 649–679.
[34] J. Brackbill, D. B. Kothe, C. Zemach, A continuum method for modeling surface tension, Journal of computational physics

100 (2) (1992) 335–354.720

[35] C. Galusinski, P. Vigneaux, Level-set method and stability condition for curvature-driven flows, Comptes Rendus Math-
ematique 344 (11) (2007) 703–708.

[36] G.-H. Cottet, E. Maitre, A semi-implicit level set method for multiphase flows and fluid–structure interaction problems,
Journal of Computational Physics 314 (2016) 80–92.
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