N
N

N

HAL

open science

A Mechanism for the Causal Ordered Set
Representation in Large-Scale Distributed Systems
Houda Khlif, Hatem Hadj Kacem, Sail Eduardo Pomares Hernandez, Ahmed
Hadj Kacem

» To cite this version:

Houda Khlif, Hatem Hadj Kacem, Satl Eduardo Pomares Herndndez, Ahmed Hadj Kacem. A Mech-
anism for the Causal Ordered Set Representation in Large-Scale Distributed Systems.
Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2015 IEEE 24th International

Conference on, Jun 2015, larnaca, Cyprus. 10.1109/WETICE.2015.20 . hal-01236355

HAL Id: hal-01236355
https://hal.science/hal-01236355
Submitted on 1 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

, Enabling

https://hal.science/hal-01236355
https://hal.archives-ouvertes.fr

A mechanism for the Causal Ordered Set
Representation in Large-Scale Distributed Systems

Houda Khlif, Hatem Hadj Kacem
ReDCAD Laboratory
University of Sfax, Tunisia

Abstract—Distributed systems have undergone a very fast
evolution these last years. Large-scale distributed systems have
become an integral part of everyday life with the development
of new large-scale applications, consisting of thousands of com-
puters and supporting millions of users. Examples include global
Internet services, cloud computing systems, ”’big data” analytics
platforms, peer-to-peer systems, wireless sensor networks and
so on. The recent research addresses questions related to the
way one may design, build, operate and maintain large-scale
distributed systems. An other question related to such area, is how
to represent causal dependencies in such systems in a minimal
way. In general, causal dependencies can be established according
to the Happened-Before Relation (HBR), which was introduced
by Lamport. The HBR is a strict partial order, and therefore, one
main problem linked to it is the combinatorial state explosion. The
Immediate Dependency Relation (IDR) and the Causal Order Set
Abstraction (CAOS) present a solution for such a problem. In this
paper, we propose a mechanism which uses the concepts HBR,
IDR, CAOS to model a large-scale distributed system execution
in the form of the minimal graph (IDR graph) and the compact
graph (CAOS graph). This mechanism is implemented in C++.
The results of its execution are given here. The resultant causal
graphs can be used for different purposes, such as for the design
of more efficient algorithms, validation, verification, and/or the
debugging of the existing ones, among others.

Keywords—Distributed system; Happened Before Relation; Im-
mediate Dependency Relation; Causal Ordered Set Abstraction

I. INTRODUCTION

In the last few decades, distributed systems have become an
essential part of our lives. Today, many of the most important
applications are distributed and new large-scale applications
have emerged such as digital library systems, electronic com-
merce environement, office automation workflow and col-
laboration envirenment. Consequently, new requirement have
emerged for large-scale distributed systems such as solutions
for efficient design, synchronization, self management, fault
tolerance, rollback recovery and so on. Such solutions are
based on causal ordering property. The use of causal ordering
provides built-in message synchronization, reduces the non-
determinism in a distributed computation, and provides an
equivalent of the FIFO property at a party communication
level. Causal ordering guarantees that actions, such as requests
or questions, are received (viewed) before their corresponding
reactions, results, or responses. In general, causal dependencies
can be established according to the Happened-Before Relation
(HBR), which was introduced by Lamport [3]. The HBR is a
strict partial order (transitive, irreflexive and antisymmetric),
and therefore, one main problem linked to it is the combinato-
rial state explosion [1]. To deal with this problem, Hernandez

Sadl E. Pomares Hernandez
INAOE, Tonantzintla, Mexico
CNRS, LAAS, F-31400 Toulouse, France

Ahmed Hadj Kacem
ReDCAD Laboratory
University of Sfax, Tunisia

et al. [8] define the Immediate Dependency Relation (IDR) as
the transitive reduction of the HBR. The IDR is the unique
minimal expression of the HBR. Based on this relation, the
Causal Ordered Set Abstraction (CAOS) [7] was introduced to
pass from a single event level to an event set level. The CAOS
allows a minimal set representation of causal dependencies. In
this paper, we propose a mechanism which is based on the
CAOS to model a large-scale distributed system execution in
a minimal way. It has as input a database of vector clocks and
as output three causal graphs: the fully-causal HBR original
graph, the IDR graph, and the CAOS graph. To do this,
three basic algorithms are proposed and implemented in c++:
VC2HBR for the generation of the HBR graph, HBR2IDR for
the generation of the IDR graph, and finally IDR2CAOS for the
generation of the CAOS graph. The CAOS graph drastically
reduces the state-space of a system. The resultant causal graphs
can be used for different purposes, such as for the design of
more efficient algorithms, validation, verification, and/or the
debugging of the existing ones, among others. In this paper,
we present a case study that shows the usefulness of the causal
graphs for validation purposes in checkpointing protocols.

The rest of this paper is structured as follows. Section II
presents the system model and associated definitions. The
proposed mechanism is presented in Section III. A case study
is presented in section IV to illustrate how the causal graphs
can be used for validation purposes. Conclusion and future
work are finally discussed in Section V.

II. BACKGROUND AND DEFINITIONS
A. System Model

The system under consideration is composed of a set of
processes P = {p1,p2, - ,pn}. The processes present an
asynchronous execution and communicate only by message
passing. M is a finite set of messages, where each message
m € M 1is sent considering an asynchronous reliable network
which is characterized by no transmission time boundaries, no
order delivery, and no loss of messages. The set of destinations
of a message m is identified by Dest(m).

Two types of events are considered here: internal and external
events. An internal event is a unique action which occurs at
a process p in a local manner and which changes only the
local process state. We denote the finite set of internal events
as I. An external event is also a unique action which occurs
at a process, it is seen by other processes, and thus, affects
the global state of the system. The external events considered
in this paper are the send and delivery events. Let m € M

be a message. We denote by send(m) the emission event and
by delivery(p, m) the delivery event of m to participant p €
P. The set of events associated to M is the set: E(M) =
send(m) U delivery(p, m). The whole set of events in the
system is the finite set £ = I U E(M). Each event e € E
is identified by a tuple id(e) = (p,x), where p € P is the
producer of e, and z is the local logical clock for events of
p, when e is carried out. When we need to refer to a specific
event we use the notation e ;.

B. Happened-Before Relation (HBR)

The Happened Before Relation for single events was defined
by Lamport [3]. This relation establishes causal precedence
dependencies over a set of events. The HBR is a strict partial
order (transitive, irreflexive and antisymmetric). It is defined
as follows:

Definition 1. The causal relation “— " is the smallest relation
on a set of events E satisfying the following conditions:

e [fa and b are events belonging to the same process,
and a was originated before b, then a — b.

e [fa is the sending of a message by one process, and b
is the receipt of the same message in another process,
then a — b.

e Ifa—bandb— c then a — c.
By using Definition 1, Lamport defines that a pair of events

is concurrently related “a||[b”if the following condition is
satisfied:

allbif =(a = bV b— a)

The HBR for sets is also a strict partial order. It is formally
defined as follows:

Definition 2. The causal relation “—” is established at the
set level by satisfying the following conditions:

e A Bifa—b Yab)eAxB,
e A—-BifiC|(A—-CAC— B).

However, according to the specification of ordered sets pre-
sented by Shimamura et al. [10] and Hernandez et al [9], which
assume a local total ordering among the events which compose
a set, the causal relation for sets can be accomplished only in
terms of the endpoints as follows:

Property 1. The relation “— " is accomplished at the ordered
set level if the following conditions are satisfied:

e A Bifat —b
e A—-BifdC|(at™ —wc Act =b7)

where a* and b~ are the right and the left endpoints of A and
B, respectively, ¢~ and ¢ are the endpoints of C.
The concurrent relation for ordered sets is defined as follows:

Definition 3. Two ordered sets of events, A and B, are said
to be concurrently related “A||B” if the following condition is
satisfied:

AllBifal

b, Vo€ A,Vbe B

C. Vector Clocks

The Vector Clocks’ algorithm was simultaneously developed
by Fidge [2] and Mattern [4]. It was created to detect the causal
relations among events in a distributed system. A Vector Clock
is an array of logical clocks of size n, where n is the number of
processes in a system. A Vector Clock captures the causal state
of the system. For each event e generated, a Vector Clock is
associated, and it is denoted by V' C(e). In general, the Vector
Clocks’ algorithm is defined as follows:

e Each process p; is equipped with a Vector Clock V ;.
A process p; increments its own Vector Clock for each
event e (internal or external) in the form:

VC; [’L] = VCZ[Z] +1

e In each message m sent by a process p;, the current
Vector Clock V C; is piggybacked in m. At the recep-
tion of a message m by a process p;, it updates its
clock as follows:

VCj :=max(VC;, V)
Where maz gets the maximum values of each pair
of elements in the Vector Clocks.

Based on the Vector Clocks’ algorithm, the causal dependen-
cies can be established as follows:

Definition 4. For a pair of events a,b € F, the event a
causally precedes the event b if the following condition is
satisfied:

a—bif VCi(a) < VC;(b)

D. Immediate Dependency Relation (IDR)

The IDR is the transitive reduction of the HBR [8]. It is
denoted by “|”, and it is defined as follows:

Definition 5. Two events a,b € E have an immediate depen-
dency relation “|” if the following restriction is satisfied:

albifa—band Ve e E,~(a — c—b)

Thus, an event a causal-immediately precedes an event b, if
and only if no other event ¢ € E exists, such that ¢ belongs
to the causal future of a and to the causal past of b.

Property 2. For all pair of events a,b € E, a # b:

if 3¢ € E such that (a | cand b | c) or (¢ a and c | b),
then a || b

E. Causal Ordered Set Abstraction (CAOS)

Assuming the poset E = (E,—) as the model adopted
for a distributed computation, the objective of CAOS is to
establish over this poset the rules of association of events and
the conditions of ordering between the resulting sets [7]. We
consider a finite collection S of ordered sets of events, where
each set W € S is a set of events W C E. The elements of a
set are ordered according to the IDR. Such elements compose
a causal path (linearization) from an event e; to an event ey,
such that W = {ey J ea | --- | ex}. We denote by w~ and
w™ the endpoint events of W (w™ = e; and w™ = e). The
definition of CAOS is made up of three parts:

TABLE 1. CAOS SPECIFICATION

1. A new set W (e) is created in S when:

Cl.de€ E,~(3Z € N:e€ 2)
Ry ={e:0]e}or

W(e) < Ra = {e:3(ea,ep) € Ejeq L eNeqg | ep}or
Rs = {e:3(eq,ep) € Ejeq LeNey, | e}

2. The rest of the events e’ € E are assigned to a set

W (e) € N as follows:

C2.3W(e) e N,3e' € E,~(3Z € N:e' € 2)

W(e) «— Ra. 6

W(e)U{e' :3e, € W(e),3ey, € Esea L e A—(eq Lep)}

B | —

wn

Part I-Creation of sets. The rules 1, Rs and Rj3 establish the
creation of sets (Table I, Lines 24). An event which satisfies
one of these rules creates a new set, and it is by default
associated to such set as its left endpoint. R; creates a new set
W (e) when an event e does not have causal history. Ry creates
a new set W (e) when it is detected that e is concurrent with
respect to another event e,. Ry ensures that when the pattern
eq 4 (e||ep) occurs, the event e will be associated to a different
set W than the sets for e, and ep. Finally, R3 creates a new
set W (e) when it is detected that two concurrent events e,||ep
converge to a same event e. R3 ensures that when the pattern
(eallen) 4 € occurs, the event e will be associated to a different
set W than the sets for e, and ey,.

Part II-Association of events. An event does not accomplish
any of the rules of Part I, then it will be associated to an
existing set W according to the rule R4 (Table I, Line 6). Ry
associates events to sets by respecting the specification of the
ordered set of events previously presented where the elements
of a set compose a linearization based on the IDR. Each new
event associated to a set W becomes its right endpoint.

Part III-Arrangement of sets. The resulting sets W & S
are arranged according to the IDR. We say that a pair of sets
X,Y € S are IDR-related “X | Y if the following condition
is satisfied: X | Y if 2t | y~.

III. PROPOSED APPROACH

The general structure of our approach, presented in Figure
1, shows three main transitions: the VCs2HBR for the gen-

CAOS Graph

IDR Graph

HBR Graph

VCs2HBR ﬁ

Database of
VCs

Fig. 1. The general architecture of our approach

eration of the causal graph (HBR graph), the HBR2IDR for
the generation of the IDR graph and the IDR2CAOS for the
generation of the CAOS graph. Means that, we start with a
database of Vector Clocks as input, from which we generate
the HBR graph. Then, we generate the IDR graph from the
HBR graph and the CAOS graph from the IDR graph. To
do this, we are mainly based on the HBR, IDR and CAOS
concepts. To implement our approach, we have used c++. The
graph files are written in XML using the GraphML format. It
consists of a language core to describe the structural properties
of a graph. We are specially based on the tinyxml parser to
read and create new xml files.

A. VCs2HBR

Algorithm 1: VC2HBR

Input : E: The set of events
VC(E): The set of vector clocks of F
Output: HBR: The HBR graph

1 buildHBR (VC)

2 begin

3 HBR + (;

4 | BEpp < 0

5 for each VCiq, € VC do

6 for each VCiq, € VC do

7 if (VCLd1| = VC’idz) then

8 switch compare (VCiq,,V Ciq,) do

9 case "<”

10 L FEnpr — Enpr U {(’idl, ’Ldg)}

11 case ">"

12 | break;

13 case "not comparable”

14 L break;

15 fo_r each element (idy,ids) € Epp,- do

16 if (Jid € E and 3 (idy,id) € Eppy and
H(Zd, ’Ldg) € Enp-) then

17 L (idy,ids).Jabel < “t”;

18 else if (id;.proc = ids. proc) then

19 | (id1,idy).Jabel < “c”;

20 else

21 B (idy,ids).label < “d”;

22 | Return HBR = (E, Epy,)

VCs2HBR algorithm has as input a database of Vectors Clocks
(VCs) generated over a distributed system by some causal
algorithm, where each V'C' corresponds to a relevant event
executed in such a system. An example of a database of
VCs is given in Figure 2. In this example, the system is
composed of three processes and eight events. The HBR edges
are constructed by comparing each vector V' C to the rest of the
vectors (Algorithm 1, Lines 4-13). Fonction compare allows
the comparison of each pair of vecteur clocks in a given set of
VCs according to Definition 4. Means that, if the vector VC
of an event a (VC(a)) is less than the vector VC of an event b
(VC(b)), then an edge is generated between the corresponding
nodes from a to b (Algorithm 1, Lines 8-9). In Figure 2, we

show an example of comparing the vector VC(e11)= (1, 0, 0)
to the rest of the vectors. Since V C(e;1) is less than the others,
an HBR edge is generated from e;; to each node of the rest
of the events. The graph to the right is the HBR graph of the
system. It contains three different labeled edges corresponding
to the three condition of the HBR (Algorithm 1, Lines 15-21):

e c-labeled edge: a local relation which connects two
successive events belonging to the same process.

e (d-labeled edge: a direct relation between two events
belonging to different processes (i.e. in case of com-
munication).

e t-labeled edge: a transitive relation.

—> c-labeled edge
. ---> (-labeled edge
N > t-labeled edge

(1,0,0) 1(
20,1);

Database
of VCs

VCs comparison

HBR Graph

en
en
e (1,0,1) ! @
ex (1,1,1) E
enn(3,1,1)
(322!
ei4 (4,2,2) E
en (3,1,2)

Fig. 2. An example of the generation of the HBR graph

B. HBR2IDR

Algorithm 2: HBR2IDR

Input : HBR: The HBR graph
Output: IDR: The IDR graph
1 buildIDR (HBR)

2 begin

3 IDR + 0;

4 Eidr < Enpr 3

5 for each (idy,id2)€ Enpy do
6 | verify(idy, idy) ;

7 | Return IDR = (E, Ejq4,)

8 verify(idy, ids)

begin

w | if 3 (idy,id) € HBR) and 3((id, idy)e HBR) then
11 | Biar < Eigr\{(id1,id2)} ;

e

HBR2IDR algorithm has as input the set of HBR nodes and
egdes. To obtain the IDR graph, HBR2IDR eliminates all the
edges in the HBR graph which do not satisfy the IDR condition
(an event a immediately-precedes an event b if it does not exist
an event ¢ € E, such that ¢ belongs to the causal future of a
and to the causal past of b). The Fonction veri fy is to verify
which event in the set of HBR edges ~ Ej;,” satisfy such
condition (Algorithm 2, Lines 6-9). Therefore, only immediate
edges are kept. An example of executing HBR2IDR algorithm

to the HBR graph of Figure 2 is given in Figure 3. The graph
to the right is the IDR graph of the system.

—> c-labeled edge

HBR Graph
- ---> d-labeled edge

IDR Graph

Z\I\V ------ > t-labeled edge

Fig. 3. An example of the generation of the IDR graph

C. IDR2CAOS

IDR2CAQS algorithm has as input the set of IDR nodes and
egdes. It is based on the CAOS rules to generate the CAOS
graph from the IDR graph. Firstly, it start with creating sets
(Algorithm 3, Lines 7-15). Therefore, it verifies which event
in the IDR nodes can create a new set (ie which event satisfies
one of the rules Ry, Ry and R3 (Table I, Lines 1-3). R;
creates a new set 1W;; when an event id does not have causal
history. Means that, there is no edge (ids,id) belonging to
the set of IDR edges "F;q4.~ (Algorithm 3, Lines 8-9). Ro
creates a new set W;4 when the pattern id; | (id||id2) occurs
(Algorithm 3, Lines 10-11). Finally, R3 creates a new set W,y
when the pattern (idy||id2) | id occurs (Algorithm 3, Lines
12-13). Events which do not saisfy one of these rules forms
the set Evt. Then, IDR2CAOS associates these events to the
created sets according to rule R4 (Table I, Line 6). Means that,
it verifies if the endpoint of each set immediately precedes one
of these events (Algorithm 3, Lines 16-18). Then, IDR2CAOS
arranges sets (Algorithm 3, Lines 19-25). Thus, it compares
the endpoints of each pair of sets and verifies if it exists an
immediate relation connecting them.

Likewise, an example of executing IDR2CAOQOS algorithm to
the IDR graph of Figure 3 is given in Figure 4. In this example,
the event e satifies the rule R, the events ej2, eo; satify the
rule R and the event e;3 satifies the rule Rs. The graph to
the right is the CAOS graph of the system.

IDR Graph CAOS Graph

—> c-labeled edge

-=-> d-labeled edge

...... > t-labeled edge | /

IDR2CAOS ", @
—

Fig. 4. An example of the generation of the CAOS graph

Algorithm 3: IDR2CAOS

Input : IDR: The IDR graph
Output: CAOS: The CAOS graph

1 buildCA0S (IDR)

2 begin

3 CAOS « 0;

4 EC(ZOS (7 @;

5 W — 0;

6 Evt —0;

7 for each id € 1D do

8 it A(ids,id)E E;q) then

9 | W (Wia);

10 else if 3(idy,id)E Eiqr) and 3(idy, ids)e IDR)
then

1 | W (Wi

12 else if J(idy,id)e F,;q-) and J(ids,id)e IDR)
then

13 L W < (W)

14 else

15 | BEut<id;

16 fo_r each id € Evt do

17 if 3(idy, id)e IDR) and W;4,[n] = id;, then

18 L Widg — Widg @] {’Ld})

1 | for each Wiy in W do

20 for each Wiq, in W do

21 if Wiq,!= Wiq then

2 wh «— Wiql0] 5

23 w™ < Wig,[n] 3

24 if I(w™,w—)€ E;4,) then

25 L Ecaos < EcaosU {(WidUWidz)} N

26 fo_r each element (idy,id2) € Ecaos do

27 if (idy.proc = ids.proc) then

28 | (idy,idy).]abel < “c”;

29 el_se

30 B (idy,ids).label « “d”;

31 Return CAOS = (W, Ecqos)

IV. CASE STUDY

In this section, we present a validation approach for check-
pointing algorithms in which the use of causal graphs can be
efficient. Checkpointing is a widely used solution to provide
fault tolerance for distributed systems. Processes achieve fault
tolerance by saving recovery information periodically during
execution. When a failure occurs, the previously saved recov-
ery information can be used to restart the computation from
an intermediate state. The recorded states of a process called
local checkpoint and the set of local checkpoints forms a global
checkpoint or snapshot. We consider only the checkpoints as
internal events. We denote by C¥ the 2" checkpoint of process
p;. Finding when local checkpoints can be combined to form
a consistent snaphot is a critical problem. A global checkpoint
is consistent if no local checkpoint occurs before another, that
is, there is no causal path from one checkpoint to another,

in the sense that a message (or a sequence of messages)
sent after one checkpoint is received before the other [3].
According to Netzer [6], a set of checkpoints, C, from different
processes can belong to the same consistent global snapshot
iff no checkpoint in C' has a Z-path to any other checkpoint
(including itself). Netzer [5] defines the notion of Z-path as
follows:

Definition 6. Z-path exists from C} to another C iff there
are messages mi, Ma, ..., my such that:

1) my is sent by process p after C?,

2) if mi (1 < k < 1) is received by process r, then
My1 s sent by r in the same or at a later checkpoint
interval (although my1 may be sent before or after
my, is received), and

3) my is received by process q before C'jq.

Property 3. The length of a Z-path is | if the Z-path is formed
by | messages.

Definition 7. A noncausal Z-path from a checkpoint to a
checkpoint is a sequence of messages mi, Mma, ---, My
satisfying the conditions of Definition 1V such that for at least
one 1 (1 <1 < n), my; is received by some process Pr after
sending the message m;y1 in the same checkpoint interval.

Definition 8. A Z-cycle is a Z-path from a checkpoint to itself.

To validate the correctness of checkpointing algorithms, we
can model its execution by using causal graphs and then verify
if in such graphs, the algorithm is exempt from dangerous
patterns like Z-paths and Z-cycles. In this section, we are
intersted on noncausal Z-paths detection. The general pattern
of a noncausal Z-path in causal graphs is shown in Figure 5.

ni

d

n2 n3
C

d

n4

(a) Noncausal Z-path
of lenght 2

Cpiv Cpm

(b) Noncausal Z-path
of lenght 2 in causal graphs

-
S
e
-
e

\ !

-
./

= .

ey N
]
L]

(d) Noncausal Z-path
of lenght / in causal graphs

-ﬂq—. -

(¢) Noncausal Z-path
of lenght /

Fig. 5. General pattern of noncausal Z-path

A noncausal Z-path can be of length two or more. The Z-path

.. d c
of length two is in the form of (ny — ns, no — ns, ng
BN ny4). Why a Z-path is also of the form of d-c-d in a CAOS
graph? In general, when we generate the CAOS graph from
the IDR graph, the nodes (n;, ns, n3, ng) constructing a Z-
path can not be regrouped in a same set. In fact, the node ny
satisfies the second rule of the CAOS rules (Table I, Line 2)
means that the node ny4 will be associated to a different set than
the sets for ny and n3. Added to that, the node ns satisfies the
second rule of the CAOS rules (Table I, Line 3) means that the
node n3 will be associated to a different set than the sets for
n1 and ny (see the general pattern of a Z-path of length two in
Figure5-(b)). Consequently, the form d-c-d is also conserved
in the generated CAOS graph. A Z-path of length more than
two is a succession of messages (d-labeled edges) and there
exists at least two successive messages m and m+ 1 such that
delivery(m) — send(m + 1), that means the general pattern of
a noncausal long Z-path contains at least one occurrence of the
pattern d-c-d. To detect noncausal Z-paths in a causal graph,
we just need to verify if it contains this pattern. Algorithm 4
has as input a causal graph. It allows the detection of noncausal
z-paths in such a graph. The idea is to add a z-labeled edge
once the pattern d-c-d is detected (Algorithm 4, Line 11-12).
Consequently, based on the graph output, we can decide if the
algorithm is exempt of noncausal Z-paths.

Algorithm 4: Z-path-Detect
Input : G;,, = (Node, Edge): The causal graph
Output: G,,;: The graph output

1 detect (Gip)

2 begin

3 Gout 0,

4 for each (idy,ids)e Edge do

5 if ((idy,id2).label="d”) then
6 L | test((idy, ida)) ;

7 | Return G, = (Node, Edge)

t@St(idl, ’Ldg)

9 begin

10 if (3(ids,ids) € Edge) and (ids,idy) € Edge) and
(tds, ids).label="c” and (ids,idys).label="d”) then
1 L (idy,idy).label = 727

o®

12 Edge < Edge U {(idy,id4)} ;

In Figure 6, we give an example to show the detection of
non causal z-path in the HBR, IDR and CAOS graphs. In this
example, it exists a Z-path of length three from C? to C%. It
is denoted by the addition of a z-labeled edge.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a mechanism which con-
structs, for a distributed computation, the causal graph (HBR
graph), the minimal causal graph (IDR graph) at a single event
level and a causal consistent compact graph (CAOS graph) at
an ordered event set level. The CAOS graph construction is
very efficient for large-scale distributed systems as it drasti-
cally reduces the state-space of a system execution. Such a
representation can be a solution to deal with other systems

— c-labeled edge
--> (-labeled edge
~> t-labeled edge

- z-labeled edge

)
1
i
i
|
i
1
1
|
1
i
i
|
i
1
1
i
1
1
1
1
i
:
' !
1 N
1
1
i
1
1
i
1
1
|
1
i
i
|
i
1
1
|
1
i
i
|
i

(a) HBR graph (c) CAOS graph

Fig. 6. Example of detecting Z-paths in the causal graphs

requirements such as checkpointing, debugging and so on.
A case study is presented in this paper to illustrate how the
causal graphs can be used for the validation of checkpointing
algorithms.

As an on-going work, we aim applying our mechanism to
large-scale systems to show the gain in terms of nodes and
edges using the CAOS representation. as a future work, we
propose providing a formal proof for the previous algorithms
to prove their correctness and their efficiency.

REFERENCES

[1] E.M Clarke, O. Grumberg, M. Minea, and D. Peled. State space
reduction using partial order techniques. International Journal on
Software Tools for Technology Transfer, (STTT), 2(3):279-287, 1999.

[2] Colin J. Fidge. Timestamps in message-passing systems that preserve
the partial ordering. Proceedings of the 11th Australian Computer
Science Conference. K. Raymond (Ed.), 10(1):56-66, February 1988.

[3] L. Lamport. Time, clocks and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, 1978.

[4] FEF. Mattern. Virtual time and global states of distributed systems. In
Proceedings of the International Workshop on Parallel and Distributed
Algorithms, pages 215-226, October 1988.

[S] R.H.B. Netzer and J. Xu. Necessary and sufficient conditions for con-
sistent global snapshots. IEEE Transactions on Parallel Distribributed
Systems, 6(2):165-169, 1995.

[6] Robert H. B. Netzer and Jian Xu.
incremental replay of message-passing programs.
Brown University, Providence, RI, USA, 1993.

[7]1 S. E. Pomares-Hernandez, J. R. Perez Cruz, and M.Raynal. From the
happened-before relation to the causal ordered set abstraction. Journal
of Parallel and Distributed Computing, 72(6):791-795, February 2012.

[8] S. E. Pomares-Hernandez, J. Fanchon, and K. Drira. The Immediate
Dependency Relation: An Optimal Way to Ensure Causal Group Com-
munication, volume 6, chapter 3 of the Annual Review of Scalable
Computing, pages 61-79. Singapore University Press and World
Scientific Publications, 2004.

[9] S. E. Pomares-Hernandez, J. Estudillo Ramirez, L.A. Morales Rosales,
and G. Rodriguez Gomez. An intermedia synchronisation mechanism
for multimedia distributed systems. International Journal of Internet
Protocol Technology, 4(3):207-2018, 2009.

[10] K. Shimamura, K. Tanaka, and M. Takizawa. Group communication
protocol for multimedia applications. In Proceedings of the IEEE In-
ternational Conference on Computer Networks and Mobile Computing,
ICCNMC, pages 303-308, 2001.

Adaptive message logging for
Technical report,

